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The smallest prime that does not split
completely in a number field

Xiannan Li

We study the problem of bounding the least prime that does not split completely
in a number field. This is a generalization of the classic problem of bounding
the least quadratic nonresidue. Here, we present two distinct approaches to this
problem. The first is by studying the behavior of the Dedekind zeta function
of the number field near 1, and the second by relating the problem to questions
involving multiplicative functions. We derive the best known bounds for this
problem for all number fields with degree greater than 2. We also derive the best
known upper bound for the residue of the Dedekind zeta function in the case
where the degree is small compared to the discriminant.

1. Introduction

1.1. Historical background. Let N denote the least quadratic nonresidue modulo
a prime p. An old and difficult problem in number theory is to find good upper
bounds for N. Much work has been done on this problem, and we will only mention
a small selection of that here.

The best result known arises from considerations of cancellation in character
sums. To be more specific, let χ be the quadratic character with modulus p. Then
we say that χ exhibits cancellation at x = x(p) if

∑
n≤x χ(n)= o(x). Thus, the well

known bound of Pólya and Vinogradov for character sums implies that cancellation
occurs for x = p1/2+o(1); see [Davenport 2000]. Vinogradov [1927] proved that
such cancellation implies that the least quadratic nonresidue is N� p1/(2

√
e)+o(1).

Burgess [1957] showed that cancellation occurs at x = p1/4+o(1), and this implied
that

N� p1/(4
√

e)+o(1), (1)

which apart from different quantifications of o(1) is the best result known.
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Vinogradov conjectured that N�ε pε for any ε > 0. This is very reasonable
since the Riemann hypothesis for L(s, χ) implies the stronger bound of

N� log2 p. (2)

The true bound is suspected to be N� log p log log p, arising from probabilistic
considerations.

1.2. Generalization. This problem is the same as finding the least prime which
does not split completely in a quadratic field. A generalization is to find upper
bounds for the least prime which does not split completely in an arbitrary number
field. Let K be a number field of degree l with discriminant dK , N the least prime
which does not split, and let ζK (s) denote its Dedekind zeta function. Then ζK (s)
is analytic on the complex plane except for a simple pole at s = 1. Moreover, the
Euler product

ζK (s)=
∏
p

(
1−

1
N (p)s

)−1

holds for <s > 1, where the product is over prime ideals p and N (p) denotes the
norm of p. We note that, if all integer primes split over K , the Euler product for
ζK (s) would be the same as that for ζ(s)l , where as usual ζ(s) denotes the Riemann
zeta function. Since ζ(s)l has a pole of order l at s = 1 and ζK (s) has only a simple
pole at s = 1, we see that not all primes split. This also leads to quantifications of
the statement that the least prime which does not split cannot be too large and even
suggests that stronger results should be available as l grows. Using this approach,
K. Murty [1994] showed, assuming GRH for ζK (s), that N� ((log dK )/(l − 1))2,
which is analogous to (2). Unconditionally, Murty notes in a remark in the same
paper that his method would give a bound with a main term that is of the form

N� d
1

2(l−1)
K . (3)

This type of result was explicitly proved later using essentially elementary methods
by Vaaler and Voloch [2000]. Their result is that

N≤ 26l2d
1

2(l−1)
K , (4)

provided that
dK ≥

1
8 e2(l−1)max(105, 25 log2 l).

Vaaler and Voloch note that this result is an improvement on the more general result
of Lagarias, Montgomery, and Odlyzko [Lagarias et al. 1979]. The latter condition
on the size of dK is artificial, and there is reason to expect even better results when
dK is small compared to l.
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Can this result be improved by some generalization of Vinogradov’s method?
Interestingly enough, we will show in Theorem 3 that this is not the case. In fact,
the best result from Vinogradov’s approach is also a bound of the same form. Our
Lemma 1 and the discussion immediately preceding it give an alternate fourth proof
of the d1/(2(l−1))

K bound.
It thus appears that d1/(2(l−1))

K is a natural barrier. However, using some ideas
involving basic information on the zeros of ζK (s), we prove in Theorem 1 a result
of the form

N� d
1

4(l−1) (1+o(1))

K .

We also show that approaching the problem with multiplicative functions does
pay dividends in some cases, which appear in Theorems 4 and 5, where we derive
good bounds for N in the cases where K is cubic or biquadratic. The idea here is
to study how certain multiplicative functions interact with one another and take
advantage of the behavior of extremal quadratic characters. The behaviour of ex-
tremal quadratic characters has appeared previously in [Diamond et al. 2006], which
reproduces unpublished work of Heath-Brown. It is also contained in [Granville and
Soundararajan ≥ 2012]. In Lemma 12, we quantify what it means for a quadratic
character to be almost extremal, which may be of independent interest.

In the cubic case, a consideration of the multiplicative functions involved will
immediately generate a bound of N � d1/(4

√
e)+ε

K , where 4
√

e = 6.59 . . . . By
studying almost extremal quadratic characters, we will show a modest improvement,
to N� d1/6.64

K . We also give the following simple example in the biquadratic case
here. Given moduli q1 and q2, where for simplicity we assume that q1 � q2 � q
for some q, the least quadratic nonresidue for either q1 or q2 is� q(1−δ)/(4

√
e) for

some δ > 7
100 .

1.3. On residues. This discussion is related to another interesting problem — that
of finding upper bounds on the residue κ of ζK (s) at s=1. We remind the reader that
the class number formula relates κ to various algebraic invariants of K . Specifically,
let r1 and 2r2 denote the number of real and complex embeddings of K , h the class
number, R the regulator, and ω the number of roots of unity. Then

κ =
2r1(2π)r2h R
ω
√

dK
.

The best known explicit upper bound is due to Louboutin [2000], who showed that

κ ≤
(e log dK

2(l−1)

)l−1
. (5)

We also refer to [Louboutin 2000; 2001] for applications and connections of this
type of result to other questions as well as references to previous works from Siegel
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as well as Lavrik and Egorov. We will show a result of the form

κ ≤
(
(1+o(1))eγ log dK

4l

)l−1
,

when l/log dK = o(1) is small, and where γ = 0.577 . . . is Euler’s constant. See
Theorem 2 for the exact result.

1.4. Statement of results. We consider these problems from two different vantage
points. The first is via analysis of L-functions attached to the number field K , and
the other stems from Vinogradov’s work and work on multiplicative functions as in
[Granville and Soundararajan 2001]. It is interesting that the latter method, which
gives us the best known bounds in the quadratic case, is not optimal for number
fields of large degree. Indeed, the first method will give us the best known upper
bounds on the least prime that does not split for number fields of large degree
and will also lead to such a result on the residue of the Dedekind zeta function.
Specifically, we will show in Section 2:

Theorem 1. Let K be a number field of degree l and discriminant dK . Let N be the
least prime that does not split completely in K . Then

N�ε d
(1+ε)

4A(l−1)
K .

Here A= supλ≥0
1− l

l−1 e−λ

λ
satisfies A≥ 1−

√
2

l−1
= 1+O

( 1
√

l

)
→ 1 as l→∞.

The dependence on ε may be quantified explicitly by

N�
( log dK

l

)2
d

1+o(1)
4A(l−1)
K .

Here o(1) denotes a quantity that tends to 0 as either l or dK grows. It is illustrative
here to consider two examples. First, if we consider some sequence of number
fields such that dK ≤ C l for some constant C , we see that the least prime that does
not split must be bounded by a constant. This case does not appear in [Vaaler and
Voloch 2000]. Secondly, in the opposite case where (log dK )/ l→∞, we obtain
N� d(1+o(1))/(4A)

K .

Remark 1. The value of A may be calculated for small l. The result above beats
the bound d1/(2(l−1))

K when l ≥ 4. We comment that the best result in the case l = 2
is still of the form (1). The best result available in the case l = 3 is also not of the
form d1/(2(l−1))

K but is the one described below in Theorem 4.

Moreover, we have the following upper bound for the residue of the Dedekind
zeta function.
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Theorem 2. Let κ be the residue at s = 1 of the Dedekind zeta function of K , and
let d = log d1/ l

K . Then

κ �

(( 1
4 + B

)
eγ+
√

2/ l log dK

l

)l−1

,

where B = (2 log log d)/(log d)+ O(1/log d).

In the case where dK grows faster than an exponential1 in l, we have B = o(1).
Note also that since dK grows at least exponentially in l, B is usually small. However,
the result above is not optimal for dK very small. Rather, results like those of
Hoffstein [1979] and Bessassi [2003] optimize that particular case.

Remark 2. The above results can be made explicit if desired, but we choose not
to do so for ease of exposition. Improvements are possible in the coefficient in B
above as well as quantifications of the ε appearing in Theorem 1.

Also, by applying a result of Stechkin [1970], it is possible to prove the above
results more explicitly, but replacing 1

4 with (1− 1/
√

5)/2 = 0.276 . . . > 1
4 . See

Lemma 1 and environs for details.

The utility of Vinogradov’s method in the context of number fields has not been
well understood. We show in Section 3:

Theorem 3. Let K be a number field of degree l and discriminant dK . Let f (n) be
a real multiplicative function satisfying 0≤ f (p)≤ l on the primes and such that∑

n

f (n)
ns = ζ(s)

∑
n

g(n)
ns ,

valid for <(s) > 1, for some multiplicative function g(n) such that∑
n≤x

g(n)= o(x)

for all x > d1/2+o(1)
K . Then there exists some p < d

1+O(l−1/2+ε)
2(l−1)

K such that f (p) 6= l.
Moreover, this is essentially the best possible result for large l. To be specific,

there exists a real multiplicative function satisfying all the properties above such
that f (p)= l for all

p < d
1+O(l1/2+ε)

2(l−1)
K .

Thus, the technique behind Theorem 1 is aware of information that cannot be
matched solely through the multiplicative functions approach, despite the fact that
this approach gives the best known result for the quadratic case l = 2.

1By this, we mean that the statement dK � Cl is not true for any C > 0. An example would be
the condition of Vaaler and Voloch immediately following (4).
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However, the natural extension of Vinogradov’s method and in particular, the
structure in [Granville and Soundararajan 2001] has the advantage that it can utilize
more information about the interaction between different multiplicative functions.
This allows us to improve bounds on N in the case of cubic and biquadratic fields.
Specifically, we will show in Section 4:

Theorem 4. Let notation be as in Theorem 1. If K is a cubic field, then

N� d1/6.64
K .

A similar idea will enable us to show in Section 4 that:

Theorem 5. Let K be biquadratic with moduli q1 and q2. Then

N� (q1q2)
0.146/2.

Furthermore, if q1 � q2,
N� (q1q2)

0.141/2.

As we explain in Section 4, these results should be compared to the trivial bounds
of d1/(4

√
e)+ε

K in the cubic case and (q1q2)
1/(8
√

e) in the biquadratic case. Numeri-
cally, the results above are respectable, but have not been completely optimized. We
would like to exhibit that an interesting interaction between multiplicative functions
leads to better bounds, rather than to push for the best possible numerical result.

1.5. Notation. In the following, when we write f = O(g), or equivalently f � g,
for functions f and g, we shall mean that there exists a constant C such that
| f | ≤ C |g|. In the case where g is a function of ε where as usual, ε denotes an
arbitrary positive number, C is allowed to depend on ε. Unless otherwise stated, C
is absolute, and in particular, C never depends on the number field K . We will also
use o(1) to denote a quantity which tends to 0 as either dk→∞ or l→∞ except
in §3, where we are not concerned with uniformity in l and o(1) shall denote a
quantity which tends to 0 as dK →∞ and l/ log dK → 0.

2. Working with the Dedekind zeta function

As usual, write s = σ + i t . In this section, we will usually denote by ρ = β + iγ a
zero of the Dedekind zeta function. Let

F(s)=<
∑
ρ

1
s−ρ

=

∑
ρ

σ−β

(σ−β)2+(t−γ )2
,

defined for all s 6= ρ. As before, let l = r1+2r2 denote the degree of K over Q and
r1 and 2r2 be the number of real and complex embeddings of K respectively. Let

ξK (s)= s(s− 1)
( dK

4r2π l

)s/2
0(s/2)r10(s)r2ζK (s).
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Then ξK (s) is entire of order 1 and has a Hadamard product of the form

ξK (s)= eA+Bs
∏
ρ

(
1− s

ρ

)
es/ρ .

Logarithmically differentiating ξ(s) gives that

F(s)=<
(

1
2 log dK

22r2π l +
ζ ′K
ζK
(s)+G(s)+ 1

s
+

1
s−1

)
, (6)

where

G(s)=<
(r1

2
0′

0

( s
2

)
+ r2

0′

0
(s)
)
.

Here we have used that <B =−<
∑

ρ
1
ρ

. (See (11) in [Davenport 2000, p. 82] in
the case of ζ(s). The proof for the general case is the same.) We have

−
ζ ′K

ζK
(s)=

∑
n≥1

3K (n)
ns ,

where 3K (n) = 0 if n is not a power of a prime, and 0 ≤ 3K (pr ) ≤ l log p.
Rewriting (6) for s = σ > 1 gives∑

n≥1

3K (n)
nσ

=
1
2

log dK
22r2π l +

1
σ−1

− F(σ )+G(σ )+ 1
σ
. (7)

Then F(σ ) > 0 and ζ ′K /ζK (σ ) < 0 for σ > 1. This observation led Stark [1975] to
his lower bounds on discriminants, and this will be our starting point. Indeed, if we
use that F(σ ) > 0 and that G(σ ) < 0 for σ close to 1, we have that, for 1<σ < 5

4 ,∑
n≥1

3K (n)
nσ

≤
1
2

log dK
22r2πn +

1
σ−1

+ 1. (8)

Note that 3K (n) is maximized when n is a prime that splits completely in K ,
and the inequality above is a statement of the form that 3K (n) cannot be too large
for many n. With some work, this already leads to a bound of the form

N� d
1+O(1/

√
l)

2(l−1)
K ,

which is similar to the results of [Murty 1994] and [Vaaler and Voloch 2000].
Specifically:

Lemma 1. Suppose that for some quantity c > 0, the bound∑
n≥1

3K (n)
nσ

≤ c log dK +
1

σ−1
(9)
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holds for all σ in the range 1+ 1
log dK

≤ σ ≤ 1+ 10
√

l
log dK

. Also let

a(λ)=
1− l

l−1 e−λ

λ
,

and set A = supλ≥0 a(λ). Then

N� d
c

A(l−1) (1+o(1))

K .

Proof. If all primes split completely up to x > 2, then 3K (n) = l3(n) for all
n ≤ x , where 3(n) is the usual von Mangoldt function. Then, by the prime number
theorem for Q,∑

n≤x

3K (n)
nσ

=

∑
n≤x

l3(n)
nσ
= l

(∫ x

1

1
tσ

dt + O(1)
)
=

l
σ − 1

−
lx1−σ

σ − 1
+ O(l).

Thus we have from (9) that

l−1
σ−1

−
lx1−σ

σ−1
≤ c log dK + O(l)

Set σ = 1+ λ

log x
. Then the expression above is the same as

(l − 1)(log x + O(1))
λ

(
1− l

l−1
e−λ

)
≤ c log dK + O(l).

We may assume that O(1) = o(log x), since otherwise the result is obvious.
Rearranging we have

log x ≤ c+o(1)
a(λ)(l−1)

log dK + O(1).

We note that a(λ) has a global maximum for λ > 0. If we let A be that maximum,
the result follows immediately. �

A corresponding statement on upper bounds for κ also results from considerations
of this type. This conforms to the intuition that in order to maximize κ , we should
put as much weight as possible on the small primes in the sum in (8). In other
words, the worst-case scenario is when all the small primes split. To this end, we
prove the following lemma.

Lemma 2. Assume that (9) holds as in Lemma 1 for some σ = 1+ α

log dK
, and that

there exists some T such that

l
∑
n≤T

3(n)
nσ
≥ c log dK +

1
σ − 1

.

Then
log κ ≤ cα+ l

∑
n≤T

3(n)
nσ log n

+ log(σ − 1).
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Proof. We first show that

log ζK (σ )≤ l
∑
n≤T

3(n)
nσ log n

. (10)

To this end, let

S(t)=
∑
n≤t

3K (n)/nσ and S̃(t)=min
{∑

n≤t

l3(n)
nσ

, c log dK +
1

σ−1

}
.

Essentially, S̃(t) is the version of S(t) that grows at the fastest rate possible, and
visibly S(t)≤ S̃(t). Note also that S̃(t)= c log dK +1/(σ−1) is constant for t ≥ T .
Since

log ζK (σ )=
∑
n≥1

3K (n)
nσ log n

,

by partial summation,

log ζK (σ )=

∫
∞

1

S(t)
t log2 t

dt

≤

∫
∞

1

S̃(t)
t log2 t

dt =
∫ T

1

S̃(t)
t log2 t

dt + S̃(T )
log T

= l
∑
n≤T

3(n)
nσ log n

,

and this proves (10). By (9), we have by integration that

log κ − log(σ − 1)ζK (σ )≤ c(σ − 1) log dK = cα,

as desired. �

Again, since (9) follows from (8) with c = 1
2 , with some work the lemma above

gives us a bound roughly of the form

κ �

(
(1+ o(1))eγ log dK

2(l − 1)

)l−1

,

at least when dK is large when compared to l. This is already an improvement over
Louboutin’s result when l/log dK is small.

It is clear from both Lemma 1 and 2 that we gain information on both N and
κ if we were able to extract nontrivial contribution from F(σ ) in (7). However,
the discussion immediately following (7) neglected the contribution of the zeros
entirely. We now proceed to rectify that situation. There are a number of possible
approaches to this, and the best seems to be due to Heath-Brown [1992] in the case
of the Dirichlet L-functions. There are some minor technicalities in our case, which
we resolve with the help of the following lemma.
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Lemma 3. Let σ0 > 1+ 1/log dK and 1
4 < R < 1

2 . Let C1 be the half-circle of
radius R centered at σ0 with real part to the right of σ0. Let

D= log
log dK

l
.

Then
1
πR

∫
C1

|log(s− 1)ζK (s)|ds ≤ lD+ O(l).

Proof. Let s = σ + i t , where σ > 1+ 1
log dK

. Then

|log ζK (s)| ≤ |log ζK (σ )| ≤ log ζK

(
1+ 1

log dK

)
.

These inequalities follow upon comparing Dirichlet series and since the coefficients
of log ζK (σ ) are positive. We now claim that

log ζK

(
1+ 1

log dK

)
≤ lD+ O(l).

Our calculations in Lemma 2 gives us this bound almost immediately. Specifically,
we have from (8) and (10) in the proof of Lemma 2 that

log ζK (σ )≤ l
∑
n≤T

3(n)
nσ log n

,

provided that

l
∑
n≤T

3(n)
nσ
≥

log dK

2
+

1
σ − 1

+ 1.

Say that σ = 1+ 1
log dK

. Then

l
∑
n≤T

3(n)
nσ
≥ le

−
log T
log dK

∑
n≤T

3(n)
n
≥ le

−
log T
log dK log T + O(l).

Thus there is some constant2 C such that

l
∑
n≤T

3(n)
nσ
≥

log dK

2
+

1
σ − 1

for T = dC/ l
K . Hence

log ζK (σ )≤ l log log T + O(l)= l log C log dK
l

+ O(l)= l log log dK
l
+ O(l).

Note that our bounds here hold uniformly in dK and l. �

2Later on, we will have a specific value of C when we prove the Theorem 2, but for our present
purposes, it suffices to note that this is possible for some absolute constant C .
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Lemma 4. Assume that

1+ 1
log dK

< σ0 ≤ 1+ 10
√

l
log dK

and D= log
log dK

l
.

Then

−
ζ ′K
ζK
(σ0)≤

( 1
4 + o(1)

)
log dK +

1
σ0−1

+ 2lD+ O(l)

uniformly in σ0.

Proof. Let f (s)= (s− 1)ζK (s). Let CR denote the circle of radius R with center
σ0 with no zeros of f (s) on CR . Then f (s) is analytic and we apply Lemma 3.2 in
[Heath-Brown 1992] to get that

−<
f ′

f
(σ0)=

∑
ρ

′
( 1
σ0−ρ

−
σ0−ρ

R2

)
−

1
πR

∫ 2π

0
cos θ log

∣∣ f (σ0+ Reiθ )
∣∣ dθ

where
∑
′ denotes a sum over all zeros of f within CR . This is related to Jensen’s

formula and we refer the reader to [Heath-Brown 1992] for a proof.
We now need to bound the integral above, which we split into two ranges. The

first is when 0≤ θ ≤π/2 and 3π/2≤ θ ≤ 2π . The second is when π/2≤ θ ≤ 3π/2.
In the first range Lemma 3 tells us that

1
πR

∫
C1

log
∣∣ f (σ0+ Reiθ )

∣∣≤ lD+ O(l).

In the second range, we use the convexity bound ζK (σ + i t)� d(1−σ)/2K elD+Cl

for some C > 0. Since cos θ ≤ 0, we have

cos θ log
∣∣ f (σ0+Reiθ )

∣∣≥ cos θ 1−σ0−R cos θ
2

log dK (1+o(1))+cos θ(lD+Cl)

≥− cos θ R cos θ
2

log dK (1+o(1))+cos θ(lD+Cl).

Here we have used that 1− σ0 = o(1). Now, we may assume that 2/π < R < 1 so
the contribution of the second term to the integral is at most lD+Cl.

The contribution of the first term to the integral is at most

log dK + o(1)
2πR

(∫ 3π/2

π/2
R cos2 θdθ + o(1)

)
=
(1

4 + o(1)
)

log dK .

Hence

−
ζ ′K

ζK
(σ0)≤

1
σ0−1

−<

∑
ρ

′
( 1
σ0−ρ

−
σ0−ρ

R2

)
+

1+o(1)
4

log dK + 2lD+ O(l)

≤
1

σ0−1
+

1+o(1)
4

log dK + 2lD+ O(l),
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where we have used that

<

( 1
σ0−ρ

−
σ0−ρ

R2

)
= (σ0−β)

( 1
|σ0−ρ|2

−
1
R2

)
≥ 0. �

2.1. Proof of Theorem 1. Theorem 1 now follows immediately from Lemma 1
and Lemma 4 with c= 1

4 +o(1)+ (2lD+O(l))/ log dK , where D= log(log dK / l)
as before. For d = d1/ l

K we have

2lD+O(l)
log dK

= 2log log d
log d

+ O
( 1

log d

)
.

Also

d
2 log log d+O(1)
(l−1) log d

K � (log d)2.

We further need to verify that

A = sup
λ≥0

1− l
l−1 e−λ

λ
≥ 1−

√
2

l−1
.

We have

1− l
l−1 e−λ

λ
=

1−e−λ

λ
−

e−λ

(l−1)λ
≥ 1− λ

2
−

1
(l−1)λ

= 1−

√
2

l−1
,

upon setting λ=
√

2/(l − 1).

2.2. Proof of Theorem 2. It remains to prove the upper bound on the residue κ in
Theorem 2. As before, set d = log d1/ l

K . We already have from Lemma 2 that with
σ = 1+α/log dK and for any T such that l

∑
n≤T 3(n)/n

σ
≥ c log dK +1/(σ −1)

with c = 1
4 + 2 log log d/log d + O(1/log d)+ o(1), then

log κ ≤ cα+ l
∑
n≤T

3(n)
nσ log n

+ log(σ − 1)

≤ cα+ log(σ − 1)+ l
(

log log T + γ + 2
log2 T

)
,

where the latter line follows from taking logarithms in [Rosser and Schoenfeld
1962, (3.27)]. Set α = 4

√
l and recall that σ = 1+α/log dK . We need to find the

smallest admissible value of T . Let S(x)=
∑

n≤x 3(n)/n = log x −C + E(x) for
some constant C . From [Rosser and Schoenfeld 1962], we know that −1/log x <
E(x) < 1/log x . We have∑

n≤T

3(n)
nσ
=

∫ T

2−

1
xσ−1 d(S(x))=

∫ T

2−

1
xσ

dx + E(T )
T σ−1

=
1

σ−1
(2σ−1

− T σ−1)+
E(T )
T σ−1 = log T + E(T )

T σ−1 + O((σ − 1)T σ−1)
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We see easily that T � d1/ l
K , so (σ − 1)T σ−1

= o(1). Thus

log T = log dK
l

(
c+ 1

α

)
+ R(T ),

where |R(T )|< 1/log T . If log T ≥ (log dK )/(4l), we may absorb R(T ) into the
O(l/log dK ) term inside c and write

log T = log dK
l

(
c+ 1

α

)
.

Otherwise, log T ≤ log dK
4l
≤

log dK
l

(
c+ 1

α

)
. Either way, we have

κ ≤ exp(
√

l) 4
√

l
log dK

(eγ log T )l ≤ 4eγ c
√

l

(
ceγ+2/

√
l log dK

l

)l−1
,

where we have written c+ 1/α ≤ ce1/cα. Let B = 2 log log d
log d

+ O
( l

log d

)
. Then

we have also
κ �

(( 1
4 + B

)
eγ+2/

√
l log dK

l

)l−1

Since dK grows at least as fast as an exponential in l, B is always bounded. As
mentioned before, we are most interested here in the case when d grows, so that
B = o(1).

3. On multiplicative functions

3.1. Preliminaries. Let ζK (s) =
∑

n≥1 a(n)/ns be the Dirichlet series for ζK (s).
For this section, let f (n) be the multiplicative function such that

ζK (s)
ζ(s)

= ζK (s)
∏

p

(
1−

1
ps

)
=

∑
n

f (n)
ns ,

for<s>1. At primes, f (p)=a(p)−1. We first note that f (n) exhibits cancellation
at d1/2+o(1)

K . This argument is a standard one wherein we examine the Dirichlet
series

D(s) :=
ζK (s)
ζ(s)

=

∑
n≥1

f (n)
ns .

Then the standard zero-free region for ζ(s) is sufficient to find cancellation using
Perron’s formula.

The question of bounding the least nonsplit prime can be converted to a more gen-
eral question involving f (n). To be precise, knowing that f (n) exhibits cancellation
at d1/2+o(1)

K , what is the maximum y such that f (p)= l − 1 for all p ≤ y?
We now collect some facts about multiplicative functions that will be useful

for the remainder of this section. Since the applications will be towards proving
Theorems 3, 4 and 5, we will not take the same care to prove uniformity in l as in
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the previous results. The following material is essentially culled from [Granville
and Soundararajan 2001]; the results there are proved for the case where | f (n)| ≤ 1,
but the proofs extend to our case with very minor modifications. We summarize
below the results and the required modifications to the proofs.

Let f (n) be the multiplicative function defined above, with−1≤ f (p)≤k := l−1,
where we recall that l is the degree of our number field K . Fix some y ≥ 2 such
that f (p) = k for all p ≤ y. This implies that all y smooth numbers n satisfy
f (n)= dk(n), where the latter is the number of ways of writing n as a product of k
numbers. Then define

σ(u)= 1
yu logk−1 y

∑
n≤yu

f (n)

and

P(u)= 1
yu

∑
p≤yu

f (p) log p.

There are two related ways to express the relationship between σ(u) and P(u).
First say that σ̃ satisfies the convolution equation

uσ̃ (u)= σ̃ ∗ P(u)=
∫ u

0
σ̃ (u− t)P(t) dt, (11)

for u > 1 subject to σ̃ (u) = uk−1 for u ≤ 1. Then for our case, we will have
σ̃ (u)= σ(u)+ o(1). The proof of this when | f (n)| ≤ 1 is contained in [Granville
and Soundararajan 2001, Section 4], and the proof for our case is almost the same.
There (proof of Proposition 4.1), one defines the multiplicative function g(n) by
g(pk)= f (pk)− f (pk−1) for all prime powers. The nonnegative function |g(n)|
still satisfies the hypothesis of Theorem 2 in [Halberstam and Richert 1979], which
gives ∑

n≤x

|g(n)| ≤ k
x

log x

∑
n≤x

|g(n)|
n

(
1+ O

(
1

log x

))
.

The only modification in the proofs thereafter is to replace error terms of the form
O(A) by O(k A).

Next, we also have an inclusion-exclusion relationship. To be specific, let

I j (u)=
∫

t1+···+t j≤u
ti≥1

(
u−

∑ j
i=1 ti

u

)k−1 j∏
i=1

k−P(ti )
ti

dt1 · · · dt j . (12)

Then

σ̃ (u)= uk−1
∞∑
j=0

(−1) j

j !
I j (u), (13)

where we set I0 = 1. This sum is finite since I j (u)= 0 for u ≤ j .
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(We digress briefly to elucidate this inclusion-exclusion relationship. We have
σ̃ (u)≤ uk−1

+ o(1), since f (n)≤ dk(n). Now, if p ≥ y, note that∑
n≤yu

p|n
p≥y

1=
( ∑

n≤yu

p|n, p2-n
p≥y

1
)
(1+ O(1/y)),

so ∑
n≤yu

f (n)≥ yu logk−1(yu)(1+ o(1))−
∑

y≤p≤yu

∑
n≤yu

p|n

(dk(n)− f (n))

≥ yu logk−1(yu)(1+ o(1))−
∑

y≤p≤yu

∑
m≤yu/p

dk(m)(k− f (p))

≥ yu logk−1(yu)(1+ o(1))−
∑

y≤p≤yu

(k− f (p))
yu

p

(
log

yu

p

)k−1

.

An appropriate application of summation by parts brings this to

σ(u)≥ uk−1(1− I1(1)+ o(1)),

and one can derive (13) in this manner. However, we will relate this independently
to the convolution equation (11).)

Now, for fixed P(t), the solution σ̃ (u) to (11) is unique by the same proof as
Theorem 3.3 in [Granville and Soundararajan 2001]. Thus to prove (13), it suffices
to show that

uk−1
∞∑
j=0

(−1) j

j !
I j (u)

satisfies the convolution (11). The calculation here is similar to [ibid., Lemma 3.2]
and the main step is checking that

k ∗ J j (u)= u J j (u)− j ((k− P) ∗ J j−1)(u), (14)

where J j (u)= uk−1 I j (u). This is because (14) immediately implies that

u
∞∑
j=1

(−1) j

j !
J j (u)+uk

= uk
+k∗

∞∑
j=1

(−1) j

j !
J j (u)−

∞∑
j=0

(−1) j

j !
((k− P)∗ J j−1)(u)

which becomes (13) upon noting that uk
= k ∗ J0.

Some of the details in proving (14) differ slightly from those in [Granville and
Soundararajan 2001], so we will provide the proof in the lemma below.

Lemma 5. For J j (u) defined as above, k ∗ J j (u)= uI j (u)− j ((k− P)∗ J j−1)(u).
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Proof. For notational convenience, set S =
j∑

i=1
ti . Then

k ∗ J j (u)=
∫ u

0
k
∫

S≤t
ti≥1

(t − S)k−1
j∏

i=1

k−P(ti )
ti

dt1 · · · dt j dt

=

∫
S≤u
ti≥1

j∏
i=1

k−P(ti )
ti

∫ u

S
k(t − S)k−1 dt dt1 · · · dt j

=

∫
S≤u
ti≥1

j∏
i=1

k−P(ti )
ti

(u− S)k−1(u− S) dt1 · · · dt j

= u J j (u)− j
∫

t1+···+t j−1
≤u−t j≤u

ti≥1

t j

j∏
i=1

k−P(ti )
ti

(
u− t j −

j−1∑
i=1

ti

)k−1

dt1 · · · dt j

= u J j (u)− j (k− P) ∗ J j−1(u). �

Henceforth, by an abuse of notation, we write σ(u) for σ̃ (u) as well, and suppress
the o(1) error. Frequently, it will be useful to know that the minimal value of P(t)
gives the earliest cancellation in σ(t). The following proposition tells us this. For
an alternate proof, see also [Granville and Soundararajan 2001, Lemma 3.4].

Proposition 1. Suppose that we have two multiplicative functions f and f ]. Let

P(u)=
1
yu

∑
p≤yu

f (p) log p and P](u)=
1
yu

∑
p≤yu

f ](p) log p.

Define σ(u) and σ ](u) to be the solutions to (11) for P(u) and P](u) respectively.
Further suppose that P(u)= P](u) for u ≤ 1, and that P(u)≤ P](u) always. Let
u0 be the first zero of σ(u). Then 0≤ σ(u)≤ σ ](u) for u ≤ u0.

Proof. We use I j (u) and I ]j (u) to denote the various integrals defined as in (12).
Further let 1(a,a+ε)(t) be the indicator function of the small interval (a, a + ε).
Without loss of generality, it suffices to prove the result in the case where P](t)=
P(t)+δ1(a,a+ε)(t) for all δ > 0, all a> 1 and ε arbitrarily small. This is because lin-
ear combinations of functions of the form δ1(a,a+ε)(t) are L2 dense. For notational
convenience, set

S(t, u)= S(t)=
k− P(t)

t
and Q(t, u)= Q(t)=

δ1(a,a+ε)(t)
t

.

We may also assume that u > 1+ a, since otherwise σ(u)= σ ](u). Now fix some
1+ a < u < u0, and say that N ≥ u is the smallest such integer. We have
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σ ](u)−σ(u)

= uk−1
N∑

j=0

(−1) j

j !
(I ]j (u)− I j (u))

=

N∑
j=1

(
(−1) j

j !

×

∫
t1+···+t j≤u

ti≥1

(
u−

j∑
i=1

ti
)k−1( j∏

i=1
(S(ti )−Q(ti ))−

j∏
i=1

S(ti )
)

dt1 · · · dt j

)

=

N∑
j=1

(−1) j−1

( j−1)!
(
Tj+O(ε2)

)
,

where

Tj =

∫
t1+···+t j≤u

ti≥1

Q(t1)
(

u−
j∑

i=1

ti

)k−1 j∏
i=2

S(ti ) dt1 · · · dt j .

Here, we have used that integrals containing two factors of Q like

∫
t1+···+t j≤u

ti≥1

Q(t1)Q(t2)
j∏

i=3

S(ti ) dt1 · · · dt j

are O(ε2). The terms containing one factor of Q are the same by symmetry. We
now note that

Tj =

∫ a+ε

a
Q(t1)

(
u−

j∑
i=1

ti

)k−1∫
t1+···+t j≤u

ti≥1

j∏
i=2

S(ti ) dt1 · · · dt j

=

∫ a+ε

a
Q(t1) dt1

(∫
t2+···+t j≤u−a

ti≥1

(
u−a−

j∑
i=2

ti
)k−1

j∏
i=2

S(ti ) dt2 · · · dt j+O(ε)
)

=

∫ a+ε

a
Q(t1) dt1

(
uk−1 I j−1(u−a)+O(ε)

)
.

Here the O(ε) arises from replacing instances of t1 by a and using that a≤ t1≤a+ε.
Combining the above with the previous equation gives us

σ ](u)− σ(u)=
∫ a+ε

a
Q(t1) dt1

( uk−1

(u−a)k−1σ(u− a)+ O(ε)
)
.

If we pick ε to be sufficiently small, the latter is positive since
∫ a+ε

a Q(t1) dt1 > 0
and σ(u− a) > 0. �
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Remark 3. Actually, wherever we use this result, we have f ](p)≥ f (p). When
this is true, there is an alternative argument, which we now sketch. Let g(n) be the
multiplicative function defined by f ] = f ∗ g, that is, f ](n)=

∑
d|n f (d)g(n/d).

Then since f ](p)= f (p)+ g(p), we must have g(p)≥ 0. Hence∑
n≤x

f ](n)=
∑
n≤x

∑
d|n

f (d)g(n/d)=
∑
d≤x

f (d)
∑

n≤x/d

g(n).

One may then argue that the contribution from values of g on the prime powers is
benign and so the latter is an upper bound for

∑
n≤x f (n).

3.2. Generalization of Vinogradov’s method. By Proposition 1, we only need
consider the case where P(u)= k for u ≤ 1, and P(u)=−1 otherwise.

By the convolution (11), we get that σ(u) satisfies the following differential
difference equation:

uσ ′(u)+ (1− k)σ (u)+ (k+ 1)σ (u− 1)= 0. (15)

Lemma 6. Let u0 be a zero of σ(u). Then u0� k/ log k.

Proof. Without loss of generality, we may suppose that u0 is minimal. By a change
of variables τ(u)= σ(u)u1−k , we derive from (15) that

τ ′(u)=−(k+ 1)
(

1− 1
u

)k
τ(u− 1).

We see immediately that τ is positive and decreasing on [0, u0), so −τ ′(u) ≤
(k+1)(1−1/u)k� (k+1)e−k/u . The result follows since by mean value theorem,
1� (u0− 1)(k+ 1)e−k/u for some u ∈ [1, u0). �

This allows us to say that cancellation occurs later than k/ log k but we require
finer analysis in order to obtain that it must occur very near k. For this, we use the
saddle-point method.

3.3. The saddle-point method. Let σ̂ (s)=
∫
∞

0 σ(t)e−stdt denote the Laplace trans-
form of σ(t). In Lemma 7, we will show that σ̂ (s) can be analytically continued to
all of C. Thus, by Laplace inversion,

σ(u)=
1

2π

∫
∞

−∞

σ̂ (s)eus dt (16)

where s = x+ i t for fixed x . The idea of the saddle-point method is that the integral
for σ(u) above is dominated by a small interval where the argument of the integrand
changes slowly. First, we need to obtain a workable form for σ̂ (s). Our approach
will be similar to the analysis of the classic Dickman’s function in [Tenenbaum
1995, Section 5.4].
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Lemma 7. We have

σ̂ (s)= (k− 1)! se(k+1)(I (−s)+γ )
=
(k− 1)!

sk e−(k+1)J (s),

where γ is Euler’s constant and

I (s)=
∫ s

0

et
− 1
t

dt, J (s)=
∫
∞

0

e−(s+t)

s+ t
dt.

Note that J (s) only has holomorphic extension to C \ (−∞, 0]; the purpose of
writing σ̂ (s) in terms of I (−s) is to analytically continue the transform to all of C.

Proof. A change of variables t = v/s in the definition of the Laplace transform
gives us that

sσ̂ (s)=
∫
∞

0
e−vσ(v/s) dv.

Differentiating both sides with respect to s gives

d
ds

sσ̂ (s)= 1
s

∫
∞

0
e−v(−(v/s)σ ′(v/s)) dv

=
1
s

∫
∞

0
e−v

(
(k+ 1)σ

(
v

s
− 1

)
− (k− 1)σ (v/s)

)
dv

= (k+ 1)e−s σ̂ (s)− (k− 1)σ̂ (s),

upon changing variables again. Solving this differential equation for sσ̂ (s) gives

sσ̂ (s)= C e−(k+1)J (s)

sk−1 ,

for some constant C . We have lims→∞ J (s)= 0, so

lim
s→∞

sk σ̂ (s)= C.

On the other hand,

lim
s→∞

sk σ̂ (s)= lim
s→∞

sk−1
∫
∞

0
e−v

(
v

s

)k−1
dv =

∫
∞

0
e−vvk−1dv = (k− 1)! ,

from which it follows that C = (k− 1)! . Note that the first line follows from the
fact that σ(t)= tk−1 for t ≤ 1, and that e−v decreases rapidly.

By [Tenenbaum 1995, Lemma 7.1 of Section 5.4], we have

−J (s)= I (−s)+ γ + log s

for s ∈ C \ (−∞, 0], and this concludes the proof. �
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In order to apply the saddle-point method, we first collect some information on
the extrema of the integrand in (16). In the sequel, we let W (x) denote the Lambert
W function, defined by x =W (x)eW (x). We remind the reader that there exist two
real branches of W (x) when x ≥−1/e, which we denote by W0 and W−1, where
they are distinguished by W0(0)= 0 and W−1(0)=−∞.

Lemma 8. Let 8(s) = σ̂ (s)eus and let ξ(u) = −W ((−(k + 1)e−k/u)/u)− k/u,
where W is a branch of the Lambert W function. Then 8′(ξ)= 0. If |u− k| ≥ 2

√
k,

then we may pick ξ(u) to be real. In particular, we pick

ξ(u)=


−W0

(
−(k+1)e−k/u

u

)
− k/u for u ≤ k− 2

√
k,

−W−1

(
−(k+1)e−k/u

u

)
− k/u for u > k+ 2

√
k.

(17)

For this choice of ξ(u), if |u−k|� k1/2+ε , then ξ(u)� k−1/2+ε . Moreover, ξ(u)<0
for u < k− 2

√
k and ξ(u) > 0 for u > k− 2

√
k.

Proof. We have that

d
ds
(se(k+1)I (−s)eus)= e(k+1)I (−s)eus(1+ s(u− (k+ 1)I ′(−s))),

and this is 0 when s =−ξ(u) where ξ(u) satisfies

(k+ 1)eξ(u) = k+ uξ(u).
In other words,

ξ(u)=−W
(
−(k+1)e−k/u

u

)
− k/u, (18)

Note that
−(k+ 1)e−k/u

u
≥−1/e ⇐⇒ (k+ 1)≤ ue(k−u)/u .

We first verify that the latter holds for all |u− k| ≥ 2
√

k. Indeed, a little calculus
tells us that the function ue(k−u)/u has a global minimum on [0,∞) at u = k. Since
it is decreasing on [0, k) and increasing on [k,∞), it suffices to check the assertion
for |u− k| = 2

√
k. But for |u− k| = 2

√
k, we have

ue(k−u)/u
= k+ (k−u)2

2u
+
(k−u)3

3! u2 + · · ·

≥ k+
(1

2
−

1
3!

)
(k−u)2

u
≥ k+ 4

3
> k+ 1.

Now let u= k+E , where |E |> 2
√

k. We examine two cases. First, when E < 0,
we know that −W0(x)≤ 1 for all x ≤ 0 so

ξ(u)≤ 1− k
k+E

=
E

k+E
< 0.
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Next, when E > 0, we know that −W−1(x)≥ 1 for all x ≤ 0 so

ξ(u)≥ 1− k
k+E

=
E

k+E
> 0.

Note that |E/(k+ E)| � 1/k1/2−ε if |E | � k1/2+ε , and that ξ(u) shares the same
sign with E . �

Remark 4. To motivate the definition of ξ(u) in this lemma, note that k/u is close
to satisfying the equation defining W (−(k+ 1)e−k/u/u), so k/u must sometimes
be close to one of the branches. The idea here is to take the other branch. The sign
change for ξ(u) occurs near u = k, and this is also when the branches converge to
the same value at −1/e.

We now need to estimate σ(u) by Laplace inversion of σ̂ (s) on the <s = <ξ
line. For this purpose, we collect the following estimates.

Lemma 9. Let ξ be as in Lemma 8. Write s = −ξ + iτ , with τ real, and assume
1< u ≤ 10k with |k− u| � k1/2+ε . Then for |τ | ≥ k+ u|ξ |,

σ̂ (s)= (k−1)!
sk−1

(
1+ O

(uξ+k
|s|

))
. (19)

Moreover, there exists c > 0 such that for |τ | ≤ π ,

σ̂ (s)� (k− 1)! se(k+1)(γ+I (ξ))e
−c k+1
|ξ |+1 τ

2

, (20)

and for |τ |> π ,

σ̂ (s)� (k− 1)! se(k+1)(γ+I (ξ))e
−c k+1
|ξ |+1 . (21)

Proof. The first bound follows from σ̂ (s) = ((k − 1)!/sk−1)e−(k+1)J (s), and the
bound J (s)� |eξ/s| = |(uξ + k)/((k+ 1)s)|. For the other two cases, set H(τ )=
I (ξ)− I (−s)=

∫ 1
0 (e

hξ/h)(1− e−iτh) dh. We extract the real part to get that

<H(τ )=
∫ 1

0

ehξ

h
(1− cos τh) dh

For (20), note that 1− cos hτ ≥ 2τ 2h2/π2 for |τ | ≤ π . By the calculation in
[Tenenbaum 1995, Lemma 8.2],

<H(τ )≥ τ 2

2π2

∣∣∣∣∫ 1

0
ehξdh

∣∣∣∣� τ 2

|ξ |+1
.

From this and Lemma 7, we have (20).
To prove the third bound, (21), observe that

<H(τ )=
∫ 1

0

ehξ

h
(1− cos τh) dh� 1

|ξ |+1
.
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The last inequality follows from considering an open set E ⊂ [0, 1] of small
measure outside of which (1− cos τh)� 1. One may make E small enough so
that

∫
E ehξ dh is bounded by

∫
[0,1]\E ehξ dh. This is possible since ξ ≤ C for some

absolute constant C for u in the specified range. This is true in the case u < k
because −W0(x) ≤ 1 for x ≤ 0 and it is true for u > k since the argument inside
W−1 is bounded away from 0 when u ≤ 10k. �

We now apply the bounds above to obtain an estimate for σ(t). Set

δ =

√
log3(k+ 1)

c(k+ 1)

where c is the constant appearing in Lemma 9. Let K (u)= 1/(2π)
∫ δ
−δ
σ̂ (s)eusdτ ,

and H(u)= 1/(2π)
∫

R\[−δ,δ]
σ̂ (s)eusdτ . As above, we have written s =−ξ + iτ .

We know that σ(u)= K (u)+ H(u), and we first find an upper bound for H(u).

Lemma 10. Assume k ≥ 3 and u� k/log k with |k− u| � k1/2+ε . Then

H(u)� (k− 1)! e(k−1)(γ+I (ξ)) 1
(k+1)log2 k

.

Proof. First note by (18) that ξ � log k when u � k/log k. Now, we split the
integral in the definition of H(u) into 3 ranges. First, when δ < |τ | ≤ π , we have
by (20) that the integral is

� (k− 1)! e(k−1)(γ+I (ξ))
∫
∞

δ

e−c(k+1)τ 2/ log kdτ

� (k− 1)! e(k−1)(γ+I (ξ)) 1

(
√

k+ 1)1−ε

∫
∞

log3/2(k+1)
e−τ

2
dτ

� (k− 1)! e(k−1)(γ+I (ξ)) 1
(k+1)log2 k

.

Next, when π < |τ | ≤ k+ u|ξ |, we get by (21) that the integral is

� (k− 1)! e(k−1)(γ+I (ξ))e−k1−ε
,

where we have used that u� k. Lastly, for |τ | ≥ k+ u|ξ |, we get by (19) that the
integral is

� (k− 1)! 1
kk−1 ,

which is tiny. �

Now we are ready to evaluate K (u).

Lemma 11. Suppose that k ≥ 3 and k/log k� u≤ 10k with |k−u|� k1/2+ε . Then

K (u)= −(k−1)! ξe(k+1)(γ+I (ξ))−uξ
√

2π(k+1)I ′′(ξ)

(
1+ O

( 1
(k+1)ε

))
.
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Proof. We first examine the Taylor expansion of I (−s) about ξ . First note that

I ′(ξ)= eξ−1
ξ
=

u
k+1
−

1
(k+1)ξ

,

as before. Thus

I (−s)= I (ξ)− iτu
k+1
+

iτ
(k+1)ξ

−
τ 2 I ′′(ξ)

2
+ O(τ 3).

Since 1/(k1/2−ε)� ξ � log k for k/log k� u ≤ 10k, we have for |τ | ≤ δ that

e(k+1)I (−s)+us
= e(k+1)I (ξ)−uξ−(k+1) τ

2 I ′′(ξ)
2

(
1+ O

( 1
kε
))
,

and so

K (u)= (k− 1)! e(k+1)(γ+I (ξ))−uξ
∫ δ

−δ

e−(k+1)(τ 2 I ′′(ξ))/2(−ξ + iτ) dτ
(

1+ O
( 1

kε
))

=−(k− 1)! ξe(k+1)(γ+I (ξ))−uξ
∫ δ

−δ

e−(k+1)(τ 2 I ′′(ξ))/2 dτ
(

1+ O
( 1

kε
))
,

by symmetry. Note that

I ′′(ξ)= ξeξ−eξ+1
ξ 2 .

Then for u in the range specified, 1/log2 k� I ′′(ξ)� 1. We also have∫ δ

−δ

e−(k+1)τ 2 I ′′(ξ)/2dτ =
∫
∞

−∞

e−(k+1)τ 2 I ′′(ξ)/2dτ + O
(

1
√

I ′′(ξ)(k+1)3/2

)
=

√
2π

(k+1)I ′′(ξ)

(
1+ O

( 1
(k+1)1/2

))
,

as desired. �

Proposition 2. Say that k ≥ 3 and k/log k� u ≤ 10k with |u− k| � k1/2+ε . Then

σ(u)= −(k−1)! ξe(k+1)(γ+I (ξ))−uξ
√

2π(k+1)I ′′(ξ)

(
1+ O

( 1
(k+1)ε

))
Moreover, by Lemma 8, the first zero of σ(u) must be k+ O(k1/2+ε).

Proof. The expression for σ(u)= K (u)+ H(u) follows directly from Lemmas 10
and 11. Note that I ′′(ξ)� 1/log2 k for u in the range specified. The last assertion
follows from noting that σ(u) changes sign when ξ changes sign, and the fact that
by Lemma 6, the first zero of σ(u) must be� k/log k. �

Finally, we note that Theorem 3 follows immediately from the Proposition 2.
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4. Cubic and biquadratic fields

We now investigate the question of bounding the least nonsplit prime when K is
either cubic or biquadratic. The general philosophy is the same for the two cases,
although the technical details are different. There is always a “trivial” bound which
arises from considering cancellation in a quadratic character, and our purpose is to
show that this bound can be improved. In both cases, we benefit from interaction
between a primary multiplicative function of interest and quadratic characters.
Simply put, if all the primes split up to the trivial bound, then the quadratic character
is extremal and we may predict its behavior far beyond the cancellation point.
In this case, the interaction with the primary multiplicative function produces a
contradiction. In order to obtain an actual bound, we need to understand what it
means for a quadratic character to be close to extremal.

4.1. Extremal behavior. Let χ denote a quadratic character with modulus q such
that χ(p)= 1 for all p ≤ y whenever p - q. We set

P(u)= 1
ν(yu)

∑
p≤yu

χ(p) log p,

where ν(x)=
∑
p≤x

log p. Also, let σ(u)= 1
yu

∑
n≤yu

χ(n). We further define

I j (u)=
∫

t1+···+t j≤u
ti≥1∀1≤i≤ j

j∏
i=1

1−P(ti )
ti

dt1 · · · dt j .

We remind the reader that

σ(u)=
∑
j≥0

(−1) j I j (u)
j !

,

where I0 ≡ 1. Note that the sum on the right is finite. Moreover, we have

2m−1∑
j=0

(−1) j I j (u)
j !

≤ σ(u)≤
2m∑
j=0

(−1) j I j (u)
j !

for any m ≥ 0. Once again, we refer the reader to [Granville and Soundararajan
2001] for more details.

Let A > 0 be such that y A
= q1/4, so that σ(u) = o(1) for u > A. The reader

should think of A as being somewhat larger than
√

e. The simple case when
A =
√

e is the extremal case appearing in the bound (1) and the behavior of P(t)
here has been studied by other authors. In their study of Beurling primes, Diamond,
Montgomery, and Vorhauer reproduce the unpublished analysis of Heath-Brown
on this subject in the appendix of [Diamond et al. 2006]. This is also examined in
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[Granville and Soundararajan ≥ 2012]. The lemma below quantifies the behavior
of P(t) by comparing χ to an extremal character.

Lemma 12. Suppose that
√

e ≤ A ≤ 2, and set3 E = 2 log A− 1.

1. Say that we have some interval (a, b)⊂ (1, A). Then∫ b

a

1−P(t)
t

dt ≥ 2 log b
a
− E + o(1).

2. For all t ∈ [2, 3] but for a set of measure 0, we have

1−P(t)
t
=

1
2

∫ t−1

1

1−P(u)
u

1−P(t−u)
t−u

du.

Moreover, for all t ∈ [2, 4] but for a set of measure 0, we have

1−P(t)
t
≤

1
2

∫ t−1

1

1−P(u)
u

1−P(t−u)
t−u

du.

3. For all t ∈ [2, 1+ A] but for a set of measure 0, we have

4
t

log(t − 1)− 2E ≤ 1−P(t)
t
≤

4
t

log(t − 1)

4. For all t ∈ [1+ A, 3] but for a set of measure 0, we have

1−P(t)
t
≥

4
t

log A
t−A

− 2E + o(1),

and for t ∈ [3, 4], we have

1−P(t)
t
≥

4
t

log A
t−A

− 2E − 2
3
(t − 3)2+ o(1).

Moreover, for all t ∈ [1+ A, 2A] but for a set of measure 0, we have

1−P(t)
t
≤

4
t

log A
t−A

+ o(1).

Proof. Note that σ(u)= o(1) for u > A. Thus∫ A

1

1− P(t)
t

dt = 1+ o(1)

and the first assertion follows since 1− P(t)≤ 2.
The second assertion follows from the fact that P(t) is continuous almost every-

where, and when P(t) is continuous,

1−P(t)
t
= lim
ε→0

1
ε
(I1(t + ε)− I1(t)).

3 E measures the deviation of A from
√

e. In particular, E = 0 when A =
√

e.
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For t ∈ [2, 3],
I1(t + ε)− I1(t)= 1

2(I2(t + ε)− I2(t)),

and for t ∈ [2, 4],

I1(t + ε)− I1(t)= 1
2(I2(t + ε)− I2(t))− 1

6(I3(t + ε)− I3(t))

≤
1
2(I2(t + ε)− I2(t)).

Thus, it remains to evaluate

lim
ε→0

1
2ε
(I2(t + ε)− I2(t))= lim

ε→0

1
2ε

∫
t≤t1+t2≤t+ε

t1,t2≥1

1−P(t1)
t1

1−P(t2)
t2

dt1 dt2

=
1
2

∫ t−1

1

1−P(t1)
t1

1−P(t−t1)
t−t1

dt1,

almost everywhere, as desired.
To prove the upper bound in the third assertion, note that

1
2

∫ t−1

1

1−P(u)
u

1−P(t−u)
t−u

du ≤ 2
∫ t−1

1

1
u

1
t−u

du = 4
t

log(t − 1).

To prove the lower bound in the third assertion, we let f (t) = (1− P(t))/t and
m(t)= 2/t ≥ f (t) for all t . Then for t ∈ [2, 1+ A] we have∫ t−1

1
f (u) f (t − u) du

=

∫ t−1

1
( f (u)−m(u)) f (t − u) du+

∫ t−1

1
m(u)( f (t − u)−m(t − u)) du

+

∫ t−1

1
m(u)m(t − u) du

≥
8
t

log(t − 1)− 4E .

Here we have bounded both the first two terms from below by −2E using the first
assertion and that f (u)≤ m(u)≤ 2 for all u ∈ [1, A].

The proof of the fourth assertion is similar. The only difference in the proof of
the first and last bounds arises from the fact that

∫ 2
A(1− P(u))/u du = o(1). Thus

for 1+ A ≤ t = 1+ A+ δ ≤ 2A,∫ t−1

1

1−P(u)
u

1−P(t−u)
t−u

du =
∫ t−1−δ

1+δ

1−P(u)
u

1−P(t−u)
t−u

du+ o(1).

For the second bound in the fourth assertion, one also needs to use that

1−P(t)
t
= lim
ε→0

1
ε

( 1
2(I2(t + ε)− I2(t))− 1

6(I3(t + ε)− I3(t))
)

≥
1
2 lim
ε→0

1
ε
(I2(t + ε)− I2(t))− 2

3(t − 3)3.
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This follows from the calculation that

lim
ε→0

1
ε
(I3(t + ε)− I3(t))=

∫
t1+t2≤t−1

t1,t2≥1

1−P(t1)
t1

1−P(t2)
t2

1−P(t−t1−t2)
t−t1−t2

dt1 dt2

≤ 8
∫

t1+t2≤t−1
t1,t2≥1

1
t1

1
t2

1
t−t1−t2

dt1 dt2 ≤ 8(t−3)2

2
,

upon calculating the volume of the region of integration. �

4.2. Cubic fields. Let K be a cubic field. In this case, it is easy to see that a
much better result than N� d1/(2(l−1))

K is possible. In the case where K is Galois,
then K must necessarily be abelian, and so ζK (s)= ζ(s)L(s, χ1)L(s, χ2) for some
Dirichlet characters χ1 and χ2 with conductors q1 and q2 respectively. Say that
q1 ≤ q2. Then since χ1 has order 3, by [Heath-Brown 1992, Lemma 2.4], χ1(n)
exhibits cancellation by q1/4+ε . Thus N�ε q1/4+ε

1 � d1/8+ε
K . Clearly, a stronger

statement should be possible in the abelian case, but we shall be more interested in
the general case here.

For the rest of this section, say that K is not Galois. Then

ζK (s)= ζ(s)L( f, s),

where f is a holomorphic modular Hecke eigenform of weight k and level N . Also,
the L-function associated to f is of the form

L( f, s)=
∏

p

(
1−

αp

ps

)−1(
1−

βp

ps

)−1
=

∏
p

(
1− a(p)

ps +
χ(p)
p2s

)−1
,

where χ is a quadratic character with modulus q ≤ dK . Visibly from the Euler
product above, p cannot split in K if χ(p)=−1. Thus,

N� d1/4
√

e
K + o(1). (22)

This is the starting point for our investigation.
Let f (n) be the completely multiplicative function with f (p) = a(p) for all

primes p. Then f (n) exhibits cancellation by d1/2+o(1)
K . We now try to improve

the bound of N� d1/4
√

e
K by leveraging information about the two multiplicative

functions f (n) and χ(n).

Remark 5. Our main focus here is to show that improvements over the bound
(22) are possible. For simplicity, we will not attempt to completely optimize our
calculations. In particular, we do not use the available subconvexity result for
ζK (s) which shows that f (n) exhibits cancellation by d1/2−δ

K for some δ > 0 (see
Appendix A of [Einsiedler et al. 2011] for a synopsis of known results).
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As in Section 4.1, let P(t) denote the average over primes of f (p) and let P ′(t)
denote the same average for χ(p). Let4 σ(t)= 1/(yt log yt)

∑
n≤yt f (n). Also as

in Section 4.1, assume that there exists some y = d A
K such that all primes p ≤ y

split completely, where we may assume that A > 1
8 .

We begin by quantifying the relationship between f (p) and χ(p).

Lemma 13. With f and χ as above, we have f (p) ≥ −(χ(p) + 1)/2 for all
unramified primes p. It follows that P(t)≥−(P ′(t)+ 1)/2+ o(1), where the o(1)
is a quantity tending to 0 as dK →∞ uniformly for t ≥ 1.

Proof. This follows from the fact that f (p) = αp + βp and χ(p) = αpβp. First
assume that p is unramified. There are three possibilities to check, corresponding to
the three possibilities for the local factor at p in ζK (s), which is always of the form∏

p|p

(
1− 1/N (p)s

)−1. When p splits completely, the local factor is
(
1− 1/ps

)−3,
so αp = βp = 1 whence f (p)= 2 and χ(p)= 1. When p is inert, the local factor is
of the form

(
1− 1/p3s

)−1, so αp = 1/βp = e±2π i/3 and f (p)=−1 and χ(p)= 1.
In the remaining case, p factors as p = p1p2, where the norms of the ideals on the
right are p and p2; thus the local factor is of the form(

1− 1
ps

)(
1− 1

p2s

)
.

In this case, then, αp =−βp =±1 and f (p)= 0 and χ(p)=−1. In all three cases,
we have verified that f (p) ≥ − 1

2(χ(p)+ 1). The statement about the averages
P(t) and P ′(t) follows by definition, and since the number of ramified primes is
bounded by log dK , and hence contribute at most

O
(

log2 dK

y

)
= O

(
log2 dK

dK

)
= o(1). �

Outline of proof. Our bound for N will result from a lower bound for the first zero
of σ(t), which we know must eventually be identically zero by cancellation. The
previous lemma, combined with Proposition 1, tells us that we can instead study
the first zero of the solution to (11) with −1

2(P
′(t)+ 1) in place of P(t). We then

use our estimates for P ′(t) from Lemma 8 to finish the proof.

We let

I j (u)=
∫

t1+···+t j≤u
tk≥1∀1≤k≤ j

(
u−

∑ j
k=1 tk

u

) j∏
k=1

(2−P(tk))
tk

dt1 · · · dt j .

Then for u ≤ 4,

σ(u)= 1− I1(u)+
I2(u)

2
−

I3(u)
6

.

4This definition of σ(t) differs from the definition in Section 3 by a factor of t .
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Set

I ′3(u)=
∫

t1+t2+t3≤u
tk≥1∀1≤k≤3

u−t1−t2−t3
ut1t2t3

dt1 dt2 dt3.

Note that
I3(u)

6
≤

9
2

I ′3(u),

where we have used the trivial bound 2− P(t)≤ 3. We thus have

σ(u)≥ 1− I1(u)+
I2(u)

2
−

9
2

I ′3(u). (23)

By Proposition 1 and Lemma 13, we know that (23) still holds when P(t) is replaced
by −1

2(P
′(t)+ 1). Henceforth, assume that P(t) = −1

2(P
′(t)+ 1) for all t ≥ 1.

Now, we calculate an upper bound for I1(u).

Lemma 14. For notational convenience, set

g(t, u)= g(t)= u−t
tu

.

For all t ∈ [A, 4] but for a set of measure zero, we have −P(t)≤U (t), where

U (t)=


1 if A < t ≤ 2,
min(1, 1− 2 log(t − 1)+ Et) if 2< t ≤ 1+ A,
min

(
1, 1− 2 log A

t−A + Et
)

if 1+ A < t ≤ 3,

min
(
1, 1− 2 log A

t−A + Et + 1
3 t (t − 3)3

)
if 3≤ t ≤ 4.

Let u = 2A ≤ 4. Then,∫ u

1
(2− P(t))g(t) dt ≤ 2

∫ u

1
g(t) dt +

∫ u

A
U (t)g(t) dt

+
1
2

(
log A− 1+

1
u

(
1+ A− 2A

√
e

)
+

∫ A

1
g(t) dt

)
.

Proof. Since we assume that P(t)=−1
2(P

′(t)+1) and Lemma 12 applies to P ′(t),
we see that −P(t)≤U (t) for A ≤ t ≤ u. Hence,∫ u

1
(2− P(t))g(t) dt ≤ 2

∫ u

1
g(t) dt+

∫ u

A
U (t)g(t) dt+

∫ A

1

1
2(1+ P ′(t))g(t) dt,

and moreover,∫ A

1

1
2(1+ P ′(t))g(t) dt =

1
2

(∫ A

1
g(t) dt +

∫ A

1

P ′(t)
t

dt −
∫ A

1

P ′(t)
u

dt
)
.
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We know that
∫ A

1

1− P ′(t)
t

dt = 1, so
∫ A

1

P ′(t)
t

dt = log A−1. We claim that

∫ A

1
P ′(t) dt ≥

∫ A/
√

e

1
1 dt −

∫ A

A/
√

e
1 dt = 2A/

√
e− 1− A.

To see this, let

γ (t)=
{

1 if 1≤ t ≤ A/
√

e,
−1 if A/

√
e < t ≤ A.

Note that
∫ A

1 (γ (t)/t) dt = log A− 1. Let λ(t) : [1, A] → [−1, 1] be any function
with

∫ A
1 (λ(t)/t) dt = log A− 1 and let h(t)= λ(t)− γ (t). It suffices to show that∫ A

1 h(t) dt ≥ 0. We have

A/
√

e
∫ A/

√
e

1

h(t)
t

dt + A/
√

e
∫ A

A/
√

e

h(t)
t

dt = 0.

Note that h(t) ≤ 0 for 1 ≤ t ≤ A/
√

e and h(t) ≥ 0 for A/
√

e < t ≤ A. Thus we
have

A/
√

e
∫ A/

√
e

1

h(t)
t

dt ≤
∫ A/

√
e

1
h(t) dt

and

A/
√

e
∫ A

A/
√

e

h(t)
t

dt ≤
∫ A

A/
√

e
h(t) dt.

Adding the two inequalities immediately produces the desired result.
From this, we get that∫ A

1

1+ P ′(t)
2

g(t) dt ≤
1
2

(
log A− 1+

1
u

(
1+ A− 2A

√
e

)
+

∫ A

1
g(t) dt

)
. �

We now need a lower bound for I2(u).

Lemma 15. Let

L(t)=


0 if 1≤ t ≤ A,
1 if A < t ≤ 2,
min(1, 1− 2 log(t − 1)) if 2< t ≤ 1+ A,
min

(
1, 1− 2 log A

t−A

)
if 1+ A < t ≤ 2A.

Then for all t ∈ [1, 2A] but for a set of measure zero we have −P(t)≥ L(t). Thus,
for u = 2A,

I2(u)≥
∫

t1+t2≤u
tk≥1

2+ L(t1)
t1

2+ L(t2)
t2

u− t1− t2
u

dt1 dt2.
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Proof. The proof is immediate from Lemma 12, and the fact that we have set
P(t)=− 1

2(1+ P ′(t)). �

Proof of Theorem 4. Preserve the notation from the lemma above. Since σ(u)=o(1)
for u = 2A, we have

o(1)≥ 1− 2
∫ u

1
g(t) dt +

∫ u

A
U (t)g(t) dt +

∫ A

1

1+P ′(t)
2

g(t) dt

+
1
2

∫
t1+t2≤u

tk≥1

(2+L(t1))
t1

(2+L(t2))
t2

u−t1−t2
u

dt1 dt2−
9
2

I ′3(u).

Using Maple and the above lemmas, we can check that the right side of the
above inequality is positive when A = 1.6625. Thus, for the inequality to be true,
we must have A > 1.6625, so 4A > 6.65, and since N�ε d1/(4A)+ε

K , we must have

N� d1/6.65
K .

The number 6.65 should be compared with 4
√

e = 6.59 . . . �

4.3. Biquadratic fields. We now fix K to be a biquadratic field. Then ζK (s) =
ζ(s)L(s, χ1)L(s, χ2)L(s, χ1χ2), where χ1 and χ2 are quadratic characters with
moduli q1 and q2, say. Finding the smallest nonsplit prime is the same as finding the
smallest prime which is a quadratic nonresidue for either q1 or q2. Clearly, the trivial
bound here is of the form N�ε min(q1, q2)

1/(4
√

e)+ε arising immediately from the
discussion in the introduction. Our purpose here is to show that more information
can be gleaned from considering the behavior of χ := χ1χ2 in conjunction with that
of χ1 and χ2. Let q =max(q1, q2); we will only use the fact that both χi exhibit
cancellation by q1/4

+ o(1). Note that if q1 and q2 are far apart, then we expect to
derive little information from the interaction of χ1 and χ2. This will be reflected in
the discussion at the end of this section.

Assume that all the primes split up to y. (Here the reader may find it helpful to
think of y as being a slightly smaller power of q1q2 than the trivial bound.) We set

Pi (u)=
1

ν(yu)

∑
p≤yu

χi (p) log p,

for i = 1, 2 and where ν(x)=
∑

p≤x log p. Similarly, we set

P(u)= 1
ν(yu)

∑
p≤yu

χ(p) log p.

Finally, define σi (u) for i ∈ {1, 2}, and σ(u) as in Section 4.1.
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We also define

Ii, j (u)=
∫

t1+···+t j≤u
tk≥1∀1≤k≤ j

j∏
k=1

1−Pi (tk)
tk

dt1 · · · dt j ,

and similarly

I j (u)=
∫

t1+···+t j≤u
tk≥1∀1≤k≤ j

j∏
k=1

1−P(tk)
tk

dt1 · · · dt j .

We begin with the following basic observation.

Lemma 16. Let

S1 =
1

ν(yu)

∑
p≤yu

χ1(p)=χ2(p)=1

log p, and S−1 =
1

ν(yu)

∑
p≤yu

χ1(p)=χ2(p)=−1

log p.

Then

P(u)= 2S1+ 2S−1− 1+ o(1).

Furthermore, if Pi (t)≥α > 0 for all i ∈ {1, 2}, or if Pi (t)≤−α < 0 for all i ∈ {1, 2},
then

P(u)≥ 2α− 1.

Proof. Let

S1,−1(u)=
1

ν(yu)

∑
p≤yu

χ1(p)=−χ2(p)=1

log p,

and similarly define S−1,1(u). Then

S1+ S−1+ S1,−1+ S−1,1 = 1+ o(1),

where the o(1) comes from the ramified primes. Since χ(p) = χ1(p)χ2(p), we
also have

P(u)= S1(u)+ S−1(u)− S1,−1(u)− S−1,1(u).

Adding the two equations gives the first portion of the lemma. Now say that Pi (t)≥
α> 0 for i ∈ {1, 2}. Then since α≤ P1(t)= S1(t)−S−1(t)+S1,−1(t)−S−1,1(t) and
α≤ P2(t)= S1(t)−S−1(t)−S1,−1(t)+S−1,1(t), we have 2α≤ 2(S1(t)−S−1(t))≤
P(t)+ 1, as desired. The remaining assertion is proven in the exact same way. �
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Outline of proof. As in Section 4.2, our bound for N will result from a lower bound
for the first zero of σ(t), which we know must eventually be identically zero by
cancellation. The Lemma above relates the behaviour of P(t) with expressions
P1(t) and P2(t) which may be estimated by Lemma 8.

Lemma 17. Let A be such that y A
= q1/4, and B ≤ 2A be such that yB

= (q1q2)
1/4.

Then

0≥ 3− 4 log A−
∫ B

2

1−P(t)
t

dt + o(1).

Proof. We have 0= σi (u)= 1− Ii,1(u) for A ≤ u ≤ 2. Adding this for i = 1, 2, we
get

log u− 1=
∫ u

1

P1(t)+ P2(t)
2t

dt =
∫ u

1

S1(t)− S−1(t)
t

dt.

Rearranging, and noting that S1(t)≥ 0, we get that
∫ u

1 S−1(t)/t ≥ 1− log u. Hence
by the previous lemma∫ u

1

P(u)
u

du ≥
∫ u

1

2S−1(t)− 1
t

dt ≥ 2− 3 log u.

Thus, rearranging again, and setting u = A, we get that

1−
∫ A

1

1−P(u)
u

du ≥ 3− 4 log A+ o(1).

Observe that
∫ 2

A(1−Pi (u))/u du=o(1) for each i and so
∫ 2

A(1−P(u))/u du=o(1)
also. We thus have

o(1)= σ(B)≥ 1− I1(B)≥ 3− 4 log A−
∫ B

2

1−P(t)
t

dt. �

Lemma 16 would give us a nontrivial upper bound5 for
∫ B

2 (1 − P(t))/t dt
provided that we have sufficient information about χ1 and χ2. The latter is furnished
by Lemma 12. We collect the calculations and prove the theorem below.

Proof. For 2≤ u≤ 1+A, we have by Lemmas 12 and 16 that P(t)≥ 1−8 log(t−1).
Hence ∫ 1+e1/4

2

1−P(t)
t

dt ≤
∫ 1+e1/4

2

8 log(t−1)
t

dt < 0.13538.

In the range 2 ≤ u ≤ 1+ A, we have that Pi (t) ≤ 1− 4 log(t − 1)+ 2Et by
Lemma 12. By Lemma 16, we have 1− P(t) ≤ 4(1− 2 log(t − 1)+ Et). This

5By nontrivial, we mean that it must be smaller than the trivial bound given by 1− P(t)≤ 2.
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bound is only meaningful when the right hand side is ≤ 2. Thus, let t0 < 1+ A be
such that 2(1− 2 log(t0− 1)+ Et0)= 1. Then∫ 1+A

t0

1−P(t)
t

dt ≤ 4
∫ 1+A

t0

(1−2 log(t−1)
t

+ E
)

dt.

Further, in the range 1 + A ≤ u ≤ 3, we have by Lemma 12 that Pi (t) ≤ 1 −
4 log(A/(t − A))+ 2Et + o(1). By Lemma 16, we have

1−P(t)
t
≤ 41−2 log(A/(t−A))+Et

t
+ o(1).

Let t1 > 1+ A be such that 2(1− 2 log(A/(t − A))+ Et1)= 1. Then∫ t1

1+A

1−P(t)
t

dt ≤ 4
∫ t1

1+A

(
1− 2 log(A/(t − A))

t
+ E

)
dt + o(1).

Let t2 = A(1+ e1/4)/e1/4. In the range, t2 ≤ u ≤ B ≤ 2A, we have by Lemma 12
that 1− Pi (t)≤ 4 log(A/(t − A))+ o(1). Then similarly, we get that∫ B

t2

1−P(t)
t

dt ≤ 8
∫ B

t2

log(A/(t−A))
t

dt.

We use the trivial bound of 1− P(t)≤ 2 for the range not given above. For any
given B, the preceding discussion gives us an upper bound for

∫ B
2 (1− P(t))/t dt

and we may derive a lower bound for A by Lemma 17 which states that

4 log A ≥ 3−
∫ B

2

1−P(t)
t

dt + o(1).

Without loss of generality, say that for some δ ≥ 0 that q1 = q1−δ and q2 = q,
and note that B = (2− δ)A. If q1 is much smaller compared to q2, then we expect
to derive little benefit from the above and then our bound will be N� q(1−δ)/(4

√
e).

The rest is a numerical optimization using Maple over values of δ from which we
derive that the worst value for δ occurs when δ = 0.061 . . . and then

N� q0.142,

or equivalently,
N� (q1q2)

0.146/2.

When q1 � q2 = q , δ = 0 and we have

N� (q1q2)
0.141/2.

Remark 6. The reader may be curious about whether this result might be improved
if we included the I2(u) and I3(u) terms, as we did in the cubic case. While we may
improve the result with enough care, the possible improvements here are limited.
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The reason is because when 1 ≤ t ≤ A, we expect Pi (t) to be close to −1, and
when A < t ≤ 2, we have Pi (t)= 1. Thus P(t) is close to 1 for 1≤ t ≤ 2. Hence
for u ≤ 4, it would be reasonable to expect I2(u) and I3(u) to be fairly small. �
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