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We classify the simple supersingular modules for the pro-p-Iwahori Hecke al-
gebra H of p-adic GLn by proving a conjecture by Vignéras about a mod p
numerical Langlands correspondence on the side of the Hecke modules. We
define a process of induction for H-modules in characteristic p that reflects the
parabolic induction for representations of the p-adic general linear group and
explore the semisimplification of the standard nonsupersingular H-modules in
light of this process.
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1. Introduction

Let F be a p-adic field and let n ≥ 1 be an integer. When exploring the category
of smooth mod p representations of GLn(F), it is natural to consider the functor
that associates to such a representation its subspace of invariant vectors under the
action of the pro-p-Iwahori subgroup of GLn(F). It has values in the category of
right modules in characteristic p over the pro-p Hecke algebra H. The structure of
this Hecke algebra has been studied by Vignéras [2005], and the classification of
the simple modules in the case n = 3 is given in [Ollivier 2006b]. Three families
of H-modules appear, namely, the regular, singular, and supersingular ones. This
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definition resonates with the idea that, just as the regular modules should be related
to the principal series and the supersingular modules to the supersingular represen-
tations, likewise the singular modules should be related to the hybrid case where
one induces a supersingular representation from a strict Levi subgroup of GLn(F).
The first link has been explored and proves fruitful [Ollivier 2006a; 2006c; Grosse-
Klönne 2009; Vignéras 2008]. Except for the isolated case of GL2(Qp), the link
between supersingular modules and representations does not seem tight enough
to give substantial information about the supersingular representations [Breuil and
Paskunas 2007]. However, a striking numerical coincidence occurs: in this article
(Section 7), we prove Conjecture 1 of [Vignéras 2005], which says that any nonzero
simple supersingular module contains a character for the affine Hecke subalgebra
of H. It implies the following result, which can be seen as a numerical Langlands
correspondence on the side of the Hecke modules.

Theorem 1.1. The number of n-dimensional simple supersingular modules (with
fixed action of the uniformizer) over the pro-p-Hecke algebra of GLn(F) is equal
to the number of smooth irreducible n-dimensional mod p representations of the
absolute Galois group of F (with fixed determinant of a Frobenius).

The aim of Sections 5 and 6 is to investigate the nonsupersingular Hecke mod-
ules. We define a process of induction for Hecke modules in characteristic p and
relate it to the parabolic induction on the side of the representations of GLn(F). In
characteristic zero, one of the ingredients for the construction of types by covers
consists in embedding a Hecke algebra relative to a Levi subgroup into a Hecke
algebra relative to GLn(F) using Iwahori decomposition and the notion of positive
subalgebra. This allows a reading of the parabolic induction of representations in
terms of induction on the side of the Hecke modules [Bushnell and Kutzko 1998,
§6]. Some of these results can be adapted to the case of mod ` representations
when ` 6= p [Vignéras 1998; Dat 1999]. In characteristic p, one cannot expect
an injection of the pro-p Hecke algebra H(L) relative to a strict standard Levi
subgroup L into the pro-p Hecke algebra of GLn(F). Nevertheless, it is still true
for the positive part H(L+) of H(L). We now provide a summary of the results
proved in this article, keeping in mind that all the modules have mod p coefficients.

Let M be a right H(L)-module with scalar action of the uniformizers. The
H-module induced from M is defined in Section 5A by the tensor product over
H(L+) of M by H. This process of induction defines an exact functor from the
category of H(L)-modules with scalar action of the uniformizers into the category
of right H-modules.

In Section 5B, we recall the definition of a standard H-module: a regular, sin-
gular or supersingular character (with values in a field with characteristic p) of the
commutative part A of H gives rise to a standard module. This standard module
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and any of its quotients are then called regular, singular or supersingular respec-
tively. Any simple H-module is a quotient of a standard module. We show in
Section 5C that the standard modules relative to L-adapted characters of A are
induced from H(L)-modules in the sense defined above. These are a special case
of nonsupersingular standard modules. Owing to intertwining operators defined
in Section 5D, any nonsupersingular standard module can be related to a standard
module of this kind. We then give sufficient conditions for these operators to be
isomorphisms, from which we deduce:

• Assuming that Conjecture 5.20 is true, we bolster the definition of nonsupersin-
gular modules with the proof that any simple nonsupersingular H-module appears
in the semisimplification of a standard module that is induced from a H(L)-module,
where L is a strict Levi subgroup of GLn(F). We prove the conjecture and its con-
sequence for the simple modules that are actually modules over the Iwahori–Hecke
algebra. The key to this proof is a theorem by Rogawski [1985] which relies on
the Kazhdan–Lusztig polynomials for the Iwahori–Hecke algebra in characteristic
zero (Section 5E).

•We show that if an irreducible H(L)-module M satisfies Hypothesis (?), it gives
rise by induction to an irreducible H-module (Section 5F).

• In Section 6B, we consider the compact induction U (resp. UL ) of the trivial
character of the pro-p-Iwahori subgroup of GLn(F) (resp. L), and relate the repre-
sentation M⊗H(L+)U to the one which is parabolically induced from M⊗H(L)UL .
Denote the latter representation of GLn(F) by ρM.

We compare the H-module induced from M with the pro-p-invariant subspace
of ρM. So far we have made no specific hypothesis about the p-adic field F , the
Levi subgroup L , or the H(L)-module M with scalar action of the uniformizers.

In Section 6D we give some examples in the case where F =Qp and the stan-
dard Levi subgroup L is isomorphic to a product of GL1(Qp)’s and GL2(Qp)’s.
In these cases, the irreducible representations of L and the corresponding Hecke
modules are thoroughly understood. Our process of induction describes explicitly
the pro-p-invariant subspace of ρM, which is irreducible as a Hecke module in
the chosen examples. After the first version of this article was written, however,
Herzig announced that he could prove that these representations ρM are actually
irreducible.

While this article does not draw on Herzig’s work [2010, Theorem 8.1], it is
noticeable that Hypothesis (?) reflects parallel conditions. Our approach, which
focuses on the Hecke modules, does not require any further hypotheses on F and L .
A barrier to further investigation of the pro-p-invariant subspace of the irreducible
induced representations classified in [Herzig 2010] is the lack of knowledge of the
(pro-p-invariants of) supersingular representations of L , for general L and F .
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In Section 8, we work with the Iwahori–Hecke algebra. Using [Schneider and
Teitelbaum 2006], which deals with p-adic Hecke algebras, we make an integral
Satake transform for the generic Iwahori–Hecke algebra of GLn(F) explicit. By
analyzing the map (8-7), Barthel and Livné’s method for producing unramified
representations [1995] can then be related to the construction of representations
arising from the natural left adjoint of the functor of the Iwahori-invariants.

2. Affine root system and Weyl groups

2A. We consider an affine root datum (3, 3̌,8, 8̌,5, 5̌); for this notion and
the facts in the subsequent review, see [Lusztig 1989, 1]. An element of the free
abelian group 3 is called a weight. We will denote by 〈 . , . 〉 the perfect pairing
on 3× 3̌. The elements of 3̌ are the coweights. The elements in 8 ⊂ 3 are the
coroots, while those in 8̌ ⊂ 3̌ are the roots. There is a correspondence α ↔ α̌

between roots and coroots satisfying 〈α, α̌〉 = 2. The set 5 of simple coroots is a
basis for 8, and the corresponding set 5̌ of simple roots is a basis for 8̌. Let 8̌+

and 8̌− denote, respectively the set of roots which are positive and negative with
respect to 5̌. There is a partial order on 8̌ given by α̌ ≤ β̌ if and only if β̌ − α̌
is a linear combination with (integral) nonnegative coefficients of elements in 5̌.
Denote by5m the set of coroots such that the associated root is a minimal element
in 8̌ for ≤.

To the (simple) root α̌ corresponds the (simple) reflection sα : λ 7→ λ−〈λ, α̌〉α,
which leaves 8 stable. Reciprocally, we will denote by α̌s the simple root asso-
ciated to the simple reflection s. The finite Weyl group W0 is the subgroup of
GL(3) generated by the simple reflections sα for α ∈ 5. It is a Coxeter system
with generating set S0= {sα, α ∈5}. We will denote by (w0, λ) 7→

w0λ the natural
action of W0 on the set of weights and by W0(λ) the stabilizer of a weight λ under
the action of W0. This action induces a natural action of W0 on the coweights which
stabilizes the set of roots. The set 3 acts on itself by translations: for any weight
λ, we denote by eλ the associated translation. The Weyl group W is the semidirect
product of W0 and 3. For w0 ∈ W0 and λ ∈ 3, observe that w0eλ = e

w0λw0. The
affine Weyl group Waff is the semidirect product of W0 and 8.

The Weyl group acts on 8̌×Z by

w0eλ : (α̌, k) 7→ (w0α̌, k−〈λ, α̌〉),

where we denote by (w0, α̌) 7→w0α̌ the natural action of W0 on the roots. Define
the set of affine roots by 8̌= 8̌+ ∪ 8̌− ⊂ 8̌×Z, where

8̌+ := {(α̌, k), α̌ ∈8, k > 0} ∪ {(α̌, 0), α̌ ∈8+},

8̌− := {(α̌, k), α̌ ∈8, k < 0} ∪ {(α̌, 0), α̌ ∈8−},
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and the set of simple affine roots by 5̌ := {(α̌, 0), α ∈ 5} ∪ {(α̌, 1), α̌ ∈ 5m}.
Identifying α̌ with (α̌, 0), we will often consider 5 a subset of 5̌.

For A ∈ 5̌, denote by sA the associated reflection sA = sα if A = (α̌, 0) and
sA= sαeα if A= (α̌, 1). The affine Weyl group is a Coxeter system with generating
set

Saff = {sA, A ∈ 5̌}.

The length on the Coxeter group Waff extends to W in such a way that, for any
w ∈W ,

`(w) := #{A ∈ 8̌+, w(A) ∈ 8̌−}.

The Weyl group is the semidirect product of Waff by the subgroup� of the elements
with length zero. The Bruhat order ≤ inflates from Waff to W [Vignéras 2005,
Proposition 1].

2B. The length on W has the following properties [Lusztig 1989; Vignéras 2006,
appendice]. Let λ, λ′ ∈3, w0, w

′

0 ∈W0, w ∈W , A ∈ 8̌.

2B1. `(wsA)=

{
`(w)+ 1 if wA ∈ 8̌+,

`(w)− 1 if wA ∈ 8̌−.

2B2. The quantity `(w0)+ `(w
′

0eλ)− `(w0w
′

0eλ) is twice the number of positive
roots α̌ ∈ 8̌+ satisfying

w′0α̌ ∈ 8̌
−, w0w

′

0α̌ ∈ 8̌
+, 〈λ, α̌〉 ≥ 0 or

w′0α̌ ∈ 8̌
+, w0w

′

0α̌ ∈ 8̌
−, 〈λ, α̌〉< 0.

2B3. Set n(α̌, w0eλ) = 〈λ, α̌〉 if w0α̌ ∈ 8̌
+ and n(α̌, w0eλ) = 1+ 〈λ, α̌〉 other-

wise. If the integers n(α̌, w0eλ) and n(α̌, eλ
′

) have the same sign (or one of them
vanishes) for all α̌ ∈ 8̌+, then

`(w0eλ+λ
′

)= `(w0eλ)+ `(eλ
′

).

2C. The root datum associated to p-adic GLn.

2C1. We denote by F a nonarchimedean locally compact field with ring of integers
O, maximal ideal P and residue field Fq , where q is a power of p. We choose a
uniformizer π and fix the valuation (denoted by val) normalized by val(π)= 1 and
the corresponding absolute value | . | such that |π | = q−1.

Let n ∈ N, n ≥ 2. Denote by G the group of F-valued points of the general
linear group GLn , by K0 the maximal compact GLn(O), by I the standard upper
Iwahori subgroup of K0 and by I (1) its unique pro-p-Sylow. It contains the first
congruent subgroup K1 of the matrices in K0 which are congruent to the identity
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modulo π . The element

$ =


0 1 0 0 · · ·
0 0 1 0 · · ·
...

. . .
. . .

0 · · · 0 1
π 0 · · · · · · 0


normalizes the Iwahori subgroup and $ n

= π.Id is central in G. Let B denote
the upper triangular Borel subgroup of G with Levi decomposition B = U T and
modulus character δ : B→ Z[q±1

].
Consider the affine root datum associated to (G, B, T ). The set of cocharacters

of T identifies with3' T/(T ∩K0)'Zn . We will also consider it a multiplicative
subgroup of G by lifting T/(T ∩ K0) to the subgroup of diagonal matrices with
coefficients in πZ. The simple positive roots are

α̌i : diag(π x1, π x2 . . . , π xn ) 7→ xi+1− xi , for i = 1, . . . , n− 1.

Identifying the reflection si associated to α̌i with the transposition (i, i + 1) gives
an isomorphism between the finite Weyl group W0 and the symmetric group Sn .
We see W = W03 as a subgroup of G. It is a system of representatives of the
double cosets I\G/I .

There is a unique coroot in5m and the associated root is−α̌0, where α̌0 denotes
the positive root

α̌0 = α̌1+ · · ·+ α̌n−1.

The reflection associated to (−α̌0, 1) is s0 = $ s1$
−1. A generating set for the

affine Weyl group is Saff={s0, s1, . . . , sn−1}. The subgroup� of W of the elements
with length zero is generated by $ .

For s ∈ Saff, denote by8s :GL2(F)→G the associated morphism [Iwahori and
Matsumoto 1965]. Recall that the cocharacter associated to s is the map F∗→ T ,
x 7→ 8s

( x 0
0 x−1

)
. Denote by Ts the image of F∗q by this cocharacter and set φs =

8s
(
−1 0
0 1

)
.

Define the dominant and antidominant weights respectively by

3dom = {λ ∈3, 〈λ, α̌〉 ≥ 0 for any α̌ ∈ 8̌+},

3anti = {λ ∈3, 〈λ, α̌〉 ≤ 0 for any α̌ ∈ 8̌+}.

A weight µ ∈ 3 is said to be minuscule if 〈µ, α̌〉 ∈ {0,±1} for any positive root
α̌ ∈ 8̌+. To any subset J ⊂ {1, . . . , n} corresponds a minuscule weight µJ defined
by (µJ )i =π if i ∈ J , (µJ )i =1 otherwise. The semigroup3anti of the antidominant
weights is generated by the minuscule antidominant weights

{µ1, . . . , µn−1, µ
±1
n },
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where, for i ∈ {1, . . . , n}, we denote by µi the minuscule weight associated to
{1, . . . , i}. Set µ0 := µ∅.

2C2. The Weyl group W of G identifies with the quotient of the normalizer NG(T )
of T in G by T ∩ K0. The extended Weyl group W (1) of G is defined to be the
quotient NG(T )/(T ∩ K1). We have an exact canonically split sequence

0→ T→W (1)
→W → 0,

where T denotes the finite diagonal torus of the Chevalley group GLn(Fq). For any
subset X of W we will denote by X (1) its inverse image in W (1). In particular, the
set of extended weights 3(1), which identifies with the direct product of 3 by T,
is seen as the set of translations on itself. Again, for any extended weight λ, we
denote by eλ the associated translation. An extended weight is said to be dominant,
antidominant, or minuscule if its component in3 is so. The action of the extended
Weyl group on 3(1) and on 8̌× Z is the one inflated from the action of W . By
Teichmüller lifting, we identify3(1) and W (1)

=W03
(1) with subgroups of G. The

extended affine Weyl group W (1)
aff is generated by S(1)aff . The length function on W

extends to W (1) in such a way that the elements of T have length zero.
The extended Weyl group W (1) is a system of representatives of the double

cosets I (1)\G/I (1).

2C3. Throughout, we fix a standard Levi subgroup L = L1×· · ·×Lm in G, where
L j 'GLn j (F) for j ∈ {1, . . . ,m} with n1+· · ·+nm = n. Set 1 := {1, . . . , n−1}
and define its subset 1L to be the set of i such that si ∈ L . Denote by W0,L the
finite Weyl group of L . It is a Coxeter group generated by {si , i ∈1L}. Denote by
8̌L ⊂ 8̌ the set of associated roots, and by 8̌+L = 8̌L ∩8̌

+ the set of positive ones.
The Weyl group WL of L is the semidirect product of W0,L by 3. The extended
Weyl group W (1)

L of L is the semidirect product of W0,L by 3(1).

Proposition 2.1. There exists a system DL of representatives of the right cosets
W0,L\W0 such that

`(w0d)= `(w0)+ `(d) for all w0 ∈W0,L , d ∈ DL . (2-1)

Any d ∈ DL is the unique element with minimal length in W0,Ld.

Proof. The proposition is proved in [Carter 1985, 2.3.3], where DL is explicitly
given by

DL := {d ∈W0, d−18̌+L ⊂ 8̌
+
}. (2-2)

This concludes the proof. �

Proposition 2.2. Let d ∈ DL and s ∈ S0.

(1) If `(ds)= `(d)− 1 then ds ∈ DL .

(2) If `(ds)= `(d)+ 1 then either ds ∈ DL or W0,Lds =W0,Ld.



708 Rachel Ollivier

Proof. Suppose ds /∈ DL . Let i ∈ {1, . . . , n− 1} be such that s = si . Since d ∈ DL

and dsi 6∈ DL , there is an element β̌ ∈ 8̌+L such that d−1β̌ ∈ 8̌+ and si d−1β̌ 6∈ 8̌+.
But α̌i is the only positive root made negative by si [Carter 1985, Proposition 2.2.6],
so d−1β̌ = α̌i . This implies in particular that dα̌i ∈ 8̌+, and so `(dsi )= `(d)+ 1
by 2B1. The fact that dα̌i belongs to 8̌L ensures that dsi d−1

∈W0,L . �

2C4. We denote the upper standard parabolic subgroup associated to L by P . It has
Levi decomposition P = L N , and N will denote the opposite unipotent subgroup.
The Iwahori subgroup decomposes into I = I+ IL I−, where

I+ = I ∩ N , IL = I ∩ L , I− = I ∩ N .

We also set IL(1) := I (1)∩L . As in [Vignéras 1998, II.4] and [Bushnell and Kutzko
1998, 6], we consider the semigroup L+ of L-positive elements: an element w ∈ L
is called L-positive if it contracts I+ and dilates I−, that is,

w I+w−1
⊂ I+ and w−1 I−w ⊂ I−.

The elements w in W (1)
L which are L-positive are the ones satisfying

w(8̌+− 8̌+L )⊂ 8̌+. (2-3)

A weight λ ∈ 3(1) is said to be L-positive if the associated translation in W (1) is
L-positive. It means that 〈λ, α̌〉 ≤ 0 for any α̌ ∈ 8̌+ − 8̌+L . For example, if L is
the diagonal torus, a weight λ is T -positive if and only if it is antidominant.

The set DL is also a system of representatives of the right cosets WL\W , and
we have a weak analog of (2-1):

Lemma 2.3. For any w ∈W (1)
L which is L-positive and any d ∈ DL ,

`(wd)= `(w)+ `(d). (2-4)

Proof. Let d ∈ DL , and let w ∈ W (1)
L be a L-positive element. Write w = eλw0.

Equality (2-4) is equivalent to `(d−1)+ `(w−1
0 e−λ)− `(d−1w−1

0 e−λ)= 0.
Let α̌ ∈ 8̌+ be a positive root. Suppose w−1

0 α̌ ∈ 8̌+ and d−1w−1
0 α̌ ∈ 8̌−. Then

by (2-2) and (2-3), one has w−1
0 α̌ ∈ 8̌+− 8̌+L and w(w−1

0 α̌, 0) = (α̌,−〈λ, α̌〉) ∈
8̌+, so 〈−λ, α̌〉 ≥ 0. In the same way, one gets 〈−λ, α̌〉 < 0 if w−1

0 α̌ ∈ 8̌− and
d−1w−1

0 α̌∈ 8̌+. Applying the length property 2B2 then gives the required equality.
�

Lemma 2.4. The set I (1)L+K0 is the disjoint union of the sets I (1)L+d I (1)
where d runs over DL .

Proof. Lemma 2.3 implies that I (1)w+d I (1)= I (1)w+ I (1)d I (1) for any d ∈ DL

and any L-positive w+ ∈ W (1)
L . So the set I (1)L+ I (1)d I (1) is the disjoint union

of the sets I (1)w+d I (1), where w+ runs over the L-positive elements of W (1)
L . It
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is equal to I (1)L+d I (1). In particular, the sets I (1)L+d I (1) are pairwise disjoint
for d ∈ DL .

The set I (1)L+K0 is the union of the sets I (1)w+ I (1)w0d I (1), where d runs
over DL , w0 over W0,L and w+ over the L-positive elements in W (1)

L . By Propo-
sition 2.1, we have I (1)w0d I (1) = I (1)w0 I (1)d I (1), so I (1)w+ I (1)w0d I (1) =
I (1)w+ I (1)w0 I (1)d I (1), and, since w+ and w0 are L-positive,

I (1)w+ I (1)w0d I (1)= I (1)w+ IL(1)w0 I (1)d I (1)⊂ I (1)L+ I (1)d I (1). �

Proposition 2.5. There is a system D of representatives of the right cosets W0\W
such that

`(w0d)= `(w0)+ `(d), for all w0 ∈W0, d ∈ D. (2-5)

Any d ∈ D is the unique element with minimal length in W0d.

Proof. Set
D := {d ∈W, d−18̌+ ⊂ 8̌+}.

First check that the cosets W0d are pairwise disjoint for d ∈ D. Let d, d ′ ∈ D,
w0, w

′

0 ∈W0 be such that w0d = w′0d ′. If d 6= d ′, then w0 6= w
′

0 and there exists a
simple root β̌ ∈ 5̌ such that `(sβw−1

0 w′0) = `(w
−1
0 w′0)− 1, that is, (w′−1

0 w0)β̌ =

(d ′d−1)β̌ ∈ 8̌−. But d ′ ∈D, and hence d−1β̌ ∈ d ′−1(8̌−)⊂ 8̌−, which contradicts
the fact that d ∈ D.

For w ∈ W , we prove by induction on the length of w that there exists an
(obviously unique) (w0, d)∈W0×D such thatw=w0d and `(w0d)=`(w0)+`(d).

By 2B1, saying thatw does not belong to D means that there exists a simple root
α̌ ∈ 5̌ such that `(sαw)= `(w)−1. In particular, if w has length 0, it belongs to D.
Suppose now that `(w) > 0 and that it does not belong to D. Then, by induction,
there exists (w0, d) ∈W0×D with sαw=w0d and `(sαw)= `(w0)+ `(d), where
α is chosen as before. So w = sαw0d and

`(w)= `(sαw)+ 1= `(w0)+ `(d)+ 1.

Verifying that `(w) = `(sαw0)+ `(d) is just verifying that `(sαw0) = `(w0)+ 1,
which is true, since otherwise `(sαw0) < `(w0) and `(w) ≤ `(sαw0) + `(d) <
`(w0)+ `(d)= `(w)− 1.

We have proved that D is a system of representatives of the right cosets W0\W
and that it satisfies (2-5). In particular, any d ∈ D is the unique element with
minimal length in W0d , since w0 ∈W0 has length zero if and only if w0 = 1. �

Lemma 2.6. Any d ∈D can be written d = eλw0 ∈W , with w0 ∈W0 and λ ∈3 a
dominant weight such that

`(eλw0)+ `(w
−1
0 )= `(eλ).
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Proof. By definition of the set D, we have (w−1
0 α̌, 〈λ, α̌〉) ∈ 8̌+ for every α̌ ∈ 8̌+.

Then λ is dominant and w−1
0 α̌ ∈ 8̌+ if α̌ ∈ 8̌+ satisfies 〈λ, α̌〉 = 0. Applying the

length property 2B2, one gets the required equality. �

Proposition 2.7. Let d ∈ D and s ∈ Saff.

(1) If `(ds)= `(d)− 1 then ds ∈ D.

(2) If `(ds)= `(d)+ 1 then either ds ∈ D or W0ds =W0d.

Proof. Write d = eλw0 ∈W .

(A) We first prove the proposition for s in the finite Weyl group; write s = si with
1 ≤ i ≤ n − 1. Saying that dsi 6∈ D means that there exists β̌ ∈ 8̌+ such that
d−1β̌ = (α̌i , 0), since (α̌i , 0) is the only positive affine root made negative by si .
This implies in particular that dα̌i ∈ 8̌+, so `(dsi )= `(d)+ 1. We have

β̌ = w0α̌i , 〈λ,w0α̌i 〉 = 0.

The latter equality means that w0siw
−1
0 fixes λ, so

dsi = eλw0si = w0siw
−1
0 eλw0 ∈W0d.

(B) Now suppose s = s0. Recall that the associated affine simple root is (−α̌0, 1).
The coroot α0 can be seen as the diagonal matrix (π−1, 1, . . . , 1, π). Write s0 =

ρe−α0 , where ρ denotes the reflection sending α0 to its opposite. Saying that
`(ds0)= `(d)+ 1 means that d(−α̌0, 1) ∈ 8̌+, that is, we are either in case (a) or
in case (b):

(a) 〈λ,w0α̌0〉 ≥ 0,

(b) w0α̌0 ∈ 8̌
− and 〈λ,w0α̌0〉 = −1.

Saying that `(ds0)=`(d)−1 means that d(−α̌0, 1)∈ 8̌−, so we are in case (c) (note
that since λ is dominant, it is impossible to simultaneously have the conditions
w0α̌0 ∈8

+ and 〈λ,w0α̌0〉 = −1):

(c) 〈λ,w0α̌0〉<−1.

By definition of the reflection ρ, hypothesis (b) says that w0ρw
−1
0 λ= λ+w0α0, so

that we have ds0 = eλw0ρe−α0 = w0ρw
−1
0 eλw0 ∈W0d .

Suppose that we are under hypothesis (a) or (c), that is, 〈λ,w0α̌0〉 6= −1. Take
β̌ ∈ 5̌. Under the action of s0d−1, it becomes the affine root

s0d−1β̌ = (ρw−1
0 β̌, 〈λ, β̌〉+ 〈α0, w

−1
0 β̌〉).

Let us check that it belongs to 8̌+, which will prove that ds0 ∈ D. Recall that
d ∈ D, so

d−1β̌ = (w−1
0 β̌, 〈λ, β̌〉) ∈ 8̌+.
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First we verify that 〈α0, w
−1
0 β̌〉 + 〈λ, β̌〉 ≥ 0. Since 〈α0, w

−1
0 β̌〉 ∈ {0,±1,±2},

the required inequality is true if 〈λ, β̌〉 ≥ 2. If 〈λ, β̌〉 = 0, then w−1
0 β̌ ∈ 8+ and

〈α0, w
−1
0 β̌〉 ≥ 0. If 〈λ, β̌〉 = 1 then, by the chosen hypotheses, w−1

0 β̌ 6= −α̌0, so
〈α0, w

−1
0 β̌〉 6= −2.

Finally, we have to show that 〈α0, w
−1
0 β̌〉 + 〈λ, β̌〉 = 0 implies ρw−1

0 β̌ ∈ 8̌+.
A positive root γ̌ becomes a positive root under the action of ρ if and only if it is
fixed by the action of ρ, or in other words, if 〈α0, γ̌〉 = 0. Suppose that

〈λ, β̌〉 = 〈α0, w
−1
0 β̌〉 = 0;

then w−1
0 β̌ ∈ 8̌+, and so, by the preceding remark, ρw−1

0 β̌ ∈ 8̌+. Suppose that

〈λ, β̌〉 = −〈α0, w
−1
0 β̌〉> 0;

then w−1
0 β̌ ∈ 8̌−, and by the preceding remark, ρw0β̌ ∈ 8̌

+. �

3. Hecke algebras and universal modules

3A. Consider the Chevalley group G=GLn(Fq) and its standard upper Borel sub-
group B with Levi decomposition B=TU. We denote by U the opposite unipotent
subgroup. The double cosets U\G/U are represented by the extended Weyl group
of G, which is isomorphic to the extended finite Weyl group W (1)

0 of G. The
finite universal module Z[U\G] of Z-valued functions with support on the right
cosets U\G is endowed with a natural action of G. The ring H(G,U) of its Z[G]-
endomorphisms will be called the finite Hecke ring. By Frobenius reciprocity, a
Z-basis of the latter identifies with the characteristic functions of the double cosets
U\G/U.

We call the space Z[I (1)\G] of Z-valued functions with finite support on the
right cosets I (1)\G the pro-p-universal module. It is endowed with an action of
G. The subspace of the functions that are actually left invariant under the Iwa-
hori subgroup constitute a G-subspace that is isomorphic to the universal module
Z[I\G].

The Z-ring of the Z[G]-endomorphisms of Z[I (1)\G] will be called the pro-p-
Hecke ring and denoted by H(G, I (1)). By Frobenius reciprocity, H(G, I (1)) is
seen as the convolution ring of the functions with finite support on the double cosets
of G modulo I (1). Among these functions, the ones that are actually biinvariant
under the Iwahori subgroup constitute a ring that is isomorphic to the Iwahori–
Hecke ring H(G, I ) of the Z[G]-endomorphisms of Z[I\G].

A Z-basis for H(G, I (1)) (resp. H(G, I )) is given by the characteristic functions
of the double cosets I (1)\G/I (1) (resp. I\G/I ).
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For w ∈W (1), we denote by τw the element of H(G, I (1)) corresponding to the
associated double coset. The subalgebra generated by the elements τw forw∈W (1)

aff
is called the affine Hecke algebra.

The subspace of Z[I (1)\G] of the functions with support in K0 identifies with
the finite universal module. Among the Z[G]-endomorphisms of the pro-p-uni-
versal module, those stabilizing this subspace form a subring that identifies with
the finite Hecke algebra. It is the subring generated by the elements τw forw∈W (1)

0 .
Fix k an algebraic closure of Fq . The space Z[I (1)\G] ⊗Z k is endowed with

a smooth action of G and is isomorphic to the compact induction indG
I (1) 1k of the

trivial character with values in k of the pro-p-Iwahori subgroup. We will denote
by U this representation of G.

3B. The pro-p-Hecke ring is the ring with Z-basis (τw)w∈W (1) satisfying the braid
and quadratic relations, namely

• τwτw′ = τww′ for any w, w′ ∈W (1) such that `(ww′)= `(w)+ `(w′), and

• τ 2
s = q +

(∑
t∈Ts

τφsτt
)
τs for s ∈ Saff,

in the notation of 2C1. From now on, we consider q an indeterminate and work
with the Z[q]-algebra H with generators (τw)w∈W (1) satisfying the relations above.
It will be called the generic pro-p-Hecke algebra.

For w ∈W (1), set
τ ∗w := q`(w)τ−1

w . (3-1)

The map µ : τw 7→ (−1)`(w)τ ∗
w−1 defines an involutive algebra endomorphism of

H [Vignéras 2005, Corollary 2].

Remark 3.1. For s∈ Saff, one checks that the following equalities hold in H⊗Z[q]k:

(τ ∗s )
2
= (τs + νs)

2
= τ ∗s νs = νsτ

∗

s ,

where νs := −
∑

t∈Ts
τφsτt .

4. Pro- p-Iwahori Hecke algebra relative to a Levi subgroup of G

The generic pro-p-Hecke algebra H(L) of the Levi subgroup L is the tensor product
of the generic pro-p-Hecke algebras of the L j ’s, for j ∈ {1, . . . ,m}. For any
element w= (w1, . . . , wm) in the extended Weyl group W (1)

L of L , we will denote
by

τ ⊗w :=
m⊗

j=1
τw j

the corresponding element of H(L). Denote by H(L+) the subspace of H(L)
generated over Z[q] by the elements τ ⊗w corresponding to L-positive elements w
in W (1)

L . From [Bushnell and Kutzko 1998, 6.12] and [Vignéras 1998, II], we know
that H(L+) is a Z[q]-algebra and the following holds.
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Proposition 4.1. The natural injective map θ+L

H(L+)→H, τ ⊗w 7→ τw, (4-1)

where w ∈ W (1)
L is L-positive, respects the product. It extends uniquely into an

injective morphism θL of Z[q±1
]-algebras

θL :H(L)⊗Z[q] Z[q±1
] →H⊗Z[q] Z[q±1

].

The proof of the second assertion [Bushnell and Kutzko 1998; Vignéras 1998]
makes use of the following (strongly) L-positive central element in L:

aL = eλL , where λL =
∑

j∈1−1L

µj , (4-2)

and the fact that for any w ∈ W (1)
L there exists r ∈ N such that ar

Lw is L-positive.
Then θL(τ

⊗
w ) is given by τ−r

aL
τar

Lw
, which is well-defined in H⊗Z[q] Z[q±1

] (and
does not depend on the choice of r ).

We will call H(L+) the positive subalgebra of H(L). We will sometimes iden-
tify it with its image in H without further notice.

4A. Classical Bernstein presentation. In the case where the Levi subgroup L is
the diagonal torus T , the map θT is simply denoted by θ and called the Bernstein
embedding. It is more traditional to consider its renormalization

θ̃ : Z[q±1/2
][3(1)] →H⊗Z[q] Z[q±1/2

],

λ 7→ δ1/2(λ)θ(λ),
(4-3)

whose image is denoted by A[q±1/2
], where δ is the modulus character of the

Borel subgroup defined in 2C1. The following well-known properties of this com-
mutative subalgebra are proved in, for example, [Lusztig 1989, 3] (and [Vignéras
2005, 1.4] for the extension to the pro-p case). The center of H⊗Z[q]Z[q±1/2

] is the
image under θ̃ of the subspace Z[q±1/2

][3(1)]W0 of the invariants in Z[q±1/2
][3(1)]

under the natural action of W0. The Hecke algebra H⊗Z[q]Z[q±1/2
] is a free right

module over A[q±1/2
] with basis {τw0, w0 ∈W0}.

4B. Integral Bernstein presentation. In this section, we recall the results obtained
by Vignéras [2005] concerning an integral version of the previous Bernstein pre-
sentation. We present them in the light of [Schneider and Teitelbaum 2006].

4B1. Following [Schneider and Teitelbaum 2006, p. 10 and Example 2], we con-
sider the action of W0 on Z[q±1/2

][3(1)] twisted by the map

γ :W0×3
(1)
→ Z[q±1/2

], (w0, λ) 7→
δ1/2(w0λ)

δ1/2(λ)
. (4-4)
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This map is a cocycle in the sense that it satisfies

(a) γ(v0w0, λ)= γ(v0,
w0λ)γ(w0, λ), for v0, w0 ∈W0 and λ ∈3(1),

so we have a well-defined action of W0 on 3(1) denoted by (w0, λ) 7→ w0 � λ and
given by

w0 � λ = γ(w0, λ)
w0λ. (4-5)

The map γ also satisfies the following conditions:

(b) γ(w0, λµ)= γ(w0, λ)γ(w0, µ), for w0 ∈W0 and λ,µ ∈3(1),

(c) γ(w0, λ)= 1 for w0 ∈W0, λ ∈3(1) such that w0λ= λ,

so the twisted action (4-5) extends into an action on Z[q±1/2
][3(1)], which is com-

patible with the structure of Z[q±1/2
]-algebra.

Lemma 4.2 [Schneider and Teitelbaum 2006, Example 2 and Lemma 4.2]. (1)
For w0 ∈W0, λ ∈3(1), one has

γ(w0, λ)=
∏

α̌∈8̌+∩w−1
0 (8̌−)

|α̌(λ)|,

so γ actually takes values in Z[q±1
].

(2) Any λ ∈ 3(1) can be written λ1 − λ2 with λ1, λ2 antidominant weights. Let
w0 ∈W0 such that w0λ is antidominant. Then

γ(w0, λ)= q−(`(λ)−`(λ1)+`(λ2))/2

and it does not depend on the choice of w0, λ1, λ2.

4B2. Let λ ∈3(1) and w0 ∈W0 such that w0λ is antidominant. Define the element
E(λ) in H⊗Z[q] Z[q±1

] by

E(λ) := γ(w0, λ)
−1θ(λ)= γ(w−1

0 , w0λ)θ(λ). (4-6)

It is proved in [Vignéras 2005] that E(λ) actually lies in H (see Theorem 4.5 below
for the precise statement). Hence, we have an injective Z[q]-equivariant map

E : Z[q][3(1)] →H, (4-7)

but it does not respect the product. The natural action of W0 on 3(1) induces an
action of W0 on the image A of E .

Proposition 4.3 (integral Bernstein relations). Let λ ∈ 3(1) be a weight, α̌ ∈ 5̌ a
simple root and s the associated reflection. The following holds in H:

(1) If 〈λ, α̌〉 = 0, then E(λ) and τs commute.

(2) If 〈λ, α̌〉 = 1, then τs E(λ)= E(sλ)τ ∗s and E(λ)τs = τ
∗
s E(sλ).
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Proof. This is a direct corollary of the classical Bernstein relations proved in
[Lusztig 1989, Proposition 3.6] and [Vignéras 2005, Proposition 5]. An integral
version of these is proved in [Ollivier 2006a, 4.4.1] (use the involution µ defined
in 3B to pass from the definition of the Bernstein map in the latter to the present
situation). �

Lemma 4.4. Let λ ∈ 3 be antidominant. Then E(λ) = τeλ and E(λ−1) = τ ∗eλ .
Suppose also that λ is minuscule. Let d ∈W0 with minimal length in W0(λ)d. Then

E(d
−1
λ)= τd−1eλτ

∗

d−1 and τd E(d
−1
λ)= E(λ)τ ∗d−1 .

Proof. First recall that an element λ ∈ 3 is T -positive if and only if it is an-
tidominant. So θ(λ) = θ+T (λ) = τeλ . Then, by Lemma 4.2(2) and since θ respects
the product, one has E(λ−1)= q`(λ)τ−1

eλ = τ
∗

eλ . We have proved the first statement,
which gives the second one for the case d=1. Suppose λ is minuscule and show the
second one by induction on `(d). Let d ∈W0 with minimal length in W0(λ)d and
`(d)>0. Let s ∈ S0 such that `(ds)= `(d)−1. Then τ ∗sd−1τ

∗
s = τ

∗

d−1 and dα̌s ∈ 8̌
−.

The stabilizer W0(λ) is a Coxeter subgroup of W0, so Proposition 2.2 applies: ds
has minimal length in W0(λ)ds. In particular, this implies that dsd−1 does not
stabilize λ, so 〈λ, dα̌s〉> 0. The length property 2B2 then gives `(s)+`(d−1eλ)=
`(sd−1eλ). By induction, E(sd−1

λ)= τsd−1eλτ
∗

sd−1 = τsτd−1eλτ
∗

sd−1 . Now work in
H⊗Z[q] Z[q±1

] and apply the Bernstein relations (2) to d−1
λ:

E(d
−1
λ)= τ−1

s E(sd−1
λ)τ ∗s = τd−1eλτ

∗

d−1 .

The last equality of the lemma easily follows using 2B2 and the fact that 〈λ, α̌〉= 0
implies d−1α̌ ∈ 8̌+ for any α̌ ∈ 8̌+. �

Theorem 4.5 [Vignéras 2005, Theorems 2, 3, and 4]. The image A of E is a Z[q]-
algebra. It coincides with the intersection A[q±1/2

]∩H. The action of W0 on A is
compatible with the structure of Z[q]-algebra.

A Z[q]-basis for A is given by (E(λ))λ∈3(1) .
As a Z[q]-algebra, A is generated by elements corresponding to minuscule

weights, that is, by the elements τt for t ∈ T and

(E(µI ))I({1,...,n}, E(µ{1,...,n})±1

with the relations

E(µI )E(µJ )= qbc E(µI∪J )E(µI∩J ) (4-8)

for any I, J ⊂ {1, . . . , n} with |I ∩ J | = a, |I | = a+ b, |J | = a+ c.
The center of H is the space of W0-invariants in A.
As an A-module, H is finitely generated; as a module over the center, A is

finitely generated.
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The proof of the theorem relies on the more general definition of an element
E(w) ∈H associated to any w = eλw0 ∈W (1):

E(w) := q(`(w)−`(w0)−`(eλ))/2 E(λ)τw0 (4-9)

in H⊗Z[q]Z[q±1/2
], and the fact that the elements (E(w))w∈W (1) constitute a Z[q]-

basis for H called the integral Bernstein basis.

Remark 4.6. Note that (4-8) implies that in H⊗Z[q] k, the product E(µI )E(µJ )

is zero unless either I ⊂ J or J ⊂ I .

4C. For w = (w1, . . . ., wm) ∈ W (1)
L , we denote by E ⊗(w) ∈ H(L) the tensor

product of the Bernstein elements corresponding to the elements w j in the generic
pro-p-Hecke algebras of the L i s. The Hecke algebra H(L) contains the commuta-
tive subring AL with Z[q]-basis (E ⊗(λ))λ∈3(1) .

Proposition 4.7. A Z[q]-basis for the positive subalgebra H(L+) is given by

(E ⊗(w))w,

where w runs over the L-positive elements in W (1)
L . For any such w, one has

θ+L (E
⊗(w))= E(w). (4-10)

Proof. (A) We first check that E ⊗(λ) lies in the positive subalgebra H(L+) for any
L-positive weight λ ∈3(1). It is enough to show the property for λ minuscule. In
this case, using Lemma 4.4, one easily computes E ⊗(λ) and checks that the ele-
ments of the Iwahori–Matsumoto basis appearing in its decomposition correspond
to L-positive elements in W (1)

L .
Now considerw= (w1, . . . , wm)∈W (1)

L . Writew= eλv with λ∈3(1), v∈W0,L .
Since W0,L normalizes I− and I+, the element w is L-positive if and only if λ is
an L-positive weight. Decompose λ = (λ1, . . . , λm) and v = (v1, . . . , vm) in the
Levi L and recall that, after extending the scalars to Z[q±1/2

],

E ⊗(w)=
m∏

j=1

q(`(w j )−`(v j )−`(e
λ j ))/2 E ⊗(λ)τ ⊗v . (4-11)

The element τ ⊗v lies in the positive subalgebra, and E ⊗(λ) does too if w is L-
positive, so the property also holds for E ⊗(w).

Once we know that E ⊗(w) lies in the positive subalgebra H(L+) for any L-
positive element w ∈W (1)

L , it is clear that these elements constitute a Z[q]-basis of
H(L+) by using [Vignéras 2006, 1.5].

(B) Let us show Equality (4-10) for L-positive elements of the form eλ with
λ ∈ 3(1). The weight λ can be written λ = µ− ν, where µ, ν ∈ 3(1) are anti-
dominant weights which decompose into µ= (µ1, . . . , µm), ν = (ν1, . . . , νm), so
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λ= (λ1, . . . , λm) with λi = µi − νi for i = 1, . . . ,m. By definition,

E ⊗(λ)=
m∏

i=1

q(`(e
λi )+`(eνi )−`(eµi ))/2θ⊗(λ)

and
E(λ)= q(`(e

λ)+`(eν)−`(eµ))/2θ(λ).

Note that uniqueness in Proposition 4.1 gives θL ◦ θ
⊗
= θ , where θ ⊗ denotes the

tensor product of the Bernstein maps, so the required equality will be proved once
we have checked that

`(eλ)+ `(eν)− `(eµ)=
m∑

i=1

(`(eλi )+ `(eνi )− `(eµi )). (4-12)

By the definition of the length on 3(1),

`(eλ)+ `(eν)− `(eµ)=
∑
α̌∈8̌+

|〈µ− ν, α̌〉| + |〈ν, α̌〉| − |〈µ, α̌〉|

=

∑
α̌∈8̌+

|〈µ− ν, α̌〉| − 〈ν, α̌〉+ 〈µ, α̌〉.

A positive root α̌ will give a zero contribution to this sum if and only if 〈ν, α̌〉 ≥
〈µ, α̌〉. According to (2-3), the fact that λ is L-positive ensures that it is the case
for every α̌ ∈ 8̌+ − 8̌+L . Hence the sum can be restricted to the roots α̌ ∈ 8̌+L ,
which proves that (4-12) holds.

We return to the general case of an L-positive element of the form w= eλv. By
the previous case, applying θL to (4-11) gives

θL(E ⊗(w))=
k∏

j=1

q(`(w j )−`(v j )−`(e
λ j ))/2 E(λ)τv.

Since E(w)= q(`(w)−`(v)−`(e
λ))/2 E(λ)τv, it remains to check that

k∑
j=1

(`(eλ j )+ `(v j )− `(eλ jv j ))= `(eλ)+ `(v)− `(eλv).

By 2B2, the right side of this equality is twice the number of roots α̌ ∈ 8̌+ such
that vα̌ ∈ 8̌− and 〈λ, vα̌〉 < 0. But v ∈ W0,L , so any α̌ ∈ 8̌+ satisfying vα̌ ∈ 8̌−

belongs to 8̌+L . Now applying 2B2 to each summand of the left hand side, this
remark ensures that the equality holds. �

Proposition 4.7 says in particular that the Z[q]-algebra

AL+ :=AL ∩H(L+) (4-13)

has Z[q]-basis E ⊗(λ), where λ runs over the L-positive weights λ in 3(1).



718 Rachel Ollivier

Proposition 4.8. For any h ∈H, there is r ∈ N such that

τ r
aL

h ∈
∑

d∈DL

H(L+)τd .

Proof. Let w ∈ W (1). Write w = eλw0d with w0 ∈ W0,L , d ∈ DL and λ ∈ 3(1) a
weight that decomposes into λ= µ− ν where µ and ν are antidominant. There is
r ∈ N such that ar

Leλw0 is a L-positive element and `(ar
Lw) = `(a

r
Leλw0)+ `(d)

by Property (2-4). Note that ar
Leλ = erλL+µ−ν and that rλL +µ is antidominant.

The elements E(w) and E(ar
Leλw0) of the integral Bernstein basis of H can be

written respectively

E(w)= q(`(w)−`(w0)−`(d)+`(eν)−`(eµ))/2τµτ
−1
ν τw0τd

and
E(ar

Leλw0)= q(`(a
r
L eλw0)−`(w0)+`(eν)−`(ar

L )−`(e
µ))/2τ r

aL
τµτ
−1
ν τw0,

so the element

τ r
aL

E(w)= q(`(w)+`(a
r
L )−`(a

r
Lw))/2 E(ar

Leλw0)τd

belongs to H(L+)τd . �

5. Inducing Hecke modules

5A. We consider the category CL of the k-vector spaces M endowed with a struc-
ture of right H(L)-module such that the central invertible elements τ ⊗µj

, j ∈1−1L

act by multiplication by nonzero scalars. This category is closed relative to sub-
quotients.

Proposition 5.1. Let M be a k-vector space endowed with a right action of the
positive algebra H(L+). Suppose that the central invertible elements τ ⊗µj

, j ∈
1−1L act by multiplication by nonzero scalars. Then there is a unique structure
of right module over H(L) on M extending the action of H(L+).

Proof. The element τ ⊗aL
defined by (4-2) is the product of the τ ⊗µj

, j ∈ 1−1L .
Denote by ζ the scalar action of τ ⊗aL

on M. The Hecke algebra H(L) is generated by
H(L+) and by the central elements (τ ⊗aL

)±1. So, if M is endowed with an action of
H(L), it is unique and the natural map M→M⊗H(L+)H(L) is surjective. Define
the map M⊗H(L+) H(L)→M, v⊗ τ ⊗h 7→ ζ−r v τ ⊗ar

L h , where h ∈W (1)
L and r ∈ N

is chosen so that ar
Lh is L-positive. One checks that this map is well-defined and

factors into an inverse for the previous one. �

Proposition 5.2. Let M in CL . As a vector space, M⊗H(L+) H decomposes into
the direct sums

M⊗H(L+) H=
⊕

d∈DL

M⊗ τd (5-1)
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and

M⊗H(L+) H=
⊕

d∈DL

M⊗ τ ∗d−1 . (5-2)

Each subspace in these decompositions is isomorphic to M via the natural maps
M→M⊗ τd and M→M⊗ τ ∗d−1 .

The decomposition (5-2) is a decomposition into eigenspaces for the action of
τaL : it acts by zero on each M⊗ τ ∗d−1 with d 6= 1 and by ζ on M⊗ τ1.

Corollary 5.3. Let L, M, N in CL be such that there is an exact sequence of right
H(L)-modules 0 → L → M → N → 0. Then one has an exact sequence of
H-modules

0→ L⊗H(L+) H→M⊗H(L+) H→N⊗H(L+) H→ 0.

Corollary 5.4. Suppose that N and L in CL are finite-dimensional over k and
that they have the same semisimplification as H(L)-modules. Then any irreducible
quotient of the H-module N⊗H(L+)H is also an irreducible subquotient of L⊗H(L+)

H.

Corollary 5.5. Let M in CL be such that M⊗H(L+)H is an irreducible H-module.
Then M is an irreducible H(L)-module.

Corollaries 5.3 and 5.5 easily follow from Proposition 5.2.

Proof of Corollary 5.4. Let N be an irreducible quotient of N⊗H(L+) H. Let N0

be a subquotient of the H(L)-module N with minimal dimension over k such that
N is a quotient of N0⊗H(L+) H. Using Corollary 5.3 and the irreducibility of N ,
one sees that N0 is irreducible as an H(L)-module. Hence N0 is an irreducible
subquotient of L, so that N appears in the semisimplification of L⊗H(L+) H. �

Proof of Proposition 5.2.
(A) Proposition 4.8 ensures that

M⊗H(L+) H=
∑

d∈DL

M⊗ τd . (5-3)

Since τ ∗d−1 decomposes with respect to the Iwahori–Matsumoto basis into the sum
of τd and of other terms corresponding to elements with strictly smaller length
[Vignéras 2005, Lemma 13], we also have

M⊗H(L+) H=
∑

d∈DL

M⊗ τ ∗d−1 . (5-4)

(B) Let µ ∈ 3(1) be a minuscule weight and m ∈M. If µ is not L-positive, then
E(µ) acts by zero on m⊗ 1 (Because of relations (4-8), there is j ∈1−1L such
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that E(µ)E(µj ) = 0; since E(µj ) = τeµj acts by a nonzero scalar on m ⊗ 1, the
element E(µ) acts by zero.) We show by induction on `(d) that, for any d ∈ DL ,

m⊗ τ ∗d−1 E(µ)= m⊗ E(dµ)τ ∗d−1 . (5-5)

Let d ∈ DL and let s ∈ S0 be such that ds ∈ DL and `(ds) = `(d)+ 1. These
hypotheses imply dα̌s ∈ 8̌

+
−8̌+L . Suppose that (5-5) holds. We have to show that

m⊗ τ ∗d−1τ
∗

s E(µ)= m⊗ E(dsµ)τ ∗d−1τ
∗

s . (5-6)

If 〈µ, α̌s〉 = 0, then µ = sµ and E(µ) and τ ∗s commute by Proposition 4.3(1),
so we have the required equality.

If 〈µ, α̌s〉> 0, then

m⊗τ ∗d−1τ
∗

s E(µ)= m⊗ τ ∗d−1(τs + νs)E(µ)

= m⊗τ ∗d−1 E(sµ)τ ∗s +m⊗τ ∗d−1 E(µ)νs by the Bernstein relations

= m⊗E(dsµ)τ ∗d−1τ
∗

s +m⊗E(dµ)τ ∗d−1νs by induction.

The hypothesis on µ implies that 〈dµ, dα̌s〉> 0, so dµ is not L-positive. Hence the
second part of the preceding sum is zero, which gives the required equality.

If 〈µ, α̌s〉< 0, then

m⊗ τ ∗d−1τ
∗

s E(µ)= m⊗ τ ∗d−1 E(sµ)τs by the Bernstein relations

= m⊗ E(dsµ)τ ∗d−1τs by induction.

But 〈dsµ, dα̌s〉> 0, so dsµ is not L-positive. Hence we have proved that both sides
of (5-6) are zero.

By Proposition 2.2, we have proved (5-6) by induction.

(C) Result (B) shows that the right action of E(d
−1
λL) on M⊗ τ ∗

d ′−1 is zero for
any d ′ ∈ DL d ′ 6= d and that it is a multiplication by ζ on M⊗ τ ∗d−1 . Hence, the
decomposition (5-4) is a direct sum.

(D) Let us prove that
M→M⊗ τ ∗

d−1
0

is injective for any d0 ∈ DL . Let m ∈M such that

m⊗ τ ∗
d−1

0
= 0. (5-7)

Let (mν)ν∈N be a family of generators of the H(L+)-module M that contains m,
say mν0 =m. By [Bourbaki 1961, Chapitre 1, §2, n◦ 11], (5-7) implies that there is
a finite family (kι)ι∈I of elements in H and a finitely supported family (bι,ν)ι∈I,ν∈N

of elements in H(L+) such that

•
∑

ν∈N mνbι,ν = 0 for any ι ∈ I,
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•
∑

ι∈I bι,ν0kι = τ ∗d−1
0

,

•
∑

ι∈I bι,νkι = 0 for any ν 6= ν0.

By Proposition 4.8, there exists r ∈ N such that τ r
aL

kι =
∑

d∈DL
cι,dτd with

cι,d ∈H(L+) for any ι ∈ I. The component of

τ r
aL
τ ∗

d−1
0
=

∑
d∈DL

∑
ι

bι,ν0cι,dτd

with support in I (1)L+d0 I (1) is equal to τ r
aL
τd0 on one hand, and to

∑
ι bι,ν0cι,d0τd0

on the other hand. So, by Lemma 2.4, we get τ r
aL
τd0 =

∑
ι bι,ν0cι,d0τd0 and then

τ r
aL
=
∑

ι bι,ν0cι,d0 .
The same argument applied to 0 =

∑
ι∈I bι,νkι shows that 0 =

∑
ι bι,νcι,d0 for

ν 6= ν0.
Multiplying 0 =

∑
ν∈N mνbι,ν by cι,d0 for any ι ∈ I, and then summing over ι,

gives 0= mν0τ
r
aL

, and hence m = 0.
This proves the remaining assertions of Proposition 5.2, also using again the

argument of [Vignéras 2005, Lemma 13] to deduce the direct sum (5-1) from the
direct sum (5-2). �

5B. Standard modules. The field k is naturally a Z[q]-module via the specializa-
tion q 7→ 0. A k-character of A is a morphism of unitary rings χ : A→ k which
is compatible with the structures of Z[q]-modules. The set of k-characters of A

inherits a natural action of W0 given by (w0, χ) 7→
w0χ .

Because of (4-8), one has E(µJ )E(µK ) = 0 for any J, K ⊂ {1, . . . , n}, unless
either J ⊂ K or K ⊂ J . So, a k-character χ of A is completely determined by its
values on {τt , t ∈ T}, the flag

J0 =∅ ( J1 ( · · ·( Jr = {1, . . . , n}

of the subsets Ji ⊂ {1, . . . , n} such that χ(E(µJi )) is nonzero, and these nonzero
values. The standard module induced by χ is the right H-module

χ ⊗A H.

The set of minuscule weights (µJi )i∈{1,...,r} we call the support of χ . We say
that χ has dominant or antidominant support if every weight in the support is so.

Recall that any k-vector space which is a simple H-module is a quotient of a
standard module [Vignéras 2005, 1.4].

Definition 5.6. The character χ , the associated standard module, and any quotient
of the latter are said to be regular if the flag is maximal, that is, r=n; supersingular
if the flag is minimal, that is, r = 1; and singular otherwise.

If n = 1, we make the convention that any character of A is supersingular.
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5C. Inducing standard modules.

5C1. A k-character χ :A→ k is called adapted to L (or L-adapted) if χ(E(λL)) is
nonzero, where λL is defined by (4-2). This implies that χ has L-positive support,
that is, any weight in its support is L-positive. A k-character χL : AL → k of the
integral Bernstein subalgebra of H(L) is the tensor product of k-characters of the
integral Bernstein algebras corresponding to the L j ’s, j ∈ {1, . . . ,m}. The value
of χL on the invertible element τ ⊗aL

being nonzero, χL is completely determined
by its restriction to AL+ and we have an isomorphism of H(L)-modules:

χL ⊗AL H(L)' χL ⊗AL+
H(L).

There is a one-to-one correspondence between the k-characters χL of AL and
the k-characters of A adapted to L: it associates the character χ :A→ k adapted
to L with the character χL given on AL+ by

χL(E ⊗(λ)) := χ ◦ θL(E ⊗(λ))= χ(E(λ))

for any L-positive weight λ ∈3(1).
The algebra AL is endowed not only with an action of the finite Weyl group

W0,L , but also of the normalizer of W0,L in W0. Nevertheless, the previous corre-
spondence is only compatible with the action of W0,L which preserves the set of
L-positive weights in 3(1).

5C2. With Proposition 5.1, the previous paragraph gives the following result.

Proposition 5.7. Given χL :AL → k, let χ :A→ k be the associated L-adapted
character of A. The standard module relative to χ is induced by the standard
module relative to χL in the sense that the following isomorphisms of H-modules
hold:

χ ⊗A H' χL ⊗AL H(L)⊗H(L+) H' χL ⊗AL+
H.

5D. Intertwining operators between standard modules. Let χ :A→ k be a char-
acter. We assume that L is a strict Levi subgroup of G and that χ is adapted to L .
Then its support contains at least {µj , j ∈1−1L}.

Let d ∈W0 and s ∈ S0 be a simple reflection such that d, ds ∈ DL and `(ds)=
`(d)+ 1. Let ξ be the k-character ξ = d−1

χ . Denote respectively by ϕ and ϕs the
canonical generators of the standard modules induced by ξ and sξ .

5D1. Definition of the intertwiners.

Remark 5.8. The fact that `(ds)= `(d)+ 1 implies that dα̌s is a positive root.
That both ds and d belong to DL implies that ds /∈ W0,Ld , so there exists j in

1−1L such that dsd−1
µj 6=µj : the weight d−1

µj lies in the support of ξ and satisfies
〈

d−1
µj , α̌s〉 = 〈µj , dα̌s〉< 0. Because of relations (4-8), any other minuscule weight

µ in the support of ξ will then satisfy 〈µ, α̌s〉 ≤ 0.
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Lemma 5.9. The vector ϕτ ∗s is an eigenvector for the character sξ of A.

Proof. It is easy to check that ϕτ ∗s τt =
sξ(τt)ϕτ

∗
s for any t ∈ T (or see [Ollivier

2006a, 4.4.2]). We have yet to show that

ϕτ ∗s E(µJ )=
sξ(E(µJ )) ϕτ

∗

s (5-8)

for any minuscule weight µJ associated to J ⊂ {1, . . . , n− 1}.
If µJ is fixed by s, the Bernstein relations ensure that τ ∗s and E(µJ ) commute

and (5-8) holds.
If 〈µJ , α̌s〉> 0, the Bernstein relations give

ϕτ ∗s E(µJ )= ϕτs E(µJ )+ϕE(µJ )νs = ϕE(sµJ )τ
∗

s =
sξ(E(µJ )) ϕτ

∗

s ,

because µJ is not in the support of ξ by Remark 5.8 .
If 〈µJ , α̌s〉<0, the Bernstein relations give ϕτ ∗s E(µJ )=ϕE(sµJ )τs=0, because

sµJ is not in the support of ξ , and (5-8) holds. �

We choose a weight d−1
µj as in Remark 5.8. It is a minuscule weight in the

support of ξ . It can be denoted by µK for some K ⊂ {1, . . . , n}. Recall that
〈µK , α̌s〉< 0. Set

β := ξ(E(µK∪sK ))ξ(E(µK∩sK ))ξ(E(µK ))
−1,

where sK denotes the image of K under the natural action of s.

Remark 5.10. Because of the relations (4-8), this scalar β is zero as soon as
there exists a minuscule weight µJ different from µK in the support of ξ such
that 〈µJ , α̌s〉< 0.

Lemma 5.11. The vector ϕs(E(seµK )−βνs) is an eigenvector for the character ξ
of A.

Proof. Note that νs lies in A and commutes with τs . See [Ollivier 2006a, 4.4.2] to
check that ϕs(E(seµK )−βνs)τt = ξ(τt)ϕs(E(seµK )−βνs) for any t ∈ T. We have
yet to prove that

ϕs(E(seµK )−βνs)E(µJ )= ξ(E(µJ )) ϕs(E(seµK )−βνs) (5-9)

for any minuscule weight µJ associated to J ⊂ {1, . . . , n− 1}.
We use the fact that after extending the scalars to Z[q±1/2

], we have

E(seµK )= q−1 E(sµK )τs = q−1τ ∗s E(µK ). (5-10)

If µJ is fixed by s, then (5-9) holds.
If 〈µJ , α̌s〉 < 0, then µJ is not in the support of sξ by Remark 5.8, and the left

side of (5-9) is ϕs E(seµK )E(µJ ). The Bernstein relations and (5-10) give
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E(seµK )E(µJ )

= E(sµJ )E(seµK )− νsq(|K |−|
sK∩J |)(|J |−|sK∩J |)−1 E(µ sK∪J )E(µ sK∩J ). (5-11)

• If J 6= K , the power of q in the preceding equality is at least 1, so

ϕs E(seµK )E(µJ )= ξ(E(µJ )) ϕs E(seµK ).

If J is in the support of ξ , then β = 0 by Remark 5.10, and (5-9) holds. If J
is not in the support of ξ , we have proved that both sides of (5-9) are zero.

• If J = K , then (5-11) gives equality (5-9).

If 〈µJ , α̌s〉 > 0, then µJ is not in the support of ξ and the right side of (5-9) is
zero. The Bernstein relations give

E(seµK )E(µJ )

= E(sµJ )E(seµK )+ νsq(|K |−|K∩J |)(|J |−|K∩J |)−1 E(sµK∪J )E(sµK∩J ), (5-12)

so ϕs E(seµK )E(µJ )= ϕsνsq(|K |−|K∩J |)(|J |−|K∩J |)−1 E(sµK∪J )E(sµK∩J ).

• If J 6= sK , the latter power of q is at least 1, so the only remaining term in
the left side of (5-9) is equal to −sξ(E(µJ ))β ϕsνs : if µJ is in the support
of sξ , then β = 0 by Remark 5.10; if µJ is not in the support of sξ , then
sξ(E(µJ ))= 0.

• If J = sK , then ϕs E(seµK )E(µJ )= ξ(E(µK ))βϕsνs , so the left side of (5-9)
is zero. �

The preceding lemmas allow us to define an H-equivariant morphism 8 from
the standard module induced by ξ into the one induced by sξ , and another,9, going
the other way around. They are fully determined by 8(ϕ) = ϕs(E(seµK )− βνs)

and 9(ϕs)= ϕτ
∗
s .

Lemma 5.12. The composition of 8 and 9 is the homothety with ratio

ξ(E(µK )−βν
2
s ).

Proof. Any d0 ∈ W0 such that sµK =
d−1

0 µj satisfies 〈µj , d0α̌s〉 = −〈µK , α̌s〉 > 0,
so d0α̌s ∈ 8̌

− and `(d0s)= `(d0)− 1. Hence

τ ∗
d−1

0
τs = 0

in H⊗Z[q]k, and Lemma 4.4 ensures that E(sµK )τs = 0 in H⊗Z[q]k. Thus ϕsτs = 0
and ϕs(E(seµK )−βνs)τ

∗
s = ξ(E(µK )−βν

2
s )ϕs, and8◦9 is a homothety with ratio

ξ(E(µK )−βν
2
s ). Using the equalities E(µK )E(seµK )=τs E(µK∩sK )E(µK∪sK ) and

τs E(seµK ) = E(µK ), one checks that 9 ◦8 is a homothety with the same ratio.
�
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5D2. Conditions of isomorphism.
5D2.1. Suppose that χL is a tensor product of supersingular characters. Then the
support of χ is exactly {µj , j ∈1−1L}.

Recall that the standard Levi subgroup L decomposes into L = L1× · · ·× Lm ,
where L i is isomorphic to GLni (F) for i ∈ {1, . . . ,m}. There exists a simple
reflection not belonging to W0,L but normalizing W0,L if and only if one can find
two consecutive L i and L i+1 with i ∈ {1, . . . ,m− 1} such that ni = ni+1 = 1.

We will say that χL satisfies Hypothesis (?) if for any simple reflection s j not
belonging to W0,L but normalizing W0,L , the characters s jχL and χL differ.

Lemma 5.13. Let j ∈1 and suppose that the simple reflection s j does not belong
to W0,L but normalizes W0,L . The k-character χL and its conjugate by s j coincide
if and only if two conditions are satisfied:

• χ(ν2
s j
) 6= 0, that is, χ(ν2

s j
)= 1,

• χ(E(µj ))
2
= χ(E(µj−1))χ(E(µj+1)).

Proof. First note that ν2
s j
=
∑

t∈Ts j
τt . One then easily checks that χ(ν2

s j
) = 1

if the characters χL and its conjugate by s j coincide on the space generated by
{τ ⊗t , t ∈T}, and that χ(ν2

s j
)= 0 otherwise (see also [Ollivier 2006a, Remarque 7]).

Saying that s j does not belong to W0,L means that eµj−1 , eµj , eµj+1 are central
elements in L , so χ(E(µj−1)), χ(E(µj )), χ(E(µj+1)) are nonzero elements in k.
The characters χL and its conjugate by s j coincide if and only if they coincide on
the space generated by {τ ⊗t , t ∈ T}, and

χ(E(µj ))

χ(E(µj−1))
=
χ(E(µj+1))

χ(E(µj ))
. �

By Lemma 5.12, it is clear that if β = 0, then I (ξ) and I (sξ) are isomorphic.
Saying that β is nonzero means that µK∪sK and µK∩sK both belong to the support of
ξ . Because of the hypothesis on the support of χ , this implies that µj+1 =

dµK∪sK ,
µj =

dµK , µj−1 =
dµK∩sK belong to the support of χ and that dsd−1

= s j is a
simple reflection not belonging to W0,L and normalizing W0,L . By Hypothesis (?),
Lemma 5.13 then proves that ξ(E(µK )− βν

2
s ) is nonzero, so I (ξ) and I (sξ) are

isomorphic.
By induction and using Proposition 2.2, we get the following result.

Proposition 5.14. Let χ :A→ k be an L-adapted character.
Suppose that the associated χL : AL → k is a tensor product of supersingular

characters and that it satisfies Hypothesis (?). Then the standard module induced
by χ is isomorphic to the standard module induced by any conjugate d−1

χ of χ
under the action of the inverse of an element d ∈ DL .
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5D2.2. Let χ0 : A→ k be a character with antidominant support, and L be the
maximal Levi subgroup such that the associated character χ0,L :A→ k is a tensor
product of supersingular or regular characters. This Levi subgroup can be described
in the following way: any j ∈1 lies in 1−1L if and only if µj lies in the support
of χ0 and at least one of µj+1 or µj−1 does not lie in the support of χ0.

We suppose now that χ = w0χ0, where w0 ∈W0,L . It is adapted to L and we can
apply the results of Section 5D1.

Consider as before the weight µK in the support of ξ and the element j ∈1−1L

such that µK =
d−1
µj . Then µK∪sK and µK∩sK cannot be simultaneously in the sup-

port of ξ ; otherwiseµj−1, µj , µj+1 would be in the support of χ0, which contradicts
the definition of 1−1L . Hence β = 0 and I (ξ) and I (sξ) are isomorphic. By
induction (using Proposition 2.2), the following proposition is proved.

Proposition 5.15. Let χ0 :A→ k be a character with antidominant support and L
the maximal Levi subgroup such that the associated character χ0,L : AL → k is a
tensor product of supersingular or regular characters. Letw0∈W0,L . The standard
module induced by χ := w0χ0 is isomorphic to the standard module induced by any
conjugate d−1

χ of χ under the action of the inverse of an element d ∈ DL .

5E. Nonsupersingular Hecke modules.

5E1. Regular standard modules.

Proposition 5.16. The standard module induced by a character χ : A→ k with
regular support is a k-vector space with dimension n!.

5E1.1. Our proof relies on further ingredients relative to root data and Coxeter
systems. Let R ⊂ 5̌ be a set of simple roots and denote by 〈R〉 the subset of 8+

generated by R. Define W0(R) to be the subset of W0 whose elements w satisfy
w(R)⊂ 8̌− and w(5̌− R)⊂ 8̌+.

Lemma 5.17. In W0(R) there is a unique element wR with minimal length. It is
an involution and its length is equal to the cardinality of 〈R〉.

Proof. The length of an elementw in W0 being the number of positive roots α∈8+

such that wα ∈ 8− (Section 2A), any element in W0(R) has length larger than
the cardinality of 〈R〉. The subgroup of W0 generated by the simple reflections
corresponding to the simple roots in R has a unique maximal length element wR ,
with length the cardinality of 〈R〉. It is an involution satisfying wR(R)=−R and
wR(8

+
−〈R〉)⊂8+ [Bourbaki 1968, Chapitre VI, §1, n◦ 1.6, corollaire 3]. This

element belongs to W0(R).
Let w ∈ W0(R). Suppose that `(w) = `(wR). Then the roots in 〈R〉 are the

only positive ones made negative by w. Applying the length property 2B2 and the
definition of W0(R), we then see that `(w) = `(wwR)+ `(wR), so wwR = 1 and
w = wR . �
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Lemma 5.18. Let w ∈ W0(R). Suppose that w 6= wR and consider s j ∈ S0 such
that `(s jwwR) = `(wwR)− 1. Then `(s jw) = `(w)− 1, the element s jw lies in
W0(R) and the positive root −w−1α̌ j is not a simple root.

Proof. The hypothesis on the length ensures that wRw
−1α̌ j ∈ 8̌

−. Because of
the properties of w and wR , it implies w−1α̌ j ∈ 8̌

− and `(s jw) = `(w) − 1.
More precisely, one checks that the only possibility is −w−1α̌ j ∈ 8̌

+
− 〈R〉. So,

if −w−1α̌ j were a simple root, it would be an element in 5̌− R, which would
contradict w(5̌ − R) ⊂ 8̌+. It remains to check that s jw lies in W0(R). Let
α̌ ∈ R. Since wα̌ ∈ 8̌− − {−α̌ j }, we have s jwα̌ ∈ 8̌

−. Let α̌ ∈ 5̌− R. Since
wα̌ ∈ 8̌+−{α̌ j }, we have s jwα̌ ∈ 8̌

+. �

Lemma 5.19. Denote by σ ∈W0 the cycle (n, n−1, . . . , 1). Let α̌ ∈ 5̌− R. There
exists j ∈ {1, . . . , n− 1} such that σ jwR ∈W (R ∪ {α̌}).

Proof. We first make some remarks.

(1) Let β̌ ∈ 5̌−R be a simple root. ThenwR β̌ is a positive root. Also, sβ appears
in any reduced decomposition of the transposition wRsβwR according to the
set S0. From this, one easily deduces that wR β̌ ≥ β̌, where ≥ denotes the
partial order on 8̌ described in 2A. Conversely, let α̌ ∈ 5̌− R. If wR β̌ ≥ α̌,
this means that sα appears in any reduced decomposition ofwRsβwR , so β̌= α̌.

(2) Let j ∈ {1, . . . , n− 1} and β̌ ∈ 8̌+. Then σ j β̌ ∈ 8̌− if and only if β ≥ α̌ j .

Let α̌ ∈ 5̌− R as in the lemma and j ∈ {1, . . . , n − 1} such that α̌ = α̌ j . We
check that σ jwR ∈W0(R ∪ {α̌ j }). Any β̌ ∈ R is sent by wR to an element in −R,
which in turn is sent by σ j to an element in 8̌− by (2). Let β̌ ∈ 5̌− R. Then
wR β̌ ∈8

+ and using (2), σ jwR β̌ ∈ 8̌
− if and only if wR β̌ ≥ α̌ j , which by (1) is

equivalent to β̌ = α̌ j . �

Proof of Proposition 5.16. Let χ :A→ k be a character with regular antidominant
support.

(A) Let R ⊂ 5̌ be as in 5E1.1. We prove by induction on the length of w ∈W0(R)
that the standard modules induced by wχ and wRχ are isomorphic as H-modules.

Let w ∈ W0(R). Suppose w 6= wR; then there is s j ∈ S0 such that `(s jwwR)=

`(wwR)− 1. By Lemma 5.18, this implies `(s jw) = `(w)− 1 and the element
s jw also lies in W0(R). Set ξ = s jwχ . We prove that ξ and s j ξ induce isomorphic
standard modules. We are in the situation of Section 5D; the Levi subgroup here is
simply the diagonal torus. So we have two well-defined intertwining operators
between the standard modules in question. By Remark 5.10, there is an easy
sufficient condition for these operators to be isomorphisms: it suffices to check
that there is more than one minuscule weight µ in the support of ξ satisfying
〈µ, α̌ j 〉 < 0; that is, that there is more than one antidominant minuscule weight λ
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such that 〈λ,w−1α̌ j 〉 > 0. This is true, because w−1α̌ j ∈ 8
− and −w−1α̌ j is not

a simple root, by Lemma 5.18.

(B) For w ∈ W0, the standard modules induced by wχ and σwχ have the same
dimension, as proved in [Ollivier 2006a, Proposition 2].

(C) Let R⊂ 5̌ be a set of simple roots. We prove by induction on the cardinality of
R that the standard module induced by wχ is n!-dimensional for any w ∈ W0(R).
If R = ∅, then W0(R) = {1}, and the result is given by Propositions 5.2 and 5.7.
Suppose that the property holds for some set of simple roots R ( 5̌. Let α̌ ∈ 5̌−R
and w ∈ W0(R ∪ {α̌}). By Lemma 5.19, there is a power σ j of the cycle σ such
that σ jwR ∈W0(R ∪ {α̌}). We conclude using (A) and (B). �

5E1.2. The motivation for Proposition 5.16 is this:

Conjecture 5.20. Let χ :A→ k be a character with regular support and w0 ∈W0.
The standard modules induced by w0χ and χ have the same semisimplification as
modules over H.

We can prove the conjecture if we consider characters of A which are totally
degenerate on the finite torus, that is, for t ∈ T, the value χ(τt) only depends
on the orbit of t under the action of W0. By twisting, we can consider that χ is
trivial on the finite torus. Then the standard module induced by χ can be seen
as a module over the Iwahori–Hecke algebra (see for example Section 8). One
can then apply the arguments listed in [Ollivier 2006b, 2.4] (for the case of GL3)
to show that χ and its conjugates induce standard modules which have the same
semisimplification. The first argument comes from [Vignéras 2006, théorème 6]:
the character χ can be lifted to a character χ0 with values in Zp, and we see the
latter as a character with values in Qp. Since the standard module induced by χ is
n!-dimensional over Fp, [Vignéras 2006, théorème 5] says that it is isomorphic to
the reduction of the canonical integral structure of the H⊗Z[q]Qp standard module
induced by χ0. To conclude, we recall Proposition 2.3 of [Rogawski 1985]: two
standard modules for the Iwahori–Hecke algebra in characteristic zero have the
same semisimplification if they are induced by conjugate characters. The proof is
based on the description of an explicit basis for the standard modules owing to the
Kazhdan–Lusztig polynomials for the Iwahori–Hecke algebra.

Proposition 5.21. Conjecture 5.20 is true for the standard modules over the Iwa-
hori–Hecke algebra, that is, for characters χ that are trivial on the finite torus.

5E2. Nonsupersingular simple modules and induction. Recall that a nonsupersin-
gular character χ :A→ k with antidominant support is adapted to some strict Levi
subgroup L of G. So the associated standard module is induced from a H(L)-
module by Proposition 5.7. In the light of this, the following proposition bolsters
the definition of a nonsupersingular module.
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Proposition 5.22. Assume that Conjecture 5.20 is true. Any simple nonsupersingu-
lar H-module appears in the semisimplification of a standard module for H relative
to a nonsupersingular character with antidominant support.

Proof. Let M be a simple nonsupersingular module: it is a quotient of a standard
module induced by some nonsupersingular character ξ :A→ k. Let w ∈W0 with
minimal length such that χ := wξ has antidominant support. We want to prove
that M appears in the semisimplification of the standard module induced by χ .
Let L be the standard Levi subgroup associated to χ as in Proposition 5.15. Let
(w0, d) ∈W0,L × DL be such that w =w0d . Recall that `(w)= `(w0)+ `(d). By
Proposition 5.15, the standard modules induced by w−1

0 χ and ξ are isomorphic. So
M is an irreducible quotient of the standard module induced by w−1

0 χ . We have yet
to check that it is a subquotient of the standard module induced by χ .

• If L = G, then χ is a regular character and the claim comes from Conjecture
5.20.

• Suppose L 6= G. Decompose L ' L1×· · ·× Lm and w−1
0 = (w1, . . . , wm) ∈

L1×· · ·×Lm . Both χ and w
−1
0 χ are L-adapted: denote by χL=χL1⊗· · ·⊗χLm

the character of AL corresponding to χ . Then w−1
0 χL =

w1χL1 ⊗ · · ·⊗
wmχLm

corresponds to w−1
0 χ . If χL i is a supersingular character for an i ∈ {1, . . . ,m},

then wiχ and χ have the same support, so by minimality of the length ofw, we
must have wi = 1. In other words, if wi 6= 1, then χL i is a regular character of
AL i . So Conjecture 5.20 says that the standard modules for H(L) induced by
χL and w−1

0 χL have the same semisimplification. Then applying Proposition
5.7 and Corollary 5.4, one gets that M is an irreducible subquotient of the
standard module induced by χ . �

Proposition 5.23. The statement of Proposition 5.22 holds without further hypoth-
esis for modules over the Iwahori–Hecke algebra.

5F. Irreducible induced modules. Let M be a k-vector space endowed with a
structure of right H(L)-module. Let M be irreducible as an H(L)-module. Then
it is finite-dimensional and has a central character [Vignéras 2007, 5.3], so M is a
quotient of some standard module for H(L) induced by a character χL :AL → k.
In particular, M belongs to the category CL defined in 5A. Suppose that χL is
the tensor product of supersingular characters and consider as before its associated
L-adapted character χ :A→ k.

Proposition 5.24. Let χ ′ be a k-character for A contained in M⊗H(L+)H. There is
d ∈DL such that dχ ′ is the L-adapted character associated to some W0,L -conjugate
of χL .
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Proof. First note, using the braid relations in H(L) and the fact that χL is a product
of supersingular characters, that any k-character for AL contained in M is a W0,L -
conjugate of χL . Then, using Proposition 5.7, note that M⊗H(L+) H is a quotient
of the standard module for H induced by χ . So it has a central character given
by the restriction of χ to the center of H. Any k-character χ ′ for A contained in
M⊗H(L+)H has the same restriction to the center, which ensures that the supports
of χ ′ and χ are conjugate, and more precisely, that there is an element d ∈ DL

such that χ and dχ ′ coincide on (E(λ))λ∈3. In particular, χ ′(E(d
−1
λL)) 6= 0, so

the character χ ′ is supported by an element in M⊗ τ ∗d−1 by Proposition 5.2 and
its proof. With the braid relations in H, our first remark then shows that dχ ′ is the
L-adapted character associated to some W0,L -conjugate of χL . �

Corollary 5.25. Suppose that χL satisfies Hypothesis (?). Then M⊗H(L+) H is an
irreducible H-module.

Proof. A nontrivial irreducible submodule of M⊗H(L+)H is a quotient of a standard
module for H. By Proposition 5.24, the latter is induced by a k-character χ ′ such
that dχ ′ is the L-adapted character associated to w0χL for some d ∈ DL and w0 ∈

W0,L . It is clear that w0χL satisfies Hypothesis (?) since χL does, so Proposition
5.14 ensures that the standard module induced by χ ′ is isomorphic to the one
induced by dχ ′. In particular, any nonzero submodule of M⊗H(L+) H contains an
L-adapted character, and hence a nonzero eigenvector for τaL and the value ζ . By
Proposition 5.2 and by the irreducibility of M, any nonzero submodule contains
M⊗ τ1, and hence it is the whole M⊗H(L+) H. �

6. Parabolic induction and compact induction

Recall that the universal module U is the compact induction to G of the trivial
character of I (1) with values in k. We will denote by UL the compact induction to
L of the trivial character of IL(1) with values in k. These representations of G and
L are respectively generated by the characteristic functions of the pro-p-Iwahori
subgroups I (1) and IL(1). We will denote both of these by 1 when there is no
possible ambiguity.

We consider a module M in the category CL defined in 5A. Let (π(M), V ) be
the representation of G on M⊗H(L+) U and (πL(M), VL) the representation of L
on M⊗H(L) UL .

6A. The parabolic induction IndG
P πL(M) is the smooth part of the space of func-

tions f : G→ VL satisfying f (lng)= l. f (g) for g ∈ G, (l, n) ∈ L × N , endowed
with the action of G by right translation.

6A1. The set DL is a system of representatives of the double cosets P\G/U in the
Chevalley group. For d ∈ DL , set Ud = U ∩ d−1Ud and Ud = U ∩ d−1Ud . Any
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element in U can be written as a product of an element of Ud and of an element of
Ud and this decomposition is unique. From this, one deduces that any element in
PdU decomposes uniquely in PdUd [Carter 1985, 2.5.12].

The set DL is also a system of representatives of the double cosets P\G/I (1).
For any d ∈ DL , one has

Pd I (1)=
∐

y

P I (1)dy, (6-1)

where dy runs over a system of representatives of I (1)\I (1)d I (1).
For any d ∈ DL and any IL(1)-invariant element v in πL(M), the I (1)-invariant

function fPd I (1),v with support Pd I (1) and value v at d is a well-defined element
of IndG

P πL(M). Any I (1)-invariant function in the latter representation is a linear
combination of such functions.

6A2. The right action of τd maps fP I (1),v to an I (1)-invariant element with support
Pd I (1), which is completely determined by its value at d . Using (6-1), one easily
checks that this value is v, so

( fP I (1),v)τd = fPd I (1),v (6-2)

6A3. Let w ∈W (1)
L . Suppose it is a L-positive element.

According to [Vignéras 1998, II.4], there is a system of representatives of the
right cosets I (1)\I (1)w I (1) respecting the decomposition of IL(1)w IL(1) into
right cosets mod IL(1). Explicitly, from the decomposition

IL(1)w IL(1)=
∐

x

IL(1)wx

one gets
I (1)w I (1)=

∐
x

I (1)wx I (1)−

and a decomposition I (1)w I (1)=
∐

x,ux
I (1)wxux , where ux belong to I (1)−.

From arguments analogous to [Schneider and Stuhler 1991, Proposition 7], one
shows that P I (1)wx ∩ P I (1)wxux 6= ∅ implies I (1)wxux = I (1)wx : the hy-
pothesis can be written Pw−1 I (1)−wx ∩ Pw−1 I (1)−wxux 6= ∅, and we recall
that I (1)− is normalized by x ∈ IL(1). So there exists an element κ1xux x−1κ2 in
P with κ1, κ2 ∈ w

−1 I (1)−w ⊂ I (1)−. Since P ∩ I (1)− = {1}, one deduces that
xux x−1

∈ w−1 I (1)w and I (1)wxux = I (1)wx .
The right action of τw ∈H on fP I (1),v gives the I (1)-invariant function with sup-

port P I (1) and value at 1G given by
∑

x,ux
fP I (1),v((wxux)

−1). But (wxux)
−1
∈

P I (1) implies 1 ∈ P I (1)wx ∩ P I (1)wxux ; therefore this value is
∑

x(wx)−1v =

vτ ⊗w , and
( fP I (1),v)τw = f P I (1),vτ ⊗w . (6-3)
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6B. For any m ∈M, there is a well-defined G-equivariant map

Fm :U→ IndG
P πL(M)

sending the characteristic function of I (1) on fP I (1),m⊗1. The computation of 6A3
shows that we then have a G-equivariant morphism

F : π(M)→ IndG
P πL(M), m⊗ u 7→ Fm(u). (6-4)

Remark 6.1. In the case where L is the diagonal torus T and M is a character of
AT , the map F is an isomorphism [Schneider and Stuhler 1991; Vignéras 2004].

6C. In the tensor product M⊗H(L) UL , the group L only acts on UL , so there is
a natural morphism of H(L)-modules

M→ (M⊗H(L) UL)
IL (1), (6-5)

and a natural morphism of H-modules

M⊗H(L+) H→ (M⊗H(L+) U)I (1), (6-6)

which composes with F to give the morphism of H-modules

M⊗H(L+) H→ (IndG
PπL(M))I (1). (6-7)

6C1. If (6-5) is not trivial, then (6-7) is not trivial and neither is (6-6). By adjunc-
tion, if there exists a representation (πL , VL) of L and a nonzero H(L)-equivariant
map M→ V IL (1)

L , then (6-5) is not trivial.

6C2. Suppose (6-5) is surjective. Then (6-7) is surjective.

6C3. Using Proposition 5.2, one sees that (6-7) is injective if (6-5) is injective. In
this case, (6-6) is also injective.

In 5F, we gave sufficient conditions for certain irreducible H(L)-modules M

to induce irreducible H-modules. Under these conditions, and if (6-5) is nonzero,
then (6-7) allows us to describe an irreducible subspace M⊗H(L) H of the pro-p-
invariants of IndG

PπL(M).
If H(L) is a direct factor of UL as a left H(L)-module, then (6-5) is injective

for any M in CL . This is the case if F has residue field Fp and L is isomorphic to
a product of GL1(F)’s and GL2(F)’s [Ollivier 2007, 2.1.3].

6D. Examples.

6D1. If L is the diagonal torus T , then M identifies with a character χT :AT → k.
By Remark 6.1 and previous results, the representation M⊗H(L+) U is isomor-
phic to the principal series induced by the character T → k∗, t 7→ χT (t−1). The
semisimplification of this representation and of its space of pro-p-invariants is well-
understood [Grosse-Klönne 2009; Ollivier 2006a; Ollivier 2006c; Vignéras 2008].
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6D2. We consider the case where F = Qp. Suppose that L is isomorphic to
a product of GL1(Qp)’s and GL2(Qp)’s. There is an equivalence of categories
between the right H(L)-modules (with scalar action of the uniformizers) and the
representations of L generated by their IL(1)-invariants (with scalar action of the
uniformizers). In particular, (6-5) is an isomorphism for any M. If L is the diagonal
torus, it is clear. Otherwise, the result is given by [Ollivier 2009]. So, for any M

in CL , the map (6-7) is an isomorphism.

6D2.1. Suppose that G =GL3(Qp) and L is isomorphic to GL2(Qp)×GL1(Qp).
Let χL :AL→k be the tensor product of two supersingular characters. It satisfies

Hypothesis (?). Denote by M the standard module for H(L) induced by χL . It
is irreducible and 2-dimensional. Because of the above-mentioned equivalence of
categories, the representation M⊗H(L+)UL is the tensor product of a supersingular
representation of GL2(Qp) by a character of GL1(Qp).

By Corollary 5.25, the H-module M⊗H(L+)H is irreducible. By the remarks of
6C, it is isomorphic to the subspace of I (1)-invariants of the representation which
is parabolically induced from M⊗H(L+) UL . Hence, this subspace generates an
irreducible subrepresentation for GL3(Qp). By the results of Herzig, this subrep-
resentation is actually the whole IndG

PπL(M).

6D2.2. Suppose that G is GL4(Qp) and L is isomorphic to GL2(Qp)×GL2(Qp).
Let χL : AL → k be the tensor product of two supersingular characters. It sat-
isfies Hypothesis (?). Denote by M the standard module for H(L) induced by
χL . It is irreducible and 4-dimensional. The same arguments as before ensure
that M⊗H(L+) UL is the tensor product of two supersingular representations of
GL2(Qp), and that the H-module M⊗H(L+)H is irreducible and isomorphic to the
space of I (1)-invariants of the representation which is parabolically induced from
M⊗H(L+) UL . The latter is an irreducible representation by the results of Herzig.

7. Supersingular modules

Fix a supersingular character χ :A→ k. It is defined by its restriction to {τt , t ∈T},
its value ζ ∈ k∗ on E(µ{1,...,n}) and by the fact that for any λ ∈ 3(1) such that
`(eλ) > 0, the scalar χ(E(λ)) is zero.

Let M be a nonzero quotient of the standard module for H induced by χ . Denote
by Mχ the sum of the equivariant subspaces in M for A and the W0-conjugates of
χ (it is nonzero).

Proposition 7.1. Mχ is stable under the action of the finite Hecke algebra.

Proof. This is a direct consequence of the integral Bernstein relations. �
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Recall that the simple modules for the finite Hecke algebra are the characters
[Cabanes and Enguehard 2004, Theorem 6.12]. So the proposition says in partic-
ular that Mχ contains a character for the finite Hecke algebra. Denote by m ∈ Mχ

its support. The set D was introduced by Proposition 2.5 and one has the following
result.

Proposition 7.2. The set of the lengths `(d), where d runs over the elements of D

such that m E(d) 6= 0, is bounded.

Proof. Let d ∈D. Write d = eλw0 ∈W . According to Lemma 2.6, the weight λ is
dominant, so (after a suitable twist of d by a power of the central element $ n) it
decomposes into a linear combination

λ=
∑

1≤i≤n−1

−niµi

with nonnegative integral coefficients. Suppose that one of the coefficients, say n j ,
is at least 2. Then λ+µj is still dominant and we show that

(1) d ′ := eλ+µjw0 ∈ D,

(2) `(d) = `(e−µj )+ `(d ′), which easily implies that E(d) = E(−µj )E(d ′) and
m E(d)= 0.

Since λ+µj is dominant, the only thing one has to check to make sure that d ′∈D

is the following: for any α̌∈8̌+, if 〈λ+µj , α̌〉=0 thenw−1
0 α̌∈8̌+. Since d=eλw0

is already in D, the only tricky case is 〈λ, α̌〉 = −〈µj , α̌〉> 0. By definition of the
weight µj , this condition implies that α̌ ≥ α̌ j and 2≤ n j = 〈λ, α̌ j 〉 ≤ 〈λ, α̌〉, which
contradicts the fact 〈λ, α̌〉 = −〈µj , α̌〉 = 1, since µj is minuscule.

Now for the second assertion, recall from 2B3 that this equality holds if and
only if, for any α̌ ∈ 8̌+,

〈µj , α̌〉 n(α̌, w−1
0 e−λ−µj ) ≥ 0, (7-1)

where the integer n(α̌, w−1
0 e−λ−µj ) is 〈−λ−µj , α̌〉 in the case w−1

0 α̌ ∈ 8̌+ and
1−〈λ+µj , α̌〉 if w−1

0 α̌ ∈ 8̌−. In the case w−1
0 α̌ ∈ 8̌+, inequality (7-1) obviously

holds. Suppose now that w−1
0 α̌ ∈ 8̌− and that 〈µj , α̌〉 = −1. Then α̌ ≥ α̌ j , so

again, 2≤ 〈λ, α̌〉 and n(α̌, w−1
0 e−λ−µj )≤ 0. �

Choose d ∈ D an element with maximal length such that m E(d) 6= 0.

Theorem 7.3. The element m E(d) is an eigenvector for the action of the affine
Hecke algebra.

Proof. With Lemmas 2.6 and 4.4 we compute E(d)= τ ∗d−1 for any d ∈D. First note
that the braid relations in H ensure that m E(d) is an eigenvector for the elements of
the form τt with t ∈T. Let s ∈ Saff. We have to show that m E(d)τ ∗s is proportional
to m E(d).



Parabolic induction and Hecke modules in characteristic p for p-adic GLn 735

• If `(ds) = `(d)− 1, then τ ∗d−1 = τ
∗

(sd)−1τ
∗
s . In H⊗Z k, where (τ ∗s )

2
= τ ∗s νs

(Remark 3.1), we have τ ∗d−1τ
∗
s = τ

∗

d−1νs , so m E(d)τ ∗s = m E(d)νs , which is
proportional to m E(d) by our first remark.

• If `(ds) = `(d)+ 1, then τ ∗
(ds)−1 = τ

∗

d−1τ
∗
s . If ds ∈ D, then 0 = m E(ds) =

mτ ∗
(ds)−1 = m E(d)τ ∗s by the maximal property of `(d). If ds 6∈ D, then

Proposition 2.7 says that there exists w0 ∈ W0 such that ds = w0d with
`(w0)+ `(d)= `(ds). So

E(d)τ ∗s = τ
∗

w−1
0

E(d).

Since m is a character for the finite Hecke algebra, mτ ∗
w−1

0
is proportional to

m, so m E(d)τ ∗s is proportional to m E(d). �

The statement of the theorem is exactly the claim of [Vignéras 2005, Conjec-
ture 1], where it is proven that it implies the numerical correspondence described
by Theorem 1.1 in our introduction.

8. Generic spherical Hecke algebra and Iwahori–Hecke algebra

8A. Denote by ∗ the convolution operator in the generic pro-p-Hecke algebra H

and by eI ∈ H the characteristic function of the Iwahori subgroup. The generic
Iwahori–Hecke algebra H coincides with the algebra eI ∗H∗eI with unit eI , so all
the results of Sections 3 and 4 have (well-known) analogs in the Iwahori case. The
generic Iwahori–Hecke algebra H has Z[q]-basis (Tw)w∈W , where Tw= eI ∗τw∗eI

corresponds to the double coset Iw I , satisfying the following braid and quadratic
relations.

• TwTw′ = Tww′ for any w, w′ ∈W such that `(ww′)= `(w)+ `(w′),

• T2
s = q + (q − 1)Ts for s ∈ Saff.

Denote by 2 the classic Bernstein embedding

2 : Z[q±1/2
][3] →H⊗Z[q] Z[q±1/2

]

naturally arising from the Bernstein map θ of Section 4A and satisfying2(λ)= Teλ

for any antidominant weight λ ∈3. For w ∈W , define E(w) := eI ∗ E(w)∗ eI . It
is explicitly given by the formula

E(w)= q(`(w)−`(w0)−`(eλ1 )+`(eλ2 ))/22(λ)Tw0

for λ ∈ 3 and w0 ∈ W0 such that w = eλw0 and λ1, λ2 ∈ 3 are antidominant
weights satisfying λ= λ1−λ2. Theorem 4.5, translated to the Iwahori case, gives
the following results (see also [Vignéras 2006, Chapitre 3]). The image A of E :
Z[q][3] → H coincides with the intersection of H with the image of 2. It has
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Z[q]-basis (E(λ))λ∈3. As a Z[q]-algebra, it is generated by the elements

(E(λI ))I({1,...,n}, E(λ{1,...,n})±1

with the relations
E(λI )E(λJ )= qbcE(λI∪J )E(λI∩J ) (8-1)

for any I, J ⊂ {1, . . . , n} with |I ∩ J | = a, |I | = a+ b, |J | = a+ c. The center of
H is the space of W0-invariants in A. It is equal to the Z[q]-algebra of polynomials
in the variables

Z1, . . . , Zn−1, Z±1
n ,

where, for i ∈ {1, . . . , n}, we denote by Zi the central element

Zi =
∑

w0∈W0/W0(µi )

E(w0µi ).

8B. Integral Satake isomorphism. We closely follow the work of Schneider and
Teitelbaum [2006], who introduce a renormalized version of the classic Satake
map in order to get a p-adic Satake isomorphism, and check that their description
provides us in addition with an integral Satake isomorphism.

8B1. In Section 4B, we defined a twisted action of W0 on the weights. Denote by
Z[q±1/2

][3]W0,γ the space of invariants of Z[q±1/2
][3] under this action. It has

Z[q±1/2
]-basis {σλ}λ with

σλ =
∑

w0∈W0/W0(λ)

w0 � λ=
∑

w0∈W0/W0(λ)

γ(w0, λ)
w0λ,

where λ runs over the set 3anti of antidominant weights. Note that σλ is well-
defined for any weight λ thanks to property (c) (of Section 4B) of the cocycle γ .

We call the generic spherical Hecke algebra and denote by HZ[q](G, K0) the
Z[q]-algebra Z[q][K0\G/K0] of the functions with finite support on the double
cosets of G modulo K0, with the usual convolution product. The Z[q±1/2

]-algebra
HZ[q](G, K0)⊗Z[q] Z[q±1/2

] will be denoted by HZ[q±1/2](G, K0).
A system of representatives for the double cosets K0\G/K0 is given by the set

3anti of antidominant weights. For λ∈3, denote by ψλ the characteristic function
of K0 eλK0. The results of [Schneider and Teitelbaum 2006, p. 23] with ξ = 1 give
the next theorem, the proof of which involves the subsequent lemma.

Theorem 8.1. There is an injective morphism of Z[q±1/2
]-algebras

S :HZ[q±1/2](G, K0)→ Z[q±1/2
][3],

ψλ, λ ∈3anti 7→
∑
η∈3anti

c(η, λ)ση, (8-2)

where c(η, λ)= [(UeηK0∩K0eλK0)/K0]. Its image is equal to Z[q±1/2
][3]W0,γ .
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Lemma 8.2. If η, λ ∈3 are antidominant weights, then

(1) c(λ, λ)= 1, and

(2) c(η, λ)= 0 unless λ− η is an antidominant weight.

Note that, the coefficient c(η, λ) being integral, the image of HZ[q](G, K0) by
the map S lies in Z[q][ σλ, λ ∈ 3anti]. From this lemma, one also deduces the
following result.

Lemma 8.3. The image of HZ[q](G, K0) by the map S is Z[q][ σλ, λ ∈3anti].

Proof. One has to check that any σλ with λ∈3anti lies in the image of HZ[q](G, K0)

by the map S. Recall that the element $ n
= eµn is central in G, so if the weight λ

has the form kµn with k ∈Z, then σλ is the image by S of ψkµn , which is invertible
in HZ[q](G, K0). So it remains to prove the property for nontrivial weights λ that
can be written λ=

∑n−1
i=1 kiµi , with ki ∈N, and we do it by induction on

∑n−1
i=1 ki .

The only antidominant weights η such that λ−η is antidominant are the
∑n−1

i=1 miµi

with 0≤mi ≤ ki . By induction, if such an η satisfies η 6= λ, then ση is in the image
of HZ[q](G, K0) by S. Lemma 8.2(1) then ensures that it is also true for σλ. �

We have checked that the map in Theorem 8.1 actually defines an integral ver-
sion of a Satake isomorphism: the restriction of S to the generic spherical algebra
HZ[q](G, K0) defines an isomorphism

S :HZ[q](G, K0)
∼
→ Z[q][σλ, λ ∈3anti]. (8-3)

An important consequence of Lemma 4.2 and property (a) of the cocycle γ is
the fact that for any w0 ∈ W0, the coefficient γ(w0, λ) belongs to Z[q] if λ is
antidominant. So σλ actually lies in Z[q][3]. The supports of the elements σλ
being disjoint for λ ∈3anti and each coefficient γ(1, λ) being 1, one obtains

Z[q±1/2
][3]W0,γ ∩Z[q][3] = Z[q][ σλ, λ ∈3anti]. (8-4)

8C. Compatibility of Bernstein and Satake transforms. Note that for any anti-
dominant weight λ, the element

2(σλ)=
∑

w0∈W0/W0(λ)

E(w0λ) (8-5)

belongs to the center of H. The description of the center of H in Section 8A implies
the following.

Proposition 8.4. Composing 2 with the isomorphism (8-3) gives an isomorphism
between HZ[q](G, K0) and the center of H.
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For 1 ≤ i ≤ n, denote by Ti the element ψµi . The generic spherical algebra
HZ[q](G, K0) is an algebra of polynomials in the variables T1, . . . , Tn−1, T±1

n .
Consider the G-equivariant map

Z[q][I\G] → Z[q][K0\G],

f 7→ eK0 ∗ f,
(8-6)

where eK0 denotes the characteristic function of K0 and the convolution product is
given by

eK0 ∗ f (x)=
∑

t∈G/I

eK0(t) f (t−1x)=
∑

t∈I\K0

f (t x) for x ∈ G.

Proposition 8.5. Composing the maps

HZ[q](G, K0)
2◦S
−→ A

eK0∗ .
−→ Z[q][K0\G]

gives the identity on HZ[q](G, K0).

Proof. See [Schneider and Stuhler 1991, p. 32]. �

Note that the compatibility refers to the classic Bernstein map and the integral
Satake transform.

8D. Denote by R the mod p reduction of the map (8-6), that is, the G-equivariant
map

indG
I 1k→ indG

K0
1k,

f 7→ eK0 ∗ f,
(8-7)

where indG
I 1k and indG

K0
1k denote respectively the compact induction of the trivial

character with values in k of the Iwahori subgroup I and of the maximal compact
subgroup K0.

Proposition 8.6. Let µ ∈ 3 be a minuscule weight. The image by R of E(µ) ∈
A⊗Z[q] k is equal to ψµ ∈ HZ[q](G, K0)⊗Z[q] k if µ is a dominant weight, and to
zero otherwise.

The proof will be a consequence of the following lemmas.

Lemma 8.7. For µ ∈3 dominant and minuscule,

K0eµK0 =
∐

d∈D, d�eµ
K0d I,

where � denotes the extended Bruhat order on W .

Proof. We have to prove that for µ ∈ 3 dominant and minuscule, D ∩ K0eµK0

= {d ∈ D, d � eµ}. For any such weight µ, the corresponding translation can be
written eµ=$ kw0 with k ∈ {0, . . . , n} and w0 ∈W0. By definition of the extended
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Bruhat order, an element d ∈W satisfies d � eµ if and only if it has the form d =
$ kw withw∈W0 such thatw�w0. So {d ∈D, d� eµ}⊂D∩K0eµK0. Let d ∈D.
Lemma 2.6 says that d can be written d = eλw with w ∈W0 and λ∈3 a dominant
weight such that `(eλ)= `(d)+ `(w−1). If d ∈ K0eµK0, then K0eλK0 = K0eµK0

and λ = µ. Since $ has length zero, one then has `(w0w)+ `(w
−1) = `(w0), so

w0w � w0 and d =$ kw0w � eµ. �

Lemma 8.8. For w ∈W ,

R(Tw)= |I\(K0 ∩ Iw Iw−1)| 1K0w I =

{
1K0w I if w ∈ D,

0 otherwise.
Proof. By definition, the map (8-6) sends the characteristic function Tw of Iw I
onto |I\(K0∩Iw Iw−1)| 1K0w I . We have to show that the index |I\(K0∩Iw Iw−1)|

is equal to 1 if w ∈D and is equal to a nontrivial power of q otherwise. If w ∈D,
then by length property, one easily checks that K0 ∩ Iw Iw−1

= I . Suppose now
that w is not an element of D, that is, that it is not the minimal length element in
W0w: there exists s ∈ S0 such that Iw I = I s I sw I . Hence Iw Iw−1

∩K0 contains
I s I s, which has q right cosets modulo I . �

Lemma 8.9. For any dominant weight λ ∈3, the following holds in H⊗Z[q] k:

E(λ)=
∑

w∈W, w�eλ
Tw.

Proof. Let us show that for any x ∈W , one has

T∗x−1 =

∑
w∈W, w�x

Tw ∈H⊗Z[q] k.

This proves the lemma because E(λ)= T∗e−λ for a dominant weight λ. It is enough
to show the equality for x ∈Waff, and we do it by induction on `(x). If x = s ∈ Saff,
then T∗x−1 = T∗s = Ts + 1− q = Ts + 1 in H⊗Z[q] k. Now suppose x ∈ Waff and
s ∈ S is such that `(sx)= `(x)+ 1. In H⊗Z[q] k, one has by induction

T∗(sx)−1 = T∗s T∗x−1 = (Ts + 1)
∑
y�x

Ty =
∑
y�x

Ts Ty +
∑
y�x

Ty .

Let y� x . If `(sy)=`(y)+1, then Ts Ty=Tsy and sy� sx . Otherwise Ts Ty=−Ty ,
so T∗

(sx)−1 =
∑

sy′�y′�sx
Ty′ +

∑
y�sx, y�sy

Ty =
∑

y�sx
Ty . �

Lemma 8.10. If µ is minuscule and not dominant, then R(E(µ))= 0.

Proof. Let λ be the unique antidominant weight in the orbit of µ and d ∈ W0

with minimal length in W0(λ)d such that µ = d−1
λ. Lemma 4.4 says that E(µ) =

Teµd−1 T∗d−1 . For any w0 ∈ W0, we have `(eµd−1)+ `(w0)= `(eµd−1w0), which
can be seen by applying 2B2 and recalling that for any α̌ ∈ 8̌+, if 〈λ, α̌〉 = 0



740 Rachel Ollivier

then d−1α̌ ∈ 8̌+. This implies that the elements of the Iwahori–Matsumoto basis
appearing in the decomposition of E(µ) have the form τeµd−1w0 , with w0 ∈W0. In
particular, if µ is not dominant, then eµd−1w0 is not an element of D, by Lemma
2.6, and E(µ) is sent by R on zero, by Lemma 8.8. �

Proof of Proposition 8.6. Let µ ∈3 be a minuscule weight. If it is not dominant,
Lemma 8.10 says that its image by R is zero. If it is dominant, Lemmas 8.8 and
8.9 together say that R(E(µ)) is the sum of the characteristic functions of K0w I ,
where w ∈ D, w � eµ, which, by Lemma 8.7, is the characteristic function of
K0eµK0. �

8E. On Barthel–Livné’s unramified representations for GLn. For i ∈{1, . . . , n},
choose αi ∈ k with αn 6= 0. Set α0 = 1. Define χ0 to be the k-character of A with
dominant support given by E(µ{n−i+1,...,n}) 7→ αi for i ∈ {1, . . . , n}.

Define the associated character of H(G, K0)Z[q]⊗k by Ti 7→αi for i ∈{1, . . . , n}
and denote by

indG
K0

1k∑
i (Ti −αi )

the quotient of the universal representation indG
K0

1k by
∑

i (Ti −αi ) indG
K0

1k .
By the results of 8D, the G-equivariant surjective morphism

indG
I 1k→

indG
K0

1k∑
i (Ti −αi )

,

f 7→ R( f ) mod
∑

i

(Ti −αi )
(8-8)

factors into a surjective G-equivariant morphism

χ0⊗A indG
I 1k→

indG
K0

1k∑
i (Ti −αi )

. (8-9)

Example 8.11. Suppose that one of the αi , i ∈ {1, . . . , n − 1} is nonzero. The
unique character of A with antidominant support in the W0-orbit of χ0 satisfies
Hypothesis (?) of Section 5D if and only if αi−1αiαi+1 6= 0 implies αi

2
6=αi−1αi+1

for any i ∈ {1, . . . , n− 1}.
Under this hypothesis and if none of the elements αi is zero, then, by the results

of [Ollivier 2006a], the representation χ0⊗A indG
I 1k is irreducible and isomorphic

to the principal series induced by the unramified character

T → k∗, µi 7→ α−1
i ,

and (8-9) is an isomorphism.
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