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Relative phantom maps
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The de Bruijn–Erdős theorem states that the chromatic number of an infinite graph
equals the maximum of the chromatic numbers of its finite subgraphs. Such deter-
mination by finite subobjects appears in the definition of a phantom map, which is
classical in algebraic topology. The topological method in combinatorics connects
these two, which leads us to define the relative version of a phantom map: a map
f W X ! Y is called a relative phantom map to a map 'W B! Y if the restriction of
f to any finite subcomplex of X lifts to B through ' , up to homotopy. There are
two kinds of maps which are obviously relative phantom maps: (1) the composite of
a map X ! B with ' ; (2) a usual phantom map X ! Y . A relative phantom map
of type (1) is called trivial, and a relative phantom map out of a suspension which is
a sum of (1) and (2) is called relatively trivial. We study the (relative) triviality of
relative phantom maps and, in particular, we give rational homology conditions for
the (relative) triviality.

55P99

1 Introduction

1.1 De Bruijn–Erdős theorem

We start with the classical de Bruijn–Erdős theorem on graph colorings. A graph G is
called n–colorable if its vertices are colored by n colors in such a way that adjacent
vertices have different colors. Then the chromatic number �.G/ is defined to be the
minimum n such that G is n–colorable. De Bruijn and Erdős [3] proved the following:

Theorem 1.1 The chromatic number of an infinite graph equals the supremum of the
chromatic numbers of its finite subgraphs.

We shall connect this theorem to algebraic topology. Recall that the index of a free Z=2–
space X, denoted by ind.X /, is the minimum n such that there is a Z=2–equivariant
map X ! Sn , where Z=2 acts on Sn by the antipodal map. To a graph G, possibly
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infinite, one associates a free Z=2–complex B.G/ which is called the box complex
of G. Here, we do not need to know what the box complex is; all we need to know
is that it is a free Z=2–complex having the following property: as in Matoušek and
Ziegler [7], the chromatic number of a graph G and the index of the box complex B.G/
are related by the inequality

�.G/� ind.B.G//C 2:

Then one may ask whether ind.B.G// is determined by the indices of the box complexes
of finite subgraphs of G, like the chromatic number as in Theorem 1.1. Let us polish
this question to pose a general problem in algebraic topology. First, for any free Z=2–
space X, there is a Z=2–equivariant map X ! Sn if and only if the classifying map
X=.Z=2/!RP1 factors through RPn , up to homotopy. Next, the box complex of a
finite graph is a finite complex, and any finite subcomplex of B.G/ is included in B.H /

for some finite subgraph H of G, where B.H / is a subcomplex of B.G/. Then the
above question is generalized and formalized as the following problem, which we call
the topological de Bruijn–Erdős problem:

Problem 1.2 Suppose that a map f W X ! RP1 from a CW–complex X factors
through RPn , up to homotopy, whenever it is restricted to any finite subcomplex of X.
Then does f itself factor through RPn ?

1.2 Relative phantom maps

Recall that a map f W X ! Y from a CW–complex X is called a phantom map if the
restriction of f to any finite subcomplex of X is null-homotopic. Phantom maps are
classical in algebraic topology and their theory has been developed to a quite high
level, as one can see in McGibbon [9]. The determination by finite subobjects of the
topological de Bruijn–Erdős problem and phantom maps are quite similar and, actually,
the topological de Bruijn–Erdős problem can be rephrased by the following relative
version of phantom maps:

Definition 1.3 A map f W X!Y from a CW–complex X is called a relative phantom
map from X to 'W B! Y if the restriction of f to any finite subcomplex of X lifts
to B through ' , up to homotopy.

When B is a point, a relative phantom map to 'W B! Y is just a phantom map, so the
name “relative” phantom map makes sense. We will call a phantom map an absolute
phantom map to distinguish it from a relative phantom map.
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It is obvious that any map X ! B becomes a relative phantom map from X to
'W B ! Y after composition with ' . We call a map X ! Y homotopic to such a
composite a trivial relative phantom map from X to 'W B! Y , which is consistent
with the triviality of an absolute phantom map. Then the topological de Bruijn–Erdős
problem can be rephrased as follows: is there a nontrivial relative phantom map to
the inclusion RPn! RP1? Thus, we aim in this paper to study the “triviality” of
relative phantom maps.

1.3 Triviality

Let Ph.X; '/ denote the set of homotopy classes of relative phantom maps from X

to 'W B! Y . We say that Ph.X; '/ is trivial if any relative phantom map from X to
'W B! Y is trivial. Note that the triviality of Ph.X; '/ does not imply Ph.X; '/D�.
For example, if ' D idB , then Ph.X; '/ is trivial but Ph.X; '/D ŒX;B�.

We will first consider a condition equivalent to the (non)triviality of Ph.X; '/ when
' extends to a homotopy fibration B

'
�! Y ! Z . By using this, we will show the

following example, which guarantees that there is certainly a nontrivial relative phantom
map.

Example 4.9 Let uW BS3!K.Z; 4/ be a generator of H 4.BS3IZ/ŠZ, and extend
it to a homotopy fibration sequence

B
'
�! Y ! BS3 u

�!K.Z; 4/:

Then Ph.†CP1; '/ is not trivial.

It is well known that any absolute phantom map into a torsion space — that is, a space
with �n finite for any n — is trivial. Next we will generalize this fact to relative
phantom maps. As well as absolute phantom maps [9], we consider the class F of
connected CW–complexes having finitely generated �n for n� 2.

Proposition 4.6 Suppose that B;Y 2F and 'W B!Y is an isomorphism in �n˝Q

for n� 2. Then Ph.†X; '/ is trivial.

1.4 Relative triviality

Any absolute phantom map is obviously a relative phantom map. So relative phantom
maps which are trivial relative phantom maps or absolute phantom maps need no
special handling. When the source space is a suspension, any sum of such maps can
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be understood using the existing theory. So we are led to the following definition: a
relative phantom map from a suspension †X to 'W B! Y is called relatively trivial
if it is a finite sum of trivial relative phantom maps and absolute phantom maps, and
Ph.†X; '/ is said to be relatively trivial if every relative phantom map from †X to '
is relatively trivial.

Example 1.4 Let 'W B! Y be as in Example 4.9 above. Since Y is a torsion space,
every phantom map into Y is trivial. Then Example 4.9 shows that there is certainly a
relatively nontrivial relative phantom map.

The main theorem of this paper is a further generalization of Proposition 4.6 to the
relative triviality of relative phantom maps. For a map 'W B! Y , we put

q.'/D fn� 2 j '�˝W �n.B/˝Q! �n.Y /˝Q is not injectiveg:

Now we state our main theorem.

Theorem 5.8 Suppose that B;Y 2 F and Hn�1.X IQ/ D 0 for n 2 q.'/. Then
Ph.†X; '/ is relatively trivial.

1.5 Back to triviality

When the source space is not a suspension, we cannot consider the relative nontriviality
of relative phantom maps. However, when X is not a suspension and any absolute
phantom map X ! Y is trivial, the (non)triviality of relative phantom maps out of X

is still our object to study. Let snW B! Bn be the nth Postnikov section of a space B.
Then it is well known that any absolute phantom map into Bn is trivial, so we will
study the following problem:

Problem 1.5 Find whether or not there is a nontrivial relative phantom map to the
Postnikov section snW B! Bn .

Of course, the methods developed for relative phantom maps out of a suspension
do not apply to Problem 1.5 if the source space is not a suspension. However, by a
sophisticated consideration on lim

 ��

1 , one can prove the following. Put

q.B/D fn j �n.B/˝Q¤ 0g:

Theorem 1.6 Suppose that B 2 F is nilpotent or has torsion annihilators (see Defini-
tion 6.3). If Hk.X IQ/D 0 for k 2 q.B/, then Ph.X; sn/ is trivial.
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We finally return to the topological de Bruijn–Erdős problem. Since the inclusion
RPn!RP1 is the first Postnikov section of RPn , Problem 1.5 is actually a general-
ization of the topological de Bruijn–Erdős problem. Since RPn is nilpotent for n odd,
one gets an answer to the topological de Bruijn–Erdős problem by Theorem 1.6.

Corollary 6.6 If n is odd and Hn.X IQ/D 0, then Ph.X; in/ is trivial.

We will construct a space X.n/ such that Hn.X.n/IQ/¤ 0 and there is a nontrivial
phantom map from X.n/ to in . Then Corollary 6.6 will turn out to be the optimal
answer to the topological de Bruijn–Erdős problem in terms of the rational homology
of the source space.

Remark Csorba [5] proved that for any free Z=2–complex X, possibly infinite, there
is a graph G such that the box complex B.G/ is Z=2–homotopy equivalent to X. Then
Corollary 6.6 gives a condition for the positive answer to the original question on the
index of box complexes.

Acknowledgement The authors were supported respectively by JSPS KAKENHI (No.
26400094), JSPS KAKENHI (No. 25400087) and JSPS KAKENHI (No. 28-6304). The
authors are grateful to Jérôme Scherer and the anonymous referee for useful comments.

2 Relative phantom maps and inverse limits

2.1 lim
 ��

and lim
 ��

1 of groups

In this subsection, we recall the definition of lim
 ��

and lim
 ��

1 of the inverse system of
groups, not necessarily abelian. Let

G0
f0
 �G1

f1
 � � � �

fn�1
 ��Gn

fn
 � � � �

be an inverse system of groups, and define the left action of
Q1

nD0 Gn on itself by

.g0; : : : ;gn; : : : / � .x0; : : : ;xn; : : : /D .g0x0f0.g1/
�1; : : : ;gnxnfn.gnC1/

�1; : : : /:

Then lim
 ��

Gn and lim
 ��

1 Gn are defined by the isotropy subgroup of
Q1

nD0 Gn at
.1; 1; : : : / 2

Q1
nD0 Gn and the orbit space of this action, respectively. By definition,

lim
 ��

Gn is a group but lim
 ��

1 Gn is just a pointed set in general whose basepoint is the
orbit containing .1; 1; : : : /. However, if every Gn is abelian, then lim

 ��

1 Gn has a natural
abelian group structure.
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Next we recall the 6–term exact sequence (Lemma 2.1) involving lim
 ��

and lim
 ��

1 which
will be useful. For a basepoint-preserving map hW S ! T between pointed sets, we
write Im h and Ker h to mean h.S/ and h�1.�/, respectively. Recall that a sequence
of pointed sets A

f
�! B

g
�! C is exact if Imf D Ker g . If A, B and C are groups

and f and g are group homomorphisms, the exactness coincides with that of groups.

Lemma 2.1 Let 1! fGng ! fHng ! fKng ! 1 be an exact sequence of inverse
systems of groups. Then there is a natural exact sequence of pointed sets

1! lim
 ��

Gn! lim
 ��

Hn! lim
 ��

Kn! lim
 ��

1 Gn! lim
 ��

1 Hn! lim
 ��

1Kn!�:

2.2 Absolute phantom maps

Recall that a map f W X ! Y from a CW–complex is a phantom map if the restriction
of f to any finite subcomplex of X is null-homotopic. Then f W X ! Y is a phantom
map if and only if the composite f ı g is null-homotopic for any map gW K ! X

from a finite complex K . This implies that the definition of a phantom map does not
depend on a particular cell structure of the source space. Hereafter, we will assume
that the source space of a phantom map is a CW–complex of finite type. Then, in
particular, f W X ! Y is a phantom map if and only if the restriction of f to any
finite-dimensional skeleton of X is null-homotopic. As mentioned in Section 1, we will
call a phantom map an absolute phantom map to distinguish it from relative phantom
maps. Let Ph.X;Y / denote the set of homotopy classes of absolute phantom maps
from X to Y .

Let X n denote the n–skeleton of a CW–complex X. By the Milnor exact sequence
(see [2])

(1) �! lim
 ��

1Œ†X n;Y �! ŒX;Y �
�Y
�! lim

 ��
ŒX n;Y �!�;

we have the following description of Ph.X;Y / by lim
 ��

1 :

Proposition 2.2 There is an isomorphism of pointed sets

Ph.X;Y /Š lim
 ��

1Œ†X n;Y �;

which is a group isomorphism whenever X is a suspension.

We can dualize this proposition by considering the Postnikov tower of the target space,
where the proof is omitted. Let Yn denote the nth Postnikov section of Y , and let
Y1 Y2 � � �  Yn � � � be the Postnikov tower of Y .
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Proposition 2.3 There is an isomorphism of pointed sets

Ph.X;Y /Š lim
 ��

1ŒX; �Yn�;

which is a group isomorphism whenever X is a suspension.

We record consequences of the two propositions above on the triviality of Ph.X;Y / that
we are going to use. As in Section 1, let F denote the class of connected CW–complexes
having finitely generated �n for n� 2.

Corollary 2.4 (1) If Y is a finite Postnikov section, then Ph.X;Y /D �.

(2) If Y 2 F satisfies that ��.Y /˝QD 0 for � � 2, then Ph.X;Y /D �.

Proof (1) is immediate from Proposition 2.3. For (2), for any finite connected com-
plex A, the homotopy set Œ†A;Y � is a finite set by the assumption on Y , and the
inverse system of finite groups satisfies the Mittag-Leffler condition (see [9]). Then
Ph.X;Y /Š lim

 ��

1Œ†X n;Y �D �.

3 Relative phantom maps

In Section 1, we have defined that a map X ! Y from a CW–complex X is a relative
phantom to 'W B! Y if the restriction of f to any finite subcomplex of X lifts to B

through ' , up to homotopy. As well as absolute phantom maps, one can see that the
definition of a relative phantom map does not depend on a particular cell structure of
the source space. Just as for absolute phantom maps, we will always assume that the
source space of a relative phantom map is a connected CW–complex of finite type.
In particular, f W X ! Y is a relative phantom map to 'W B ! Y if and only if its
restriction to any finite-dimensional skeleton lifts to B through ' , up to homotopy.

Analogous to the absolute case in Proposition 2.3, let us dualize the definition of relative
phantom maps. Let Y1 Y2 � � �  Yn � � � be the Postnikov tower of Y as in
the previous section, and let snW Y ! Yn be the nth Postnikov section of Y . By the
naturality of Postnikov towers, a map 'W B! Y induces a map 'nW Bn! Yn between
the Postnikov sections, satisfying 'nıs

B
n ' sY

n ı' , where sB
n and sY

n are the Postnikov
sections of B and Y , respectively.

Proposition 3.1 The following conditions on a map f W X ! Y are equivalent:
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(1) f is a relative phantom map to ' .

(2) For any n � 0, sn ı f W X ! Yn has a lift with respect to 'nW Bn! Yn , up to
homotopy.

Proof Suppose that f is a relative phantom map to ' . We want to show that
sn ıf W X ! Yn has a lift with respect to 'n , up to homotopy, for any n. Since f is a
relative phantom map to ' , the map f jX nC1 W X nC1! Y has a lift zf W X nC1! B

through ' , up to homotopy. Since the inclusion X nC1 ! X induces an isomor-
phism ŒX;Bn�

Š
�! ŒX nC1;Bn� of pointed sets, there is a map xf W X ! Bn satisfying

xf jX nC1 ' sn ı
zf . Now we have

'n ı
xf jX nC1 ' 'n ı sn ı

zf ' sn ı' ı zf ' sn ıf jX nC1 :

Since the inclusion X nC1! X induces an isomorphism ŒX;Yn�
Š
�! ŒX nC1;Yn� as

pointed sets, we obtain that 'n ı
xf ' sn ıf . Thus, xf is a desired lift.

Suppose next that, for any n, snC1ıf W X!YnC1 has a lift gW X!BnC1 with respect
to 'nC1 , up to homotopy. We want to show that f jX n W X n! Y has a lift with respect
to ' , up to homotopy. Since there is an isomorphism .snC1/�W ŒX

n;B� Š�! ŒX n;BnC1�

of pointed sets, we have a map xgW X n! B satisfying snC1 ı xg ' gjX n . Then we get

snC1 ı' ı xg ' 'nC1 ı snC1 ı xg ' 'nC1 ıgjX n ' snC1 ıf jX n :

Since the map .snC1/�W ŒX
n;Y �! ŒX n;YnC1� is also isomorphic, we get 'ıxg'f jX n ,

as required.

Next we give a description of Ph.X; '/ by using Ph.X;Y / which will be useful for
dealing with Ph.X; '/ algebraically.

Proposition 3.2 There is an exact sequence of pointed sets

1! Ph.X;Y /! Ph.X; '/ �Y
�! lim

 ��
'�ŒX

n;B�! 1

which is an exact sequence of groups whenever X is a suspension.

Proof Note that an element f of ŒX;Y � is a relative phantom map to ' if and only if
�Y .f / 2 lim

 ��
ŒX n;Y � is contained in lim

 ��
'�ŒX

n;B�. This means that the diagram

Ph.X; '/

��

�Y
// lim
 ��

'�ŒX
n;B�

��

ŒX;Y �
�Y

// // lim
 ��
ŒX n;Y �
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is a pullback. By the Milnor exact sequence (1), the lower �Y is surjective, implying
that the upper �Y is surjective too. By (1), we also have that the kernel of the lower �Y

is lim
 ��

1Œ†X n;Y �. Thus, the kernel of the upper �Y is isomorphic to lim
 ��

1Œ†X n;Y �,
which is isomorphic to Ph.X;Y / by Proposition 2.2, completing the proof.

4 Triviality of relative phantom maps out of a suspension

A relative phantom map f W X!Y to 'W B!Y is called trivial if the entire map f has
a lift with respect to ' , up to homotopy, and Ph.X; '/ is called trivial if every element
of Ph.X; '/ is trivial. We consider the triviality of relative phantom maps to 'W B!Y

when ' is a fiber inclusion, that is, there is a homotopy fibration B
'
�! Y ! W .

This case descends to relative phantom maps out of a suspension as follows. Given
a map 'W B! Y , there is a homotopy fibration �B

�'
��!�Y ! F, where F is the

homotopy fiber of ' . Then �' is a fiber inclusion and by the adjointness, we have

(2) Ph.†X; '/Š Ph.X; �'/:

The following proposition enables us to detect the (non)triviality of relative phantom
maps by that of related absolute phantom maps.

Proposition 4.1 Let B
'
�!Y

p
�!Z be a homotopy fibration. Then a map f W X!Y

is a relative phantom map to ' if and only if the composite pıf W X!Z is an absolute
phantom map. Moreover, f is a trivial relative phantom map if and only if p ı f is
null-homotopic.

Proof For every n, f jX n has a lift with respect to ' , up to homotopy, if and only if
p ıf jX n is null-homotopic. This implies that f is a relative phantom map to ' if and
only if p ıf is an absolute phantom map. Similarly, p ıf is null-homotopic if and
only if f has a lift with respect to ' , up to homotopy. Thus, the proof is done.

We show two applications of Proposition 4.1. The first one is as follows. We denote
the adjoint of a map f W †X ! Y by ad.f /W X !�Y .

Corollary 4.2 Let �Y ı
�! F !B

'
�! Y be a homotopy fibration sequence. A map

f W †X ! Y is a relative phantom map to ' if and only if ı ı ad.f / is an absolute
phantom map. Moreover, f is trivial if and only if ı ı ad.f / is null-homotopic.
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Proof Note that f W †X ! Y is a (trivial) relative phantom map to ' if and only
if ad.f /W X ! �Y is a (trivial) relative phantom map to �' . Then, by applying
Proposition 4.1 to the fibration sequence �B

�'
��!�Y ı

�! F, the proof is done.

Corollary 4.3 Suppose that we have a homotopy fibration F ! B
'
�! Y such that

the connecting map ıW �Y ! F is null-homotopic. Then Ph.†X; '/ is trivial.

Proof Since ı is null-homotopic, so is ı ı ad.f / for any f 2 Ph.†X; '/. Then, by
Corollary 4.2, f is trivial, completing the proof.

Example 4.4 Let
Fn.Y /!Gn.Y /

pn
�! Y

be the nth Ganea fibration. Since �Gn.Y /!�Y has a section (see Chapter 1 of [4]),
the connecting map ıW �Y ! Fn.Y / is null-homotopic. Thus, Corollary 4.3 implies
that Ph.†X;pn/ is trivial.

Although we have seen that Ph.†X;pn/ is trivial, we will see in Proposition 6.8 below
that there is a nonsuspension space X.n/ such that Ph.X.n/;pn/ is not trivial for
Y DRP1 with n> 2.

The next lemma is a variant of Corollary 4.2 and will be used to prove Proposition 4.6
below, which is a generalization of Corollary 2.4 to the relative case.

Lemma 4.5 Let F be the homotopy fiber of a map 'W B! Y . Then Ph.†X; '/ is
trivial whenever Ph.X;F /D �.

Proof Let ıW �Y !F be the connecting map of a homotopy fibration F!B
'
�! Y .

Since Ph.X;F /D�, ııad.f / is a trivial absolute phantom map for any f 2Ph.†X; '/.
Then f is trivial by Corollary 4.2, completing the proof.

As in Section 1, we will write F to denote the class of connected CW–complexes each
of which has finitely generated �n for n� 2.

Proposition 4.6 Let B;Y 2F. Suppose that 'W B! Y is an isomorphism in �n˝Q

for n� 2. Then Ph.†X; '/ is trivial.

Proof By assumption, the homotopy fiber F of ' satisfies the condition of Corollary
2.4, implying Ph.X;F /D �. Then we get the desired result by Lemma 4.5.
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Next we show the second application of Proposition 4.1.

Proposition 4.7 Suppose that there is a homotopy fibration sequence

B
'
�! Y ˛

�! V
ˇ
�!W

such that either ˇ is null-homotopic or Ph.X;W /D �. Then Ph.X; '/ is trivial if and
only if Ph.X;V /D �.

Proof It clearly follows from Proposition 4.1 that Ph.X;V /D� implies that Ph.X; '/
is trivial. On the other hand, let f W X ! V be an absolute phantom map. Then
ˇ ı f W X ! W is an absolute phantom map, so by the assumption, ˇ ı f is null-
homotopic. Thus, f has a lift zf with respect to ˛ , up to homotopy. By Proposition 4.1,
zf is a relative phantom map from X to ' which is trivial if and only if f W X ! V is

null-homotopic. Therefore the proof is completed.

Corollary 4.8 Let F
j
�! B

'
�! Y be a homotopy fibration such that either j is

null-homotopic or Ph.X;B/D �. Then Ph.†X; '/ is trivial if and only if Ph.X;F /
is trivial.

Proof Apply Proposition 4.7 to the homotopy fibration sequence �B
�'
��!�Y s

�!

F
j
�! B together with the adjoint congruence (2).

Example 4.9 We give an example of a space X and a map ' such that Ph.†X; '/

is nontrivial although Ph.†X;Y / is trivial. Let uW BS3!K.Z; 4/ be a generator of
H 4.BS3IZ/Š Z, and extend it to a homotopy fibration sequence

S3 �u
�!K.Z; 3/D B

'
�! Y ! BS3 u

�!K.Z; 4/:

By Corollary 2.4, we have Ph.X;B/D� for any space X. So we can apply Corollary 4.8
to the homotopy fibration sequence S3 �u

�! K.Z; 3/ D B
'
�! Y . By [6], we have

Ph.CP1;S3/¤ �, and thus we obtain that Ph.†CP1; '/ is not trivial. On the other
hand, it follows from Corollary 2.4 that Ph.†CP1;Y / is trivial.

5 Relative triviality of relative phantom maps out of a
suspension

Any absolute phantom map is a relative phantom map and it is not an object that we
would like to study in this paper. So, as in Section 1, a relative phantom map out of
a suspension is called relatively trivial if it is a finite sum of trivial relative phantom
maps and absolute phantom maps, and we will investigate conditions for the existence
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of a relatively nontrivial phantom map. By Example 1.4, there is certainly a relatively
nontrivial phantom map. We say that Ph.†X; '/ is relatively trivial if it consists only
of relatively trivial relative phantom maps. We first observe basic properties of relatively
trivial relative phantom maps. Note that the set Ph.†X; '/ is a group.

Proposition 5.1 (1) Any relatively trivial relative phantom map is homotopic to the
sum f Cg , where f is a trivial phantom map and g is an absolute phantom map.

(2) The set of relatively trivial relative phantom maps from †X to 'W B! Y is a
subgroup of Ph.†X; '/.

Proof The map �Y W Ph.†X; '/ ! lim
 ��

'�Œ†X n;B� in Proposition 3.2 is a group
homomorphism whose kernel is Ph.†X;Y /. In particular, Ph.†X;Y / is a normal
subgroup of Ph.†X; '/, implying (1). We also get that the set of relatively trivial
relative phantom maps from X to ' is the subgroup '�Œ†X;B�C Ph.†X;Y / of
Ph.†X; '/. Thus, the proof is done.

We investigate conditions which guarantee that Ph.†X; '/ is relatively trivial.

Lemma 5.2 Ph.†X; '/ is relatively trivial if and only if the composite

Œ†X;B�
'�
�! Ph.†X; '/

�Y
�! lim

 ��
'�Œ†X n;B�

is surjective, where the map �Y is as Proposition 3.2.

Proof Suppose first that Ph.†X; '/ is relatively trivial. There is a commutative
diagram of groups

(3)

Œ†X;B�

'�

��

�B
// lim
 ��
Œ†X n;B�

'�

��

Ph.†X; '/
�Y
// lim
 ��

'�Œ†X n;B�

where �B and �Y denote the natural projections as in (1) and Proposition 3.2. Then, by
Proposition 3.2, the bottom arrow �Y of (3) is surjective, so for any f 2 lim

 ��
'�Œ†X n;B�,

there is zf 2 Ph.†X; '/ satisfying �Y . zf /D f . By the assumption, zf is relatively
trivial, so there are g 2 Œ†X;B� and h 2 Ph.†X;Y / such that zf D '�.g/C h. Now
we have

f D �Y . zf /D �Y .'�.g/C h/D �Y ı'�.g/C�Y .h/;

where �Y is a group homomorphism. By definition, we have �Y .h/D 0, and then we
have proved that �Y ı'� is surjective.
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Next suppose that �Y ı '� is surjective, and take any f 2 Ph.†X; '/. Then there
is g 2 Œ†X;B� such that �Y ı '�.g/ D �Y .f /, implying f � '�.g/ 2 Ker�Y .
Since Ker�Y D Ph.†X;Y / by Proposition 3.2, there is h 2 Ph.†X;Y / satisfying
f �'�.g/D h or, equivalently, f D hC'�.g/. Thus, Ph.†X; '/ is relatively trivial.
Therefore the proof is completed.

Let Kn be the kernel of the group homomorphism '�W Œ†X n;B�! Œ†X n;Y �. Then
we have the exact sequence of inverse systems of groups

1! fKng ! fŒ†X n;B�g ! f'�Œ†X n;B�g ! 1:

Proposition 5.3 Ph.†X; '/ is relatively trivial if and only if the kernel of the map

lim
 ��

1Kn! lim
 ��

1Œ†X n;B�

is trivial.

Proof Consider the commutative diagram (3). Since the top map �B is surjective
by the Milnor exact sequence (1), the map '� ı �BW Œ†X;B�! lim

 ��
'�Œ†X n;B� is

surjective if and only if '�W lim
 ��
Œ†X n;B�! lim

 ��
'�Œ†X n;B� is surjective. Applying

Lemma 2.1 to the short exact sequence

1! fKng ! fŒ†X n;B�g
'�
�! f'�Œ†X n;B�g ! 1

of inverse systems of groups, we get an exact sequence

lim
 ��
Œ†X n;B�

'�
�! lim

 ��
'�Œ†X n;B�! lim

 ��

1Kn! lim
 ��

1Œ†X n;B�

of pointed sets. Thus, the map '�W lim
 ��
Œ†X n;B�! lim

 ��
'�Œ†X n;B� is surjective if

and only if the kernel of the map lim
 ��

1Kn! lim
 ��

1Œ†X n;B� is trivial. This completes
the proof.

The assumption of the following corollary trivially implies that of Proposition 5.3.

Corollary 5.4 Ph.†X; '/ is relatively trivial whenever lim
 ��

1Kn D �.

We then consider practical conditions which guarantee lim
 ��

1Kn D �. We first translate
the condition lim

 ��

1Kn D � to that of absolute phantom maps.

Lemma 5.5 Let F
j
�! B

'
�! Y be a homotopy fibration with the connecting map

ıW �Y ! F. For any space X, lim
 ��

1Kn D � if and only if the map ı�W Ph.X; �Y /!

Ph.X;F / is surjective.
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Proof Put Ln D Kerfj�W Œ†X n;F �! Œ†X n;B�g. By the exactness of the sequence

Œ†X n;F �
j�
�! Œ†X n;B�

'�
�! Œ†X n;Y �;

we have an exact sequence of inverse systems of groups

1! fLng ! fŒ†X n;F �g ! fKng ! 1:

Then, by Lemma 2.1, we get an exact sequence of pointed sets

lim
 ��

1 Ln! lim
 ��

1Œ†X n;F �! lim
 ��

1Kn!�:

Thus, lim
 ��

1Kn D � if and only if the map lim
 ��

1 Ln! lim
 ��

1Œ†X n;F � is surjective.

Next we put Mn D Kerfı�W Œ†X n; �Y �! Œ†X n;F �g. Similarly to the above, from
the exact sequence of groups

Œ†X n; �Y �
ı�
�! Œ†X n;F �

j�
�! Œ†X n;Y �;

we get an exact sequence of inverse systems of groups

1! fMng ! fŒ†X n; �Y �g ! fLng ! 1:

Thus, by Lemma 2.1, we have that lim
 ��

1Œ†X n; �Y �! lim
 ��

1 Ln is surjective. Then
lim
 ��

1KnD� if and only if the composite lim
 ��

1Œ†X n; �Y �! lim
 ��

1 Ln! lim
 ��

1Œ†X n;F �

is surjective. By Proposition 2.2, this composite is identified with ı�W Ph.X; �Y /!

Ph.X;F /. Thus, the proof is completed.

As we have given a rational homotopy condition for the triviality of Ph.†X; '/ in
Proposition 4.6, we expect to find a rational homotopy condition for the relative
triviality of Ph.†X; '/. McGibbon and Roitberg [10] gave a necessary and sufficient
rational homotopy condition which guarantees that every phantom map X ! Y is
null-homotopic, and we are motivated by their result to consider a rational homotopy
condition for the relative triviality of Ph.†X; '/. We first recall the result of Roitberg
and Touhey [12].

Theorem 5.6 [12] For Y 2 F, there is an isomorphism of pointed sets

(4) Ph.X;Y /Š
Y
n�1

H n.X I�nC1.Y /˝ yZ=Z/=ŒX; � yY �

which is natural with respect to X and Y , where yZ is the profinite completion of the
integer ring Z and yY is the profinite completion of a space Y in the sense of Sullivan.
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Remark Although more conditions on Y are assumed in [12], we may replace Y

with its universal cover by Proposition 2.2, so that the conditions reduce to that Y 2 F.

Next we apply Theorem 5.6 to the induced map between absolute phantom maps. For
a map gW V !W , we put

yq.g/D fn� 2 j g�W �n.V /˝Q! �n.W /˝Q is not surjectiveg:

Lemma 5.7 Given a map gW V !W for V;W 2 F, suppose that Hn�1.X IQ/D 0

for n 2 yq.g/. Then g�W Ph.X;V /! Ph.X;W / is surjective.

Proof Since the isomorphism of Theorem 5.6 is natural with respect to Y , the lemma
immediately follows from the fact that yZ=Z is a Q–vector space.

Put
q.'/D fn� 2 j '�W �n.B/˝Q! �n.Y /˝Q is not injectiveg:

Now we give a rational homotopy condition for the relative triviality of Ph.†X; '/.

Theorem 5.8 Let B;Y 2 F. If Hn�1.X IQ/ D 0 for n 2 q.'/, then Ph.†X; '/ is
relatively trivial.

Proof Let F be the homotopy fiber of 'W B!Y and ıW �Y !F be the correspond-
ing connecting map. By the homotopy exact sequence, �n.�Y /˝Q! �n.F /˝Q

is surjective if and only if '�W �n.B/˝Q! �n.Y /˝Q is injective for n� 2. Then
we have q.'/D yq.ı/. Thus, the proof is completed by Corollary 5.4 and Lemmas 5.5
and 5.7.

We give three corollaries of this theorem.

Corollary 5.9 Let B;Y 2 F. If '�W �n.B/˝Q! �n.Y /˝Q is injective for n� 2,
then Ph.†X; '/ is relatively trivial.

For a space A, we put

q.A/D fn� 2 j �n.A/˝Q¤ 0g:

Corollary 5.10 Let B;Y 2 F. If Hn�1.X IQ/D 0 for n 2 q.F /, then Ph.†X; '/ is
relatively trivial, where F is the homotopy fiber of 'W B! Y .

Proof By the homotopy exact sequence of the homotopy fibration F ! Y
'
�!B, we

see that q.'/� q.F /. Thus, the proof is done by Theorem 5.8.
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Corollary 5.11 Let B;Y 2 F and F
j
�!B

'
�! Y be a homotopy fibration such that

j is null-homotopic. Then Ph.†X; '/ is relatively trivial.

We close this section with the following example:

Example 5.12 By definition, if Ph.†X; '/ is trivial, then it is relatively trivial. Here
we give a space X and a map ' such that the converse of this implication does not
hold, that is, Ph.†X; '/ is relatively trivial and is not trivial.

Let S3!S4nC3 pn
�!HPn be the Hopf fibration. Since the fiber inclusion S3!S4nC3

is null-homotopic, Ph.†X;pn/ is relatively trivial by Corollary 5.11. By Corollary 4.8,
we also have that Ph.†X;pn/ is trivial if and only if Ph.X;S3/ D �. Then, since
Ph.CP1;S3/¤ � by [6], we get that Ph.†CP1;pn/ is not trivial. Thus, we have
obtained that Ph.†CP1;pn/ is relatively trivial and is not trivial.

6 Triviality of relative phantom maps out of a nonsuspension

In this section, we consider Problem 1.5. By Corollary 2.4, we have Ph.X;Bn/D� for
all X, so the triviality and the relative triviality of phantom maps out of a suspension
to snW B! Bn are the same. The case of relative phantom maps out of a suspension
in Problem 1.5 has been studied in the previous sections. In particular, by Example 4.4,
Ph.†X; in/ is trivial for the inclusion inW RPn!RP1 . Thus, we consider relative
phantom maps out of a nonsuspension for Problem 1.5. When X is not a suspension,
the Puppe exact sequence associated with skeleta of X is not an exact sequence of
groups, so we cannot use Lemma 2.1, which has been fundamental in many places
above. Instead, we will use the following lemma:

Lemma 6.1 (cf [11, Lemma 1.1.5]) Let ffngW fGng ! fHng be a continuous map
between inverse systems of compact Hausdorff topological spaces. Then the map
lim
 ��

fnW lim
 ��

Gn! lim
 ��

Hn is surjective whenever each fnW Gn!Hn is so.

Let V be a finite complex and W be a torsion space, that is, zHn.W IQ/D 0 for any n.
Then it is well known that the homotopy set ŒV;W � is finite. We generalize this fact in
two cases. The first case is the following:

Lemma 6.2 If B 2 F is nilpotent with finite �1 and a finite complex Z satisfies
Hk.ZIQ/D 0 for k 2 q.B/, then ŒZ;B� is finite.
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Proof Let
� � �

qkC1
��! B.kC 1/

qk
�! B.k/

qk�1
��! � � �

q0
�! B.0/D �

be a principal replacement of the Postnikov tower of B. Since Z is a finite complex,
we have ŒZ;B� Š ŒZ;B.k/� for large k . Then it suffices to show that ŒZ;B.k/� is
finite for any k . We prove this by induction on k .

Each arrow qk W B.kC 1/! B.k/ is a principal fibration with fiber K.Ak ;mk/ such
that Ak is an abelian group. Then we have an exact sequence of pointed sets

H mk .ZIAk/! ŒZ;B.k/�
.qk�1/�
����! ŒZ;B.k � 1/�:

Since qk�1W B.k/! B.k � 1/ is principal, we have j.qk�1/
�1
� .a/j � jH

mk .ZIAk/j

for any a 2 ŒZ;B.k � 1/�. Moreover, by the assumption on X, zH mk .ZIAk/ is finite
for any k . Then the proof is done by induction on k starting with ŒZ;B.0/�D � for
B.0/D �.

To consider the second case, we introduce:

Definition 6.3 We say that a space Z has torsion annihilators if it has the following
properties:

(1) �1.Z/ is an abelian group.

(2) For any given integers n and N , there is a self-map gW Z!Z such that

(a) g�˝QW ��.Z/˝Q! ��.Z/˝Q is an isomorphism, and

(b) for each i � n, the map g�W �i.Z/! �i.Z/ is multiplication by an integer
mi with N jmi .

For example, Sn _RP1 is a space which has torsion annihilators but is not nilpotent.

Lemma 6.4 If B 2 F has torsion annihilators and a finite complex Z satisfies
Hk.ZIQ/D 0 for k 2 q.B/, then ŒZ;B� is finite.

Proof Since Z is a finite complex, we have ŒZ;B� Š ŒZ;Bn� for large n. Then it
suffices to show that ŒZ;Bn� is finite for any n. To see this, we prove by induction
that there is a self-map gW B!B such that g is an isomorphism in rational homotopy
groups and .gn/�W ŒZ;Bn�! ŒZ;Bn� is the constant map. When B0D�, this condition
is satisfied.
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Suppose that ŒZ;Bn�1� is finite and there is a self-map hW B ! B such that h is
an isomorphism in rational homotopy groups and .hi/�W ŒZ;Bi � ! ŒZ;Bi � is the
constant map for i < n. By the naturality of Postnikov towers, we have the homotopy
commutative diagram:

K.�n.B/; n/ //

h�
��

Bn
pn
//

hn

��

Bn�1

hn�1

��

K.�n.B/; n/ // Bn
pn
// Bn�1

Then any map f W Z!Bn satisfies pnıhnıf 'hn�1ıpnıf '�, so hnıf has a lift
eW Z!K.�n.B/; n/, up to homotopy. By the assumption on Z , there is an integer N

such that N �H n.ZI�n.B//D 0, so Ne D 0. Since B has torsion annihilators, there
is a self-map `W B! B such that ` is an isomorphism in rational homotopy groups
and the map `�W �n.B/! �n.B/ is the multiplication by an integer M with N jM.
Then we see that `n ı hn ı f ' � for any f 2 ŒZ;Bn�. Let F be the homotopy fiber
of `n ı hn . Then F is a torsion space and ŒZ;F �! ŒZ;Bn� is surjective. Since Z is
a finite complex, ŒZ;F � is a finite set, so ŒZ;Bn� too is a finite set. This completes the
proof.

Now we give our answer to Problem 1.5.

Theorem 6.5 Let snW B! Bn be the nth Postnikov section, and suppose that B 2 F
is nilpotent or has torsion annihilators. If Hk.X IQ/D 0 for k 2 q.B/, then Ph.X; sn/

is trivial for any n.

Proof Consider a map between the inverse systems of pointed sets fŒX k ;B�g !

fŒX k ;Bn�g induced by the Postnikov section snW B ! Bn . There is a commutative
diagram

ŒX;B�
�B

//

.sn/�

��

lim
 ��
ŒX k ;B�

.sn/�
��

Ph.X; sn/
�Bn

// lim
 ��
.sn/�ŒX

k ;B�

where the horizontal arrows are surjective by (1) and Proposition 3.2. Since ŒX k ;Bn�Š

ŒX;Bn� for k > n, the map �Bn
W ŒX;Bn�! lim

 ��
ŒX k ;Bn� is injective. Then, since

Ph.X; sn/ is a subset of ŒX;Bn� and the lower �Bn
is the restriction of �Bn

W ŒX;Bn�!

lim
 ��
ŒX k ;Bn�, the lower �Bn

is injective, so it is bijective. Then it follows that Ph.X; sn/
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is trivial if and only if the right .sn/� is surjective. Thus, we shall show that the right
.sn/� is surjective.

Note that the map .sn/�W ŒX
k ;B�! .sn/�ŒX

k ;B� is surjective for any k and that, by
Lemmas 6.2 and 6.4, ŒX k ;B� is a finite set for any k . It follows from Lemma 6.1 that
the right .sn/� is surjective, as desired. This completes the proof.

Finally, we deal with the case that ' is the inclusion inW RPn ,!RP1 . Since RPn is
nilpotent for an odd n, Theorem 6.5 implies the following corollary:

Corollary 6.6 If H2nC1.X IQ/D 0 then Ph.X; i2nC1/ is trivial.

We finally show that Corollary 6.6 is optimal by giving an example of a space X

such that Hn.X IQ/ ¤ 0 and there is a nontrivial relative phantom map from X to
inW RPn!RP1 . We will use the following simple lemma:

Lemma 6.7 Let Z=2 act on Sn by the antipodal map. For every odd integer k , there
is a Z=2–map f W Sn! Sn of degree k .

Proof The case nD 1 is trivial, and for n > 1, take the .n�1/–fold suspension of
the Z=2–map on S1 .

Remark Lemma 6.7 implies that there is a mistake in the calculation of the homotopy
set ŒRPn;RPn� for n even due to McGibbon [8]. It is calculated as follows. Consider
the homotopy cofibration sequence

Sn�1 pn�1
��!RPn�1 in�1

��!RPn qn
�! Sn;

where pn�1 is the universal covering, in�1 is the inclusion and qn is the pinch map to
the top cell. Then, for n� k > 0 and k > 0, there is an exact sequence of groups

Œ†kC1RPn�k�1;RPn�
.†kC1pn�k�1/

�

�����������! �n.RPn/

.†kqn�k/
�

��������! Œ†kRPn�k ;RPn�
.†k in�k�1/

�

���������! Œ†kRPn�k�1;RPn�:

Since �n.RPn/DZfpng, qk ıpk D 1C .�1/kC1 and Œ†kRPn�k�1;RPn�D �, we
inductively get

Œ†kRPn�k ;RPn�Š

�
Z if n� k is odd,
Z=2 if n� k is even,
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where in both cases, pn ı†
kqn�k is a generator. We next consider the exact sequence

of pointed sets

Œ†RPn�1;RPn�
.†pn�1/

�

�������! �n.RPn/
q�n
�! ŒRPn;RPn�

i�
n�1
��! ŒRPn�1;RPn�

p�
n�1
��! �n�1.RPn/;

where �n�1.RPn/D0 and ŒRPn�1;RPn�Df�; in�1g. Then, by the above calculation,
we have

.i�n�1/
�1.�/D f�;pn ı qng:

On the other hand, by considering the action of the top cell, we see that

.i�n�1/
�1.in�1/D fh2j�1 j j 2 Zg;

where hm is the self-map of RPn which lifts to the degree m self-map of Sn as in
Lemma 6.7. Thus, we obtain that

ŒRPn;RPn�D f�; pn ı qn; h2j�1 .j 2 Z/g:

For n> 2, let X.n/ be the cofiber of the composite of mapsW
p SnC2p�3 ˛1

�! Sn �
�!RPn;

where p ranges over all odd primes and ˛1jSnC2p�3 is a generator ˛1.p/ of the homo-
topy group �nC2p�3.S

n/ŠZ=p (see [13]). By definition, we have H 1.X.n/IZ=2/Š

Z=2, and let f W X.n/!RP1 be the generator of H 1.X.n/IZ=2/.

Proposition 6.8 The map f W X.n/!RP1 is a nontrivial relative phantom map to
the inclusion inW RPn!RP1 .

Proof Suppose that f is homotopic to a map gW X.n/!RPn . Then, since g induces
an isomorphism in �1 , gjRPn lifts to a degree k map of Sn for some odd integer k .
By definition, the composite gjRPn ı� ı˛1.p/ must be null-homotopic for any odd
prime p . Since ˛1.p/ is a co-H –map [1], we have

gjRPn ı� ı˛1.p/' � ı k ı˛1.p/' � ı .k˛1.p//:

Then, since ��W ��.Sn/!��.RPn/ is an isomorphism for �� 2, we get that k˛1.p/

is null-homotopic. Thus, k is divisible by any odd prime, which is a contradiction
because k ¤ 0 since k is odd. Therefore f does not lift to RPn through the inclusion
inW RPn ! RP1 , up to homotopy. So, if f is a relative phantom map, then it is
nontrivial.

Algebraic & Geometric Topology, Volume 19 (2019)



Relative phantom maps 361

Fix an odd prime p . By Lemma 6.7, for any given odd integer k , there is a self-map
hk W RPn!RPn which lifts to a degree k self-map of Sn . Let p1; : : : ;pm be all the
odd primes less than or equal to p . Then, by the above observation, we see that the
map hk W RPn!RPn extends to a map xhk W X.n/!X.n/ and, by looking at �1 , we
have

f ' f ı xhp1
ı � � � ı xhpm

:

Since
hpi
ı� ı˛1.p/' � ı .pi˛1.p//

as above, we see that the restriction of f ı xhp1
ı � � � ı xhpm

to X.n/nC2p�2 lifts to RPn

through in , up to homotopy. Since the prime p can be arbitrary large, f is a relative
phantom map to the inclusion inW RPn ! RP1 . Therefore we obtain that f is a
nontrivial relative phantom map to inW RPn!RP1 , completing the proof.

Remark It follows from Corollary 6.6 that if H2nC1.X IQ/D 0 then Ph.X; i2nC1/

is trivial. On the other hand, H2n.X.2n/IQ/D 0 but Ph.X; i2n/ is nontrivial. In fact,
there is no k such that Hk.X IQ/D 0 implies that Ph.X; i2n/ is trivial.

If such an integer k exists, k D nC 2p � 2 for some odd prime p by the rational
homology of X.2n/. Let X 0.n/ be the subcomplex of X.n/ after we delete the
nC2p�2–cell from X.n/. Then the restriction f jX 0.n/W X 0.n/!RP1 is a nontrivial
relative phantom map to in for the same reason.
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