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Algebraic laminations for free products and arational trees

VINCENT GUIRARDEL

CAMILLE HORBEZ

This work is the first step towards a description of the Gromov boundary of the free
factor graph of a free product, with applications to subgroup classification for outer
automorphisms.

We extend the theory of algebraic laminations dual to trees, as developed by Coulbois,
Hilion, Lustig and Reynolds, to the context of free products; this also gives us an
opportunity to give a unified account of this theory. We first show that any R–tree with
dense orbits in the boundary of the corresponding outer space can be reconstructed
as a quotient of the boundary of the group by its dual lamination. We then describe
the dual lamination in terms of a band complex on compact R–trees (generalizing
Coulbois, Hilion and Lustig’s compact heart), and we analyze this band complex
using versions of the Rips machine and of the Rauzy–Veech induction. An important
output of the theory is that the above map from the boundary of the group to the
R–tree is 2-to-1 almost everywhere.

A key point for our intended application is a unique duality result for arational trees.
It says that if two trees have a leaf in common in their dual laminations, and if one of
the trees is arational and relatively free, then they are equivariantly homeomorphic.

This statement is an analogue of a result in the free group saying that if two trees are
dual to a common current and one of the trees is free arational, then the two trees are
equivariantly homeomorphic. However, we notice that in the setting of free products,
the continuity of the pairing between trees and currents fails. For this reason, in all
this paper, we work with laminations rather than with currents.
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Introduction

In analogy to curve complexes used to study mapping class groups of surfaces, the
free factor graph of a free group FN has recently turned to be fruitful in the study of
Out.FN /. It is Gromov hyperbolic, as was proved by Bestvina and Feighn [2], and the
action of an automorphism of FN is loxodromic if and only if it is fully irreducible. Its
Gromov boundary was described by Bestvina and Reynolds [6] and Hamenstädt [27]
as the set of equivalence classes of arational trees.

Our goal in the present paper and its sequel [24] is to extend this description of the
boundary of the free factor graph to the context of free products, with a view towards
obtaining classification results for subgroups of their automorphism groups.

In the case of free groups, this description of the Gromov boundary relies on the theory
of dual laminations developed by Coulbois, Hilion, Lustig and Reynolds, which is used
to establish a crucial unique duality result between arational trees and geodesic currents.
The main goal of the present paper is to extend the theory of laminations to the context
of free products, and state a unique duality result for arational trees in this context.
However, geodesic currents are not well-adapted to free products, because there cannot
be any natural continuous intersection pairing between R–trees and currents in this
broader context. To bypass this difficulty, the duality statement will be phrased purely
in terms of dual laminations.
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Free products Consider a free product G DG1� � � ��Gk �FN , where all groups Gi
are countable and FN is a free group. A subgroup of G is called peripheral if it is
conjugate into some Gi ; we denote by F the finite collection of all conjugacy classes
of the groups Gi . In this context, one considers actions on trees relative to F , or
.G;F/–trees: these are trees with an action of G in which every Gi fixes a point. The
Bass–Serre tree R0 of the graph of groups decomposition

t1

t2

tN

G2 G3 Gk. . .
...

G1

(where one replaces the free product with FN above by N successive HNN extensions
over the trivial group) is part of an outer space O generalizing Culler and Vogtmann’s
outer space [15], see Guirardel and Levitt [25]. This outer space O is the space of
all G–equivariant isometry classes of Grushko trees of G relative to F , ie minimal
isometric G–actions on simplicial metric trees with trivial edge stabilizers and whose
nontrivial vertex stabilizers are precisely the groups whose conjugacy class is in F .

For example, the free product above can be an absolute Grushko decomposition of a
finitely generated group G (in which case the Gi are freely indecomposable and not
cyclic), but other cases are important: for example, in the case where G D FN and F
is a system of free factors, this relative outer space O is often more suitable to study
subgroups of Out.FN / stabilizing F .

Boundaries and laminations Laminations for free groups were first introduced as
an analogue of geodesic laminations on hyperbolic surfaces by Bestvina, Feighn and
Handel, who constructed in [3] the attractive and repulsive laminations of a fully
irreducible automorphism with a view towards proving the Tits alternative for Out.FN /
in [4; 5]. A comprehensive study of laminations in free groups was made by Coulbois,
Hilion and Lustig in [10; 11; 12].

A geodesic lamination on a hyperbolic surface can be lifted to its universal cover H2 ,
and each leaf can be identified with its pair of endpoints in the circle at infinity. By
analogy, an algebraic leaf in the free group FN is defined as a pair of distinct points
in its Gromov boundary, ie an element of @2FN WD .@FN � @FN / n�, where � is the
diagonal. If one identifies FN with the fundamental group of a graph � , such a leaf
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can be represented by a bi-infinite line in the universal cover z� . A lamination in FN
is a closed FN –invariant subset of @2FN which is flip-invariant (ie invariant under
the involution .˛; !/ 7! .!; ˛/). Laminations are related to geodesic currents on FN
(introduced by Bonahon [7]; see also Kapovich [32; 33]); a current is a Radon measure
on @2FN and its support is a lamination.

In the case of a free product .G;F/, the Bass–Serre tree R0 of the splitting depicted
above plays the role of z� . Since R0 is not locally compact (unless all Gi are finite),
the Gromov boundary @1R0 is not compact, but can be naturally compactified into
@R0 WD @1R0 t V1.R0/, where V1.R0/ is the set of vertices of infinite valence
in R0 . The topology on R0[ @R0 is the topology generated by open half-trees (the
observers’ topology).

Given any other tree R in the outer space O , there is an equivariant quasi-isometry
between R0 and R which allows one to identify canonically @R with @R0 . This allows
one to define @.G;F/ without reference to a particular tree.

In this context, we define an algebraic leaf as a pair of distinct points in @.G;F/. Given
any R 2O , it corresponds to a nondegenerate line segment in R (either finite, semi-
infinite or bi-infinite) with endpoints in @R . For example, every nonperipheral element
g 2G determines an algebraic leaf .g�1; gC1/, defined as the endpoints of the axis
of g in R . One then defines a lamination as a closed, G–invariant, flip-invariant subset
of

@2.G;F/ WD .@.G;F/� @.G;F// n�;

where � is the diagonal.

Theory of dual laminations An overwhelming theme in the study of Out.FN / or,
more generally, outer automorphisms of free products is to analyze these groups through
their actions on spaces of R–trees. There is a particularly nice duality between R–trees
and laminations. In the context of free groups, the theory of dual laminations was
developed by Coulbois, Hilion and Lustig [10; 11; 12; 9; 13; 8] and Coulbois, Hilion
and Reynolds [14], building on the Levitt–Lustig map introduced in [39]. A major part
of the work of the present paper, required by our intended applications, is to carry this
theory to the context of free products. This gives us the opportunity to make a unified
account of these results while putting them in a more general context.

Let T be an R–tree in the compactified outer space O , ie endowed with a very small
.G;F/–action; see Horbez [30]. The dual lamination L2.T / is defined by first looking
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at the closure of all algebraic leaves of the form .g�1; gC1/, where g 2 G is a
nonperipheral element whose translation length in T is at most ", and then taking
the intersection over all " > 0 (see Definition 4.2). One easily checks that the dual
lamination of T is empty if and only if T is a Grushko tree (ie lies in O , as opposed
to @O WDO nO).

From now on, we will make the additional assumption that T 2 O is an R–tree on
which the G–action has dense orbits. In this case, there is a well-defined Levitt–Lustig
continuous surjective map QW @.G;F/ ! yT , where yT D T [ @1T is the metric
completion of T together with its Gromov boundary, endowed with the observers’
topology, which makes it compact (see Proposition 6.2, generalizing [39]). The map Q
is the unique continuous extension of any G–equivariant map R0! T that is linear
on edges. One then shows that fibres of Q correspond to the dual lamination of T
(Proposition 6.10, or [11; 9]): an algebraic leaf .˛; !/ lies in L2.T / if and only if
Q.˛/DQ.!/. This implies in particular that L2.T / completely determines yT up to
equivariant homeomorphism as the quotient

yT ' @.G;F/=L2.T /

(see Corollary 6.11, or [11; 9] for FN ).

Band complexes The somewhat abstract algebraic lamination L2.T / can also be
realized as a very concrete geometric object.

Given a tree R 2O (or a Cayley graph of the free group associated to a chosen basis
in [13]), one constructs a foliated band complex †.T;R/, whose bands are of the
form Ke � e , where e is an edge of R and Ke is a compact subtree of T , and are
foliated by f�g � e (see Section 7.1 for precise definitions). The compact trees Ke
coincide essentially with the compact heart introduced in [13] in the free group case
(to be more precise, the compact heart is the union of the trees Ke over all edges e in
the Cayley graph joining 1Fn to the chosen basis). The projections Ke ! e extend
to a natural map pRW †.T;R/ ! R , and the inclusions Ke � T extend to a map
pT W †.T;R/!T . Every leaf L of †.T;R/ has a natural structure of a graph, and this
graph naturally embeds in R under the projection †.T;R/!R (in particular L is a
tree). Outside this introduction, leaves of †.T;R/ are called complete †.T;R/–leaves
to avoid confusion with algebraic leaves. Then one essentially1 recovers T as the space

1T n T consists only of terminal points of T and the space of leaves of †.T;R/ is equivariantly
isometric to a G–invariant tree sandwiched between T and T .
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of leaves of †.T;R/: the fibres of the map †.T;R/! T are precisely the leaves of
†.T;R/.

The algebraic lamination L2.T / dual to T is then readable from the leaves of †.T;R/
in the following way (Lemma 7.9). If ˛ ¤ ! 2 @1R , then .˛; !/ is an algebraic leaf
in L2.T / if and only if there is a geometric leaf L in †.T;R/ whose projection to R
contains the bi-infinite line joining ˛ to ! . Assume now that ˛ 2 V1.R/ is a vertex
with infinite stabilizer G˛ , and that ! lies in the Gromov boundary @1R . Then .˛; !/
lies in L2.T / if and only if the geometric leaf L of †.T;R/ containing the unique
point of †.T;R/ fixed by G˛ is such that pR.L/ contains the semi-infinite line of R
joining ˛ to ! . If both ˛ and ! belong to V1.R/, then .˛; !/ lies in L2.T / if and
only if the points of †.T;R/ fixed by G˛ and G! belong to the same leaf of †.T;R/.

It is important to have in mind that the trees Ke used to construct the band complex
†.T;R/ are compact R–trees (for the metric topology), but they may have infinitely
many branch points (those may be dense in Ke ). This is unlike in Rips theory (see
Bestvina and Feighn [1], Gaboriau, Levitt and Paulin [19; 18] and Guirardel [23]),
where one works with band complexes whose bands are of the form K � e , where
K is an interval or more generally a finite tree (ie the convex hull of finitely many
points). Although more complicated, the more general band complexes introduced
by Coulbois, Hilion and Lustig and used in the present paper have the advantage that
one recovers T (plus some extra terminal points) as the space of leaves, and not a
geometric approximation of T as in Levitt and Paulin [40].

We provide an alternative useful description of †.T;R/: it can be identified with a
subset of the product T �R , and more precisely with the core of T �R as introduced
by Guirardel [22] (see Proposition 7.26). With this description, the natural maps to T
and to R are just the two projections.

Preimages of Q An important result that we will need is that almost every leaf in
†.T;R/ has at most two ends, or, equivalently, that the map QW @.G;F/! yT is 2-to-1
almost everywhere.

Theorem 1 (see Theorem 8.1 and Proposition 8.2, generalizing [8]) Let T 2O be a
tree with dense orbits. Then the following equivalent statements hold :

� For all but finitely many orbits of points x 2 yT , Q�1.fxg/ contains at most two
points.

� There are only finitely many orbits of leaves in †.T;R/ with at least three ends.
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In fact, Coulbois and Hilion prove more in [8] in the context of free groups: they
define an index (called the Q–index) that counts the number of orbits of extra ends of
leaves, and show that this index is bounded by 2N � 2, where N is the rank of the
free group FN . We will not need such a refinement for our intended applications.

The main tool to prove Theorem 1 is the pruning process, an extension of a process
of the Rips machine. It takes as input the band complex †.T;R/, and produces a
new band complex †0 � †.T;R/ by removing all terminal segments in all leaves.
From †0, one can construct a new tree R0 2O such that †0 D†.T;R0/. Iterating this
process yields a sequence of nested band complexes whose intersection is the union
of bi-infinite lines contained in leaves of †.T;R/, thus corresponding to algebraic
leaves in L2.T /. If this process stops in finite time, we say that the band complex
is of quadratic type2 in reference to quadratic systems of generalized equations in
Makanin’s algorithm. Controlling the complexity of the band complexes produced by
the pruning process is the main tool to prove Theorem 1 above.

Reconstructing the lamination of an arational tree from a single leaf One says
that a nonsimplicial R–tree T 2 @O is arational if every proper relative free factor
of G acts freely and discretely on T (a proper relative free factor A is a nonperipheral
factor of a free product decomposition G DA�B with A;B ¤ f1g whose Bass–Serre
tree is relative to F ). Every orbit in an arational tree is dense; see Horbez [28]. We say
that T is relatively free if every point stabilizer is peripheral. Arational trees which are
not relatively free are very special as they are essentially dual to arational laminations
on 2–orbifolds; see Reynolds [44] and Horbez [28], and our Definition 11.2.

An important result of this paper says that one can reconstruct the full dual lamination
L2.T / of a relatively free arational tree T from a single leaf l 2 L2.T / (see [14] in
the free group case).

The dual lamination of any tree T 2 O with dense G–orbits satisfies additional
properties. First, since L2.T / coincides with the fibres of the map Q, it is transitively
closed:

.˛; ˇ/; .ˇ; 
/ 2 L D) .˛; 
/ 2 L if ˛ ¤ 
:

Moreover, for any vertex v 2 V1.R/ with stabilizer Gv ,

.˛; g˛/ 2 L; g 2Gv D) .˛; v/ 2 L

2Section 4.3 of [8] uses the terminology pseudosurface and [14, Definition 3.2] the terminology surface
type.
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because Q.˛/ is the unique fixed point of Gv in T , and so is v . When v is a vertex
with finite but nontrivial stabilizer Gv , the above property does not make sense since
v … V1.R/. In all cases, it can be reformulated as

.˛; g˛/ 2 L; .ˇ; hˇ/ 2 L; g; h 2Gv; ˛ ¤ ˇ D) .˛; ˇ/ 2 L:

We thus say that a lamination L is peritransitively closed (see Definition 12.1) if it is
transitively closed and closed under the latter operation (recall also that a lamination
is required to be G–invariant, flip-invariant and topologically closed in @2.G;F/ by
definition). As just noted, for any tree T with dense orbits, the dual lamination of T is
peritransitively closed (Lemma 12.3).

For simplicity, we state the following theorem in the case where T is relatively free
action; see Theorem 12.5 for a full statement.

Theorem 2 (Theorem 12.5; see [14] in FN ) Let T 2O be arational and relatively
free and let l0 2L2.T / be an algebraic leaf. Then L2.T / is the smallest peritransitively
closed lamination containing l0 .

The proof of this theorem relies on the analysis of the band complex associated to T .
In particular, in the case where the pruning process described above stops, we use a
second process, reminiscent of Rauzy–Veech induction and introduced in [14], called
the splitting process.

A unique duality statement for relatively free arational trees In the sequel of this
paper [24], we describe the boundary of the free factor graph of .G;F/ in terms
of arational trees, thus extending [6; 27]. An important tool used by Bestvina and
Reynolds and Hamenstädt in their proofs is a unique duality result, stated in terms of
the pairing between currents and trees introduced by Kapovich and Lustig [34]. This
pairing is a continuous map that associates a nonnegative number to a tree in O and a
current. Their unique duality statement is the following, in which T 0 � T means that
yT 0 and yT are equivariantly homeomorphic (for the observers’ topology):

Theorem 3 (Bestvina and Reynolds [6] and Hamenstädt [27]) Let T and T 0 be two
very small FN –trees, with T free and arational. Assume that there exists a current
�¤ 0 such that hT; �i D 0D hT 0; �i.

Then T 0 is arational and T 0 � T .
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In the context of free products (including G D FN with F ¤∅), there is no natural
continuous pairing between O and relative currents (see below). This is why we need
the following substitute that avoids mentioning currents:

Theorem 30 (see Theorem 13.1) Let T 2 @O be a relatively free arational tree, and
T 0 2O be any tree.

Assume that there exists a leaf l0 2 L2.T / that is also contained in L2.T 0/.

Then T 0 is arational and T 0 � T .

In fact, a similar result is already a main step of Bestvina and Reynolds’ and Hamen-
städt’s proofs of Theorem 3 in the case of free groups. Indeed, a result by Kapovich–
Lustig shows that for free groups, one has hT; �i D 0 if and only if the support of the
current � is contained in the lamination L2.T / dual to T [34]. Theorem 3 follows
from this result together with Theorem 30.

Let us sketch the proof of Theorem 30 from Theorem 2, saying that L2.T / is the
peritransitive closure of any of its leaves. One first shows that T 0 has dense orbits,
so that L2.T 0/ is peritransitively closed and contains the peritransitive closure of l0 .
By Theorem 2, one gets that L2.T 0/ � L2.T /. Since yT is the quotient of @.G;F/
by L2.T / and similarly for yT 0, this means that there is a continuous equivariant map
pW yT ! yT 0 such that QT 0 D p ı QT (where QT and QT 0 are the Levitt–Lustig
maps from @.G;F/ to yT and yT 0, respectively). If p is not a homeomorphism, then
an argument from [6] shows that there are uncountably many points x 2 T 0 with
#p�1.fxg/� 3, so #Q�1T 0 .fxg/� 3 since QT is surjective. This contradicts Theorem 1,
which says that QT 0 is 2-to-1 almost everywhere.

Limits in the free factor graph A convenient definition of the graph of free factors is
the following: its vertex set is the set of nontrivial actions of .G;F/ on simplicial trees
with trivial edge stabilizers, and two trees are joined by an edge if they are compatible or
there exists a nonperipheral element of G fixing a point in both trees.3 The following re-
sult analyzes a sequence of pairs of trees Tn and T 0n joined by an edge of the second type.

Theorem 4 Let .Tn/n2N ; .T
0
n/n2N 2ON be sequences of trees such that for all n2N ,

there exists a nonperipheral element gn 2G that is elliptic in both Tn and T 0n .

If .Tn/n2N ; .T
0
n/n2N 2 ON converge respectively to T and T 0 in O , and if T is

relatively free and arational, then so is T 0, and T 0 � T .

3A discussion of the equivalence, up to quasi-isometry, of various standard definitions of the free factor
graph can be found in [24].
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This result is the basis of a Kobayashi-type argument showing that arational trees are
indeed at infinity of the free factor graph, in the sense that any sequence of trees in O
converging to an arational tree in O has unbounded image in the free factor graph. We
keep this argument for [24].

To prove Theorem 4 in the context of the free group [6; 27], one makes the following
argument. The current �gn associated to gn is dual to Tn and T 0n (ie the pairings
hTn; �gni D kgnkT and hT 0n; �gni D kgnkT 0 vanish). The continuity of the pairing
together with the compactness of the space of projective currents implies that T and T 0

are dual to a common current. If T is arational, one can then use the unique duality
statement to deduce T � T 0.

To make this argument work without reference to currents, consider .˛n; !n/ D
.g�1n ; gC1n /, which lies in L2.Tn/\L2.T 0n/. By cocompactness, one can assume that
.˛n; !n/ converge to some algebraic leaf .˛; !/, and apply the following substitute to
the continuity of the pairing. It involves the one-sided lamination L1.T /� @1.G;F/
dual to T ; this is defined as the set of points � 2 @1.G;F/ such that for any equivariant
map f W R0! T and any ray � � T converging to � , f .�/ is bounded (see [11] or
Definition 4.6).

Proposition 5 (see Proposition 4.23) Let .Tn/n2N 2 ON be a sequence that con-
verges to T 2O . For all n2N , let .˛n; !n/2L2.Tn/, and assume that ..˛n; !n//n2N

converges to some .˛; !/ 2 @2.G;F/.

If T has dense orbits, then .˛; !/ 2 L2.T /.

Without assuming that T has dense orbits we get that .˛; !/ 2 .L1.T /[V1.G;F//2 .

Returning to the proof of Theorem 4, assuming moreover that T 0 has dense orbits,
we get that L2.T / and L2.T 0/ share a common leaf, and one concludes the proof of
Theorem 4 using the unique duality statement (Theorem 30).

When T 0 does not have dense orbits the argument is more involved. First, arationality
of T can be used to show that either ˛ or ! (say ˛ ) belongs to @1.G;F/, so
˛ 2 L1.T / \ L1.T 0/. Now, to any element � 2 @1.G;F/, we associate a limit
set ƒ2.�/ � @2.G;F/, by taking all limits of translates of a ray joining a basepoint
to � in R0 , and one proves that � 2 L1.T 0/ implies ƒ2.�/ � L2.T 0/ (see [11]
or Proposition 4.19). This additional argument yields a common leaf in ƒ2.�/ �

L2.T /\L2.T 0/. Theorem 30 then enables us to conclude that T 0 is arational, and
T 0 � T .
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Simple leaves and unique duality statement for all arational trees To state a ver-
sion of Theorems 30 and 4 that work for all arational trees (and not only those with
a relatively free action), one can work with simple leaves instead of considering all
leaves in the dual lamination L2.T /. These are defined in the following way: First, we
say that an element g 2G is simple (relatively to F ) if g is contained in some proper
.G;F/–free factor. There is a way to characterize simplicity of an element g 2 G
in terms of a Whitehead graph associated to g and to a Grushko tree R , analogous
to classical work of Whitehead [45] for free groups (see Proposition 5.1). We then
say that an algebraic leaf is simple if it is a limit of leaves of the form .g�1n ; gC1n /

with gn simple. This allows one to state the following version of Theorem 30 (see
Corollary 13.3 for the corresponding version of Theorem 4).

Theorem 300 (see Theorem 13.1) Let T 2 @O be an arational tree, and T 0 2 O be
any tree.

Assume that there exists a simple leaf l0 2 L2.T / that is also contained in L2.T 0/.

Then T 0 is arational and T 0 � T .

The trouble with currents We define a current as a Radon measure on @2.G;F/
which is invariant under the flip and the action of G (see also Gupta [26] for relative
currents in the free group). The space of currents, which we denote by Curr, is still
projectively compact, but the pairing hT; �gi D kgkT does not extend continuously.

Theorem 6 (see Proposition 3.1) Assume that F contains an infinite group, and that
.G;F/ is not of the form G DG1 �G2 .

Then there does not exist any continuous pairing

h � ; � iW O�Curr!R

such that for all T 2O and all nonperipheral g 2G, one has hT; �gi D kgkT .

Remark 0.1 There is a natural way of defining hT; �i for any simplicial tree T 2O
with trivial edge stabilizer and any current � in such a way that hT; �gi always coincides
with kgkT . The argument shows that this definition is not continuous, and even that
the set of pairs .T; �/ such that hT; �i D 0 is not closed (see Section 3).

Here is an example showing this phenomenon:

Algebraic & Geometric Topology, Volume 19 (2019)
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A B C

T

hA;C bni hBi

Tn

Figure 1: An example showing the impossibility to extend continuously the
natural intersection pairing in the relative setting.

Example 0.2 Let G D A�B �C with B an infinite group, F D fA;B;C g, and T
be the Bass–Serre tree of this splitting (with all edge lengths set to be equal to 1).
Let bn 2 B be a sequence of distinct elements, and Tn be the Bass–Serre tree of the
splitting G D hA; bnCb�1n i � B, and gn D abncb�1n . Then gn is elliptic in Tn so
kgnkTn D 0, but kgnkTnC1 D 4. Moreover, Tn and �gn (the rational current associated
to gn ; see Section 3 for a definition) are convergent sequences in O and in the space
of currents, respectively. This prevents the existence of a continuous extension (see
Section 3 for details).

Organization of the paper

In Section 1, we give background and notation regarding free products, and we define
a boundary for .G;F/ in Section 2. In Section 3, we prove that the natural pairing
between trees and currents does not admit a continuous extension to the boundary in
general. Algebraic laminations are introduced in Section 4, where Proposition 5 is
proven. In Section 5, we characterize simple elements of G in terms of Whitehead
graphs, and use this to study algebraic leaves that are obtained as limits of axes of
simple elements; this is important when passing from the versions of our results for
relatively free arational trees to the case of arational trees that are not relatively free. In
Section 6, we introduce the map Q for trees with dense orbits, and establish its basic
properties. Band complexes are defined in Section 7, where it is established that they
coincide with the core introduced in [22]. This section also contains a few technical
statements specific to the case of free products, which give finiteness results for the
band complexes we work with, in spite of the lack of local compactness. The pruning
process is introduced in Section 8, where we prove that there are only finitely many
orbits of points in yT whose Q–preimage contains at least three points (Theorem 1).
The splitting process is introduced in Section 9, and we then prove in Section 10 that
iterating the two processes eventually separate all leaves in the case where T is mixing.
Basic facts about arational trees are provided in Section 11. We then analyze the dual
lamination of an arational tree in Section 12, and establish Theorem 2. The proof of
the unique duality theorem, and of Theorem 4, is completed in Section 13.
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1 Background and notation

Let G1; : : : ; Gk be a finite collection of countable groups, let FN be a free group
of rank N, and let G WD G1 � � � � �Gk � FN . A subgroup of G is peripheral if it
is conjugate into one of the groups Gi , and nonperipheral otherwise. We denote
by F the collection of all conjugacy classes of maximal peripheral subgroups of G,
ie F D fŒG1�; : : : ; ŒGk�g, where ŒGi � denotes the conjugacy class of Gi . The Kurosh
rank of .G;F/ is defined as rkK.G;F/ WD kCN.

The outer space of a free product and its closure Recall that a G–action on a tree T
(either a simplicial tree or an R–tree) is minimal if T does not contain any proper
G–invariant subtree. It is relatively free if all point stabilizers in T are (trivial or)
peripheral. A Grushko tree is a simplicial metric tree S, equipped with a minimal,
simplicial, relatively free isometric G–action, such that every peripheral subgroup of G
fixes a unique point in S. The unprojectivized outer space O , introduced in [25], is the
space of all G–equivariant isometry classes of Grushko trees. The space O embeds
into the space of all G–equivariant isometry classes of minimal isometric G–actions
on R–trees, equipped with the equivariant Gromov–Hausdorff topology introduced
in [42]. The closure O was identified in [30] with the space of very small trees, ie those
trees in which arc stabilizers are either trivial or cyclic, root-closed and nonperipheral,
and tripod stabilizers are trivial.

By [38] (see [30, Theorem 4.16] for free products), every tree T 2O decomposes in a
unique way as a graph of actions (in the sense of [38]) whose vertices correspond to
orbits of connected components of the closure of the set of branch points and inversion
points (ie points with stabilizer of order 2). Two vertices are joined by an edge if
there are connected components in the corresponding orbits which are adjacent in T .
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This decomposition of T as a graph of actions is called the Levitt decomposition
of T . In particular, vertex groups of this decomposition act with dense orbits on the
corresponding subtree (which may be reduced to a point). The Bass–Serre tree of the
underlying graph of groups is very small (it can be trivial).

All maps f W S ! T with S a simplicial G–tree and T either a simplicial G–tree or
an R–tree will be assumed to be piecewise linear: each edge can be subdivided into
finitely many arcs on which the map is linear, ie sends the arc to a geodesic segment
with constant speed. In the case where T is simplicial, this is equivalent to saying that
one can subdivide S and T so that f maps each edge to an edge or to a point, linearly.
We make the following easy observation:

Lemma 1.1 Let S 2O and T 2O , and let f; gW S ! T be G–equivariant maps.

Then there exists C > 0 such that for all x 2 S, one has dT .f .x/; g.x//� C.

Subgroups of a free product A .G;F/–free splitting is a minimal, simplicial G–tree
with trivial edge stabilizers in which all peripheral subgroups are elliptic. A .G;F/–free
factor is a subgroup of G that occurs as the stabilizer of a point in some .G;F/–free
splitting.

Let H �G be a subgroup. By considering the minimal subtree for the H –action on a
Grushko tree, one gets that H splits as a free product

H D .�i2IHi /�F;

where each Hi is peripheral and F is a free group (notice that I can be infinite and
that F can be infinitely generated). We say that H has finite Kurosh rank if I is finite
and F is finitely generated. We then denote by F jH the collection of all maximal
peripheral subgroups of H (ie the H –conjugates of the Hi ).

2 Boundaries for .G;F/

Boundary of a Grushko tree and boundary of .G;F/ Given a Grushko .G;F/–
tree R , we denote by @1R the Gromov boundary of R and by V1.R/ the collection of
vertices of R of infinite valence, and we let @R WD@1R[V1.R/. We let yR WDR[@1R .
This is a compact space when equipped with the observers’ topology, which is the
topology generated by the set of directions in yR ; see [9, Proposition 1.13]. Recall that a
direction based at a point a in a tree T is a connected component of T n fag. Thus, by
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definition, a sequence of points xn 2 yR converges to x1 for the observers’ topology if
for every a 2R n fx1g, the point xn lies in the connected component of yR n fag that
contains x1 for all n large enough. For example, if x1 2V1.R/ is a vertex of infinite
valence, and .xn/n2N 2 R

N is a sequence of points that belong to pairwise distinct
directions based at x1 , then .xn/n2N converges to x1 for the observers’ topology.
Note that if x1 2 @1R , then xn converges to x1 for the observers’ topology if and
only if it does for the usual topology on R[ @1R (coming from hyperbolicity of R).
If x 2 R is a point with finite valence, then one can find a finite set of directions
in R whose intersection is an open neighbourhood of x in R which only contains
points of finite valence. This shows that R n @R is open in yR . Therefore @R � yR is
a closed subset of yR , hence it is compact. We also let @2R WD @R � @R n�, where
� WD f.x; x/ j x 2 @Rg is the diagonal subset, and we equip @2R with the topology
inherited from the product topology on @R� @R .

Lemma 2.1 Let R and R0 be two Grushko .G;F/–trees. Then any G–equivariant
piecewise linear map f W R!R0 is continuous for the observers’ topology.

Recall that in this paper, all maps between two Grushko .G;F/–trees are assumed to
be piecewise linear on edges.

Proof It suffices to prove that the f –preimage of any direction d � R0 is a finite
union of finite intersections of directions in R . Denote by m 2R0 the basepoint of d .
Up to subdividing R and R0, we can assume that f sends each edge to either an
edge or a vertex, and that m is a vertex. Let e be the open edge of R0 adjacent to m
contained in d . Then f �1.e/ is a union of open edges in R . This union is finite,
for otherwise f �1.e/ would contain infinitely many edges in the same orbit, and e
would have nontrivial (infinite) stabilizer. Each connected component of f �1.d/ is a
connected component of R n f �1.fmg/ whose terminal edges are in f �1.e/. Since
f �1.e/ is a finite union of edges, f �1.d/ has finitely many connected components,
and each of these is a finite intersection of directions.

Lemma 2.2 Let R and R0 be two Grushko .G;F/–trees. Then any G–equivariant
map f W R ! R0 has a unique continuous extension yf W yR ! yR0. Moreover, the
map h WD yf j@R is a homeomorphism @R ! @R0 that does not depend on f , and
h.@1R/D @1R

0 and h.V1.R//D V1.R0/.

Proof Let f W R! R0 be an equivariant map. By Lemma 2.1, f is continuous for
the observers’ topology. By [16, Corollary 1.5], the map f induces a quasi-isometry

Algebraic & Geometric Topology, Volume 19 (2019)



2298 Vincent Guirardel and Camille Horbez

between R and R0, hence extends to a continuous map yf W R[@1R!R0[@1R
0 for

the usual topology. Since the usual topology on R[ @1R agrees with the observers’
topology at each point of @1R , it follows that yf is continuous for the observers’
topology. Moreover, if f1; f2W R! R0 are two equivariant maps, then they are at
bounded distance from one another (Lemma 1.1), so they induce the same map between
the Gromov boundaries of R and R0. Since they also agree on V1.R/, yf1 and yf2
restrict to the same continuous map hD yf1j@RW @R! @R0. Taking any equivariant map
f 0W R0!R yields an inverse for yf .

The identifications between the boundaries of all .G;F/–Grushko trees given by
Lemma 2.2 allow us to define the space @.G;F/ as @R , without reference to a particular
Grushko tree R . Similarly, if x 2R is any point with trivial stabilizer, the embedding
g 7! g:x of G into R gives a compact topology on G [ @.G;F/. This topology does
not depend on the choice of x or R because for any x0 2R0 with trivial stabilizer, there
exists a G–equivariant map f W R!R0 sending x to x0. In plain words, we say that a
sequence of elements gn 2G converges to ! 2 @.G;F/ if for some (equivalently any)
x 2R with trivial stabilizer, gn:x converges to ! 2 @R (for the observers’ topology
on R[ @R).

Similarly, there are well-defined subspaces @1.G;F/; V1.G;F/ � @.G;F/, and
since hW @R! @R0 also gives a natural identification between @2R and @2R0, there is
a well-defined space @2.G;F/.

Algebraic leaves Elements in @2.G;F/ are called algebraic leaves. Given a Grushko
.G;F/–tree R and an algebraic leaf .˛; !/ 2 @2.G;F/, we denote by Œ˛; !�R the line
segment in R joining the points in @R corresponding to ˛ and ! : this might be a line,
a semiline or a segment (depending on whether ˛ and ! belong to @1.G;F/ or to
V1.G;F/), but it is not reduced to a point. This is the geometric representation of
the algebraic leaf in R (note that it completely determines the unordered pair f˛; !g).
More generally, given a point a 2 R and a point ! 2 @R , we denote by Œa; !�R the
line segment in R joining a to ! (this can be reduced to a point if ! 2 V1.R/ and
aD ! ). The following fact is obvious:

Lemma 2.3 Let .˛; !/ 2 @2.G;F/, and R a Grushko tree. Let ai 2 R n f˛g and
bi 2R n f!g be two sequences of points converging to ˛ and ! , respectively. Assume
that .˛i ; !i / 2 @2.G;F/ is such that Œai ; bi �� Œ˛i ; !i �R .

Then .˛i ; !i / converges to .˛; !/.
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Being carried by a subgroup Let A�G be a nonperipheral subgroup whose Kurosh
rank is finite, and R be a Grushko .G;F/–tree. Let RA�R be the minimal A–invariant
subtree, which is in particular a Grushko .A;F jA/–tree. The inclusion RA�R induces
a natural continuous embedding of @.A;F jA/ into @.G;F/, and one checks that it does
not depend on the choice of R . In the particular case where A is cyclic, this means that
any nonperipheral element g 2G determines a pair of points .g�1; gC1/2 @2.G;F/.

Definition 2.4 (being carried by a subgroup) Given � 2 @1.G;F/ and a subgroup
A � G of finite Kurosh rank, we say that � is carried by A if some translate of �
belongs to @1.A;F jA/.
Similarly, we say that a subset L� @2.G;F/ is carried by A if every algebraic leaf
.˛; !/ 2 L has a translate contained in @2.A;F jA/.

Lemma 2.5 Let A � G be a subgroup of finite Kurosh rank. The set of algebraic
leaves in @2.G;F/ carried by A is closed.

Proof Fix a Grushko .G;F/–tree R . Let RA � R be the minimal A–invariant
subtree. Let .˛; !/ be a limit of leaves .˛i ; !i / carried by A. Let gi be such that
gi :.˛i ; !i / 2 @

2.A;F jA/. In particular, gi :Œ˛i ; !i �R �RA .

Fix an edge e� Œ˛; !�R . For all i large enough, we have e� Œ˛i ; !i �R , hence gie�RA .
Since A has finite Kurosh rank, RA=A is compact, so, up to taking a subsequence, we
can assume that gie lies in a constant A–orbit of edges in RA . This means that there
exists ai 2A such that aigie does not depend on i , and therefore neither does g WDaigi .
Since gi .˛i ; !i /2@2.A;F jA/, we have aigi .˛i ; !i /Dg.˛i ; !i /2@2.A;F jA/. Hence
g:.˛; !/ 2 @2.A;F jA/ is carried by A and so is .˛; !/.

3 Currents and intersection pairing

We now define a notion of geodesic currents for free products. In the case of free
groups, these were defined in [7], and further studied in [32; 33]. We mention that
another approach to relative currents in the case where G is a free group has recently
been proposed by Gupta in [26]. We denote by i W @2.G;F/! @2.G;F/ the involution
defined by i.˛; !/ D .!; ˛/. A geodesic current on .G;F/ is a G–invariant and
i –invariant Radon measure � on @2.G;F/ (ie � gives finite measure to compact
subsets of @2.G;F/). The space Curr of geodesic currents on .G;F/ is equipped with
the weak topology: a sequence .�n/n2N 2 CurrN converges to a current � 2 Curr if
�n.S �S

0/ converges to �.S �S 0/ for all disjoint clopen subsets S; S 0 � @2.G;F/.
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Every nonperipheral element g 2G determines a current

�g D
X

h2G=hgi

ıh.g�1;gC1/C ıh.gC1;g�1/;

where for .˛; !/ 2 @2.G;F/, ı.˛;!/ denotes the Dirac mass at .˛; !/.

Alternatively, one can define �g as follows: Given a Grushko .G;F/–tree R and
an oriented edge path J � R , consider the cylinder CylJ � @

2R consisting of all
.˛; !/2 @2R such that J is contained in Œ˛; !�R and oriented towards ! . Let Ag �R
be the axis of g , and D�Ag a fundamental domain. Then �g.CylJ / is the number of
h 2G such that h:J � Ag (with no requirement about orientation) and the first edge
of h:J lies in D. Notice that if xJ denotes the segment J with the opposite orientation,
then �g.Cyl xJ /D �g.CylJ /. Note also that the values of �g on the cylinders of this
form completely determine �g .

Similarly, if ˛; ! 2 V1.G;F/ are two distinct points of infinite valence, one can define
a current

�˛;! D
X
h2G

ıh.˛;!/C ıh.!;˛/

so that �˛;!.CylJ / is the number of h 2G such that h:J � Œ˛; !�R (without require-
ment about orientation).

Given T 2O and any current �, there is a naturally defined pairing given by

.�/ hT; �i D
X
e

l.e/

Z
Cyle

�;

where the sum is taken on a set of representatives of orbits of edges of T . One can
check that hT; �gi D kgkT and hT; �˛;!i D dT .v˛; v!/ (where v˛ and v! are the
points in T fixed by the peripheral subgroups corresponding to ˛; ! 2 V1.G;F/.

In contrast to [34], where the existence of a continuous pairing on cvN �Curr was
established in the case where G is a free group, the following proposition suggests that
geodesic currents are not so well-adapted to the study of free products.

Proposition 3.1 Assume that F contains an infinite group and that either rkK.G;F/�
3 or else rkf .G;F/� 1. Then there does not exist any continuous map

i W O�Curr!R

such that for all T 2O and all nonperipheral g 2G, one has hT; �gi D kgkT .
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A B C

T

hA;C bk i hBi

Tk

B

S

B htbki
Sk

Figure 2: Examples showing the impossibility to extend continuously the
natural intersection pairing in the relative setting.

Remark 3.2 The definition of the pairing .�/ makes sense for any simplicial trees T
with trivial edge stabilizers. Any continuous extension of the pairing must satisfy this
formula for such a tree T (this amounts to letting l.e/ go to 0 for some edges of a tree
in O ). The argument above then shows that with this extended definition of the pairing,
the set of pairs .T; �/ 2O�Curr.G;F/ such that hT; �i D 0 is not even closed.

Proof Assume by contradiction that i W O � Curr ! R is such a continuous map.
Since the translation length functions are continuous on O and O is dense on O , one
necessarily has hT; �gi D kgkT for all nonperipheral elements g 2G and all T 2O .
We will prove the proposition by exhibiting a sequence of trees Tk 2 O having a
well-defined limit T in O , and a sequence of nonperipheral elements gk 2 G such
that �gk have a well-defined limit � in the space of (nonprojective) currents, and such
that kgkkTk D 0 while kgkC1kTk is a constant m > 0 independent of k . Then one
should simultaneously have hT; �i D 0 and hT; �i Dm, a contradiction.

Assume first that rkK.G;F/�3 so that G can be written as GDA�B�C relative to F ,
with B 2 F infinite and A;C ¤ f1g. Let .bk/k2N be a sequence of distinct elements
of B, a 2Anf1g, c 2C nf1g and let gk WD abkcb�1k . Take for Tk the Bass–Serre tree
of the graph-of-groups decomposition of G represented in Figure 2, where all edges
have length 1. Hence hTk; �gk i D kgkkTk D 0 and hTk; �gkC1i D kgkC1kTk D 4.
Moreover, Tk converges to T as k!1. Let R be a Grushko .G;F/–tree, and let
ˇ 2 V1.R/ be the point fixed by B. Then �gk converges to �ˇ;aˇ C �ˇ;cˇ (the proof
of this fact is left as an exercise for the reader).

If rkf .G;F/� 1 and rkK.G;F/D 2, then G D B � hti for some B 2 F infinite and
t nonperipheral. Let Sk and S be the trees showed in Figure 2, where the edges of Sk
have length 1 and the edges of S have length 2. Then ktbkkSkD0, ktbkC1kSkD3 and
Sk converges to S. Note that S is a Grushko .G;F/–tree, and denote by ˇ 2 V1.S/
the vertex fixed by B. Then �tbk converges to �ˇ;tˇ .

Remark 3.3 If one works in F3Dha; b; ci without peripheral structure and considers
ordinary (ie absolute) currents in @2F3 instead of @2.F3; fhai; hbi; hcig/, then the
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sequence of currents associated to gk D abkcb�k does not converge in the space of
(nonrelative) currents in F3 . On the other hand, rescaling it by 1

k
yields a convergent

sequence, but 1
kC1
kgkC1kTk D

4
kC1

has the same limit as 1
k
kgkkTk D 0, so there is

no contradiction in this case.

4 Algebraic laminations

In the present section, we introduce algebraic laminations for free products, and we
define the algebraic lamination L2.T / dual to a very small tree T 2O . We also define
the one-sided lamination L1.T / dual to T , and relate it to L2.T / in Section 4.7. All
these objects were introduced in [10; 11] in the context of free groups. In Section 4.8,
we prove that if .Tn/n2N 2ON is a sequence that converges to a tree T with dense
orbits, and if .˛n; !n/2L2.Tn/ converges to .˛; !/2 @2.G;F/, then .˛; !/2L2.T /.
Though this fails to hold in general when T is not assumed to have dense orbits,
Proposition 4.23 also provides a weaker (and crucial) statement valid for all trees T 2O .

4.1 General definition

Recall that i W @2.G;F/! @2.G;F/ is the involution defined by i.˛; !/D .!; ˛/.

Definition 4.1 (algebraic lamination) A .G;F/–algebraic lamination is a closed
G–invariant and i –invariant subset of @2.G;F/.

If L is any subset of @2.G;F/, there is a smallest lamination containing L; we call it
the lamination generated by L.

Given a Grushko tree R and a finite set E of edges of R , we denote by CE � @2.G;F/
the subspace made of all pairs .˛; !/ 2 @2.G;F/ such that Œ˛; !�R contains one of the
edges in E ; this is a compact set. In particular, if E contains a representative of each
orbit of edges, then any nonempty lamination ƒ has nonempty intersection with CE ,
and ƒDG:.ƒ\CE /.

4.2 Dual lamination of an R–tree

We will be mainly interested in algebraic laminations obtained by the following con-
struction. Let T 2 O. For all " > 0, we let L2".T / be the closure in @2.G;F/ of the
set of pairs .g�1; gC1/, where g runs among the set of all nonperipheral elements
with kgkT � ".
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Definition 4.2 (algebraic lamination dual to a tree) The algebraic lamination dual to
the tree T is

L2.T / WD
\
">0

L2".T /:

Lemma 4.3 A tree T 2O is a Grushko .G;F/–tree if and only if its dual lamination
is empty.

Proof If T 2 O , then L2".T / D ∅ for every " > 0 smaller than the length of the
shortest edge of T , so L2.T / D ∅. Conversely, if T 2 @O , then for all " > 0, the
lamination L2".T / is nonempty. Indeed, this is clear if T is not relatively free, and if
T is not simplicial, the finiteness of orbits of directions [30, Corollary 4.8] implies
the existence of elements of arbitrarily small translation length, so L2".T /¤∅ for all
" > 0. Let E be a finite collection of edges of R that contains one representative in
every G–orbit of edges. Then L2".T /\CE is nonempty for every " > 0. Since the
intersections L2".T /\CE form a decreasing collection of nonempty compact sets as
" goes to 0, we get that L2.T /¤∅.

Lemma 4.4 Let T 2O is a simplicial .G;F/–tree. Then all algebraic leaves in L2.T /
are carried by a vertex stabilizer in T .

Proof Let .˛; !/ 2 L2.T /. Let " > 0 be smaller than the length of the shortest
edge of T . Since .˛; !/ 2 L2".T /, we can find a sequence ..g�1n ; gC1n //n2N that
converges to .˛; !/ in @2.G;F/, with kgnkT � " for all n 2N . By definition of ",
all elements gn are contained in a vertex stabilizer of T . Now let yT be a Grushko tree
that collapses onto T . Since the minimal subtrees in yT of the vertex stabilizers of T
are pairwise disjoint, convergence of .g�1n ; gC1n / implies that all gn are contained
in the same vertex stabilizer Gv of T . Therefore .˛; !/ is carried by Gv .

If T 2O does not have dense orbits, then its Levitt decomposition yields a nontrivial
action on a simplicial tree S, with a 1–Lipschitz collapse map T ! S.

Corollary 4.5 Let T 2O . Then every algebraic leaf in L2.T / is carried by a vertex
group of the Levitt decomposition of T .

Proof Let S be the Levitt decomposition of T . Since there is a 1–Lipschitz collapse
map T ! S, we have L2.T /�L2.S/. It then follows from Lemma 4.4 that all leaves
in L2.T / are contained in a vertex group of S.
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4.3 One-sided dual laminations

We now introduce the one-sided lamination L1.T / dual to a tree T 2O ; see Section 5
of [11] in the context of free groups. The relation between L1.T / and L2.T / will be
discussed in Section 4.7 below.

Definition 4.6 (one-sided dual lamination) Given T 2 O , we define the one-sided
lamination L1.T /� @1.G;F/ as the set of points � 2 @1.G;F/ such that for every
Grushko tree R , every x0 2R and every G–equivariant map f W R! T , the image
f .Œx0; ��R/ is a bounded subset of T .

Note that � is assumed in the above definition to be at infinity, not in V1.G;F/. Also
note that the condition in the above definition depends neither on the choice of the
Grushko tree R , nor on the choice of the basepoint x0 , nor on the choice of the map f
(see Lemma 1.1). The following lemma is the analogue of Lemma 4.4 for the one-sided
lamination L1.T /:

Lemma 4.7 Let S 2O be a simplicial tree, and let � 2 L1.S/. Then � is carried by
a vertex stabilizer of S.

Proof One can find a Grushko .G;F/–tree R and an equivariant map f W R! S

sending edges to edges. Indeed, starting from any Grushko .G;F/–tree R , and from an
equivariant map sending vertices to vertices, one can subdivide R so that f sends each
edge to an edge or a vertex. If some edge e is collapsed to a vertex, then subdividing e
and sending its midpoint to a distinct vertex allows one to assume that f sends edges
to edges.

Since f .Œx0; ��R/ is bounded, there exists a vertex v 2 S such that f �1.v/\ Œx0; ��R
is infinite. Since f �1.v/ consists only of vertices, and there are only finitely many
orbits of them, there is sequence of points xn 2 Œx0; ��R \ f �1.v/ converging to �
lying in the same orbit, say xn D hnx1 . In particular, denoting by Gv the stabilizer
of v , we have hn 2Gv , and � is carried by Gv .

As in the previous section, we deduce the following statement:

Corollary 4.8 Let T 2O , and let � 2 L1.T /. Then � is carried by a vertex group of
the Levitt decomposition of T .
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4.4 Limit set of a point in @1.G;F/

The following notion will be useful for relating the laminations L1.T / and L2.T /
associated to a tree T 2O .

Definition 4.9 (limit set) Given � 2 @1.G;F/, the limit set of � is the algebraic
lamination ƒ2.�/ � @2.G;F/ defined as follows: we have .˛; !/ 2 ƒ2.�/ if up to
exchanging the roles of ˛ and ! , there exists a sequence .gn/n2N 2G

N converging
to ˛ such that gn:� converges to ! as n!1.

Remark 4.10 If one fixes a Grushko tree R and a basepoint x0 , we have .˛; !/ 2
ƒ2.�/ if and only if Œ˛; !�R can be obtained as a limit of translates of the ray Œx0; ��R .
An easy example is that if � is an endpoint of a nonperipheral element g 2 G, then
ƒ2.�/ is equal to the lamination made of all translates of .g�1; gC1/.

Lemma 4.11 For all � 2 @1.G;F/, the limit set ƒ2.�/ is nonempty.

Proof Let Œx0; ��R be a ray in a Grushko .G;F/–tree R based at a point x0 with
trivial stabilizer, and let en be a sequence of edges going to infinity in this ray, and
oriented towards � . Up to passing to a subsequence, we can assume that en D gne for
some fixed edge e of R . Up to passing to a further subsequence, g�1n x0 converges to
some ˛ 2 @R , and g�1n � to some ! 2 @R , and ˛ ¤ ! because they are separated by
the edge e .

Lemma 4.12 Let .!; !0/ 2 @2.G;F/, with ! 2 @1.G;F/.

Then ƒ2.!/ is contained in the lamination generated by .!; !0/.

Proof Let .˛; ˇ/ be a leaf in ƒ2.!/. Let R be a Grushko tree, and choose a basepoint
x0 in Œ!; !0�R . By definition of ƒ2.!/ there exists gn 2G such that gn:x0! ˛ and
gn:!! ˇ .

We claim that gn!0 ! ˛ . Let zIn D gn:Œx0; !�R \ Œ˛; ˇ�R . If ˛ (resp. ˇ ) lies in
V1.G;F/, then for n large enough, gn:Œx0; !�R contains ˛ (resp. ˇ ) together with
an edge en (resp. e0n ) incident on ˛ (resp. ˇ ), and not contained in Œ˛; ˇ�R . If ˛
(resp. ˇ ) lies in @1.G;F/, then we take the convention that en (resp. e0n ) is empty.
We then let In WD zIn[ en[ e0n . As gn:Œx0; !�R contains zIn and the edges en and e0n ,
we have In � gn:Œx0; !�R . Since Œx0; !�R � Œ!0; !�R , we deduce that gn:Œ!; !0�R
contains In , so gn.!0; !/ converges to .˛; ˇ/.
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Lemma 4.13 Let � 2 @1.G;F/, and let A�G be a subgroup of finite Kurosh rank.

If � is carried by A, then ƒ2.�/ is carried by A.

Proof Let ˛ 2 @1.G;F/ be such that .˛; �/ is carried by A. By Lemma 4.12, ƒ2.�/
is contained in the lamination L generated by .˛; �/. By Lemma 2.5, every leaf of L
is carried by A, hence so is ƒ2.�/.

The following lemma gives a converse to Lemma 4.13 in the case where A�G is a
nonperipheral cyclic subgroup:

Lemma 4.14 Let A�G be a nonperipheral cyclic subgroup, and let � 2 @1.G;F/
be a point that is not carried by A. Then ƒ2.�/ contains a leaf that is not carried by A.

Proof Fix a Grushko .G;F/–tree R whose edges have length 1. Let a be a generator
of A, let L be the axis of a in R and let l be its translation length.

We claim that if jgL\Lj> l for some g 2G, then gLDL. Indeed, if jgL\Lj> l ,
then one of the elements gag�1a or gag�1a�1 (depending on the relative orientations
of the axes of a and gag�1 ) fixes a nondegenerate arc in gL\L. Since R has trivial
arc stabilizers, we deduce that gag�1 D a˙1 , so gLD L.

Fix x0 2 R , and write Œx0; ��R as a union of intervals Ii of length l C 2, which
are unions of edges and such that jIi \ IiC1j � l C 1 for all i 2 N . We claim that
for infinitely many i , the interval Ii is not contained in any translate of L. Indeed,
otherwise, there exists i0 such that for all i � i0 , there exists gi 2G such that Ii is
contained in giL. Since jIi \ IiC1j> l , we get that giLD giC1L. Thus, a subray of
Œx0; ��R is contained in gi0L, contradicting that � is not carried by A.

So consider ik!1 such that for all k , the interval Iik is not contained in any translate
of L. By cocompactness, and up to passing to a subsequence, there exists hk 2G such
that hkIik contains a fixed edge e . Up to passing to a further subsequence, we can
thus assume that hk.x0; �/ converges to .˛; !/ 2ƒ2.�/. If ˛ or ! lies in V1.G;F/,
then .˛; !/ is clearly not carried by the cyclic group A. Otherwise, up to passing to
a further subsequence, we can assume that the segment J D hkIik does not depend
on k . Since J � Œ˛; !�R is not contained in any translate of L, we deduce that .˛; !/
is not carried by A.
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4.5 Consequences of bounded backtracking

Given two G–trees T; T 0 2 O and a G–equivariant map f W T ! T 0, one says that
C � 0 is a bounded backtracking (BBT) constant for f , or that f is a C –BBT map, if
for any segment Œx; y�� T and any z 2 Œx; y�, one has dT 0.f .z/; Œf .x/; f .y/�/� C.
We define BBT.f / as the minimal BBT constant of f .

Lemma 4.15 Let R be a Grushko .G;F/–tree, let T 2 O and let f W R! T be a
C –BBT map.

(1) For every g 2G elliptic in T , we have diam.FixT .g//� 2C.

(2) For all a 2R and all ! 2 @R , if f .Œa; !�R/ is bounded, then there is a subray
Œb; !�R � Œa; !�R such that f .Œb; !�R/ is contained in a ball of radius 3C.

(3) For all .˛; !/ 2 L2.T /, f .Œ˛; !�R/ has diameter at most 20C.

Proof (1) Let u; v 2 T be fixed by g . We can assume that g is nonperipheral since
otherwise it has a unique fixed point in T . Let zu; zv 2 R be preimages of u and v .
For any k 2 Z, we have f .gkzu/D f .zu/, and the definition of the BBT then implies
that diam.f .Œzu; gkzu�// � C. Now choose k 2 Z such that I D Œzu; gkzu� intersects
J D Œzv; gzv�. Then f .I / \ f .J / ¤ ∅ and since both have diameter at most C, it
follows that dT .u; v/� 2C.

(2) Let � WD supx2Œa;!�R dT .f .a/; f .x//, and let b 2 Œa; !�R be a point that satisfies
dT .f .a/; f .b//� ��C. Fix y 2 Œb; !�R , and denote by A;B; Y 2 T the f –images
of a , b and y . Let P be the projection of B on ŒA; Y �, so PB � C because f is
C –BBT. Then BY D 2PBCAY �AB � 2C C �� .��C/� 3C.

(3) By assertion (2), there is a segment I D Œa; b� � Œ˛; !�R such that the sets
X D f .Œa; ˛�R/ and Y D f .Œb; !�R/ both have diameter at most 6C. By defini-
tion of L2.T /, there exists a sequence of nonperipheral elements gi 2 G such that
.g�1i ; gC1i / converges to .˛; !/, and kgikT ! 0. For i large enough, we have
I � AxisR.gi /. Since BBT.f / � C, the image f .AxisR.gi // is contained in the
C –neighbourhood of the characteristic set of gi in T . Since f .AxisR.gi // intersects
X and Y , we are done if gi is elliptic in T by assertion (1). We can therefore assume
that gi is hyperbolic in T , and since kgikT tends to 0, there are infinitely many distinct
elements gi . Since there are only finitely many elements of G sending some edge of I
into I, we can assume that I � Œa; gi :a� for all i 2N . Since f .AxisR.gi // is contained
in the C –neighbourhood of AxisT .gi /, we have dT .f .a/; gif .a// � kgikT C 2C.
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Thus, f .I /� f .Œa; gi :a�/ has diameter at most kgikT C 4C. Since I intersects both
Œa; ˛�R and Œb; !�R , the image f .Œ˛; !�R/ has diameter at most kgikT C 16C. The
claim follows.

4.6 A criterion for checking that an algebraic leaf is dual to a tree

The following lemma gives a criterion for checking that a pair .˛; !/ 2 @2.G;F/
belongs to the dual lamination of a tree T 2O :

Lemma 4.16 Let T 2O and let .˛; !/ 2 @2.G;F/.

Assume that there exists K > 0 such that for all " > 0, there exists a Grushko
.G;F/–tree R" of covolume smaller than ", with a 1–Lipschitz G–equivariant map
f"W R"! T , such that f".Œ˛; !�R"/ has diameter at most K".

Then .˛; !/ 2 L2.T /.

Remark 4.17 As follows from the proof, the condition that diam.f".Œ˛; !�R"//�K"
can be replaced by the a priori weaker assumption that there exist a; b 2 Œ˛; !�R" and
a subset Y" � T of diameter at most K" such that both f".Œa; ˛�R"/ and f".Œb; !�R"/
are contained in Y" .

Proof We will prove that for every " > 0, we have .˛; !/ 2 L2
.KC4/"

.T /. Consider
nonstationary sequences of vertices xi ; yi 2 R" at distance at most " from Œ˛; !�R"
and converging to ˛ and ! , respectively (notice that one can take xi ; yi 2 Œ˛; !�R"
if ˛ and ! belong to @1.G;F/). Since R" has covolume at most ", there exists
an element gi 2 G such that Œxi ; yi � � AxisR".gi / and dR".yi ; gixi / � 2". In
particular, the pairs .g�1i ; gC1i / converge to .˛; !/. Since f" is 1–Lipschitz, we
have dT .f".yi /; gif".xi //� 2". On the other hand, since xi and yi lie at distance at
most " from Œ˛; !�R" , using the fact that f".Œ˛; !�R"/ has diameter at most K" we get
that dT .f".xi /; f".yi //� .KC2/". It follows that dT .f".xi /; gif".xi //� .KC4/",
and hence kgikT � .KC 4/". Therefore .˛; !/ 2 L2

.KC4/"
.T /.

The existence of Grushko trees admitting 1–Lipschitz "–BBT maps towards T is
guaranteed in the case where T has dense orbits by the following lemma:

Lemma 4.18 For all T 2 O with dense orbits and all " > 0, there exists a Grushko
.G;F/–tree R" with covolume at most " and a 1–Lipschitz G–equivariant map
f W R"! T with BBT.f /� ".
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Proof Since T has dense orbits, arc stabilizers in T are trivial [30, Proposition 4.17].
By [30, Theorem 5.3], we can find a sequence of Grushko .G;F/–trees Sn converging
nonprojectively to T , admitting 1–Lipschitz G–equivariant maps fnW Sn! T , and
such that the covolumes of the trees Sn converge to 0. By [3, Lemma 4.1] (see
[29, Proposition 3.12] for free products), we have BBT.fn/� vol.Sn=G/Lip.fn/ < "
for n large enough, which concludes the proof.

4.7 From L1.T / to L2.T /

Given T 2O , the goal of the present section is to relate L1.T / to L2.T /.

Proposition 4.19 For all T 2O and all � 2 L1.T /, one has ƒ2.�/� L2.T /.

Proof By Corollary 4.8, � is carried by a vertex group A of the Levitt decomposition
of T , and A carries ƒ2.�/ by Lemma 4.13. This way, the proof reduces to the case
where T has dense orbits.

Let .˛; !/ 2ƒ2.�/. Fix " > 0, and consider a Grushko .G;F/–tree R" of covolume
at most ", with a 1–Lipschitz "–BBT G–equivariant map f"W R"! T (this exists in
view of Lemma 4.18). By Lemma 4.15(2), there exists a geodesic ray 
 D Œx0; ��R"
in R" such that f .
/ has diameter at most 6" in T . Without loss of generality, we
can assume x0 has trivial stabilizer.

Let .gn/n2N 2 G
N be a sequence of elements such that gnx0 ! ˛ and gn� ! ! .

Let Œx0; xn� � 
 be an initial segment such that gn:xn converges to ! . For each n,
consider hn 2G whose axis has a fundamental domain Dn containing Œx0; xn�, and
such that jDn n Œx0; xn�j � 2 vol.R"=G/ � 2". Then gn:.h�1n ; hC1n / converges to
.˛; !/ in @2.G;F/. In addition, khnkT � 2"C 6", so .˛; !/ 2 L28".T /. Since this
holds for every ", we have ƒ2.�/� L2.T /.

Remark 4.20 In [11, Section 5], Coulbois, Hilion and Lustig actually prove that in
the context of free groups (with F D ∅), if T is a tree with dense FN –orbits, then
L2.T /Dƒ2.L1.T //. Proposition 4.19 above only shows one inclusion. Though we
believe that equality still holds in the context of free products, we will not prove the
reverse inclusion, as we will not need it in the sequel of the present paper.

Corollary 4.21 Let T; T 0 2O .

(1) If L1.T /\L1.T 0/¤∅, then L2.T /\L2.T 0/¤∅.

(2) If L1.T /\L1.T 0/ contains a point carried by a nonperipheral subgroup A�G
of finite Kurosh rank, then L2.T /\L2.T 0/ contains a leaf that is carried by A.
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(3) If L1.T /\L1.T 0/ contains a point � that is not carried by some nonperipheral
cyclic subgroup A�G, then L2.T /\L2.T 0/ contains a leaf that is not carried
by A.

Proof If � 2L1.T /\L1.T 0/, then Proposition 4.19 implies that L2.T /\L2.T 0/�
ƒ2.�/, which is nonempty by Lemma 4.11. The second assertion then follows from
Lemma 4.13, and the last follows from Lemma 4.14.

4.8 Varying the tree

We now study the behaviour of the lamination L2.T / as T varies in O . Our main
result is Proposition 4.23, which says in particular that if Tn converges to a tree T 2O
with dense orbits and if .˛n; !n/ 2 L2.Tn/ converges to .˛; !/ 2 @2.G;F/, then
.˛; !/ 2 L2.T /. Here, the condition that T has dense orbits is crucial, as shown by
Remark 4.24 below. However, Proposition 4.23 also provides a statement that is valid
for all trees in O ; this is our substitute for the lack of continuity of Kapovich and
Lustig’s intersection form in the context of free products.

Given trees Tn; T 2 O , and equivariant maps fnW R! Tn and f W R! T that are
linear on edges of R , we say that fn converges to f if Tn converges to T and
for every point v 2 R , fn.v/ converges to f .v/. By definition of the equivariant
Gromov–Hausdorff topology, this means that for all g 2G, dTn.fn.v/; gfn.v// con-
verges to dT .f .v/; gf .v//, and this implies that dTn.fn.x/; fn.y// converges to
dT .f .x/; f .y// for all x; y 2 R . Note that this implies that Lip.fn/ converges to
Lip.f /: this follows from the fact that if fe1 D Œv11 ; v

2
1 �; : : : ; ek D Œv

1
k
; v2
k
�g is a finite

set of representatives of the G–orbits of edges in R , then we have

Lip.f /D max
i2f1;:::;kg

dT .f .v
1
i /; f .v

2
i //

dR.v
1
i ; v

2
i /

(and we have the similar expressions for Lip.fn/). Also note that if Tn converges to T ,
then for every Grushko .G;F/–tree R and every f W R! T linear on edges, there
exist maps fnW R! Tn converging to f : these are defined by mapping a finite set
fv1; : : : ; vkg of representatives of the G–orbits of vertices in R to approximations of
f .vi / in Tn , and extending equivariantly on vertices and linearly on edges.

Lemma 4.22 Let R be a Grushko .G;F/–tree, let T 2O , and let fnW R! Tn be a
sequence of maps converging to f W R!T for some Tn 2O converging to T . Consider
a sequence of algebraic leaves .˛n; !n/ 2 @2.G;F/ converging to .˛; !/ 2 @2.G;F/.
If diam.fn.Œ˛n; !n�R//�K for all n 2N , then diam.f .Œ˛; !�R//�K .

Algebraic & Geometric Topology, Volume 19 (2019)



Algebraic laminations for free products and arational trees 2311

Proof Let I � Œ˛; !�R be a compact segment. Then for all n 2N sufficiently large,
the segment I is contained in Œ˛n; !n�R . Therefore, the diameter of fn.I / is at
most K . This implies that the diameter of f .I / is at most K . As this is true for any
subsegment I � Œ˛; !�R , the diameter of f .Œ˛; !�R/ is at most K .

Proposition 4.23 Let T 2 O and let .Tn/n2N 2 ON be a sequence that converges
to T . Consider a sequence of algebraic leaves .˛n; !n/ 2 L2.Tn/ converging to
.˛; !/ 2 @2.G;F/.
Then .˛; !/ 2 .L1.T /[V1.G;F//2 .

If in addition T has dense orbits, then .˛; !/ 2 L2.T /.

Remark 4.24 However, if T does not have dense orbits, then l may fail to belong
to L2.T /. It may even happen that a sequence of trees Tn in @O converges to a
Grushko tree T (as in the examples from the proof of Proposition 3.1), in which case
L2.Tn/¤∅ while L2.T /D∅.

Proof Let R be a Grushko .G;F/–tree. Let f W R ! T be a G–equivariant
map, and let fnW R ! Tn be G–equivariant maps that converge to f . Let C WD
vol.R=G/ � Lip.f /, so that f is C –BBT. Since Lip.fn/ converges to Lip.f /, the
map fn is 2C –BBT for n large enough. Since .˛n; !n/2L2.Tn/, Lemma 4.15 implies
that diam.fn.Œ˛n; !n�R//� 40C. By Lemma 4.22, we have diam.f .Œ˛; !�R//� 40C,
so .˛; !/ 2 .L1.T /[V1.G;F//2 .

In the case where T is further assumed to have dense orbits, then for all " > 0,
Lemma 4.18 provides a Grushko .G;F/–tree R" of covolume smaller than " with a 1–
Lipschitz G–equivariant map f"W R"! T . The argument from the previous paragraph
then shows that f".Œ˛; !�R"/ has diameter at most 40". Lemma 4.16 implies that
.˛; !/ 2 L2.T /.

The following corollary will be crucial for proving the version of our unique duality
statement for arational trees given in Corollary 13.2 below:

Corollary 4.25 Let .Tn/n2N ; .T
0
n/n2N 2ON be two sequences of trees that converge

to T and T 0, respectively.

Assume that L2.Tn/\L2.T 0n/ ¤ ∅ for every n 2 N. Assume moreover that T has
dense orbits and that for all v ¤ v0 2 V1.G;F/, the group hGv; Gv0i is not elliptic
in T .

Then L1.T /\L1.T 0/¤∅, and hence L2.T /\L2.T 0/¤∅.
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Proof For all n 2N , let .˛n; !n/ 2 L2.Tn/\L2.T 0n/, and let .˛; !/ 2 @2.G;F/ be
a limit of translates of .˛n; !n/. Since T has dense orbits, Proposition 4.23 implies
that .˛; !/ 2L2.T /, and that ˛; ! 2L1.T 0/[V1.G;F/. The hypothesis made on T
means that L2.T / does not contain any leaf with both endpoints in V1.G;F/, so up
to exchanging the roles of ˛ and ! , we can assume that ! 2 @1.G;F/. Then ! 2
L1.T /\L1.T 0/, showing that L1.T /\L1.T 0/¤∅. The fact that L2.T /\L2.T 0/¤∅
then follows from Corollary 4.21.

We will also need the following variation on Proposition 4.23:

Proposition 4.26 Let T 2 O be a tree with dense orbits and let .Tn/n2N 2 ON be
a sequence that converges to T . Let .gn/n2N 2 G

N be a sequence of nonperipheral
elements such that kgnkTn converges to 0. Let .˛; !/ 2 @2.G;F/ be an accumulation
point of .g�1n ; gC1n /.

Then .˛; !/ 2 L2.T /.

Proof Fix " > 0. By Lemma 4.18, there exists a tree R 2O of covolume at most "
which admits a 1–Lipschitz equivariant map f"W R ! T . Let fnW R ! Tn be a
sequence of maps converging to f . Since Lip.fn/ converges to Lip.f /, the map fn
is 2"–BBT for n large enough.

Assume first that ˛ and ! both lie in @1.G;F/. Let In WDAxisR.gn/\ Œ˛; !�R . The
endpoints of In converge to ˛ and ! .

If kgnkR is bounded, then for n and n0 large enough, the axes of gn and gn0 have an
overlap that is large compared to their translation length, so the commutator Œgn; gn0 �
fixes an edge in R , hence is trivial. In this case, for n large enough gn is a power of
some fixed element h, and h is elliptic in T . Then .˛; !/ are the endpoints of the axis
of h, and the result is clear.

If kgnkR is unbounded, one can choose a fundamental domain Jn of the axis of gn
whose endpoints converge to ˛ and ! . Since fn is 2"–BBT and kgnkTn tends to
zero, fn.Jn/ has diameter at most 5" for n large enough. In particular, for any fixed
interval J � Œ˛; !�R , fn.J / has diameter at most 5" for n large enough. Since fn
converges to f , it follows that f .J / has diameter at most 5". As this is true for every
subsegment J � Œ˛; !�R , we deduce that f .Œ˛; !�/ has diameter at most 5". As this
is true for every " > 0, Lemma 4.16 ensures that .˛; !/ 2 L2.T /.
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If ˛ or ! lies in V1.G;F/, the argument is similar. If both ˛ and ! lie in V1.G;F/,
then either gn is eventually constant and the result is clear, or kgnkR � d.˛; !/ for
n large enough. In all cases, one then finds a fundamental domain Jn for the axis
of gn containing larger and larger segments Jn � Œ˛; !�R (with ˛ 2 Jn or ! 2 Jn if
˛ 2 V1.G;F/ or ! 2 V1.G;F/), and one concludes as above.

5 Simple elements and simple leaves

The goal of the present section is to introduce the notions of simple elements of .G;F/
and simple leaves of an algebraic lamination, and prove an analogue of Corollary 4.25
for those.

5.1 Simple elements

An element g 2 G is simple (relative to F ) if it is nonperipheral and contained in a
proper free factor of .G;F/. The goal of the present section is to give a criterion for
characterizing simple elements in terms of so-called Whitehead graphs, which were
first introduced in [45] in the context of free groups.

Let S be a Grushko tree. Let v be a vertex in the quotient graph S=G. Let zv be the
lift of v in S ; we denote its stabilizer by Gv . Let Ev be the set of oriented edges
of S=G with origin v . For each e 2 Ev , we fix a lift ze in S originating at zv . Let
g 2 G be a nonperipheral element. The Whitehead graph WhS .g; v/ is the labeled
graph with vertex set Ev , two directions corresponding to oriented edges e1 and e2
being joined by an edge labeled by an element h 2Gv if the axis of g in S crosses
a turn in the G–orbit of .ze1; hze2/. Notice that there may be several edges joining a
given pair of vertices if the labels are distinct; the labels on WhS .g; v/ depend on the
choice of the lifts of the edges in Ev .

Given a connected subgraph A�WhS .g; v/ and a point x 2 A, we define the mono-
dromy Mon.A; x/ of A based at x as the subgroup of Gv made of those elements which
label closed loops in A based at x . Connectedness of A implies that the conjugacy
class of Mon.A; x/ is independent of x , so we denote it by Mon.A/.

We note that the conjugacy class Mon.A/ does not depend on the choice of the lifts
of the edges in Ev . Indeed, if one changes the choices of lifts zei of ei to ze0i D gizei
(with gi 2Gv ), then the label h of each edge WhS .g; v/ joining ei to ej is changed
to gihg�1j .
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Moreover, if � is a maximal subtree of WhS .g; v/, then one can change the choices
of lifts of the edges adjacent to v so that each edge in � has trivial label. If A is a
connected subgraph of WhS .g; v/ with trivial monodromy, one can therefore choose
the lifts of the edges adjacent to v so that all edges in A have trivial label.

A vertex x 2WhS .g; v/ is an admissible cutpoint if there exists a decomposition of
the form WhS .g; v/D A[B, where A is a connected subgraph of WhS .g; v/ with
Mon.A/D f1g, with A\B D fxg. We say that WhS .g; v/ has an admissible cut if it
either has an admissible cutpoint, or is a disjoint union WhS .g; v/D AtB, where A
is a connected subgraph with Mon.A/D f1g.

We aim to prove the following characterization of simple elements:

Proposition 5.1 A nonperipheral element g 2 G is simple if and only if for every
Grushko tree S, there exists a vertex v 2 S=G such that WhS .g; v/ has an admissible
cut.

We will start by proving the following lemma:

Lemma 5.2 Let S be a Grushko tree and let g 2G be a nonperipheral element. The
following conditions are equivalent :

(i) There exists a vertex v 2 S=G such that WhS .g; v/ has an admissible cut.

(ii) There exist a vertex zv 2 S and two sets zA and zB of edges originating at zv such
that
� zA\ h zAD∅ for all h 2Gv n f1g,
� zB is Gv–invariant ,
� .Gv: zA/[ zB contains all edges originating at zv ,
� zA\ zB contains at most one edge ,
� if fe; e0g is a turn in the axis of g in S, then there exists h 2 G such that
h:fe; e0g � zA or h:fe; e0g � zB.

(iii) There exists a Grushko tree S 0 and a noninjective cellular map (ie sending edge
to edge or vertex) from S 0 to S such that kgkS 0 D kgkS .

Remark 5.3 In (iii), in the situation where there is a cellular morphism f W S 0! S

(which is a map sending edges to edges), the conclusion says that g is legal for the
train-track structure defined by f . Notice here that the Grushko trees S and S 0 can
have vertices of valence 2. When f is a collapse map, the conclusion says that the
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axis of g in S 0 does not contain any collapsed edge. In all cases, the tree S 0 has more
orbits of edges than S, but kgkS 0 D kgkS .

Proof We first prove that (i)() (ii). Assume that (i) holds, and consider a decom-
position WhS .g; v/D A[B, where A is connected and has trivial monodromy, and
A\B contains at most one point. Let zA be a set consisting of exactly one lift of each
edge corresponding to a vertex of the subgraph A�WhS .g; v/, where these lifts are
chosen so that all labels of edges in A are trivial. Let zB be the full preimage of B
in S. Then, for these choices of lifts, assertion (ii) holds.

Conversely, let zA and zB be as in (ii), and A and B their images in S=G. The
construction of the Whitehead graph requires to choose lifts of the edges in Ev , and we
make sure that the lifts of the edges in A are chosen in zA. We view A and B as induced
subgraphs of WhS .g; v/. It is clear that A[B contains all vertices of WhS .g; v/
and that A\B contains at most one vertex. The last hypothesis from (ii) ensures that
every edge in WhS .g; v/ is contained either in A or in B, and that all edges in A have
trivial label. The subgraph A might fail to be connected; however, up to replacing A
by one of its connected components A0 and replacing B by B [ .A nA0/, we get a
decomposition of WhS .g; v/ as in the definition of an admissible cut, showing that
assertion (i) holds.

We now prove that (iii)D) (ii). Let f W S 0! S be a noninjective cellular map. Since
any such map is a composition of collapses and folds, up to changing S 0 we can assume
that f W S 0! S is a fold or a collapse. We first consider the case where f is the fold

ze1

ze2

zv1

zv2

zA0

h zA0

zB 0

Y
S 0

fold

zA n fzeg)

z B
n
f
G
zv
:ze
g)ze

hze
zv

S

Figure 3: (ii)() (iii) in the case of a fold.
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defined by a pair of edges ze1; ze2 � S 0 with the same origin (see Figure 3). Since S has
trivial edge stabilizers, the edges ze1 and ze2 are not in the same orbit. Since S and S 0

have the same vertex stabilizers, the noncommon endpoints zv1 and zv2 of ze1 and ze2
are not in the same G–orbit, and either zv1 or zv2 has trivial stabilizer. By symmetry,
we assume that Gzv1 D f1g. Let ze WD f .ze1/D f .ze2/, and zv WD f .zv1/D f .zv2/. We
then have Gzv DGzv2 .

We define zA0 as the set of edges of S 0 incident on zv1 , and zB 0 as the set of edges
incident on zv2 . Then zA0\h: zA0D∅ for every h 2Gzv nf1g, while zB 0 is Gzv –invariant.
Let zA WD f . zA0/ and zB WD f . zB 0/, and note that zA\ zB D fzeg. Therefore zA and zB
satisfy the first four assertions from (ii). Since g is legal, any turn in the axis of g
in S is the image under f of a turn in the axis of g in S 0. It follows that the last
requirement from (ii) is also satisfied.

We now assume that there exists a Grushko tree S 0, and a collapse map f W S 0! S,
with kgkS 0 D kgkS (see Figure 4). Let ze be an edge in S 0 that is collapsed to a point

ze

zv1

zv2

hzv1

zA0)

h zA0

)

zB 0

)

Y

S 0

collapse

zA)

zB

)

h zA

)

zv

S

Figure 4: (ii)() (iii) in the case of a collapse.
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by f , and let zv1 and zv2 be the extremities of ze . Again, since S and S 0 have the same
vertex stabilizers, the vertices zv1 and zv2 belong to distinct G–orbits, and either zv1
or zv2 (say zv1 ) has trivial stabilizer.

Let zA0 (resp. zB 0 ) be the set of edges of S 0 which are incident on zv1 (resp. zv2 ) and
not in the G–orbit of ze . Let zA WD f . zA0/ and let zB WD f . zB 0/. Note that zA\ zB D∅,
and that zB is Gv–invariant. Since kgkS 0 D kgkS , the axis of g in S 0 does not cross
any edge in the G–orbit of ze ; (ii) follows.

We prove that (ii)D) (iii). We first assume that zA\ zBDfzeg is nonempty (see Figure 3).
Consider

Y D

�� a
h2Gzv

h: zA

�
t zB

�.
�;

where � is the equivalence relation identifying the endpoint of h:ze in h: zA with its copy
in zB. There is a natural noninjective cellular map from Y to the star of zv . This is a
(bounded) tree with an action of Gzv , and one defines S 0 by replacing equivariantly the
star of zv in S by Y . Since each vertex at distance 1 from zv has a unique preimage in Y ,
there is a natural way to attach back the edges of S to Y , thus defining a G–tree S 0,
with a noninjective map S 0! S induced by the map above. Let l be the axis of g
in S. Our assumption on g implies that every turn of l lifts to S 0. The lift l 0 of l in S 0

is therefore the axis of g in S 0, and it embeds isometrically in S 0 so kgkS 0 D kgkS .

We now assume that zA\ zB D∅ (see Figure 4). We view zA and zB as subtrees of S
and we denote by zv1 (resp. zv2 ) the copy of zv in zA (resp. zB ). Let Y be the set obtained
from �� a

h2Gzv

h: zA

�
t zB

�
by attaching an edge ze from vB to vA and extending by equivariance. Then there
is a natural collapse map from Y to the star of v in S. As above, there is a natural
way to attach back the edges of S to Y , which defines the desired tree S 0. Since
zA\ zB D∅, the axis of g lifts to S 0 and does not cross any of the newly added edges,

so kgkS 0 D kgkS .

Proof of Proposition 5.1 We first assume that g 2 G is simple, ie there exists a
.G;F/–free splitting G D A �B with g 2 A. Let S be a Grushko tree, and let SA
be the minimal A–invariant subtree of S, which is a Grushko .A;F jA/–tree. Let SB
be a Grushko .B;F jB/–tree, and let R be a Grushko .G;F/–tree obtained from the
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splitting A�B by blowing up A (resp. B ) into SA (resp. SB ). Then, up to rescaling
and subdividing the edges of S, there exists a cellular map f W R! S, which is the
identity when restricted to SA ; in particular, kgkS D kgkR . If f is an isometry, then
the axis of g misses some orbit of edges, hence WhS .g; v/ has an isolated vertex.
If f is not injective, the existence of a vertex v 2 S=G such that WhS .g; v/ has an
admissible cut thus follows from Lemma 5.2.

Conversely, assume that for every Grushko .G;F/–tree S, there exists a vertex v2S=G
such that WhS .g; v/ has an admissible cut. Let S be a Grushko tree with all edges of
length 1. An iterative application of Lemma 5.2 shows that we can find a sequence of
Grushko trees .Si /i2N with all edges of length 1, and with vol.Si=G/Dvol.S=G/Ci ,
such that kgkSi D kgkS for all i 2 N . Define a natural edge of Si as a connected
component of the complement of the set of branch points in Si=G. Since there is a
bound on the number of natural edges in Si=G, for all sufficiently large i 2 N one
of the natural edges e of Si has length greater than kgkS . This implies that the axis
of g in Si does not cross any edge in the orbit of e , and therefore g is elliptic in the
.G;F/–free splitting obtained from Si by collapsing all natural edges outside of the
orbit of e to points. Therefore g is simple.

5.2 Simple algebraic leaves

An algebraic leaf is simple if it is the limit of a sequence of pairs .g�1n ; gC1n / where
for all n 2N, gn is a simple element.

Lemma 5.4 Let g 2 G which is not simple. Then gC1 is not the endpoint of any
simple leaf.

Remark 5.5 This lemma implies that an element g 2G is simple if and only if the
leaf .g�1; gC1/ is simple.

Proof Let .gn/n2N 2G
N be a sequence of elements such that .g�1n ; gC1n / converges

to .˛; gC1/ for some ˛ 2 @.G;F/. We aim to show that gn is nonsimple for all
sufficiently large n 2N .

By Proposition 5.1, there exists a Grushko tree S such that for all vertices v 2 S=G,
the Whitehead graph WhS .g; v/ has no admissible cut. Notice that every compact
subset K of the axis of g in S has a translate gi0K that is contained in Œ˛; gC1�S ,
so for n large enough, gi0K � Œg�1n ; gC1n �S . This implies that for n large enough
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and for each vertex v 2 S=G, the Whitehead graph of gn at v contains the Whitehead
graph of g at v , with the same labels. In particular, for all vertices v 2 S=G, the
Whitehead graph WhS .gn; v/ has no admissible cut. Proposition 5.1 then implies that
gn is nonsimple.

Lemma 5.6 Let .!0; !/ be a simple leaf, with ! 2 @1.G;F/.

Then any leaf in ƒ2.!/ is simple.

Proof Let L be the lamination generated by .!; !0/, which consists of simple leaves.
By Lemma 4.12, ƒ2.!/� L.

Given T 2O , we denote by L2simple.T / the sublamination made of all simple leaves in
L2.T / (this set is closed).

Corollary 5.7 Let T; T 0 2 O and let .Tn/n2N ; .T
0
n/n2N 2 ON be two sequences of

trees that converge to T and T 0, respectively. Assume moreover that T has dense
orbits and that for all v ¤ v0 2 V1.G;F/, the group hGv; Gv0i is not elliptic in T .

If L2simple.Tn/\L
2
simple.T

0
n/¤∅ for every n 2N, then L2simple.T /\L

2
simple.T

0/¤∅.

Proof Consider ln 2 L2simple.Tn/ \ L
2
simple.T

0
n/, and let l D .˛; !/ 2 @2.G;F/ be

an algebraic leaf obtained as a limit of translates of ln . Then l is simple and by
Proposition 4.23 we have l 2 L2.T / and ˛; ! 2 L1.T 0/[V1.G;F/. As in the proof
of Corollary 4.25, the hypothesis on T tells us that, up to exchanging ˛ and ! , we
can assume ! 2 @1.G;F/. In particular, ! 2 L1.T /\L1.T 0/. By Proposition 4.19,
ƒ2.!/ � L2.T /\L2.T 0/. By Lemma 5.6, ƒ2.!/ is simple. Since it is nonempty
(Lemma 4.11), this concludes the proof.

We finish this section by mentioning the following fact:

Proposition 5.8 For every tree T 2 @O , one has L2simple.T /¤∅.

Proof We first assume that T has dense orbits. Let .Tn/n2N 2 ON be a sequence
that converges to T . Then vol.Tn=G/ converges to 0. In particular, we can find
a sequence of nonperipheral simple elements gn such that kgnkTn converges to 0.
Proposition 4.26 ensures that every accumulation point of .g�1n ; gC1n / in @2.G;F/
is a simple leaf in L2.T /.
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We now assume that T does not have dense orbits. If T has a simplicial edge with
nontrivial stabilizer, then this stabilizer is simple and nonperipheral, so the conclusion
follows. If all simplicial edges in T have trivial stabilizer, the conclusion follows from
Corollary 4.5.

6 The Levitt–Lustig map Q for trees with dense orbits

In all this section, T 2 O is a tree with dense orbits. We denote by T the metric
completion of T , and by @1T the Gromov boundary of T . In this section, we first
extend the Levitt–Lustig map QW @.G;F/! T [ @1T (see [39]) to the context of
free products. This map identifies the two endpoints of every algebraic leaf in L2.T /
and maps them to T (and not to @1T ), so it induces a map Q2W L2.T /! T , which
is continuous for the metric topology on T (this extends [9, Proposition 8.3]). In
Section 6.2, we show that Q is continuous for the observers’ topology (see [9] in
the case of a free group). In Section 6.3, we prove that the dual lamination L2.T /
coincides with the fibres of Q (this extends [11, Proposition 8.5]), which implies that
T [ @1T can be identified with the quotient @.G;F/=L2.T /.

6.1 Definition of the maps Q and Q2

Lemma 4.15 can be used to extend the Levitt–Lustig map Q (see [39]) to the context
of free products; this is the content of Proposition 6.2 below. We will first need the
following lemma:

Lemma 6.1 Consider T 2 O , two Grushko trees R1 and R2 , and f1W R1 ! T

and f2W R2! T two G–equivariant maps. Then there exists a G–equivariant map
gW R2!R1 such that for all x 2R2 , one has dT .f1 ıg.x/; f2.x//� 2BBT.f1/.

In particular, for all ! 2 @.G;F/, there exist a1 2 R1 and a2 2 R2 such that
f1.Œa1; !�R1/ is contained in the 2BBT.f1/–neighbourhood of f2.Œa2; !�R2/.

Proof The last assertion in the lemma follows from the first by choosing a1 and a2
such that Œa1; !�R1 � g.Œa2; !�R2/. We now prove the first assertion.

Fix C � BBT.f1/, and subdivide the edges of R2 so that the f2–image of each
edge of R2 has diameter at most C. Let gW R2 ! R1 be any G–equivariant map
that is linear on edges, that sends any vertex with nontrivial stabilizer to its fix point
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in R1 , and sends any other vertex v2 2 R2 to an f1–preimage of f2.v2/. Then
f1 ı g and f2 coincide on the vertices of R2 . If x is contained in an edge Œu; v�
in R2 , then g.x/ 2 Œg.u/; g.v/�, so f1.g.x// lies at distance at most BBT.f1/ from
Œf1.g.u//; f1.g.v//�D Œf2.u/; f2.v/�. Since the diameter of f2.Œu; v�/ is at most C,
we get dT .f2.x/; f1.g.x///� BBT.f1/CC � 2BBT.f1/.

Proposition 6.2 Let T 2 O be a tree with dense orbits. There exists a unique G–
equivariant map QW @.G;F/! T [ @1T such that the following holds: For every
" > 0, and every Grushko tree R" admitting an "–BBT map f"W R"! T and for all
! 2 @.G;F/,

(i) if ! 2 V1.G;F/, then Q.!/D f".!/;
(ii) if ! 2 @1.G;F/ and f"jŒx0;!�R" is unbounded (for some basepoint x0 2R" ),

then Q.!/ 2 @1T and f"jŒx0;!�R" converges to Q.!/;
(iii) if ! 2 @1.G;F/ and f"jŒx0;!�R" is bounded (for some basepoint x0 2 R" ),

then Q.!/ 2 T , and there exists y0 2 Œx0; !�R" such that f".Œy0; !�R"/ �
B10".Q.!//.

Remark 6.3 An important point is that the point Q.!/ does not depend on the map f" .

Proof We follow Levitt and Lustig [39, Proposition 3.1]. Uniqueness of the map Q
is obvious (using the fact that there exist Grushko trees with 1–Lipschitz "–BBT maps
towards T for arbitrary small values of "; see Lemma 4.18). We fix a Grushko tree R ,
an equivariant map f W R! T and a basepoint a 2R . Fix ! 2 @.G;F/.

If ! 2 V1.G;F/, then we define Q.!/ as the unique point in T which is fixed by the
stabilizer of ! . This definition clearly satisfies (i) for every map f" .

Assume now that ! 2 @1.G;F/, and that f .Œa; !�R/ is unbounded. We have
BBT.f / <1, so f jŒa;!�R converges to a point in @1T , which we define as Q.!/.
It then easily follows from Lemma 6.1 that for any G–equivariant map f 0W R0! T

from another Grushko tree to T and any a0 2R0, the restriction f 0jŒa0;!�R0 converges
to Q.!/, showing that (ii) holds.

We now consider the case where f .Œa; !�R/ is bounded. Then, given any equivariant
C –BBT map f 0W R0! T from a Grushko tree R0 to T and any basepoint b 2 R0,
f 0.Œb; !�R0/ is bounded. Lemma 4.15(2) enables us to choose a point Qf 0.!/ 2 T (de-
pending on f 0 ) such that there exists a0 2R0 such that f 0.Œa0; !�R0/�B3C .Qf 0.!//.
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We now claim that if f1W R1! T and f2W R2! T are G–equivariant maps, then
dT .Qf1.!/;Qf2.!// � 5BBT.f1/ C 3BBT.f2/. Property (iii) follows from this
claim, by defining Q.!/ as the limit of any sequence Qfn.!/ (necessarily Cauchy)
with BBT.fn/ converging to 0.

We now prove the above claim. By the last statement in Lemma 6.1, there ex-
ist a1 2 R1 and a2 2 R2 such that f1.Œa1; !�R1/ is contained in the 2BBT.f1/–
neighbourhood of f2.Œa2; !�R2/. Since, by construction, fi .Œai ; !�Ri / is eventually
contained in the ball of radius 3BBT.fi / around Qfi .!/ for all i 2 f1; 2g, we get that
dT .Qf1.!/;Qf2.!//� 3BBT.f1/C3BBT.f2/C2BBT.f1/. This proves our claim,
and finishes the proof of Proposition 6.2.

The following lemma shows that leaves of L2.T / are contained in fibres of Q. A
converse inclusion will be proved in Proposition 6.10.

Lemma 6.4 For every algebraic leaf .˛; !/2L2.T /, we have Q.˛/DQ.!/ and this
point lies in T (not in @1T ).

Proof Let " > 0 and let f W R" ! T be an "–BBT map given by Lemma 4.18.
Lemma 4.15(3) shows that f .Œ˛; !�R"/ has diameter at most 20". Proposition 6.2 thus
implies that Q.˛/ and Q.!/ lie in T , and that one extremity of the line Œ˛; !�R is
eventually mapped in a ball of radius 10" centred at Q.˛/ and the other is eventually
mapped in a ball of radius 10" centred at Q.!/. Hence dT .Q.˛/;Q.!//� 40". As
this is true for all " > 0, we have Q.˛/DQ.!/.

Definition 6.5 We define Q2W L2.T /! T by Q2.˛; !/ WDQ.˛/DQ.!/.

Remark 6.6 The map Q2 is not surjective in general. This will be clearer later when
L2.T / will be identified with pairs of endpoints of leaves in a band complex: points
of T whose leaves are one-ended are not in the image of Q2 . Trees that are dual to a
Levitt-type system of isometries yield examples (see [17; 37]). On the other hand, the
image of Q2 is dense in T , because every orbit in T is dense.

The map Q2 has a strong continuity property. This is an adaptation of Proposition 8.3
of [11].

Proposition 6.7 The map Q2W L2.T / ! T is continuous for the metric topology
on T .
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Proof Let " > 0 and let f W R"! T be an "–BBT map given by Lemma 4.18. Let
.˛; !/2L2.T /, and let ..˛n; !n//n2N 2L

2.T /N be a sequence converging to .˛; !/.
By Lemma 4.15, f .Œ˛; !�R"/ has diameter at most 20", and is therefore contained in the
30"–neighbourhood of Q.!/DQ2.˛; !/ by Proposition 6.2. Similarly, f .Œ˛n; !n�R"/
in contained in the 30"–neighbourhood of Q2.˛n; !n/ for all n. For all sufficiently
large n 2 N , one has Œ˛n; !n�R" \ Œ˛; !�R" ¤ ∅, so Q2.˛n; !n/ is at distance at
most 60" from Q2.˛; !/.

6.2 Continuity of Q for the observers’ topology

Lemma 6.8 Let T 2O be a tree with dense orbits.

Then, for all x 2 T , the orbit map G ! T , g 7! gx , admits a unique continuous
extension G[@.G;F/! T [@1T for the observers’ topology on T [@1T , and this
extension coincides with Q on @.G;F/.

Proof Since the observers’ topology on T [ @1T is first countable, it is enough to
prove that for all x 2 T , if .gn/n2N 2G

N is a sequence that converges to ! 2 @.G;F/,
then .gn:x/n2N converges to Q.!/ (for the observers’ topology on T [ @1T ).

We can assume without loss of generality that x 2 T . Indeed, assume that the result
has been proved for all x 2 T , and let x 2 T . Let .gn/n2N 2 G

N be a sequence
that converges to ! . If .gn:x/n2N does not converge to Q.!/, then there exists a
direction d in T containing Q.!/, and such that gi :x … d for infinitely many i . Let
d 0 be another direction in T that is strictly contained in d and also contains Q.!/.
Then, for every point x0 2 T that is close enough to x , we have gi :x0 … d 0 for infinitely
many i . Therefore .gn:x0/n2N does not converge to Q.!/, a contradiction.

We therefore let x 2 T , and assume towards a contradiction that there exists a direction
d �T containing Q.!/ and such that gi :x…d for all i (up to passing to a subsequence).
We denote by u 2 T the basepoint of d .

We first distinguish the case where Q.!/ 2 @1T . Let f W R! T be a 1–Lipschitz
map, with BBT constant C, and a 2R be a preimage of x (this exists by minimality
because x 2 T ). The ray Œa; !�R contains a subray Œb; !�R such that f .Œb; !�R/� d
and stays at distance at least 2C from u. Since gn:a converges to ! , there exist
i; j 2 N such that Œgia; gja� \ Œb; !�R contains a point c . Since, by assumption,
gnx D f .gna/ … d for all n 2 N, f .c/ is at distance at least 2C from Œgix; gjx�,
contradicting that BBT.f /� C.
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We now consider the case where Q.!/2T . Let ">0 be such that the ball B20".Q.!//
is contained in d . Let R" be a Grushko tree and f W R"! T a 1–Lipschitz map with
BBT.f /� ". Let a 2R" be such that f .a/D x .

Assume first that ! 2 @1.G;F/. By definition of Q, there exists b 2 Œa; !�R" such
that f .Œb; !�R"/� B10".Q.!//� d . Since by hypothesis gi :a converges to ! , there
exist i and j such that the segment Œgi :a; gj :a�R" contains a point c in Œb; !�R" .
Since BBT.f / � ", we have dT .f .c/; Œgi :x; gj :x�/ � ", but since gi :x; gj :x … d
and f .c/ 2 d , we get that dT .f .c/; u/� ", so dT .u;Q.!//� 11", contradicting our
choice of ".

If ! 2 V1.R"/, we can find i and j such that ! 2 Œgi :a; gj :a�R" . Since BBT.f /� ",
we get dT .f .!/; u/ � ", so dT .Q.!/; u/ � " because f .!/ D Q.!/. This is a
contradiction.

Corollary 6.9 If K � T is compact for the metric topology, if .gi /i2N 2 G
N is a

sequence of elements converging to ! 2 @.G;F/, and if x 2 T is such that g�1i :x 2K

for all i 2N , then Q.!/D x .

Proof Up to a subsequence, we can assume that g�1i :x converges to y 2 K . This
means that dT .x; giy/ tends to 0, which implies that giy converges to x in the
observers’ topology. By Lemma 6.8, we have Q.!/D x .

6.3 The map Q and L2.T /

We have already seen in Lemma 6.4 that the endpoints of every algebraic leaf in L2.T /
have the same image under Q. The following lemma (see [11, Proposition 8.5] for free
groups) proves the converse:

Proposition 6.10 Let T 2O be a tree with dense orbits.

Then for ˛; ! 2@.G;F/, one has Q.˛/DQ.!/ if and only if ˛D! or .˛; !/2L2.T /.

Proof In view of Lemma 6.4, we only need to prove that if ˛ ¤ ! have the same
image under Q, then .˛; !/ 2 L2.T /.

Let us first prove that Q.˛/DQ.!/ cannot lie in @1T . Assume otherwise and fix a
Grushko tree R with a map f W R! T , and let a 2 R be a basepoint. Since the ray
Œf .a/;Q.!/�T is contained in f .Œa; ˛�R/ and in f .Œa; !�R/, there exist two sequences
xn 2 Œa; ˛�R and yn 2 Œa; !�R converging to ˛ and ! , respectively, and such that
f .xn/D f .yn/ converges to Q.!/. This contradicts that BBT.f / <1.
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Let R" be a Grushko tree of covolume smaller than ", with a 1–Lipschitz map
f"W R"! T with BBT.f"/� ". By Proposition 6.2, there exist x; y 2 Œ˛; !�R" such
that f".Œx; ˛�R/ and f".Œy; !�R/ are contained in B10".Q.˛// (this also obviously
holds if ˛ or ! lies in V1.R/). Lemma 4.16 (in the form provided by Remark 4.17)
then implies that .˛; !/ 2 L2.T /.

Proposition 6.10 says that L2.T / essentially coincides with the equivalence relation
on @.G;F/ given by the fibres of QW @.G;F/! T [ @1T , the only difference be-
ing the diagonal � � @.G;F/ � @.G;F/. Slightly abusing notation, we denote by
@.G;F/=L2.T / the quotient of @.G;F/ by this equivalence relation. The map Q is
onto because its image is compact and every orbit of T [ @1T is dense (this easily
follows from the fact that every orbit is dense in T for the metric topology). Being a
continuous map between compact spaces, the map Q induces a homeomorphism on
the quotient (this is [9, Corollary 2.6] in the context of free groups).

Corollary 6.11 The map induced by Q from @.G;F/=L2.T / to T [ @1T is a
homeomorphism for the observers’ topology on T [ @1T .

Corollary 6.12 There is no partition @.G;F/DAtB with A and B nonempty closed
subsets of @.G;F/ that are saturated under the equivalence relation given by L2.T /.

Proof This follows from Corollary 6.11, together with the connectedness of T [@1T
(for the observers’ topology).

7 Band complexes

In this section, we construct band complexes generalizing those by Coulbois, Hilion
and Lustig [13] based on the compact heart they introduced. These are not simplicial
complexes in general, as bands are homeomorphic to K � Œ0; 1� for some compact
R–tree K (whose set of branch points might be dense).

In all this section, we fix T 2O a tree with dense orbits, and R a Grushko tree.

7.1 Definitions

Compact trees Given a point u2R , we define L2u.T / as the subspace of L2.T / made
of those pairs .˛; !/2 @2.G;F/ such that u2 Œ˛; !�R . We then let �u WDQ2.L2u.T //,

Algebraic & Geometric Topology, Volume 19 (2019)



2326 Vincent Guirardel and Camille Horbez

and we let Ku be the convex hull in T of �u . We also notice that when u2R belongs
to the interior of an edge e �R , the sets L2u.T /, �u and Ku only depend on e ; we
will also denote them by L2e.T /, �e and Ke in this case. Notice that when u 2 R
lies in the interior of an edge or is a vertex of finite valence, the set L2u.T / is compact.
Continuity of Q2 (Proposition 6.7) then implies that �u and Ku are also compact
(for the metric topology on T ) in this case. If u has infinite valence, since there
are finitely many Gu–orbits of edges incident on u, it follows that �u and Ku are
Gu–cocompact.

Lemma 7.1 For every u 2R , the set �u is nonempty.

Proof If u belongs to the interior of an edge, then the two connected components of
R n fug yield a partition of @.G;F/ into two closed subsets. If �u D ∅, then these
two sets are saturated for L2.T /, contradicting Corollary 6.12. The result also follows
when u is a vertex of R , because the set �u is then the union of the sets �e over all
edges e �R that are incident on u.

The band complex

Definition 7.2 (the band complex †.T;R/) We let

†.T;R/ WD f.x; u/ 2 T �R j x 2Kug:

When T and R are clear from the context, we will simply write † instead of †.T;R/.
This is a closed G–invariant subset of T �R (for the metric topology). The diagonal
action of G on T � R induces a G–action on †. Denote by pT W † ! T and
pRW † ! R the projections, which are G–equivariant. We view † as a foliated
complex, where the leaves are the connected components of the fibres of pT (actually,
Proposition 7.24 below will say that these fibres are connected).

Here is an alternative description of †, illustrated in Figure 5. Given an edge e �R ,
we let Be WDKe � e �†, which we call a band of †. We also call Ke � Ve an open
band. Given a point v 2 R , we let Kv WD Kv � fvg � †, which we call a base tree
when v is a vertex. Then † is also the band complex obtained from

†V WD
a

v2V.R/

Kv and B WD
a

e2E.R/

Be

as
†D .†V tB/=�;
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v1

v2v3

v4

Kv1

Kv4

Kv2
Kv3

T

pT

pR

R

Figure 5: A band complex.

where, for each edge e D Œu; v� of R , we identify Ke � fvg � Be DKe � Œu; v� with
the corresponding subset of Kv (and similarly for u).

The space † is the generalization of the universal covering of the band complex
considered by [13] in the case of the free group, where R is a rose. Since in this case
R has a unique orbit of vertices, there is a single base tree Kv up to the group action,
and this tree is compact since R is locally finite. This compact tree Kv is Coulbois,
Hilion and Lustig’s compact heart [13]. In the present section (see Proposition 7.26
below), we will see that this set also coincides with the core of T �R , as introduced
by the first author in [22].

Special vertices We make the following observation:

Lemma 7.3 For every v 2 V1.R/, there exists a unique point in Kv which is fixed
by Gv .

Proof Let x 2�v . By G–equivariance of Q2 , for all g 2Gv we have gx 2�v . As
Kv is convex, this implies that the unique point of T fixed by Gv belongs to Kv .
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When v 2 V1.R/, we denote by v† the unique point in Kv fixed by Gv , which we
call a special vertex of Kv (if Gv is finite, then Kv has no special vertex). Sometimes,
a point in V1.R/ is viewed as a point in the boundary @R and is denoted by ! instead
of v ; we then use the notation !† for the corresponding special vertex. The special
vertices of † are exactly the points of † whose isotropy group is infinite.

Leaves of the band complex and the set � To make the distinction between alge-
braic leaves (ie elements of @2.G;F/) and leaves of † explicit, the latter will be called
complete †–leaves. Given x 2†, we denote by Lx the complete †–leaf containing x .
Note that the restriction of the projection pR to Lx is injective, so each complete
†–leaf is a tree. Any segment contained in a complete †–leaf will be called a †–leaf
segment. If x and y are in the same complete †–leaf L, we denote by Œx; y�L the
unique †–leaf segment joining them. A bi-infinite †–leaf segment l is called a †–leaf
line. By extension, we also call a †–leaf line any leaf segment l joining two special
vertices in †, or a simply infinite leaf segment whose basepoint is a special vertex.
In particular, a †–leaf line has two well-defined endpoints in @.G;F/: these are the
endpoints of pR.l/. Similarly, we define a †–leaf semiline as an oriented, semi-infinite
leaf segment, or a finite leaf segment whose extremity is a special vertex. A †–leaf
semiline has a well-defined extremity in @.G;F/, and a basepoint in †.

The following set will be of particular importance in later sections in the study of the
band complex †:

Definition 7.4 (the set �) We denote by ��† the union of all †–leaf lines (whose
endpoints, by definition, can belong to either V1.G;F/ or to @1.G;F/).

7.2 Simple connectedness

Lemma 7.5 Let f W X ! Y be a continuous surjective map between compact, metriz-
able, finite-dimensional, locally contractible spaces. Assume that for all y 2 Y , f �1.y/
is contractible.

Then f is a homotopy equivalence.

Proof By [31, Theorem V.7.1], the spaces X and Y are absolute neighbourhood
retracts. Then f is a cell-like map, so by Haver’s theorem (see [41, Theorem 7.1.6] or
[36, Theorem, page 511]), f is a homotopy equivalence.
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Lemma 7.6 The space † is simply connected. Moreover, for all compact subtrees
KR �R , there exists a compact subtree K0T � T such that for every compact subtree
KT containing K0T , the space †\ .KR �KT / is simply connected.

Proof We first explain how to deduce simple connectedness from the second assertion.
We first show that † is connected. If not, let C1 and C2 be two distinct connected
components of †. Let KR be a compact subtree of R that intersects both pR.C1/
and pR.C2/. Then for every compact subtree KT � T , the space †\ .KT �KR/ is
disconnected, a contradiction. This shows that † is connected. Moreover, if 
 W S1!†

is any loop, then 
.S1/ is contained in †\ .KT �KR/ for some compact subtrees
KT � T and KR �R , so the second assertion implies that † is simply connected.

We now prove the second assertion. Let KR �R be a compact subtree. By Lemma 7.1,
we can find a compact subtree K0T � T such that pR.†\ .K0T �KR//DKR ; notice
then that every compact subtree KT � T that contains K0T also satisfies this property.
We will apply Lemma 7.5 to the compact set C WD†\ .KT �KR/ and the continuous
surjective map pRW C!KR . The space KR is compact, metrizable, finite-dimensional
and locally contractible, being a compact subtree of R . The space C is metrizable and
finite-dimensional, being a subspace of a product of two trees. It is compact because
KT and KR are compact, and † is a closed subspace of T �R . Point preimages of pR
are compact subtrees of T , hence contractible, so we only need to show that C is locally
contractible. If x 2 C is such that pR.x/ is contained in the interior of an edge e
of R , then x has a neighbourhood homeomorphic to Ke � e̊ . If pR.x/ is a vertex
v 2R , then for some neighbourhood V of v in R , p�1R .V / retracts by deformation
onto p�1R .fvg/. It follows that C is locally contractible, which concludes the proof.

Remark 7.7 Since † is connected, it follows that pT .†/ is a connected subspace
of T . In particular, by minimality of T , we have T � pT .†/. One can show that pT
is never surjective on T ; indeed, the complete metric space T would be covered by
countably many compact trees Ke , and each of them has empty interior (in the metric
topology), contradicting the Baire property.

7.3 Comparing leaves of † with leaves of L2.T /

Lemma 7.8 Let l be a †–leaf semiline with extremity ! 2@1.G;F/. Then pT .l/D
fQ.!/g.
Similarly, if ! 2 V1.G;F/ and L!† is the complete †–leaf through the special
point !† , then pT .L!†/D fQ.!/g.
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Proof The second assertion is obvious by definition of Q on V1.G;F/. To prove
the first, let m be the midpoint of an edge e of R such that there exists a sequence of
elements gi 2G converging to ! , with gi :m 2 pR.l/ for all i 2N . Let x WD pT .l/.
Then for all i 2N , we have .x; gi :m/ 2†, and hence .g�1i :x;m/ 2†. This implies
that g�1i :x lies in the compact subset Ke � T for all i 2 N , so Q.!/ D x by
Corollary 6.9.

Lemma 7.9 A subset of T � R is a †–leaf line if and only if it is of the form
fQ.˛/g � Œ˛; !�R with .˛; !/ 2 L2.T /.

In particular, for all .˛; !/ 2 @2.G;F/, one has .˛; !/ 2 L2.T / if and only if there
exists a †–leaf line with endpoints ˛ and ! , and in this situation such a †–leaf line is
unique.

Proof For all .˛; !/ 2L2.T /, we have Q.˛/DQ.!/ (Proposition 6.10), and it then
follows from the definition of † that fQ.˛/g � Œ˛; !�R � †. Conversely, if l � †
is a †–leaf line whose endpoints are ˛; ! 2 @.G;F/, then Lemma 7.8 shows that
Q.˛/ D Q.!/, and hence .˛; !/ 2 L2.T /. In this case, we have pT .l/ D fQ.˛/g
(Lemma 7.8), so l D fQ.˛/g �pR.l/D fQ.˛/g � Œ˛; !�R .

Corollary 7.10 For all u 2R and all x 2Ku , one has x 2�u if and only if there is
a †–leaf line that contains .x; u/.

Proof If x 2�u , then there exists .˛; !/2L2u.T / such that xDQ.˛/DQ.!/. This
means in particular that u 2 Œ˛; !�R , so fxg � Œ˛; !�R is a †–leaf line that contains
.x; u/. Conversely, assume that l �† is a †–leaf line that contains .x; u/; then l is
of the form fxg� Œ˛; !�R for some .˛; !/ 2L2.T / with Q.˛/D x . Since u 2 pR.l/,
we have .˛; !/ 2 L2u.T /, so x 2�u .

Remark 7.11 As a consequence of Corollary 7.10, the set � from Definition 7.4 is
also the union over all edges e of �e � e . In particular, let Be D Ke � e be a band
of †. Since Ke is the convex hull of �e , every terminal point x 2Ke belongs to �e
and therefore the †–leaf segment fxg � e is contained in �.

7.4 Finiteness properties

When working in the context of free products, one new phenomenon arises that did not
occur in the context of free groups: in our case, the trees Kv are no longer compact
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when v 2 V1.R/, and there are infinitely many bands attached to Kv (there are finitely
many G–orbits of them, though, but for example there are infinitely many orbits of
pairs of bands attached to Kv ). In the present section, we present some finiteness
results that will be key for extending the work in [9; 8; 14] to our context.

Lemma 7.12 For any vertex v 2R and any point x 2Kv which is not a special vertex,
there is a neighbourhood V of x in Kv which intersects only finitely many bands.

Proof If Kv has no special point (ie if Gv is finite), then there are only finitely many
bands incident on Kv , so the lemma is trivial. Otherwise, denote by v† the special
point of Kv and by d the distance from x to v† . If infinitely many bands intersect the
ball of radius 1

2
d around x in Kv , then since there are only finitely many Gv –orbits of

bands intersecting Kv , we can assume that these bands are in the Gv –orbit of a band Be .
Thus, there are infinitely many elements gi 2Gv such that dT .x; giKe/�

1
2
d . Thus

Ke contains a point at distance less than 1
2
d from g�1i x , contradicting compactness

of Ke for the metric topology.

From Lemma 7.12, one immediately deduces the following facts:

Corollary 7.13 (i) If C � Kv is a compact subset avoiding the special vertex
of Kv , then C intersects only finitely many bands.

(ii) Any complete †–leaf L�† is a locally finite tree, except at points x 2 L with
infinite stabilizer.

Remark 7.14 However, the valence of points with trivial stabilizer in a given leaf
might a priori still be unbounded.

Corollary 7.15 For any vertex v 2 R and any point x 2 Kv , there exists an open
neighbourhood V of x in Kv such that every band which intersects V contains x .

Proof If x is not a special point, then Corollary 7.15 follows from Lemma 7.12 by
possibly passing to a smaller neighbourhood of x . If x is a special point, then there
are only finitely many orbits of bands attached to Kv that do not contain x , so there
is a lower bound d on the distance from x to a band that does not contain x . In this
case, we choose for V an open ball centred at x of radius 1

2
d .
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Corollary 7.16 Let xi 2 Kv be a sequence converging to x 2 Kv , where x is not the
special vertex of Kv . Let li be a †–leaf semiline starting from xi .

Then there is a †–leaf semiline l starting from x such that for each finite initial
subsegment I of l , there are infinitely many indices i such that pR.I /� pR.li /.

In particular, given any band B in †, if for every i the semiline li starts with an edge
in B, then so does l . If for every i the semiline li starts with an edge that is not in B,
then so does l .

Remark 7.17 The corollary still holds with the same proof if x is a special point,
assuming that the initial edges of li all lie in a common band B.

Remark 7.18 It may happen that the extremity of l is a special vertex of † even if
the extremity of every li belongs to @1.G;F/.

Proof By Lemma 7.12, up to extracting a subsequence, we can assume that the first
edges Œxi ; yi � of li lie in a common band B1 . Let y be the limit of yi . If y is a
special point, we can take l D Œx; y� and we are done. If not, one can apply the same
argument to the sequence yi : up to extracting a further subsequence, we can assume
that the second edges Œyi ; zi � of li lie in a common band B2 . Iterating this argument
proves the corollary.

Lemma 7.19 Let x 2 Kv and let c � Lx be a connected component of Lx n fxg.
Denote by B the band that contains the initial edge of c . If c is finite, then x is not
extremal in B \Kv , and there exists an open ball U around x in Kv such that for all
x0 2 U, the unique connected component cx0 of Lx0 n fx0g that intersects B is finite,
and pR.cx0/� pR.c/.

Remark 7.20 In particular, if Lx is finite, then there exists a neighbourhood U of x
such that Lx0 is finite for all x0 2 U, and pR.Lx0/ � pR.Lx/. Indeed, consider
a neighbourhood V of x in Kv such that every band intersecting V contains x
(Corollary 7.15). Applying Lemma 7.19 for each of the finitely many bands containing x
proves our claim. Using this lemma, we will actually prove in Proposition 7.22 below
that no complete †–leaf is finite.

Proof Since c is finite, it contains no special point, so c does not contain any †–leaf
semiline. Notice also that x is not extremal in B \Kv : otherwise, denoting by e
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the pR–image of the initial edge of c , we would have pT .x/ 2�e , and c would be
infinite.

If there is a sequence of points xi converging to x with cxi infinite, then one can
find †–leaf semilines li starting at xi whose first edges are contained in the band B.
Corollary 7.16 then implies that c contains a †–leaf semiline, a contradiction.

If pR.cxi / 6� pR.c/ for some sequence xi converging to x , then, up to extracting
a subsequence, we can assume that there exists a †–leaf segment .x; y� � c , and
†–leaf segments .xi ; zi � � cxi that can be written .xi ; zi �D .xi ; yi �[ Œyi ; zi � with
pR.Œxi ; yi �/ D pR.Œx; y�/, with yi converging to y , and where Œyi ; zi � is an edge
of Lxi with pR.Œyi ; zi �/ 6� pR.Lx/. Applying Corollary 7.15 at the point y , we get a
contradiction.

Given v2V1.R/, there are only finitely many orbits of bands incident on Kv . However,
the set of Gv–orbits of pairs of bands incident on Kv is infinite. Given a band B
incident on a base tree Kv , we denote by B D B \Kv . The following lemma records
another finiteness result that will be useful later:

Lemma 7.21 For all v 2 V1.R/, there are finitely many Gv –orbits of pairs of bands
.B;B 0/ incident on Kv such that v† … B [B 0, and v† does not separate B from B 0.

There are also only finitely many Gv–orbits of pairs of bands .B;B 0/ incident on Kv
with B \B 0 ¤∅ and v† … B \B 0.

More generally, for " > 0 small enough, there are only finitely many Gv –orbits of pairs
of bands .B;B 0/ incident on Kv with v† … B \B 0 and d.B;B 0/� ".

Proof The first assertion follows from finiteness of the number of Gv –orbits of bands,
together with the observation that for all bands B and B 0 that do not contain v† , there
is at most one g 2Gv such that v† does not separate B from gB 0.

The second assertion follows from the third.

To derive the third assertion from the first, let "0 > 0 be such that d.B; v†/ � "0
for all bands B not containing v† . Such "0 exists because there are only finitely
many Gv–orbits of such bands. If B and B 0 both avoid v† , then there is at most one
element g 2Gv such that d.B; gB 0/ < 2"0 . If B does not contains v† , consider p
the projection of v† on B and "1 be such that only finitely many bands contain a point
at distance at most "1 from p (Lemma 7.12). Then there are only finitely many bands
containing v† and at distance at most "1 from B. This proves the lemma.
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7.5 Complete †–leaves are unbounded

Proposition 7.22 For all x 2†, the complete †–leaf Lx contains a †–leaf semiline
whose extremity lies in @1.G;F/ (in particular, Lx is unbounded).

Remark 7.23 In particular, every point is contained in at least one band.

Proof It is easy to see that if Lx contains two different special points, then it contains
a †–leaf line with both endpoints in @1.G;F/. So assume that Lx contains at most
one special point. Let v 2R be such that x 2 Kv . By Corollary 7.10, Lx contains a
†–leaf line if x 2�v , so we might as well assume that x …�v .

We will first assume that Lx does not contain any special point. Assume towards a
contradiction that Lx contains no †–leaf semiline whose extremity lies in @1.G;F/.
We are going to produce a partition @.G;F/ D AtB contradicting Corollary 6.12.
Since Lx is locally finite (Corollary 7.13) and does not contain any infinite ray by
hypothesis, König’s lemma [35] implies that Lx is finite. By Remark 7.20, there exists
a neighbourhood U of x in Kv such that for all x0 2 U, the complete †–leaf Lx0 is
finite, and pR.Lx0/� pR.Lx/.

Denote by yU �† the union of all complete †–leaves through a point in U. Its closure
is compact, and, up to choosing U small enough, we can assume that the closure of yU
does not contain any special vertex of †. We claim that † n yU is disconnected.

Indeed, since x … �v , there exists a ¤ b 2 �v (in particular, a; b … yU ) such that
x 2 Œa; b�Kv . Assume that there is a path 
 joining a to b avoiding yU. Without loss
of generality, one can assume that 
 is a concatenation of segments contained in base
trees and of †–leaf segments contained in a band. Choose 
 of minimal combinatorial
length. If pR.
/ is reduced to a point, 
 cannot avoid yU, a contradiction. Since pR.
/
is a loop, it thus has a backtracking point, and has a subpath of the form 
1:
2:
3

with 
1 and 
3 leaf segments in a band Be and 
2 in a base tree. This subpath can
be replaced by 
 02 in the other base tree of Be , thus shortening 
 (
 02 still avoids yU
because one can choose it so that every leaf through a point in 
 02 meets 
2 ). This
contradiction proves that † n yU is disconnected.

Write † n yU D†A t†B , a decomposition into two nonempty clopen sets. Consider
RA D pR.†A/ and RB D pR.†B/. Note that RA [RB contains R n pR.Lx/ and
that RA\RB is contained in the finite tree pR.Lx/. This implies that RA npR.Lx/
and RB n pR.Lx/ are unions of connected components of R n pR.Lx/ and that
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@1RA\ @1RB D∅. Define A� @R as the union of @1RA with pR.†A\V1.†//
(where V1.†/ denotes the set of special points of †), and B in a similar fashion.

The sets A and B are disjoint and partition @R . They are saturated under L2.T /
in view of Lemma 7.9, because there is no leaf of † joining †A to †B . To check
that A is closed, consider a sequence an 2 A converging to c 2 @R . In the case
where c … pR.Lx/, for n large enough an and c are in the closure of the same
connected component of R npR.Lx/, so c 2 A. So assume that c 2 pR.Lx/. Then
c is a vertex of R . For n large enough, the edge en �R with origin c and pointing
towards an is not contained in the finite tree pR.Lx/ D pR. yU/. It follows that the
bands Ben are contained in †A . All these bands intersect infinitely many connected
components of Kc nfc†g. Since yU intersects only one such component, c† lies in †A ,
so c 2A. We conclude that A is closed, and likewise so is B, which finishes the proof
of Proposition 7.22 when Lx does not contain any special point.

We finally treat the case where Lx contains exactly one special point v† . Assume
by contradiction that Lx contains no †–leaf semiline whose extremity lies in @1R .
Being locally finite (Corollary 7.13), each connected component c of Lx n fv†g is
finite. Let Bc be the unique band containing x and with nonempty intersection with c .
By Lemma 7.19, there is an open ball Uc around v† in Kv such that for all x0 2 Uc ,
the connected component c0 of Lx0 that intersects Bc is finite and pR.c0/� pR.c/.
Since there are only finitely many Gv† –orbits of components c , one can take Uc D U
independent of c . By Corollary 7.15, there is a neighbourhood V of v† in Kv such
that for all x0 2 V , any band containing x0 is one of the bands Bc . It follows that for
all but countably many points x0 2 U \V , the complete †–leaf Lx0 is bounded and
contains no special point. This is a contradiction by the argument above.

7.6 Fibres are connected

The following result says that fibres of pT W †! T are connected:

Proposition 7.24 For all x; x0 2†, we have pT .x/DpT .x0/ if and only if x and x0

are in the same complete †–leaf.

Proof The “if” statement is obvious. We let x; x0 2† be such that pT .x/D pT .x0/,
and we aim to show that x and x0 are in the same complete †–leaf. Let l (resp. l 0 )
be a †–leaf semiline joining x (resp. x0 ) to a point ! 2 @1R (resp. !0 2 @1R); this
exists by Proposition 7.22. Then pT .l/D pT .l 0/.
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If !D!0, then pR.l/ and pR.l 0/ eventually coincide. Since pT .l/DpT .l 0/, l and l 0

eventually coincide, and x and x0 are in the same complete †–leaf.

If ! ¤ !0, then Q.!/DQ.!0/ by Lemma 7.8, so .!; !0/ 2 L2.T /. By Lemma 7.9,
there is a †–leaf line l 00 joining ! to !0. Lemma 7.8 shows that pT .l 00/D pT .l/D
pT .l

0/, so l 00 eventually coincides with l at one of its ends and with l 0 on its other
end. This implies that x and x0 are in the same complete †–leaf.

Remark 7.25 Given any two points x; y 2 †, there exists a path 
 from x to y
which is a finite concatenation of segments contained in base trees and of leaf segments.
In fact, by Proposition 7.24, there always exists such a 
 whose projection to T has
no backtracking. In particular, this enables us to refine Lemma 7.6 and deduce that
for all compact subtrees KR �R and KT � T , the space †\ .KT �KR/ is simply
connected when nonempty. Indeed, in the proof of that lemma, it is enough to show
that, letting C WD†\ .KT �KR/, the set pR.C / is a connected subset of KR ; this
follows from the above observation.

7.7 Comparison with the core

We now deduce from the connectedness of the fibres of pT that † is precisely the
core introduced in [22] by the first author (this was noticed beforehand by the first
author and Thierry Coulbois in the context of free groups in an informal discussion).
We briefly recall the definition of the core of the product of two G–trees T and T 0,
and refer the reader to [22] for details. A quadrant in T � T 0 is a product of two
directions ı � T and ı0 � T 0. Fix a basepoint .x0; x00/ 2 T � T

0. A quadrant Q is
heavy if there exists an infinite sequence .gn/n2N such that dT .x0; gnx0/! C1
and dT 0.x00; gnx

0
0/!C1 and gn:x0 2Q for all n 2N . Otherwise it is light. The

core of T �T 0 is then defined as the complement of the union of all light quadrants
in T �T 0. When T 2 O is a tree with dense orbits, the core is also characterized as
the smallest nonempty G–invariant closed connected subset of T �T 0 with connected
fibres (see [22, Théorème principal]).

Proposition 7.26 As a subset of T �R , the set † is precisely the core of T �R .

Proof Since † is closed and connected, and since fibres of pT and pR are connected,
it follows from [22, Proposition 5.1] that † contains the core C . Conversely, it is
enough to prove that for all u 2R , and all x 2�u , we have .x; u/ 2 C . Indeed, since
Ku is the convex hull of �u , and since C has convex fibres, this will imply that †� C .
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Consider ı a direction in T containing x , and ı0 a direction in R containing u. Since
x 2 �u , there exists .˛; !/ 2 L2u.T / such that x D Q.˛/ D Q.!/ and u 2 Œ˛; !�R .
This implies that either ˛ or ! , say ! , lies in the closure of ı0. Consider gi 2 G a
sequence of nonperipheral elements such that .g�1i ; gC1i / converges to .˛; !/. One
easily checks that we can choose gi hyperbolic in T : apply [22, Lemme 1.3] with
Ii D Œai ; bi � as in Lemma 2.3 (ie ai ¤ ˛ (resp. bi ¤ ! ) converge to ˛ (resp. ! )) to
get a semigroup S 0 of elements whose axes contain Ii and such that hS 0i DG, which
implies that some element of S 0 is hyperbolic in T . For i large enough, gC1i lies in
the closure of ı0. Moreover, by continuity of Q for the observers’ topology, Q.gC1i /

lies in the closure of ı for some i0 large enough. Since Q.gC1i0 / is the endpoint of the
axis of gi0 , this is enough to conclude that the powers of gi0 make the quadrant ı� ı0

heavy. Since this applies to any quadrant containing .x; u/, it follows by definition of
the core that .x; u/ 2 C .

8 Pruning and preimages of Q

The main result of the present section is the following theorem, which is the main
theorem of [8] in the context of free groups. Its proof uses a pruning process on the
band complex † associated to T and to a Grushko tree R , which was introduced in [8]
for free groups.

Theorem 8.1 Let T 2 O be a tree with dense orbits. Then for all but finitely many
orbits of points x 2 T [ @1T , the set Q�1.x/ contains at most two points.

We will deduce Theorem 8.1 from the following proposition:

Proposition 8.2 Let T 2 O be a tree with dense orbits, R be a Grushko tree and
†D†.T;R/ the associated band complex.

Then † has only finitely many orbits of complete †–leaves with at least 3 ends.

Proof of Theorem 8.1 from Proposition 8.2 Let x 2 T [@1T be such that Q�1.x/
contains three distinct points !1; !2; !3 2 @.G;F/. By Proposition 6.10, for all
1 � i < j � 3, we have .!i ; !j / 2 L2.T /. By Lemma 7.9, there exists a complete
†–leaf Li;j containing a †–leaf line joining !i to !j with pT .Li;j / D x . By
Proposition 7.24, Li;j DL does not depend on i or j , so L has at least 3 ends. Indeed,
this is clear if the three points !i belong to @1.G;F/. If some !i lies in V1.G;F/,
then L contains a special point, and L has infinitely many ends. Proposition 8.2
concludes the proof.
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8.1 The pruning process: elementary step

Let T 2O be a tree with dense orbits, let R be a Grushko tree, and let † WD†.T;R/.
Starting from †, we define a new band complex †0 as follows, as in [8] in the case of
free groups. This construction is illustrated in Figure 6. For each complete †–leaf L,
let Term.L/ be the union of all terminal edges Œx; y/L of L, where x is its terminal
vertex. Then LnTerm.L/ is a subtree of L, and it is unbounded since L is unbounded.
Let Y �† be the union over all complete †–leaves L of Term.L/, and let †0D†nY .
Every point in Y is contained in exactly one band by Remark 7.23.

Notice that Y is open in †: this is because if x 2 Kv (for some vertex v 2 R) is
contained in a single band of †, then there exists a neighbourhood U of x in Kv such
that every x0 2 U is contained in a single band (Corollary 7.15).

Σ Σ′

pR pR′

f

R R′

Figure 6: Applying one step of the pruning process. All red leaf segments
are terminal in their complete †–leaf.
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Definition 8.3 We say that †0D†nY is obtained by applying one step of the pruning
process to †.

Note that Y contains no special point because such a point has infinite valence in its
complete †–leaf. It follows that for any †–leaf line l � L, we have l \Term.L/D∅
and l �†0 (regardless of whether its endpoints are in V1.G;F/ or in @1.G;F/).

The set †0 is defined as a subspace of †. It has a natural structure of a band complex
where each †0–band is a maximal subset of a band K � Œ0; 1� of the form K 0 � Œ0; 1�

with K 0 �K closed and connected.

The goal of the present section is to show that the band complex †0 is of the form
†.T;R0/ for some Grushko tree R0. The motivation behind this alternative description
is that it will allow us to apply to †0 all the results concerning band complexes.

We let R0 WD†0=�, where x � y whenever pR.x/D pR.y/ and x and y belong to
the same connected component of †0\p�1R .pR.x//, and we denote by pR0 W †0!R0

the quotient map.

The set R0 has a structure of a graph whose vertices are the connected components of
†0V WD †

0 \†V , where †V denotes the subset of † which is the union of all base
trees Kv with v 2 V.R/. Its edges correspond to †0–bands.

The graph R0 also comes with a natural G–action. There exists a G–equivariant
map f W R0!R sending vertex to vertex and edge to edge and making the following
diagram commute:

†0
� � //

pR0
��

†

pR
��

R0
f
// R

The goal of the present section is to prove the following proposition:

Proposition 8.4 The graph R0 is a Grushko tree. In addition, †0 can be identified
with †.T;R0/ in the following sense:

Denote by qR0 W †.T;R0/! R0 and qT W †.T;R0/! T the two projections. There
exists a homeomorphism ˆW †0!†.T;R0/ that sends leaves to leaves and such that
pR0 D qR0 ıˆ and .pT /j†0 D qT ıˆ.

We first record the following observation, which will be crucial in the sequel:
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Lemma 8.5 Every †–leaf line l is contained in †0, pR0 restricts to an embedding
on l and pR0.l/ isometrically embeds into R .

Lemma 8.6 Each connected component Y of Y\Kv is contained in a single band BY .

Proof Denote Yv WDY\Kv . Given a band B, the set of points Yv\B is open in Kv :
indeed, for each y 2 Yv\B, there is a neighbourhood Vy of y such that the only band
meeting Vy is B (Corollary 7.15). In particular, Vy � Yv , and since every point is
contained in at least one band, Vy � B.

As B varies, the disjoint open sets Yv \B cover Y . Connectedness of Y thus ensures
that Y � Yv \B for some band B.

We now record some properties of the foliated complex †0. We say that a subset of an
R–tree is a finite subtree if its closure is the convex hull of a finite collection of points.

Lemma 8.7 For each vertex v in R , the set Kv \Y is a disjoint union of finite open
subtrees of Kv and there are only finitely many Gv–orbits of them.

The pT –images of the endpoints of these subtrees are in T , not in T nT .

Proof We already mentioned that Y is open in †. To prove that Kv \Y has finitely
many connected components up to the action of Gv , we will define a Gv–equivariant
map

fconnected components of Kv \Yg!fnonempty finite sets of bands incident on Kvg

sending Y to a finite set of bands BY , and prove that it is injective and only takes
finitely many values up to the Gv–action.

Let v0 2Kv nY , which we choose to be equal to the special vertex v† if Gv is infinite.
Given a connected component Y of Kv\Y , we define BY as the set of bands incident
on Kv that do not intersect Y , and do not intersect the connected component of Kv nY
that contains v0 (in other words Y separates v0 from every band in BY ). We claim
that BY is nonempty. Indeed, consider z an extremal point of Kv that is separated
from v0 by Y . Since z is extremal in Kv , it lies in � (see Remark 7.11) and, therefore,
there are at least two bands of † containing z . One of these bands misses Y , and thus
belongs to BY .

Since no two bands in BY are separated by v0 , Lemma 7.21 implies that BY is finite.
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Lemma 7.21 also implies that given a band B, there are only finitely many possibilities
for the sets BY containing B. As there are finitely many orbits of bands, when Y
varies, the set BY only takes finitely many values up to the action of Gv .

We now check injectivity, ie if Y ¤ Y 0, then BY ¤ BY 0 . Up to exchanging the roles of
Y and Y 0, we can assume that the segment Œv0; y� joining v0 to Y does not intersect Y 0.
Let x be an endpoint of Y distinct from y . Since Y is open in Kv and endpoints
of Kv are not in Y , this implies that x … Y , so BY contains a band B containing x .
Since Œv0; y�[ Œy; x� does not intersect Y 0, we have B … BY 0 , and hence BY ¤ BY 0 .
This proves injectivity, and concludes the proof of the fact that Kv\Y has only finitely
many Gv–orbits of connected components.

The above construction also shows that each connected component Y of Kv \Y is a
finite subtree of Kv , because all endpoints of Y coincide with the projection of v0 to
either Y or to one of the finitely many bands in BY . This concludes the proof of the
first assertion of the lemma.

It remains to check that for every endpoint x of Y , we have pT .x/ 2 T . We will
assume that x is an endpoint of Kv , otherwise the conclusion is clear. Let BY be the
band containing Y (Lemma 8.6). Then for any band B ¤ BY containing x , we have
B \Kv D fxg. This means that B is a singleton: B ' f�g� Œ0; 1�. If Lx intersects
infinitely many singletons, then since there are only finitely many orbits of them, this
implies that the stabilizer of pT .x/ is nontrivial, hence pT .x/ 2 T . So we assume
that Lx intersects only finitely many singletons. Since B is contained in �, there is a
†–leaf line l containing B. Let Œy1; y2�Lx be a maximal segment in l , containing B
and made of singletons. Denote by v1 and v2 the vertices of R such that yi 2 Kvi .
Then Kv1 and Kv2 are not reduced to a point, and since fibres of pT are †–leaves
(Proposition 7.24), we have pT .Kv1/\pT .Kv2/D fpT .x/g. It follows that pT .x/
is not an endpoint of pT .Kv1/[pT .Kv2/. Since it is not an endpoint in T , we have
pT .x/ 2 T .

Lemma 8.8 The inclusion †0 � † is a homotopy equivalence. In particular, †0 is
simply connected.

Proof The second part of the lemma follows from the first by Lemma 7.6. Let Y be
a connected component of Kv \Y . By Lemma 8.7, the set Y is a closed finite tree.
Let BY be the unique band of † containing Y (Lemma 8.6), and identify Y � Œ0; 1�
with the corresponding subset of BY , where Y is identified with Y � f0g. We have
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that Y � f1g is contained in †0. This is because every complete †–leaf is infinite by
Proposition 7.22, so for each terminal edge Œx; x0/Lx 2 Term.Lx/, we have x0 … Y .
Thus, there is a deformation retraction of BY to BY n .Y � Œ0; 1// with support in
Y � Œ0; 1/. Doing this for every Y , we get a deformation retraction from † to †0,
which proves the lemma.

A boundary segment of the band BDK�Œ0; 1� is a leaf segment of the form fxg�Œ0; 1�
with x a terminal point in K (note that each band may have infinitely many boundary
segments if K is not a finite tree).

Lemma 8.9 Every boundary segment of a band of †0 is contained in �.

Proof Consider a †–leaf segment Œx; y�Lx in a band B of †, which becomes a
boundary segment of the band B 0 � B of †0. Let v 2 R be such that x 2 Kv . We
can assume that Œx; y�Lx is not a boundary segment of B, otherwise we are done by
Remark 7.11. Then, up to exchanging the roles of x and y , there are leaf segments
Œxi ; yi �Lxi � B with xi 2 Kv \Y converging to x . Consider li any †–leaf semiline
starting from xi (it exists by Proposition 7.22). Its initial segment Œxi ; yi � is contained
in B since xi is a terminal point in its leaf. By Corollary 7.16 (and Remark 7.17 if x
is the special vertex of Kv ), there exists a †–leaf semiline l based at x with initial
segment Œx; y�Lx .

Since x…Y , there exists another band B2¤B in † containing x . If x is either a special
vertex or an endpoint of B2\Kv , then x 2�, so there is a †–leaf line l 0 containing x .
Using the semiline l constructed above, it easily follows that Œx; y�Lx ��.

We now assume that x is not a special vertex, and that there are at least two directions
based at x in B2 \Kv . Since Œx; y�Lx is a boundary segment of B 0, one of these
two directions intersects B 0 trivially. Thus, there exists a sequence of points x0i 2
.B2nB

0/\Kv converging to x . Let l 0i be a †–leaf semiline starting from x0i . We claim
that its initial segment Œx0i ; zi �l 0i is not contained in B. Indeed, assuming otherwise,
then Œx0i ; zi �l 0i is contained in B nB 0, so either x0i or zi is a terminal point of its leaf.
But x0i is not a terminal point of its leaf (x0i 2B2\B ), and neither is zi (it is contained
in the semiline l 0i ), a contradiction.

Since no l 0i starts with an edge in the band B, Corollary 7.16 implies that there exists a
†–leaf semiline starting from x which does not start with an edge in B. Then l [ l 0 is
a †–leaf line containing Œx; y�Lx , showing that Œx; y�Lx ��.
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The following lemma proves the first assertion of Proposition 8.4:

Lemma 8.10 The graph R0 is a Grushko tree.

Proof Since †0 is connected, so is R0 ; we will first check that R0 is simply connected.
Let 
 be a cycle in R0. Then 
 can be lift to a loop 
 0 in †0 which is a concatenation
of leaf segments and of geodesic segments contained in the trees Kv . Since †0 is
simply connected (Lemma 8.8), the loop 
 0 can be filled by a disk. Projecting this disk
to R0 shows that 
 can be filled by a disk.

Recall the existence of a G–equivariant map f W R0!R making the following diagram
commute:

†0
� � //

pR0
��

†

pR
��

R0
f
// R

Since each peripheral subgroup fixes a point in †0, it also does in R0. Since f maps
edge to edge and R has trivial edge stabilizers, so does R0. Since point stabilizers in R
are peripheral, so are point stabilizers in R0. Thus, it remains to prove that the action
of G on R0 is minimal.

By Lemma 8.7, the f –preimage of each edge e of R is a finite set of edges of R0

(corresponding to the connected components of the intersection of †0 with the band Be
of † corresponding to e ). Therefore G acts cocompactly on R0. Since every boundary
segment of a band of †0 lies in � by Lemma 8.9, and since by definition � is a
union of †–leaf lines, no edge of R0 is terminal. This implies that R0 is minimal and
concludes the proof.

Proof of Proposition 8.4 The fact that R0 is a Grushko tree has already been proved
in Lemma 8.10.

Define ˆW †0 ! T � R0 by sending x 2 †0 to .pT .x/; pR0.x//. This continuous
equivariant map is injective because the fibres of pR0 embed into T . We aim to show
that ˆ.†0/D†.T;R0/; it will then be clear that ˆ sends any leaf of †0 to a leaf of
†.T;R0/, and that pR0 D qR0 ıˆ and pT D qT ıˆ.

Let us first check that ˆ.†0/�†.T;R0/. We first claim that ˆ.�/�†.T;R0/. Indeed,
let x 2�, and l a †–leaf line containing x , with endpoints ˛; ! . Since .pR0/jl is
an isometric embedding (Lemma 8.5), we have .˛; !/ 2 L2v0.T /, where v0 WD pR0.x/.
This means by definition that .pT .x/; v0/ 2†.T;R0/, and proves our claim.
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In general (ie if x is no longer assumed to belong to �), there exist x1; x2 2� such that
pR0.x1/D pR0.x2/D pR0.x/ and pT .x/ 2 ŒpT .x1/; pT .x2/�: indeed, the preimage
p�1R0 .fv

0g/ is the convex hull of points lying in boundary segments of †0–bands, and
such points belong to � by Lemma 8.9. Since fibres of qR0 W †.T;R0/ ! R0 are
convex, this implies that ˆ.x/ 2†.T;R0/.

It remains to prove that †.T;R0/�ˆ.†0/. In view of Proposition 7.26, it suffices to
check that ˆ.†0/ is a closed connected subset of T �R0 with connected fibres. The
map qR0 W ˆ.†0/!R0 has closed fibres because Y is open, and q�1R0 .e/� q

�1
R0 .v/ for

every edge e incident on v . It easily follows that ˆ.†0/ is closed. Since ˆ.†0/ is
connected, we are left with checking that it has connected fibres.

For y 2 T , the set p�1T .fyg/\†0 is connected (it is a leaf with its terminal edges
removed), hence coincides (if nonempty) with a complete †0–leaf which we denote
by L0y . Then ˆ.†0/ \ .fyg � R0/ D ˆ.L0y/ is connected. And any point u0 2 R0

corresponds by definition to a connected component Ku0 of some Ku\†0, so ˆ.†0/\
.T � fu0g/Dˆ.Ku0/ is connected.

This shows that ˆ is a continuous, injective map onto †.T;R0/. That it is a homeo-
morphism is proved by checking that the map ‰W †.T;R0/!†0 defined by letting
‰..x; v//D .x; f .v// (where f W R0!R is the natural map) is an inverse of ˆ.

8.2 The pruning process, and analysis of �

The pruning process Starting from an R–tree with dense orbits T and a foliated band
complex †.T;R/D†.0/ , we define inductively for all i 2N a foliated band complex
†.i/ WD .†.i�1//0 � †.i�1/ by applying one step of the pruning process to †.i�1/ .
Then we define R.i/ as the Grushko tree associated to †.i/ , so that †.i/D†.T;R.i//
by Proposition 8.4. It may happen that no leaf of †.i/ has a terminal edge, in which
case †.j / D†.i/ for all j � i . In the rest of this section, we also consider this case
(many statements from Sections 8.2 and 8.3 are actually obvious in this case; the
analysis of this important case will be made in Section 8.4).

Note that an edge e in a †–leaf L lies in † n†.i/ if and only if one of the two
connected components of Ln e̊ has depth at most i �1 as a tree rooted at the endpoint
of e . Similarly, a vertex x of L lies in † n†.i/ if and only if there is some edge e
incident on x such that the connected component of L n e̊ containing x has depth at
most i � 1.
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The set � is what is left when everything else is forgotten We now relate the
pruning process with the subset � of † introduced in Definition 7.4.

Lemma 8.11 We have �D
T
i2N †

.i/ . Moreover, for any compact subset K�†n�,
there exists i 2N such that K �† n†.i/ .

Proof Since †.iC1/ is obtained from †.i/ by removing an open set, the second
assertion follows from the first.

Lemma 8.5 implies that ��
T
i2N †

.i/ ; we now prove the converse inclusion. Con-
sider x 2 † n�. Then x is not a special vertex, so Lx n fxg has only finitely many
connected components (Corollary 7.13). Since there is no †–leaf line through x , there
is exactly one connected component c0 of Lx n fxg which is not a finite tree. Thus
Lx n c0 has finite depth, so x 2† n†.i/ for some i .

Connectedness of the fibres of �

Lemma 8.12 The restriction of pT to � has connected fibres.

Proof Let x; y 2 � be such that pT .x/ D pT .y/. Let L be the complete †–leaf
containing x and y . By definition of �, there are †–leaf lines lx; ly � L containing
x and y , respectively. The segment Œx; y�L is then clearly contained in a †–leaf line
obtained by concatenating it with semilines of lx and ly . This shows that Œx; y�L ��
and concludes the proof.

Finiteness properties of the set � We will now use the pruning induction to show
finiteness properties of �. The set � has a natural structure of a (usually disconnected)
band complex where each �–band is a subset of Be D Ke � e of the form K 0 � e

where K 0 is a connected component of �e .

Definition 8.13 (incidence graph) We define the incidence graph I of � as I WD
�=�, where x � y if and only if pR.x/D pR.y/ and x and y belong to the same
connected component of �\ .p�1R .pR.x///.

This has a natural structure of a graph whose vertices are the connected components of
�V WD�\†V , edges corresponding to �–bands.

Note that the definition of I is similar to the definition of R.i/ from †.i/ . SinceT
i †

.i/ D�, the idea is that I will be a limit of the Grushko trees R.i/ ; this is made
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precise in Lemma 8.14 below. This will allow us to deduce finiteness properties of �,
given in Corollaries 8.15 and 8.16.

In general I may be disconnected, and may have uncountably many vertices and edges.
Since points in � are contained in a †–leaf line, all vertices of I have valence at
least 2. For all i 2N , there is a natural G–equivariant map pI

R.i/
W I!R.i/ , sending

vertices to vertices and edges to edges: if C is a connected component of �V , then
the map pR.i/ W †

.i/!R.i/ sends C to a vertex, which we define as pI
R.i/

.C /, and it
is defined on edges in a similar fashion. Notice that the maps pI

R.i/
fail to be injective

in general. However, we have the following result:

Lemma 8.14 Given any finite subgraph F � I , there exists i 2N such that pI
R.i/

is
injective in restriction to F .

Given any finite subgraph F � I=G, there exists i 2 N such that the quotient map
xpI
R.i/
W I=G!R.i/=G is injective in restriction to F .

Proof The first part of the lemma is a consequence of Lemma 8.11: if C;C 0 are two
distinct connected components of �\Ku for some u 2 R , then the segment in Ku
joining C to C 0 contains a point in † n�. Therefore this segment contains a point in
† n†.i/ for i large enough, showing that pI

R.i/
.C /¤ pI

R.i/
.C 0/.

Assume that some connected component C of �\Ku is not in the same orbit as
a component C 0 of �\Ku0 . If u and u0 are not in the same orbit of R , then the
images of C and C 0 under xpI

R.i/
are not in the same orbit. So, up to changing C 0 to a

translate, we can assume that C and C 0 are two connected components of �\Ku .
Since .G:C 0/\Ku DGu:C 0, it suffices to prove that there is a finite set F �Ku n�u
such that for all g 2Gu , the sets C and gC 0 are contained in distinct components of
�u nGu:F . To prove this fact, denote by u† the special vertex in Ku . If u† 2C, then
one can take for F any point in the segment joining C to C 0 that does not belong
to �. The case where u† 2 C 0 is symmetric, so assume u† … C [C 0. Then there
is at most one g 2Gu such that the segment joining C to gC 0 avoids u† . One can
then take F D fa; bg where a (resp. b ) is a point outside � on the segment joining
C to gC 0 (resp. C to u† ).

Since R.i/ is a tree for all i 2N (and therefore R.i/ does not contain any cycle), we
deduce as a consequence of Lemma 8.14 the following fact:

Corollary 8.15 The graph I is a forest.
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Since there is a bound on the number of G–orbits of branch points and on directions
at these points in any Grushko tree, we also deduce from Lemma 8.14 the following
fact (this is [8, Corollary 3.7] in the context of free groups):

Corollary 8.16 There is a bound, only depending on rkK.G;F/, on the number of
G–orbits of branch vertices in I and of G–orbits of directions at these vertices.

8.3 Finiteness properties for �int

We now want to control the number of orbits of nondegenerate segments contained
in �V . Let �int �� be the subset made of all points x 2� for which there exists a
transverse nondegenerate interval Ix �� that contains x , with pR.Ix/D fpR.x/g.
It has a structure of a band complex where each �int –band is an �–band K � e with
K not reduced to a point.

In this section, we prove that �int has finitely many orbits of connected components,
and that there are at most finitely many orbits of leaves with at least 3 ends that are not
completely contained in such a connected component (Lemma 8.21).

Lemma 8.17 Let ƒ be a connected component of �int . Then the restriction of pT to
ƒ has connected fibres.

Proof Let x; y 2 ƒ be such that pT .x/ D pT .y/. Let 
 W Œ0; L� ! ƒ be a path
joining x to y . We can assume that 
 is a finite concatenation of leaf segments and of
unit speed geodesic segments in �V . Subdividing 
 , we can assume without loss of
generality that pT .
.t//¤ pT .x/ for all t 2 .0; 1/. Then there exists " > 0 such that
for all t � ", we have pT ı
.t/D pT ı
.L� t /. Since the restriction of pT to � has
connected fibres (Lemma 8.12), this implies that 
.t/ and 
.L� t / are in the same
†–leaf, and the leaf segment lt joining them is also in �. This implies that for all
t � ", we have lt ��int thus lt �ƒ, so l0 is a path in p�1T .fpT .x/g/\ƒ joining x
to y . This shows that fibres of pT are connected.

The following observation will turn out to be useful in the upcoming analysis:

Lemma 8.18 Given any nondegenerate interval I � �int \�V , there exists a non-
degenerate subsegment J � I contained in two distinct �int –bands.

Proof Up to restricting to a smaller interval, we can assume that the closure of I does
not contain any special point and that there are only finitely many bands B1; : : : ; Bk
of † that meet I (see Lemma 7.12). For all i 2f1; : : : ; kg, we let Fi be the intersection
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of I with the �–bands contained in Bi , and for i ¤ j we let Fi;j WD Fi \Fj . Then
the sets Fi;j are closed, and since I ��, for every point x 2 I, there exist two bands
Bi and Bj incident on I such that Lx\� has leaf segments contained in Bi and Bj ,
so x 2 Fi;j . This implies that the Fi;j cover I. Therefore one of the sets Fi;j has
nonempty interior. Any nondegenerate interval J � Fi;j satisfies the conclusion of the
lemma.

Let Iint�I be the subgraph whose vertices are the connected components of �int\�V ,
and whose edges correspond to �int –bands.

Lemma 8.19 The graph Iint has finitely many orbits of connected components.

Moreover, each connected component I of Iint is a tree, and the action on I of its
stabilizer GI is minimal and is a Grushko .GI ;F jGI /–tree. Any peripheral group
intersecting GI nontrivially is contained in GI .

Proof Since Iint is a subgraph of the forest I (Corollary 8.15), each connected
component I of Iint is a tree.

It follows from Lemma 8.18 that all vertices in Iint have valence at least 2. We claim
that every connected component of Iint contains a branch point of Iint , and is the
convex hull of its branch points. Otherwise, since Iint does not contain any valence 1
vertex, there is a semiline L in Iint containing no branch point of Iint . Let C be a
connected component of �int\�V corresponding to an interior vertex v in L, and let
B1; B2 ��int be the two �int –bands incident on C. Since there is no other �int –band
incident on C, it follows from Lemma 8.18 that C D B1\B2 . This is true for every
component corresponding to a vertex of the semiline L, so for all x 2 C, the complete
†–leaf Lx contains a †–leaf semiline having the same projection in R as L. As C is
not reduced to a point (by definition of �int ), we obtain a contradiction to Lemma 7.8.
This proves our claim.

By Corollary 8.16, there are only finitely many orbits of branch points in Iint . This
implies that Iint has only finitely many orbits of connected components, finitely many
orbits of vertices, and also finitely many orbits of edges because there are finitely many
orbits of directions at branch points in Iint . Thus, for each connected component I
of Iint , its stabilizer GI acts cocompactly on I. Since I has no terminal point, this
implies that the action of GI on I is minimal.

The map pI
RW I!R sends edges to edges and vertices to vertices. It follows that edge

stabilizers of I are trivial, and that vertex stabilizers are peripheral subgroups.
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We now claim that if Gv is a peripheral subgroup of G that intersects GI nontrivially,
then the unique vertex v† 2† fixed by Gv lies in the connected component ƒ of �int

corresponding to I. This will imply in particular that all peripheral subgroups of GI
are elliptic in I, so GI is a Grushko .GI ;F jGI /–tree. To prove the claim, let h be a
nontrivial element in GI \Gv . Since pI

R.I / is a connected h–invariant subset of R ,
it contains its fix point v , so ƒ\Kv ¤∅. Let x 2 Kv \ƒ. Then x; hx 2ƒ, and v†
belongs to the unique embedded segment of Kv that joins x and hx . Since pT .ƒ/ is
connected, there exists y 2ƒ with pT .y/D pT .v†/. Then pT .hy/D pT .v†/, and
since fibres of .pT /jƒ are connected (Lemma 8.17), the leaf segment joining y to hy
is contained in ƒ. Since v† is contained in this leaf segment, this proves our claim,
and finishes the proof of the lemma.

Lemma 8.20 Every point x 2�int\�V lies in at least two distinct �int –bands.

Proof Let x 2�int\�V , and let C be the component of �int\�V that contains x .
We can assume that x is not a special vertex since the result is clear in this case.
Assume towards a contradiction that x lies in at most one �int –band. Denote by Kv
the base tree of † containing C. By Lemma 7.12 there exists a neighbourhood Vx
of x in Kv that intersects only finitely many †–bands. Since two distinct �int –bands
contained in a common †–band cannot be in the same orbit, Lemma 8.19 shows that
there are only finitely many �int –bands that intersect Vx . Denote these �int –bands by
B0; : : : ; Bn with x … B1[ � � � [Bn . Then there is a neighbourhood of x that meets at
most one �int –band, contradicting Lemma 8.18.

Given a complete †–leaf L, we let L� WD L\�. From Lemma 8.20, we will deduce
the following fact:

Lemma 8.21 There are only finitely many orbits of complete †–leaves L with at least
3 ends such that L� is not contained within a single connected component of �int .

Moreover if ƒ and ƒ0 are two distinct components of �int , then there is at most one
complete †–leaf that intersects both ƒ and ƒ0.

Proof Recall that an edge e of the incidence graph I of � corresponds to an �–band.
We say that e is thin if this �–band is reduced to a leaf segment, and thick otherwise.

Let L be a complete †–leaf as in the statement of the proposition. By definition of �,
L� also has at least 3 ends. Let LI be the image of L� in I under the natural map.
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Since this map is locally injective, hence injective, LI has at least 3 ends, and therefore
contains a branch point b of I . Since L� is not contained within a single connected
component of �int , its image LI contains a thin edge e .

We claim that LI also contains a thin edge e0 adjacent to a branch point of I . The
proposition follows from this claim because there are only finitely many orbits of such
edges e0, and, e0 being thin, it corresponds to a unique complete †–leaf.

To prove the claim, consider the path in LI joining e to b . Then the last thin edge
on this path is adjacent to a branch point; this follows from the fact that if some thick
edge is incident on some vertex v 2 I , then there must be another thick edge incident
of v in view of Lemma 8.20.

We now prove the last assertion from the lemma. Assume on the contrary that
pT .ƒ/ \ pT .ƒ

0/ contains more than one point. Then pT .ƒ/ \ pT .ƒ
0/ contains

a nondegenerate arc, which is in particular infinite modulo G. Therefore there are
leaves in infinitely many distinct orbits that meet both ƒ and ƒ0. Since any such leaf
has at least 3 ends, this contradicts the first assertion.

Leaves within a connected component of �int

Lemma 8.22 Let ƒ be a connected component of �int . Let Tƒ � T be the Gƒ–
minimal subtree, and let Tƒ be the closure of Tƒ in T (which is a completion of Tƒ ).

Then Tƒ � pT .ƒ/� Tƒ and every Gƒ–orbit is dense in Tƒ .

Proof Since ƒ is connected, pT .ƒ/ is a Gƒ–invariant subtree of T , so Tƒ�pT .ƒ/.

If pT .ƒ/ is not contained in Tƒ , then there is an arc I � pT .ƒ/ nTƒ . Since branch
points of T are dense in every segment, and since there are only finitely many G–orbits
of directions at branch points, there exist small disjoint intervals J1; J2 � I and g 2G
such that g:J1 D J2 , preserving the orientation induced by I. In particular, g is
hyperbolic in T , and its axis intersects I. It follows that pT .gƒ/\pT .ƒ/ contains
the arc J2 , so there is more than one leaf that meets both ƒ and gƒ, so gƒDƒ by
Lemma 8.21. So g 2Gƒ ; this contradicts the fact that I lies outside Tƒ .

We now prove that every Gƒ–orbit is dense in Tƒ . If not, then Tƒ contains an arc I
that does not contain any branch point of Tƒ . As above, branch points of T are dense
in I, and the same argument as above provides a hyperbolic element g 2Gƒ such that
gI \ I is nondegenerate, a contradiction.
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Lemma 8.23 Let ƒ be a connected component of �int . Let Rƒ be the connected
component of Iint corresponding to ƒ, and Tƒ the Gƒ–minimal subtree.

Then ƒD†.Tƒ; Rƒ/.

Proof Consider the product map ˆD .pT ; �/W ƒ! Tƒ �Rƒ (where � W ƒ!Rƒ

is the natural projection), and let ƒ0 WDˆ.ƒ/. The map ˆ is continuous and injective.

The fibres of � are connected by definition, and the fibres of .pT /jƒ are connected by
Lemma 8.17. Fibres of � being closed, one easily deduces that ƒ0 is closed. Since ƒ0

is connected, it follows from [22] that ƒ0 contains the core C.Tƒ �Rƒ/.

Conversely, let .x; u/ 2 ƒ0, and let z 2 ƒ be a preimage of .x; u/. Let Lz be
the complete †–leaf through z . Then Lz \ƒ contains a bi-infinite line through z
(Lemma 8.20), and this line projects isometrically to Rƒ (in particular its endpoints
belong to @.Gƒ;F jGƒ/). This shows that x 2 L2u.Rƒ/, hence .x; u/ 2†.Tƒ; Rƒ/.

We have thus proved that C.Tƒ �Rƒ/�ƒ0 �†.Tƒ; Rƒ/. This concludes the proof
by Proposition 7.26 (which uses the fact that Tƒ has dense orbits).

8.4 Band complexes of quadratic type and analysis of Q–preimages

In this subsection, we study connected components of �int . We focus on such a
component ƒ. We know that leaves of ƒ have no terminal point (Lemma 8.20) and
Proposition 8.24 will show that ƒ is of quadratic type in the sense below. In particular,
such a component has only finitely many orbits of leaves with at least 3 ends.

By Lemma 8.23, ƒD†.Tƒ; Rƒ/ is the band complex corresponding to the R–tree
Gƒ Õ Tƒ with respect to the Grushko tree Rƒ . We thus use generic notation and
study any band complex †.T;R/ whose leaves have no terminal point. Note that,
equivalently, this assumption means that the pruning process does not affect †.T;R/.

Proposition 8.24 Let T 2O be a tree, let R be a Grushko tree and let † WD†.T;R/.
Then the following statements are equivalent:

� The pruning process does not affect †.

� Leaves of the band complex † have no terminal point.

� All but finitely many orbits of complete †–leaves are bi-infinite lines.

In this case, no nondegenerate interval in a base tree Kv is contained in 3 bands.
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Definition 8.25 (band complex of quadratic type) Given a tree T 2O and a Grushko
tree R , we say that the band complex †D†.T;R/ is of quadratic type if it satisfies
the equivalent assertions from Proposition 8.24.

Remark 8.26 The word quadratic is reminiscent of Makanin’s algorithm, where
quadratic generalized equations are those where each segment is contained in two
bands. In [8], the authors qualify these band complexes as pseudosurface, and of
surface type in [14]. We prefer the word quadratic to avoid any confusion, in particular
with measured foliations on surfaces.

A tree T 2 O with dense orbits is of quadratic type if there exists a Grushko tree R
such that †.T;R/ is of quadratic type. We also say in this case that T is of quadratic
type with respect to R .

In particular, if for some Grushko tree R0, the pruning process applied to the band
complex †.T;R0/ eventually halts, then T is of quadratic type (with respect to
some R00 ).

Proof of Proposition 8.24 The equivalence between the first two assertions is clear
from the definition of the pruning process. The third assertion implies the second:
indeed, if some leaf of † has a terminal point, then there is a whole interval of points
that are terminal in their leaf, hence uncountably many leaves are not bi-infinite lines.
Thus, in order to prove the equivalence between the three assertions, we only need to
show that the second assertion of the proposition implies that there are only finitely
many orbits of leaves with at least 3 ends (Corollary 8.29).

The proof is similar to [8, Section 4] for free groups; it goes as follows. The main point
will be to prove that there is no nondegenerate interval I of † contained in 3 bands.
To prove this, we are going to approximate † by a band complex †" �† whose bases
are finite trees (defined in the next paragraph). In the terminology of [19], the band
complex †" yields a finite system of isometries on a finite tree. If † contains such
an interval, then the system of isometries will have an interval of comparable length
contained in the domain of at least 3 isometries. Since every point of † lies in two
bands, in the approximation, the measure of the set of points in the domain of at most
one partial isometry will go to zero (Lemma 8.27). But a result by Gaboriau, Levitt and
Paulin [19] shows that in such a system of isometries (with independent generators),
the measure of the set of points in the domain of at least 3 partial isometries is bounded
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from above by the measure of the set of points in the domain of at most one partial
isometry. This will give a contradiction.

Given an R–tree K and " > 0, define K�" as the set of all x 2 K such that x is
the midpoint of a segment of length 2" contained in K . Note that if K is a compact
R–tree, then for all " > 0, K�" is a finite tree. Indeed, otherwise, the tree K�" would
contain infinitely many terminal points xn 2K�" . By definition of K�" , there exists
yn 2K at distance " from xn such that Œxn; yn�\K�" D fxng. The points yn are at
mutual distance at least 2" so the sequence .yn/n2N has no converging subsequence
in the metric topology, contradicting the compactness of K . We define

†" WD
[
u2R

K�"u �†:

The set †" has the structure of a band complex whose base trees are the sets K�"v for
vertices v in R , and whose bands are of the form K

�"
e � e for e edge of R . Notice

that " > 0 can be chosen small enough so that K�"u ¤∅ for all u 2R . We will always
assume that this holds in what follows.

Let v 2 R be a vertex. Let K0 � Kv be a fundamental domain for the action of Gv
on Kv .

Lemma 8.27 Assume that leaves of † have no terminal point.

Let J" � Kv be the set of points x 2 K�"v that are contained in at most one †"–band.

Then the Lebesgue measure of J"\K0 converges to 0 as " goes to 0.

Proof Let v† 2 Kv be the vertex fixed by Gv if Gv is nontrivial (ie the special
vertex if Gv is infinite), and v† 2 Kv an arbitrary basepoint otherwise. Without loss
of generality, we take for K0 a union of closures of components of Kv n fv†g.

Let B be the collection of all bands of † that meet Kv ; for each band B 2 B , we let
B WD B \Kv .

We claim that if " is small enough, the following holds. Let x 2†"\Kv be a point
that is a terminal vertex in Lx \†" . Then x lies either in the bridge Œv†; B�"� for
some band B such that v† 2 B nB�" , or in the bridge ŒB�"; B 0�"� for some bands
B;B 0 2 B satisfying B \B 0 ¤∅ and v† … B.

This claim implies the lemma. Indeed, any such bridge is an interval of length at
most 2". Moreover, the number of bridges of the first kind contained in K0 is bounded
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by the number of Gv –orbits of bands incident on Kv : indeed, given a bridge Œv†; B�"�
contained in K0 , one has v† … B�" so B�" � K0 , and any two distinct bands such
that B�" �K0 are in distinct orbits.

To take care of bridges of the second kind, it suffices to observe that there are only
finitely many Gv–orbits of pairs of bands B and B 0 with B \B 0 ¤ ∅ and v† … B
(Lemma 7.21).

We now prove the claim. By Lemma 7.21, there exists " > 0 such that d.B;B 0/ > 2"
as soon as B\B 0D∅. Write x as the midpoint of a segment Œa; b��Kv of length 2".
Since leaves of † have no terminal point, a lies in two distinct bands, and since
x is terminal in Lx \†" , at least one of these bands B is such that x … B�" , and
in particular b … B. Arguing symmetrically, we deduce that there exist two bands
B;B 0 2 B with a 2 B nB 0 and b 2 B 0 nB, and such that x … B�"[B 0�" . One easily
checks that this implies that B�" \ B 0�" D ∅ and x lies in the bridge ŒB�"; B 0�"�.
Notice also that B \B 0 ¤∅ in view of our choice of ". If v† … B \B 0, then, up to
exchanging the roles of B and B 0, we see that x lies in a bridge of the second kind. If
v† 2B \B

0, the fact that Œv†; B�"�[ Œv†; B 0�"� contains ŒB�"; B 0�"� shows that x in
a bridge of the first kind.

We denote by †3 the subset of † made of points that belong to at least 3 distinct
bands of †.

Lemma 8.28 Assume that no leaf of † has a terminal point.

Then for every vertex v 2R , the set †3\Kv contains no nondegenerate interval.

Proof We construct from †" a system of partial isometries on

K" WD

� [
v2V.R/

K�"v
�.

G;

which is a finite union of finite trees. We cannot do this directly because a band B
of †" may fail to inject in the quotient by G if B \ gB ¤ ∅ for some peripheral
g 2 G. This happens only if B contains a special point of †. For this reason, we
subdivide each band B of †" containing a special vertex v along the leaf segment lv
of B containing v . The band B contains at most two special vertices (one at each end),
and B n lv has finitely many connected components because B being a band of †" , it
is a product of a finite tree by Œ0; 1�. Denote by B0 the set of subdivided bands in †" ,
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and by B 01; : : : ; B
0
n some representatives of the G–orbits of these bands, with a chosen

orientation (ie an identification with K � Œ0; 1� for some finite tree K ). Now each B 0i
embeds under the quotient map to †"=G, and determines a partial isometry �i of K" .

We claim that this finite system of isometries on K" has independent generators, in
the sense of [19, Section 5], ie there exists no nontrivial reduced word �"rir : : : �

"1
i1

in
the partial isometries and their inverses that is defined and restricts to the identity on
a nondegenerate interval. Indeed, consider a word w D �"rir : : : �

"1
i1

and an interval
I � K" such that w restricts to the identity on I. Up to replacing I by a smaller
interval, we can assume that for all k � r , the set �"kik : : : �

"1
i1
.I / does not contain the

projection of a special vertex. Now let zI � †" be a lift of I, and let B 0 2 B0 be a
lift of the band labeled �"11 . Then there exists a unique g1 2 G such that I � g1B 0.
By applying this fact finitely many times, we see that there is a unique way to lift the
word w to the holonomy of a sequence of bands in †" joining zI to some other lift g zI.
The corresponding leaf segments do not backtrack in R , so g ¤ 1. Since zI and g zI
have the same image in T , this implies that g fixes an arc in T , a contradiction since
T has trivial arc stabilizers [30, Proposition 4.17].

If †3 contained a nondegenerate interval, then by Lemma 8.27 we could choose " > 0
small enough so that the measure of the set of points of K" contained in the domains
of at least 3 partial isometries is strictly greater than the measure of the set of points
contained in at most one such domain. This contradicts the fact that generators are
independent by [19, Proposition 6.1].

Corollary 8.29 Assume that no leaf of † has a terminal point.

Then the set †3=G is finite.

Proof It is enough to prove that for every vertex v 2 R , the set .†3 \Kv/=Gv is
finite. Let v0 be a point in Kv , which we choose to be equal to the special vertex v† if
Gv is infinite. We associate to every point x 2Kv \†3 the collection Bx of all bands
of † that contain x but do not contain v0 . Lemma 8.28 shows that there is always
one band in Bx that does not meet the interval Œv0; x/, so x is the projection of v0 to
the intersection of all bands in Bx (in particular the collection Bx determines x ). In
addition, the set Bx only takes finitely many values modulo Gv as x varies in Kv\†3 .
This implies that .Kv \†3/=Gv is finite.

As explained above, Proposition 8.24 immediately follows from Corollary 8.29. The
last sentence in Proposition 8.24 is proved in Lemma 8.28.
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8.5 Finiteness of 3–ended leaves: end of the proof

Proof of Proposition 8.2 In view of Lemma 8.21, it is enough to bound the number
of orbits of †–leaves with at least 3 ends such that L� is contained in �int . By
Lemma 8.19, �int has only finitely many orbits of connected components. Let ƒ be
one of these connected components. By Lemma 8.23, we have ƒD†.Tƒ; Rƒ/ for
some Grushko Gƒ–tree Rƒ , and Lemma 8.20 and Proposition 8.24 imply that this
band complex is of quadratic type. This concludes the proof since a band complex of
quadratic type has finitely many orbits of leaves with at least 3 ends by definition.

9 Splitting

We now define another inductive process, the splitting induction, that is useful for
studying trees of quadratic type; this generalization of the Rauzy–Veech induction was
introduced in [14, Section 4] in the context of free groups. Our main motivation for
this is Corollary 10.3 from the next section, which states in particular that if T 2O is a
mixing tree, then we can build a sequence of Grushko trees R.i/ so that the diameters
of the base trees of †.T;R.i// converge to 0; this will be key when analyzing the
lamination dual to an arational tree. Throughout the present section, we let T be a
tree with dense orbits of quadratic type with respect to some Grushko tree R (see
Definition 8.25), and we let † WD†.T;R/. We would first like to make the following
observation, which will be used repeatedly over the section:

Lemma 9.1 Let T be a tree with dense orbits of quadratic type with respect to a
Grushko tree R , and let † WD†.T;R/. Let d be a connected component of Kv n fxg,
where x is a point in some base tree Kv . Then there exists a neighbourhood U of x
in Kv such that d \U meets exactly two bands of †, and d \U is contained in these
two bands.

Proof Let U be an open neighbourhood of x in Kv such that every band of †
that meets U contains x ; this exists by Corollary 7.15. If U \ d meets three bands
B1 , B2 and B3 of †, then each band Bi contains a nondegenerate segment of the
form Œx; yi �Kv with yi 2 U \ d . The intersection of the three segments Œx; yi � is a
nondegenerate segment contained in U \ d and meeting three bands, contradicting
the fact that † is of quadratic type. Therefore U \ d meets at most two bands B1
and B2 . Since every point in U \d is contained in two bands, this implies that U \d
is contained in both B1 and B2 .
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9.1 Splitting germs

Given a vertex v 2R , a splitting germ in Kv (see Figure 7) is a germ of segment ��Kv
which can be represented by a segment Œx; y/Kv contained in a band B0 and such that
x is an endpoint of the base B0 but not of Kv (here B0 denotes the intersection of B0
with the base tree Kv ). We call x the basepoint of the germ �.

η

B0

Kv
x

Figure 7: A splitting germ � .

Remark 9.2 If † is of quadratic type, then x is a branch point in its leaf (ie it
is contained in at least 3 bands). Indeed, since x is not terminal in Kv , there is a
direction �0 ¤ � in Kv . Since † is of quadratic type, there are two bands B1 and B2
containing �0, and these bands are distinct from B0 because x is terminal in B0 .

9.1.1 Existence of splitting germs Our goal is now to prove the existence of splitting
germs in trees of quadratic type.

Proposition 9.3 Let T 2O be a tree with dense orbits of quadratic type with respect
to R . Then † contains a splitting germ.

The idea of the proof of Proposition 9.3 is the following. If † contained no splitting
germ, then the set

S
v2V.R/ @Kv made of points that are terminal in their base tree

would be invariant under holonomy of leaves in †. The key point will be to show that
if " > 0 is chosen small enough, then the set of terminal points in the approximating
trees K�"v (defined as in Section 8.4) is also invariant under holonomy. Since the trees
K�"v contain only finitely many orbits of terminal points, invariance under the holonomy
thus implies that the pT –images of these points have nontrivial stabilizer. As " > 0
can take uncountably many values, this yields a contradiction.
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x

Figure 8: A singular point x .

Given a vertex v 2 R , a point x 2 Kv is singular if there exists a band B incident
on Kv and a nondegenerate segment I D Œx; x0�Kv �Kv such that B\I Dfxg. Notice
in particular that basepoints of splitting germs are singular. Also note that an extremal
point x 2Kv is singular only if there is a band B with B \Kv D fxg. An example of
a singular point which is not of either of the above two forms is depicted in Figure 8.

Lemma 9.4 Under the hypotheses of Proposition 9.3, there are only finitely many
orbits of singular points in †.

Proof Let v 2R be a vertex, and let v0 2 Kv be a basepoint, which we choose to be
the special point of Kv if Gv is infinite. Let K � Kv be a connected component of
Kv n fv0g.

We claim that for every singular point x 2K , there exists a band Bx incident on Kv
such that x is the projection of v0 onto Bx . The lemma follows from this claim since
there are only finitely many orbits of connected components in Kv n fv0g, and for such
a component K , there are finitely many bands incident on K that do not contain v0 ,
and clearly Bx ¤ By if x ¤ y are two different singular points in K .

We now prove our claim; this is illustrated in Figure 9. Since x is singular, there
exists a band B incident on Kv and a nondegenerate interval I D Œx; x0�Kv such that
I \BDfxg. If the projection of v0 onto B is x , we are done, so we assume otherwise.
Then B \ Œv0; x�Kv is nondegenerate, and I \ Œv0; x�Kv D fxg. Let U be an open
neighbourhood of x such that every band that meets U contains x (this exists by
Corollary 7.15). Since no point in † is a terminal vertex in its complete †–leaf, the
intersection I \ U is covered by two distinct bands B1 and B2 (and these bands
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x

x′
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B

v0

Bx = B1

B2

Figure 9: Existence of the band Bx such that x is the projection of v0 onto Bx .

contain x ). Moreover, since I \B D fxg, B1 and B2 are distinct from B. If both B1
and B2 met a nondegenerate subsegment of Œv0; x�Kv , then this subsegment would
meet the three bands B1 , B2 and B, contradicting the fact that † is of quadratic type.
Therefore, one of the two bands B1 or B2 satisfies our claim.

Proof of Proposition 9.3 Assume towards a contradiction that there is no splitting
germ in †. This means that for every vertex v 2R , and every base of band B � Kv ,
every endpoint of B is an endpoint of Kv (this does not imply B D Kv as there can
be branch points of Kv which are not branch points in B ). Without loss of generality,
we can assume that no base of band of † is reduced to a point and in particular that
extremal points of base trees Kv are not singular.

Let v 2R be a vertex. By Lemma 9.4, there are finitely many Gv–orbits of singular
points in Kv , and these points are nonextremal in the bands that contain them because
there is no splitting germ in † by assumption. Since every point x is contained in
finitely many bands modulo Gx (Lemma 7.12), there exists "0 > 0 such that for every
singular point x , and every band B containing x , we have x 2 B�"0 (recall that
x 2 B�"0 means that x is the midpoint of a segment of length 2"0 contained in B ).
Let 0 < " < "0 be chosen small enough so that the distance between any two singular
points in † is strictly greater than 2".

We claim that for every point m 2 K�"v , and every band B that contains m, we have
m 2 B�" . Indeed, if m is singular, this follows from the definition of "0 . Otherwise,
the fact that T is of quadratic type implies that there are exactly two bands B ¤ B 0

that contain m. Since m 2 K�"v , there exists a segment Œa; b�Kv of length 2" whose
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midpoint is m. If Œa; b�Kv does not contain any singular point, then both B and B 0

cover the interval Œa; b�Kv , so m 2 B�" \B 0�" and we are done. Otherwise, by our
choice of " > 0, the interval Œa; b�Kv contains a unique singular point x , and without
loss of generality, we can assume that x 2 Œa;m�Kv . We have Œx; b�Kv � B \ B

0,
otherwise one of the intersections B \ Œa; b�Kv or B 0\ Œa; b�Kv would have a terminal
point x0¤ x , and x0 would be a second singular point in Œa; b�Kv . By definition of "0 ,
there exist subsegments J � B and J 0 � B 0 of length 2"0 and whose midpoint is x .
Then Œb; x�Kv [J � B, showing that m 2 B�" , and similarly m 2 B 0�" . This proves
our claim.

We now fix " small enough so that the above claim holds for every vertex v 2R , and
we prove that the family of subsets K�"v , indexed by v , is invariant under the holonomy
of †. Indeed, let x 2K�"v for some vertex v in R , and consider a band B containing x ,
joining Kv to some Ku . Let Œx; y�Lx be the †–leaf segment of B through x . We
denote by Bv and Bu the two bases of B. Since the claim holds, Bv contains a
segment of length 2" centred at x , hence y 2 B�"u , and y 2 K�"u . This proves the
desired invariance under holonomy.

Now let @K�"u be the set of endpoints of K�"u . Since @K�"u =Gu is finite for every vertex
u 2 R , so is

�S
v2R @K

�"
v

�
=G. Since K�"u n @K�"u D

S
"0>"K

�"0

u , the set
S
v2R @K

�"
v

is invariant under holonomy, ie for all x 2 @K�"u , and all vertices v 2R such that Lx
intersects Kv , we have Lx \Kv � @K�"v . Since Lx is infinite (Proposition 7.22), and�S

v2R @K
�"
v

�
=G is finite, this implies that the stabilizer of Lx is infinite, and so is the

stabilizer of pT .x/. Since this holds for every small enough " > 0, we get uncountably
many points in T with infinite stabilizer. Since by [30, Corollary 4.5] there are only
finitely many orbits of points with nontrivial stabilizer, we get a contradiction.

9.1.2 Degenerate splitting germs Let v 2 R be a vertex, and let � be a splitting
germ, based at a point x 2 Kv . We say that the splitting germ � is degenerate if x is
extremal in the two bands containing � (see Figure 10 for a degenerate splitting germ;
the splitting germ in Figure 7 is nondegenerate).

Lemma 9.5 If † contains a degenerate splitting germ, then T is compatible with a
.G;F/–free splitting.

Proof This is illustrated in Figure 10. Assume that there is a degenerate splitting germ
�� Kv based at a point x 2 Kv for some vertex v 2 R . Since x is a local cut point
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Figure 10: A degenerate splitting germ � , and the corresponding .G;F/–free
splitting S.

of † and † is simply connected, x is a global cut point. Let .Yi /i2I be the family
made of the closures of the connected components of † nG:x . We define a bipartite
simplicial graph S having one vertex for each Yi and one vertex for each point in G:x ,
where Yi is joined by an edge to g:x whenever g:x 2 Yi . Our goal is to show that
some collapse of S is a .G;F/–free splitting compatible with T .

Since each point in G:x is a global cut point, S is a tree. Some edges of S may have
nontrivial stabilizer (this happens only if x is the special vertex of Kv ), but the edge e
joining x to the component Yi containing � has trivial stabilizer because � is terminal
in Yi \Kv and the stabilizer of e fixes �. Let S 0 be the tree obtained from S by
collapsing every edge outside G:e . Then S 0 is a free splitting of G, and peripheral
subgroups are elliptic so it is a .G;F/–free splitting. Since S 0 has a single orbit of
edges and no terminal point, the action of G is minimal.

In order to complete the proof of the lemma, we are thus left checking that S 0 is
compatible with T . We first observe that if i ¤ j , then pT .Yi /\pT .Yj / contains at
most one point.

We now assign a subtree Tu � T for each vertex u 2 S as follows: if u corresponds to
the component Yi , we define Tu D pT .Yi /� T ; if u corresponds to g:x , we define
Tu D fpT .g:x/g. Then for all vertices u¤ u0 in S, the intersection Tu\Tu0 contains
at most one point. The following lemma thus completes the proof.

Lemma 9.6 Let S be a simplicial .G;F/–tree. For each vertex u 2 S, let Tu � T be
a subtree, with Tgu D gTu for all g 2G. Assume that for all u¤ u0, the intersection
Tu\Tu0 contains at most one point, and is nonempty if u is a neighbour of u0.

Then S is compatible with T .
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Proof Let yT be the R–tree obtained from the disjoint union of the vertex trees Tu and
of the edges of S, glued as follows: if eD Œu; u0� is an edge of S, we let fxegDTu\Tu0 ,
and we glue the endpoints of e to the copies of xe in Tu and Tu0 , respectively.

Clearly, there is a collapse map from yT to S. Moreover, let T 0 be the tree obtained
from yT by collapsing all the edges coming from S. The inclusion maps Tu� T induce
a map f W T 0 ! T which is isometric in restriction to each Tu . Since Tu \ Tu0 is
reduced to a point for each u¤ u0, this implies that f is an isometry. By minimality,
f is onto, and yT is a common refinement of S and T .

9.2 The splitting process

From now on, we assume that T is not compatible with any .G;F/–free splitting and
we define a splitting procedure on the band complex †.

Let � be a nondegenerate splitting germ based at some point x 2 Kv ; recall that this
means that one of the two bands B0 containing �, is such that x is an endpoint of
B0\Kv , but x is not an endpoint of B \Kv where B is the other band containing �.
Note that B0 and B are uniquely defined by these conditions, and we say that B is the
band split by �. We define the splitting leaf segment �� as B\Lx , ie the leaf segment
of B starting from x .

Notice that since there are only finitely many orbits of singular points (Lemma 9.4)
and finitely many orbits of directions at each of these points, there are only finitely
many orbits of splitting germs. Since each germ splits a unique band, and since band
stabilizers are trivial, this implies that for each band B, there are only finitely many
germs that split B. Similarly, for each vertex v of R , there are only finitely many
Gv–orbits of splitting germs contained in Kv .

 η

B0

Kv
x

B
ση

η

B0
ηx

η′
x′ B

′

B0

B′
0

B(η)B∗(η)

Kv(η)
K∗

v(η)

splitting along ��
�

two facing germs � and �0

Figure 11: The splitting process.
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9.2.1 A band complex †0
�

defined by splitting Given a G–invariant collection �
of splitting germs, we now explain how to define a new band complex †0� by cutting
the bands of † split by germs � 2 � along the corresponding splitting leaf segments
(see Figure 11). To define this operation, we will need to make the assumption that
� has no pair of facing splitting germs in the following sense: there is no pair of
splitting germs �; �0 2 � contained in the two opposite bases of some band and such
that � and �0 have the same image in T . We will then prove, using the fact that T
is not compatible with any .G;F/–free splitting, that the collection �max made of all
splitting germs of † contains no pair of facing splitting germs (Lemma 9.9 below).
This will allow us to cut all bands in † simultaneously, and we will say that the band
complex †0 WD†0�max

is obtained from † by applying one step of the splitting process.
To manage the details of the construction around points with nontrivial stabilizer, and
with all splitting germs simultaneously, we make this construction more formal, and
proceed in several stages. The whole construction is illustrated in Figure 12.

From now on, we let � be a G–invariant collection of splitting germs that contains
no pair of facing splitting germs. Each germ � 2 � yields a partition of each base
tree Kv in the following way. Let x� be the basepoint of �. If � is contained in Kv ,
we write Kv D Kv.�/ tK�v.�/, where Kv.�/ denotes the connected component of
Kv n fx�g containing � (this is an open subtree of Kv ), and K�v.�/D Kv nKv.�/ is
its complement (a closed subtree, containing the basepoint x� ). If � is not contained
in Kv , we associate the trivial partition. Similarly, if � splits the band B, we have a
partition B DB.�/tB�.�/ where B.�/ is the connected component of B n�� whose
closure contains a representative of �, and B�.�/D B nB.�/. If � does not split B,
then we associate the trivial partition.

Let ….Kv/ (resp. ….B/) be the partition of Kv (resp. of B ) induced by all partitions
associated to all germs in � . As an intersection of convex sets, each set of the
partition ….Kv/ is a subtree. Similarly, each set in ….B/ is the product of a subtree
of a base of B by an interval. Consider first

†1 D

� a
K2….Kv/; v2V.R/

K

�
t

� a
C2….B/;B band

C

�
t

� a
�2�

S�

�
;

where K and C denote the closures of K and C in †, and where for each splitting
germ � 2 � , S� is a triangle .a�; b�; c�/. The triangle S� comes with an affine map
hS� W S�! �� , sending Œa�; b�� to x� and c� to the other endpoint of �� .
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split the band B
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†

S�1

S�2

S�3

a�3 b�3

c�3

hS�3

�3

†2

the partitions
….Ku/;….Kv/;….B/

†0

Figure 12: † , the partitions, †2 and †0.

For each � 2 � , let B be the band split by �, and let C� 2….B/ be the unique subset
whose closure contains the germ �, and C �� 2….B/ the unique subset containing the
splitting segment �� (note that C �� may be reduced to a leaf segment, but not C� ). The
sets C� and C �� are disjoint, and C� \C �� D �� . The following observation follows
from our assumption that � has no facing germs:

Observation The ordered pair .C�; C �� / uniquely determines �.

Indeed, �� can be recovered as �� D C� \C �� ; denote by Kv1 and Kv2 the two base
trees intersecting C� , and by xi the point of intersection of Kvi with �� ; since xi is
a terminal point of Kvi \C� there are only two possibilities left for �, being either
based at x1 or x2 (and contained in C� ). Since there is no pair of facing splitting
germs, this leaves only one possibility for �.
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We now define †2 from †1 by making the following identifications. For each � 2 � ,
we glue the segment Œa�; c�� of S� to the copy of �� in C� , in such a way that x� is
identified with a� . Similarly, we glue the segment Œb�; c�� of S� to the copy of ��
in C �� , identifying x� with b� . The third side Œa�; b�� of S� will remain a free face,
ie it will not be glued to anything else. After this gluing operation, each band B of †
has been replaced by a union of bands C and triangles S� , and this union is homotopy
equivalent to B (via the natural map that is the identity on each band C and restricts
to hS� on each triangle S� ). Finally, for each band B of † incident on Kv and each
C 2….B/, the intersection C \Kv is contained in a unique set K 2….Kv/ and we
identify the copy of C \Kv in C to the corresponding subset of K . We denote by †2
the obtained complex. Let hW †2!† be the map that restricts to the inclusion map on
each K with K 2….Kv/ and on each C with C 2….B/, and which restricts to hS�
on each triangle S� .

Lemma 9.7 The space †2 is simply connected.

Proof We first claim that h has contractible fibres. Indeed, for every x 2†, either

� h�1.x/ is a point; or

� x belongs to the interior of a splitting leaf segment � on a band B ; then,
denoting by Cx 2….B/ the subset of the partition of B that contains x , and
by fxigi2I the other copies of x in †2 (in the closures of other subsets of the
partition ….B/), the preimage h�1.x/ is a cone with centre x over the points xi
(indeed, the above observation implies that for each i 2 I there is a unique
triangle S� that contains both x and xi ); or

� x is a basepoint of a splitting germ in some Kv ; then, denoting by Kx 2….Kv/
the subset of the partition that contains x , and by fxig the other copies of x
in †2 (in the closures of other subsets of the partition ….Kv/), the preimage
h�1.x/ is a cone with centre x over the points xi .

Consider two finite trees KT � T and KR � R , and let C WD † \ .KT � KR/.
Let C2 D h�1.C /. Then C and C2 are metrizable, finite-dimensional and locally
contractible, and C is compact. If C2 is compact, then Lemma 7.5 applies and says
that h is a homotopy equivalence between C2 and C. If C2 is not compact, then
C contains a special point v , and h�1.v/ consists of a compact set together with
infinitely many hanging segments of the form Œa�i ; b�i /, with b�i identified with v
and Œa�i ; b�i / open in C2 (notice that it is important here to have assumed that KT is
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a finite subtree and not just a compact subtree). We define C 02 �C2 as the complement
of all those hanging segments, a compact set. Since hjC 02 still has contractible fibres,
h induces a homotopy equivalence between C 02 and C. Since C is simply connected
by Lemma 7.6, so are C 02 and C2 .

Let now 
 W S1! †2 be a loop. Then one can homotope 
 so that pT ı h ı 
.S1/
is a finite subtree of T , and pR ı h ı 
.S1/ is a finite subtree of R . In particular,
h ı 
.S1/ is contained in a simply connected compact set C as above, and 
.S1/ is
contained in C2 D h�1.C /. Since C2 is simply connected, this concludes the proof of
Lemma 9.7.

We then define the deformation retract †3�†2 by collapsing the free edge Œa�; b�� of
each triangle S� onto its two other edges Œa�; c��[ Œb�; c��. In particular, †3 is simply
connected. Notice also that for each leaf l � †, the preimage h�1.l/ is connected,
and so is h�1.l/\†3 .

The space †3 has a structure of a band complex in which the base trees are the images
of K for K 2….Kv/ and the bands are the images of C for C 2….B/. It may happen
that some base tree K is reduced to a point fxg. This happens exactly when every
germ of segment at x in Kv is a splitting germ. We claim that there is no band joining
two base trees reduced to a point. Indeed, let C D Œx; y� be such a singleton in †2 ,
and B the band of † such that C 2….B/. Let � be a germ in B containing x . The
germ �0 at y facing � is not a splitting germ, so the base tree containing y in †3 is
not reduced to a point.

We finally define †0� �†3 by removing all base trees K reduced to a point and on
which only one singleton is incident, together with the corresponding singletons (recall
that � stands for our initial collection of splitting germs). Notice from the construction
that no point of †0� is terminal in its complete †0� –leaf.

9.2.2 The space †0
�

is isomorphic to some †.T; R0
�

/ We denote by h� W †0�!†

the restriction of h to †0� . We then let �T D pT ı h� W †
0
� ! T and �R D

pR ıh� W †
0
� !R . We define R0� WD†

0
�=�, where x � y if �R.x/D �R.y/ and x

and y are in the same connected component of �R�1.f�R.x/g/. This has a natural
structure of a graph, whose vertices are the connected components of †0�\�R

�1.V .R//.
We denote by pR0 W †0� ! R0� the quotient map. The map h� yields a natural G–
equivariant map f� W R0�!R , which sends vertices to vertices and edges to edges. By
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construction, the following diagrams commute:

†0�
h�
//

pR0

��

†

pR

��

R0�
f�
// R

†0�
h�
//

�T

��

†

pT

��

T T

Lemma 9.8 The graph R0� is a Grushko tree. In addition, we have †0� D†.T;R
0
�/.

Proof We first observe that the graph R0� is simply connected, hence a tree: this
follows from the simple connectedness of †0� , by a proof similar to the proof of
Lemma 8.10. Since f� maps vertices to vertices and edges to edges, edge stabilizers
of R0� are trivial and point stabilizers are peripheral. Since peripheral groups of .G;F/
fix a point in †0� , they also fix a point in R0� . Since the f� –preimage of any edge
in R is a finite union of edges in R0� , the quotient graph R0�=G is compact, so to
prove minimality of R0� , it is enough to check that R0� has no terminal vertex. If a
base tree K of †0� is not reduced to a point, consider any germ � in K , and view it as
a germ in some Kv �†. Then � is contained in two distinct bands of † which yield
two bands in †0� containing �. If on the other hand K D fxg, then because it has not
been removed when defining †0� from †3 , there are at least two singletons in †3
incident on K , which both belong to †0� . This proves that R0� is a Grushko tree.

We now prove that †0� coincides with †.T;R0�/. As noted above, for each complete
†–leaf l � †, the preimage h�1� .l/ is connected, which implies that fibres of �T
are connected. Fibres of pR0 are connected by construction, so the image of †0� in
T �R0� under .�T ; pR0/ is a closed connected subset with connected fibres, hence
contains the core C.T �R0�/, which is equal to †.T;R0�/ by Proposition 7.26.

Conversely, let .x; u/ 2 T �R0� be a point in the image of †0� , and let z 2†0� be a
preimage of .x; u/. Let Lz be the complete †0� –leaf through z in †0� . Since no point
of †0� is terminal in its complete †0� –leaf, it follows that Lz contains a bi-infinite
line l through z , and this line isometrically embeds in R0� ; we denote its endpoints by
˛ and ! . Its image in R under f 0� is Œ˛; !�R , and this is also the image of h�.l/�†
under pR . It follows that Q.˛/DQ.!/Dx , so x 2�u . Therefore .x; u/2†.T;R0�/.
This completes the proof of the lemma.

9.2.3 Splitting all germs at once We recall that �max denotes the collection of all
splitting germs in †.
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Lemma 9.9 The collection �max contains no pair of facing splitting germs.

Proof Assume towards a contradiction that there are two facing splitting germs �
and �0 in a band B of †. Then �0 …G:�: indeed, if �0D g�, then g would stabilize B
because B is the unique band split by � and is also the unique band split by �0. Hence
we would have g D 1 and � D �0, a contradiction. Thus the collection � WD G:�

contains no pair of facing germs, so †0� is well-defined. In view of Lemma 9.8, we
have †0� D †.T;R�/. Now it is easy to see that �0 is a degenerate splitting germ
in †0� . By Lemma 9.5, this implies that T is compatible with a .G;F/–free splitting,
contrary to our hypothesis.

Definition 9.10 We say that the band complex †0 WD †0�max
is obtained from † by

applying one step of the splitting process.

Notice that the complex †0 obtained from this construction is again of quadratic type,
and it does not contain any degenerate splitting germ because †0 D†.T;R0/ for some
Grushko .G;F/–tree R0, and T is not compatible with any .G;F/–free splitting.
Therefore, we can iterate the construction to obtain a sequence of band complexes †.i/ ,
where †.0/ WD† and, for each i 2N , the band complex †.iC1/ is obtained from †.i/

by applying one step of the splitting process. We denote by h†.i/ W †
.i/!† and by

fR.i/ W R
.i/!R the corresponding maps.

9.3 Clean band complexes

The goal of the present section is to show that, up to replacing † by †.i/ (ie splitting
for long enough), we can ensure that † satisfies a few additional properties. These will
only be used in Section 12.4. Consider a splitting germ �0 in †, B1 the band split
by �0 , and �1 the germ facing �0 in B1 . For i � 1, one can then define inductively
BiC1 as the band containing �i and distinct from Bi , and �iC1 as the germ facing �i
in BiC1 (see Figure 13). Then for each i � 1, �i becomes a splitting germ in †.i/ .
We say that �i is a virtual splitting germ of level i . The †–leaf semiline defined by
the concatenation of the leaf segments joining the basepoints of �0; �1; : : : ; �i : : : is
called the splitting semiline at �0 . The following lemma easily follows:

Lemma 9.11 Let Œy; y0�Kv be a segment and i0 be such that �i0 is contained in
.y; y0/. Then for all i > i0 , and for any preimages zy and zy0 of y and y0 in †.i/ ,
pR.i/.zy/¤ pR.i/.zy

0/.
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Figure 13: Virtual splitting germs, and a segment Œy; y0� that gets separated
in †.3/ . The direction � shows that † is not clean.

Definition 9.12 (liftable leaves) A †–leaf segment Œx; y�† is liftable if for all i 2N ,
there exists a †.i/–leaf segment Œxi ; yi �2†.i/ that maps isometrically to Œx; y�† under
the natural map from †.i/ to †. Otherwise Œx; y�† is unliftable.

An algebraic leaf .˛; !/ 2 L2.T / is liftable (in the splitting process) if Œ˛; !�† is
liftable.

Remark 9.13 Consider an algebraic leaf .˛; !/2L2.T /. If Œ˛; !�† lifts to †.i/ , then
its lift is necessarily Œ˛; !�†.i/ , so .˛; !/ is liftable if and only if Œ˛; !�†.i/ embeds
isometrically under h†.i/ W †

.i/!†.

Definition 9.14 (clean band complexes) Let T be a tree of quadratic type, not
compatible with any free splitting, let R be a Grushko tree, and let † WD†.T;R/.

We say that † is clean if the following two conditions hold:

� For all i , †.i/ has the same number of orbits of splitting germs and splitting
semilines as †. In particular, if a leaf segment of † meets no splitting semiline,
it is liftable.

� For every splitting semiline � and every x 2 � , every transverse direction at x
can be pushed to infinity along � in the following sense: for all y 2 � , there
exists a transverse direction �y at y in † such that pT .�y/D pT .�/.

In Figure 13, the band complex † on the left is not clean since the red direction �
cannot be pushed to infinity along the splitting semiline. The goal of the present section
is to prove the following fact:
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Proposition 9.15 There exists i 2N such that †.i/ is clean.

We will start with the following lemma:

Lemma 9.16 Let T be a tree of quadratic type with respect to R .

Let x 2 Kv be a nonspecial point. Then the valence of x in Kv is finite.

If x is a special point, then the number of Gv–orbits of directions at x in Kv is finite.

Remark 9.17 The conclusion is obvious if pT .x/ has finite valence in T , ie if pT .x/
has finite stabilizer.

Proof Let x 2 Kv , and let L be the complete †–leaf that contains x . We define
a germ at a point y 2 L to be a germ of direction based at y in the base tree Ku
containing y . If d is such a germ, we define its diameter as the diameter of the
connected component of Ku n fyg containing d . Let D be the set of all germs at all
points in L. We equip D with a graph structure, by putting an edge between two germs
d and d 0 whenever they are contained in a common band. Then two germs belong
to the same connected component of D if and only if they have the same pT –image.
Since † is of quadratic type, using Lemma 9.1 we see that each connected component
of D is a line. Since there are finitely many orbits of directions in T , there are finitely
many GL–orbits of such lines.

If the lemma is false, then there exists a sequence of germs di at x in Kv whose
diameters decrease to 0: this follows from compactness of Kv if v is not in V1.R/,
and from compactness of Kv=Gv in general. Since there are finitely many GL–orbits
of lines in D , up to a subsequence, there exists a line �� D and .gi /i2N 2G

N
L such

that di 2 gi :� for all i 2 N . In other words, g�1i di 2 �, and these germs have the
same image in T . Their basepoints g�1i x are pairwise distinct: indeed, otherwise the
two corresponding germs g�1i di and g�1j dj would be contained in the same base tree,
and therefore be equal since they have the same pT –image; this would contradict the
fact that the diameters of these germs decrease to 0. Up to passing to a subsequence,
we can assume that the directions g�1i di go monotonically to one end of the line �.

We are going to find a singular point “between” g�1i di and g�1iC1diC1 for all i 2N ;
this is illustrated in Figure 14. More precisely, let B1; : : : ; Bn be the sequence
of bands corresponding to the segment joining g�1i di to g�1iC1diC1 in �, and let
x0 D g

�1
i x; x1; : : : ; xn D g

�1
iC1x be the points of L in the bases of the bands Bj .

Since diam.g�1iC1diC1/ < diam.g�1i di /, the holonomy of leaves cannot send the set of
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Figure 14: Finding a singular point zi “between” g�1i di and g�1iC1diC1 .
Here, xji D x1 .

extremal points of g�1iC1diC1 to the set of extremal points of g�1i di ; therefore, there
exists a singular point zi and an index ji 2 Œ0; n� such that zi and xji lie in the same
base tree of † and 0 < d†.zi ; xji /� diam.g�1i di /.

We claim that the points yi WD xji belong to finitely many GL–orbits as i varies.
Indeed, they all belong to the convex hull H in L of the GL–orbit of x . Since GL

coincides with a point stabilizer in T , it has finite Kurosh rank [30], so H=GL is
compact, which proves our claim.

Thus, up to passing to a subsequence, there exist y0 2 L and hi 2 GL such that
yi D hiy0 . Let Ku be the base tree of † containing y0 . The points h�1i zi are singular
points in Ku , are distinct from y0 and converge to y0 . This contradicts that there are
only finitely Gu–orbits of singular points in Ku by Lemma 9.4.

We make the following definition:

Definition 9.18 Let L be a complete †–leaf and GL be its stabilizer. The core CL
of the stabilizer of L is the convex hull in L of @.GL;F jL/.

For example, if GL is isomorphic to Z and nonperipheral, then CL will be a line (while
L may contain branch points). Notice on the other hand that if GL is peripheral, then
CL is at most a point. We take the convention that CL is empty if the leaf L has trivial
stabilizer.
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Proof of Proposition 9.15 We first observe that the number of orbits of splitting
germs cannot decrease along the splitting process. In addition, it is bounded: indeed,
the number of orbits of singular leaves, ie leaves that contain a singular point, is
nonincreasing, hence bounded, and the number of orbits of splitting germs is bounded
by the number of orbits of directions at points in T that are images of singular leaves.
By replacing † by †.i/ with i 2N large enough, we can therefore assume that the
number of orbits of splitting germs is stabilized. Then every splitting semiline of †.1/

comes from a splitting semiline of †. The first condition in Definition 9.14 is then
satisfied (to check the “in particular” statement, notice that if a leaf segment I does not
intersect any splitting semiline, then it lifts to †.1/ , and the lift again does not intersect
any splitting semiline). Iterating this argument shows that I lifts to all †.i/ .

We claim that every splitting semiline � has compact intersection with the core CL of
the stabilizer of the complete †–leaf L that contains it. Otherwise, we can find x 2 �
and a sequence .gi /i2N 2 G

N
L going to infinity such that gi :x 2 � . Let �i be the

virtual splitting germ at gi :x ; then pT .�i /D pT .�0/ for all i 2N . By Lemma 9.16,
up to passing to a subsequence, we can assume that �i D gi�0 , or �i D giai�0 with
ai 2Gx if x is a special point. Since arc stabilizers in T are trivial, we have gi D 1
or gi D a�1i , contradicting the fact that gix goes to infinity in � .

We also observe that for all sufficiently large i 2 N , no splitting semiline in †.i/

contains a special point. Indeed, each splitting semiline contains at most finitely many
special points because �\CL is compact. Notice that for all i 2N , the splitting semiline
�i �†

.i/ corresponding to � projects via h†.i/ W †
.i/!† to the complement in � of

its initial segment of length i . Therefore, by choosing i 2N large enough, �i contains
no special point. Since there are finitely many orbits of splitting semilines, there exists
i 2N such that no splitting semiline in †.i/ contains a special point.

Let � be a splitting semiline in †. For x 2 � , we let Dir†.x/ be the set of directions
d in T such that there exists a transverse direction � at x with pT .�/D d . Notice
that Dir†.x/ is finite for every x 2†, which is not special by Lemma 9.16. We then
let Dir†.�/ be the union of Dir†.x/ over all x 2 � . We first claim that Dir†.�/ is
finite. Indeed, � only meets finitely many singular points, because all points of � n CL
are in distinct orbits. Therefore, there exists a semiline �0 D Œx0; �� � � such that
Dir†.x/ does not depend on x for x 2 �0 . Therefore Dir†.�/ is the finite union of
all Dir†.x/ with x 2 � n �0 and of Dir†.�0/.

In addition, Dir†.i/.�i /�Dir†.h†.i/.�i //�Dir†.�/. Thus, up to changing † to some
†.i0/ for i0 large enough, for all splitting semilines � and all i , Dir†.i/.�i /DDir†.�/.
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Now let d 2 Dir†.�/. Then d 2 Dir†.i/.�i /. So there is a representative �i �†.i/

based at a point xi 2 �i , and h†.i/.�i / shows that � can be pushed to infinity along � .
Therefore, the second condition in Definition 9.14 is also satisfied, showing that †.i/

is clean.

10 The case of mixing trees

A tree T 2O is mixing if for all nondegenerate segments I; J � T , there exists a finite
collection g1; : : : ; gk of elements in G such that J � g1I [ � � � [gkI. The following
lemma is due to Coulbois and Hilion [8, Proposition 5.14] for free groups. We consider
R a Grushko tree, and we carry all notation †;�; : : : from Section 8.

Lemma 10.1 Let T 2O be mixing.

Then either � \ Kv is totally disconnected for every vertex v 2 R or the pruning
process stops, and, in particular, T is of quadratic type.

Proof Assume that there exists a nondegenerate interval I ��\Kv for some vertex
v 2R , and let us prove that the pruning process halts after finitely many steps, which
implies that T is of quadratic type. Denote by †.1/ � †.2/ � � � � the subsets of †
given by the pruning process, and recall (Lemma 8.11) that �D

T
i�1†

.i/ . Define a
G–invariant function �W †!RC[fC1g by

�.x/ WD dLx .x;Lx \�/:

We claim that � is bounded on † (in particular, �.x/ < C1 for all x 2 †). This
will imply that the pruning process halts after finitely many steps since sup†.iC1/ � D
.sup†.i/ �/� 1 as long as †.iC1/ ¤†.i/ and sup†.i/ � <C1.

We first claim that for each vertex u 2 R , the map � is bounded on any interval
J D Œa; b��Ku , with pT .a/ and pT .b/ lying in T (and not in T nT ). Indeed, since
T is mixing, up to subdividing J into finitely many subintervals, we can assume that
there exists g 2 G such that pT .J / � pT .gI /. Since fibres of pT are connected
(Proposition 7.24), for each point x 2 J, the distance in Lx from x to Lx \ gI is
equal to dR.u; g:v/. Since gI ��, the restriction of � to J is bounded.

By Lemma 8.7, the set Y (made of all points in † that are erased by applying one step
of the pruning process) is a finite union of orbits of open finite trees whose endpoints
are in T (and not in T nT ). It follows that � is bounded on Y . This implies that � is
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bounded on †: for any point x 2† n�, there is a point y 2 Term.Lx/� Y such that
�.y/D dLx .y;Lx \�/� dLx .x;Lx \�/D �.x/.

In the remainder of this section, we let T 2O be a mixing tree that is not compatible
with any .G;F/–free splitting. Let R be a Grushko tree, let † WD†.T;R/, and for
all i 2 N , let †.i/ and R.i/ be the complex and the tree obtained by first iterating
the pruning process until it halts (this may never happen), then applying the splitting
process. Denote by h†.i/ W †

.i/!† and pR.i/ W †
.i/!R.i/ the corresponding maps.

Lemma 10.2 Let T 2 O be a mixing tree, and assume that T is not compatible
with any .G;F/–free splitting. Let v 2 R be a vertex, and let Œy; y0� � Kv be a
nondegenerate arc , with y; y0 2�. For all i 2N , let yi (resp. y0i ) be a point in †.i/

that maps to y (resp. y0 ) under h†.i/ .

Then there exists i 2N such that pR.i/.yi /¤ pR.i/.y
0
i /.

Proof If the pruning process does not stop, Lemma 10.1 shows that y and y0 belong to
different connected components of �. The conclusion then follows from Lemma 8.14.
Therefore, we can assume that the pruning process stops and does not affect the segment
Œy; y0�. Thus, we reduce to the case where †.T;R/ is of quadratic type.

Let � be a splitting germ in † based at a point x 2 Ku for some vertex u 2 R ; this
exists by Proposition 9.3. Let Œy1; y2�� Œy; y0� be a nondegenerate subsegment with
y1 and y2 distinct from y and y0. Since T is mixing, there exists a segment Ix � Ku
representing � and g 2 G such that pT .Ix/ � pT .g:Œy1; y2�/. Since fibres of pT
are connected, we deduce that Ix � Œu; g:v�R �†. We denote by x0 2 g:Œy1; y2� the
unique point in Ix � fg:vg in the same †–leaf as x . There are two cases to consider,
illustrated in Figure 15.

Case 1 The splitting leaf segment �� is contained in Œx; x0�Lx .

Since Ix � Œu; g:v�R �†, all the germs obtained from � by following the holonomy
along Œx; x0�Lx are virtual splitting germs, and Lemma 9.11 concludes.

Case 2 The splitting leaf segment �� is not contained in Œx; x0�Lx .

Let x00 be the point in the †–leaf segment .x; x0�Lx that is closest to x and nonextremal
in the base tree Ku00 that contains it (this exists as x0 is nonextremal in Kg:v ). Then
the germ �00 at x00 with the same projection as � in T is a splitting germ in †, and
��00 � Œx

00; x0�Lx . The conclusion then follows from the argument from the previous
paragraph.

Algebraic & Geometric Topology, Volume 19 (2019)



Algebraic laminations for free products and arational trees 2375

η

B0

x

η1

η2

B1

B2

η3

gy1 gy2

Σ

η

B0
x

η1

B1

x′

x′

gy1 gy2

x′′ η′′

η′′1

ση

ση

ση′′

Figure 15: The two cases in the proof of Lemma 10.2.

Corollary 10.3 Let T 2O be a mixing tree that is not compatible with any .G;F/–
free splitting. Then the number

max
v2V.R.i//

diam.K.i/v /

converges to 0 as i goes to C1.

11 Arational trees

11.1 Review

Definition Recall that a free factor H of .G;F/ is a vertex stabilizer of a .G;F/–free
splitting, and that H is proper if H is nonperipheral (in particular nontrivial) and
H ¤G. We denote by TH the H –minimal subtree of T .

Definition 11.1 (arational tree) A tree T 2O is arational if T 2 @O and for every
proper .G;F/–free factor H �G, H Õ TH is a Grushko .H;F jH /–tree.

We will denote by AT the subspace of O made of arational trees. We mention that
every arational tree T has dense orbits, and is in fact mixing [44; 28].

Arational surface trees We now review the definition of a special class of arational
trees (see Figure 16). A geometric .G;F/–graph of groups is a graph of groups G

Algebraic & Geometric Topology, Volume 19 (2019)



2376 Vincent Guirardel and Camille Horbez

G1

Gk

Σ

Gj

c1 = g1
c0

Figure 16: A geometric .G;F/–graph of groups.

with fundamental group isomorphic to G, obtained in the following way. Let g � 0
and let † be a compact, connected 2–orbifold of genus g with conical singularities,
with nonempty boundary. One of the vertex groups of G is the fundamental group of
the orbifold †, and the other vertex groups are the Gi . To define edges, consider a
set B consisting of the whole set of conical singularities of O , together with a subset
of the set of boundary components. We view the elements of B as cyclic subgroups
of �1.†/. To each cyclic group C 2 B we assign a peripheral subgroup GiC and
an embedding �C W C ! GiC (allowed to be onto). For each C 2 B , we put an
edge joining † to GiC , with edge group C and with monomorphisms given by the
inclusion and �C . Boundary components of † not in B have no edge attached. They
represent nonperipheral conjugacy classes; we say that they are unused. Note there
has to be at least one unused boundary component since, otherwise, �1.G/ is freely
indecomposable relative to the subgroups Gi .

Definition 11.2 (arational surface tree) A tree T 2O is an arational surface tree if
it splits as a graph of actions over a geometric .G;F/–graph of groups with a single
unused boundary curve, so that the action corresponding to the vertex associated to the
orbifold † is dual to an arational measured foliation on †.

It was proved in [28, Section 4.1] that arational surface trees are indeed arational.
Conversely, every arational tree in O is either relatively free, or else is an arational
surface tree [44; 28]. Notice that any arational surface tree has (up to conjugacy) a
unique nonperipheral elliptic subgroup, which is cyclic and generated by the unused
boundary curve of the corresponding orbifold.

Algebraic & Geometric Topology, Volume 19 (2019)



Algebraic laminations for free products and arational trees 2377

11.2 Arational trees and alignment-preserving maps

A map T ! T 0 between two R–trees is alignment-preserving if it sends segments
to segments (in this case we say that T 0 is a collapse of T , or that T is a refinement
of T 0 ). Notice that if T is a tree with dense G–orbits, then any collapse of T also has
dense G–orbits.

Lemma 11.3 Let T; T 2 O be such that there is an alignment-preserving map
� W T ! T .

Then T 2AT if and only if T 2AT .

Proof First assume that T … AT . Then there exists a proper .G;F/–free factor A
such that TA is not a Grushko .A;F jA/–tree. Then TA (which is a collapse of TA ) is
not a Grushko .A;F jA/–tree either, so T …AT .

Assume now that T 2 AT . Assume towards a contradiction that T … AT . Then
there exists a proper .G;F/–free factor A such that AÕ TA is not Grushko. Since
T 2AT , the A–minimal subtree TA is a Grushko .A;F jA/–tree, and it maps onto TA .
Therefore we can find a proper .G;F/–free factor B � A such that TB is reduced to
a point x 2 T . Since B does not fix any point in T , the subtree ��1.x/ is not reduced
to a point (and not equal to T ). Since gB \B D∅ for all g … Stab.x/, the tree T is
not mixing, a contradiction. Therefore T 2AT .

11.3 Arationality and dual laminations

Arational trees can also be characterized in terms of their dual laminations in the
following way:

Lemma 11.4 A tree T 2 @O.G;F/ is arational if and only if no leaf of L2.T / is
carried by a proper .G;F/–free factor.

Proof If T is not arational, there is a proper .G;F/–free factor H �G such that TH
is not a Grushko .H;FH /–tree. Fix a Grushko .G;F/–tree R . Then the minimal H –
invariant subtree RH is a Grushko .H;F jH /–tree. By Lemma 4.3, the dual lamination
of TH is a nonempty subset of @2RH . Using the fact that the diagram

L2.TH /
� � //

� _

��

@2.H;F jH /� _

��

L2.T /
� � // @2.G;F/
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commutes, we deduce that every leaf in L2.TH / yields a leaf of L2.T / carried by the
proper .G;F/–free factor H. Conversely, assume that T is arational, and consider a
proper .G;F/–free factor H �G. Since the minimal H –invariant subtree TH �T is a
Grushko tree, the natural map @RH ! @TH is injective, and agrees with the restriction
of Q. It follows that Qj@RH is injective, so by Lemma 6.4, L2.T /\ @2RH D∅, ie
no algebraic leaf of T is carried by H.

11.4 Action of Z–factors on arational trees

We recall that a Z–splitting of .G;F/ is a minimal, simplicial .G;F/–tree in which
all peripheral subgroups are elliptic, and in which all edge stabilizers are either trivial,
or cyclic and nonperipheral. By analogy with free factors, we define a Z–factor of
.G;F/ to be a subgroup of G that arises as a vertex stabilizer in some Z–splitting of
.G;F/. Arationality of a tree T tells us that for every proper .G;F/–free factor A,
the action AÕ TA is simplicial, and we want to extend this to Z–factors.

Proposition 11.5 Let A�G be a proper Z–factor of .G;F/, and let T 2AT .

Then AÕ TA is simplicial.

Notice however that TA might fail to be a Grushko .A;F jA/–tree when T is an
arational surface tree, because there are Z–factors of .G;F/ that contain the unused
boundary curve of T . Our proof of Proposition 11.5 relies on the following statement,
which does not use arationality, and whose proof is based on an argument of Reynolds
[43, Lemma 3.10]:

Proposition 11.6 Let T 2 O be a tree with trivial arc stabilizers. Let H � G be a
subgroup and H Õ S an action on a simplicial tree. Consider two distinct vertices
va; vb 2 S, and let A�Hva and B �Hvb be two subgroups of H fixing va and vb ,
respectively, and having finite Kurosh rank as subgroups of .G;F/.

Assume that both AÕ TA and B Õ TB have dense orbits.

Then for all nondegenerate segments I � TA \ TB and all edges e � Œva; vb�, there
exists g 2 .A[B/\Ge such that gI \ I is nondegenerate.

Before proving Propositions 11.6 and 11.5, we start by mentioning a few consequences
of Proposition 11.6. In the case where edge stabilizers in S are cyclic or peripheral,
we deduce the following result:
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Corollary 11.7 Let T 2 O be a tree with trivial arc stabilizers. Let H < G be a
subgroup and H Õ S an action on a simplicial tree whose edge stabilizers are either
cyclic or peripheral (possibly trivial). Consider two distinct vertices va; vb 2 S, and let
A�Hva and B �Hvb be two subgroups of H fixing va and vb , and having finite
Kurosh rank in .G;F/.
If both AÕ TA and B Õ TB have dense orbits, then TA \ TB contains at most one
point.

Proof Assume by contradiction that there exists a nondegenerate interval I �TA\TB .
Consider an edge e � Œva; vb�S . Since Ge is cyclic or peripheral, one can change I to
a subsegment such that for all g 2Ge n f1g, the intersection gI \ I contains at most
one point. This contradicts Proposition 11.6.

We mention two more corollaries of Proposition 11.6. A transverse family in a tree
T 2O is a G–invariant collection of subtrees of T such that the intersection between
any two subtrees in the collection contains at most one point.

Corollary 11.8 Let T 2O be a tree with trivial arc stabilizers, and GÕ S an action
on a simplicial tree whose edge stabilizers are either cyclic or peripheral (possibly
trivial). For each vertex v 2 S with stabilizer Gv , let Tv � T be the minimal subtree
of Gv .

Then the collection of all Tv such that GvÕ Tv has dense orbits is a transverse family
of T .

Proof This is an immediate consequence of Corollary 11.7. The fact that Gv has
finite Kurosh rank follows for instance from [23, Lemma 1.12].

Corollary 11.9 Let S and T be as in the above corollary, let v 2 S be a vertex and
let A�Gv be a .Gv;F jGv /–free factor. Assume that AÕ TA has dense orbits.

Then the collection of all G–translates of TA is a transverse family of T .

Proof If g 2 G nGv , then one can apply Proposition 11.6 to B D Ag and get that
TA\gTA is at most a point. If g 2Gv nA, apply Proposition 11.6 to a free splitting
S 0 of H DGv in which A is a free factor to get that TA\gTA is at most a point.

Proof of Proposition 11.6 Assume towards a contradiction that there exists a non-
degenerate segment I � TA \ TB and an edge e � Œva; vb� of S such that for all
g 2 .A[B/\Ge , the intersection gI \ I contains at most one point. Since TA and
TB have dense orbits, one can find finite subtrees KA � TA and KB � TB of volume
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strictly smaller than 1
2
jI j such that I is covered by finitely many A–translates of KA ,

and I is also covered by finitely many B –translates of KB (this follows for instance
from Lemma 4.18, using the fact that A and B have finite Kurosh rank). Moreover, one
can assume that KA and KB and I are pairwise disjoint. We now build a system of
partial isometries on KA[KB[I in the following way. Subdivide I into finitely many
nonoverlapping subsegments I1; : : : ; Ik such that for all i 2 f1; : : : ; kg, there exists
ai 2 A with aiIi �KA . For all i 2 f1; : : : ; kg, let �i be the partial isometry from Ii

to aiIi induced by ai . Similarly, we subdivide I into finitely many nonoverlapping
subsegments I 01; : : : ; I

0
l

and get partial isometries  j from I 0j to a subset b0j I
0
j �KB for

some b0j 2B. The volume of KA[KB [I is strictly smaller than 2jI j, while the total
length of the bases of the partial isometries �i and  j equals 2jI j. Therefore, by [19,
Proposition 6.1], our system of partial isometries does not have independent generators;
this means that one can find a cyclically reduced word w on the partial isometries �˙1i
and  ˙1j which fixes a nondegenerate segment of I. Since the segments Ii do not
overlap, any maximal subword of w on the letters f�˙11 ; : : : ; �˙1

k
g has length 2 and

is of the form ��1i �j with j ¤ i and a�1i aj 2 A n f1g (a similar argument applies
for B ). This implies that the element g 2 hA;Bi represented by w is of the form
gD u1v1u2 : : : ukvk with ui 2Anf1g and vi 2B nf1g for all i 2 f1; : : : ; kg (except
possibly that u1 D 1 or vk D 1), and the ui and vi all map a nondegenerate segment
of I into I. In particular, we have ui 2A nGe and vi 2 B nGe for all i 2 f1; : : : ; kg.
A ping-pong argument in the tree S then shows that g ¤ 1. On the other hand, since
the partial isometry defined by w fixes a nondegenerate segment in I, the element g
fixes an arc in T , which contradicts that T has trivial arc stabilizers.

Before proving Proposition 11.5, we recall some more terminology. A transverse
covering in a tree T is a transverse family made of nondegenerate subtrees such
that every segment in T can be covered by finitely many subtrees from the family.
The skeleton of a transverse covering is the bipartite simplicial tree whose vertices
are given by the collection of all nondegenerate trees Y in the family, together with
the collection of all points that belong to several distinct trees in the family, the
vertex vx (corresponding to a point x ) being joined by an edge "x;Y to the vertex vY
(corresponding to a subtree Y ) whenever x 2 Y ; see [21]. If the G–action on T is
minimal, then the G–action on the skeleton of any transverse covering of T is always
minimal [21, Lemma 4.9].

Proof of Proposition 11.5 Up to enlarging A, we can assume that A D Gv is the
full stabilizer of a vertex v in a Z–splitting S of .G;F/. Assume by contradiction
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that AÕ TA is not simplicial. By considering the Levitt decomposition of TA as a
graph of actions with dense orbits (which has trivial edge stabilizers), we can find an
.A;FA/–free factor B � A such that B Õ TB has dense orbits, with TB nontrivial.

By Corollary 11.9, the family fgTBgg2G is a transverse family, and hence it is a
transverse covering because T is mixing. Let U be the skeleton of this transverse
covering. Note that no edge "x;Y in U has trivial stabilizer since otherwise minimality
of U would imply that B is contained in a proper .G;F/–free factor, contradicting
the arationality of T .

Assume first that T is relatively free. Then we claim that each vertex vx is a terminal
vertex of U. Since U is minimal, this will imply that U is reduced to a point, ie
TB D T and B D G, a contradiction. To prove the claim, let "x;Y and "x;Y 0 be
two edges of U incident on vx , and assume without loss of generality that Y D TB .
Let g 2 G be such that gY D Y 0. Then, since edge stabilizers of U are nontrivial,
Gx \B and Gx \Bg are two nontrivial subgroups of the peripheral group Gx . In
particular, Gx intersects nontrivially A and Ag . Since ADGv is a vertex stabilizer
in the Z –splitting S, it follows that g 2A: indeed, the group Gx fixes a vertex p 2 S,
and Gx\A fixes the segment Œp; v�S , so pD v since no nontrivial peripheral element
fixes an edge of S. Similarly, Gx\Ag being nontrivial shows that pD gv , so g fixes
v , ie g 2 A. Since B is an .A;FA/–free factor and g 2 A, a similar argument now
implies that g 2 B. Since B preserves Y D TB , we get Y 0 D Y and "x;Y D "x;Y 0 ,
which proves our claim.

If T is not relatively free, then it is an arational surface tree. The argument above applies
as soon as the stabilizer of the vertex vx 2 U is peripheral. If not, then Gvx D hbi is a
cyclic group corresponding to the special boundary component. Since edge stabilizers
of U are nontrivial, every edge "x;Y contains a power bk of b . Since U is minimal, this
implies that bk is an edge stabilizer of a Z –splitting of G, and therefore bk is contained
in a proper .G;F/–free factor [30, Lemma 5.11], contradicting that T is arational.

12 Reconstructing L2.T / from one leaf when T is arational

12.1 Peritransitive closure of a set of algebraic leaves

Definition 12.1 An algebraic lamination L�@2.G;F/ is said to be transitively closed
(also called diagonally closed in [14]) if for all ˛; ˇ; 
 2 @.G;F/,

(1) .˛; ˇ/; .ˇ; 
/ 2 L D) .˛; 
/ 2 L if ˛ ¤ 
:
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It is peripherally closed if for every peripheral group Gv , all g; g0 2Gv n f1g and all
˛; ˛0 2 @.G;F/,

(2) .˛; g˛/ 2 L; .˛0; g0˛0/ 2 L D) .˛; ˛0/ 2 L if ˛ ¤ ˛0:

Definition 12.2 (peritransitive closure) Given a subset X � @2.G;F/, we denote by
P.X/ the smallest transitively closed and peripherally closed algebraic lamination that
contains X. We call it the peritransitive closure of X.

Lemma 12.3 Let T 2O be a tree with dense orbits. Then L2.T / is peritransitively
closed.

Proof Since L2.T / corresponds to the fibres of the map Q, it is transitively closed.

To prove that it is peripherally closed, consider .˛; g˛/2L2.T / and .˛0; g0˛0/2L2.T /
with g; g0 2Gv . Then g fixes Q.˛/DQ.g˛/, and since g fixes no arc in T , Q.˛/ is
the unique fixed point xv of Gv in T . The same argument also shows that Q.˛0/D xv .
By Proposition 6.10, .˛; ˛0/ 2 L2.T / if ˛ ¤ ˛0.

Remark 12.4 If an algebraic lamination L is peritransitively closed, then

.˛; g˛/ 2 L for some g 2Gv n f1g D) .˛; h˛/ 2 L for all h 2Gv n f1g;

as follows from (2) applied to ˛0 D h˛ and g0 D hgh�1 . If Gv is infinite, this implies
the following condition:

(2)0 .˛; g˛/ 2 L for some g 2Gv n f1g D) .˛; v/ 2 L for all h 2Gv n f1g

because L is closed and .˛; gi˛/ converges to .˛; v/ for any sequence of distinct
elements gi 2 Gv n f1g. Conversely, if .˛; v/ 2 L, then G–invariance of L implies
that .g˛; v/ 2 L for all g 2 Gv , so if L is transitively closed, we have .˛; g˛/ 2 L
for all g 2Gv .

Therefore, if all the groups Gi were infinite, we could replace (2) by (2)0 in Definition
12.1. The reason for our more mysterious requirement (2) is that we also need to deal
with the case of finite peripheral groups.

12.2 Main result and strategy of the proof

The goal of the present section is to prove the following theorem, which allows us to
reconstruct the dual lamination of an arational tree from a single leaf:
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Theorem 12.5 Let T 2 AT and let l0 2 L2.T / be a leaf that is not carried by any
subgroup of G that is elliptic in T . Then L2.T /D P.l0/.

Note that the assumption on l0 is empty if T is relatively free. On the other hand,
if T is not relatively free, then T is arational surface, and the assumption on l0 is
saying that l0 should not be a periodic leaf of the form .c�1; cC1/ where c 2G is
represented by a loop in the free boundary curve of the underlying orbifold.

Start with a Grushko tree R all of whose edges have length 1. Consider the band
complexes †.i/ and the corresponding Grushko tree R.i/ obtained by applying the
pruning process on † D †.R; T /, followed by the splitting process if the pruning
process stops. Up to changing R to some R.i/ , we may assume that either the pruning
process does not stop or that the band complex † is of quadratic type, and † is clean
for the splitting process (Definition 9.14 and Proposition 9.15).

Recall from Definition 9.12 that an algebraic leaf .˛; !/ 2 L2.T / is liftable (in the
splitting process) if the natural map †.i/!† sends Œ˛; !�†.i/ bijectively to Œ˛; !�† ;
this definition also makes sense if the pruning process does not halt, in which case all
leaves of L2.T / are liftable. Let l0 2 L2.T / be as in Theorem 12.5. Theorem 12.5
is a consequence of the following three lemmas (if the pruning process does not halt,
Lemmas 12.6 and 12.9 are automatic since every leaf is liftable):

Lemma 12.6 The lamination P.l0/ contains a liftable leaf l1 2 L2.T / which is not
carried by any subgroup of G that is elliptic in T .

Remark 12.7 It would actually be enough to just prove that P.l0/ contains a liftable
leaf. Indeed, with a bit more work, one can show that a liftable leaf is never carried by a
subgroup of G that is elliptic in T . This is automatic if T is relatively free. Otherwise,
T is arational surface, and in this case one can show that the leaves carried by the free
boundary component of the underlying orbifold are not liftable; roughly, this is because
the foliation on the orbifold contains half-leaves with one endpoint on the boundary,
and these will serve as splitting semilines in the splitting process. However, we will
not check the details of this claim, as this is not needed in the present paper.

Lemma 12.8 The lamination P.l1/ contains all liftable leaves of L2.T /\@1.G;F/2 .

Lemma 12.9 Every leaf in L2.T / is in the peritransitive closure of the set of liftable
leaves in L2.T /\ @1.G;F/2 .
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We will start by proving Lemma 12.8, and give the additional arguments needed in the
case where T is of quadratic type afterwards.

12.3 Proof of Lemma 12.8

We define the systole of a Grushko tree R as the smallest translation length in R
of a nonperipheral element of G. For all i 2 N , denote by R.i/ the Grushko tree
associated to the band complex †.i/ , and recall that there are natural G–equivariant
maps fi W R.iC1/ ! R.i/ sending vertices to vertices and edges to edges (but R.i/

usually has many vertices of valence 2). We set the lengths of the edges of the trees R.i/

to 1, so that the map fi is 1–Lipschitz.

Lemma 12.10 The systole of R.i/ converges to C1 as i goes to C1.

Proof Assume towards a contradiction that there exists M >0 such that for all i 2N ,
the systole of R.i/ is bounded from above by M. Let Yi � R.i/ be the (nonempty)
set of all points in R.i/ that are moved by at most M by some nonperipheral element
of G. Note that fi .YiC1/� Yi . Since the number of orbits of edges of R.i/ goes to
infinity, Yi ¤R.i/ for i large enough.

We claim that the set Hi of stabilizers of the connected components of Yi is a system
of nonperipheral free factors. Indeed, if z lies in a connected component Z of Yi ,
and if a nonperipheral element g 2G satisfies dR.i/.z; gz/�M, then the axis of g is
contained in Z , showing that the stabilizer of Z is nonperipheral. By collapsing to
a point all the connected components of Yi in R.i/ , one gets a .G;F/–free splitting
R.i/ in which each group in Hi is a point stabilizer, which proves our claim. Since
fi .YiC1/� Yi , the map fi induces a G–equivariant map R.iC1/!R.i/ ; in particular,
the collection of all point stabilizers of R.iC1/ is a free factor system of .G;F/ which
is contained in Hi (ie every free factor that fixes a point in R.iC1/ is contained in a
free factor in Hi ). Since there is a bound on the length of a decreasing chain of free
factor systems of .G;F/, the free factor system Hi is independent of i for i large
enough. We denote by H this system of proper free factors.

Fix H 2H , and consider R.i/H �R
.i/ the minimal H –invariant subtree. The number of

H –orbits of edges in R.i/H cannot tend to infinity, since otherwise, it would contain for
i large enough a segment of length >M with no branch point of R.i/ , contradicting
that R.i/H � Yi . Since R.i/H � fi .R

.iC1/
H / for all i 2 N , this implies that for all i
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large enough, fi induces an isometry R.iC1/H ! R
.i/
H . It follows that there exists a

(nonperipheral) element h2H and l �M such that for all i large enough, khkR.i/D l .

From the construction of the graph R.i/ from the band complex †.i/ , this implies
that there exists a vertex vi in R.i/ , a point xi 2 Kvi � †.i/ and a path in †.i/

from xi to hxi of the form ˛1ˇ1 : : : ˛lˇl , where each j̨ is a leaf segment in a band
of †.i/ and each ǰ is a segment contained in some Kvj � †.i/ . In particular, for
all i 2 N , we have khkT � lDi , where Di WD maxv2V.R.i// diam.Kv/. Since T is
mixing, Corollary 10.3 implies that Di converges to 0 as i goes to C1. It follows
that khkT D 0. Since h is nonperipheral and contained in the proper free factor H,
this contradicts that T is arational.

Let R be a Grushko tree, let F �R be a bounded closed nonempty subtree such that
for all g 2G, either gF DF or gF \F D∅. These conditions imply that if gF DF ,
then g is peripheral, and in addition the stabilizer GF of F is either trivial or equal to
Gv for some vertex v 2R .

Although not formulated in these terms, our next lemma will show the connectivity of
some Whitehead graph of l1 around F . Let T 2AT and let l1 2 L2.T / be a liftable
leaf that is not carried by any subgroup of G that is elliptic in T . Let EF be the set of
edges of R nF incident on F. Let �F be the smallest equivalence relation on EF
such that e �F e0 whenever

(3) e[ e0 � g:.l1/R for some g 2G

or

(4) e �F ge and e0 �F g
0e0 for some g; g0 2GF n f1g:

Remark 12.11 Given two edges e; e0 2EF , we define a basic chain joining e to e0

as a sequence of edges eD e1; : : : ; enD e0 2EF such that for each i 2 f1; : : : ; n�1g,
there exists gi 2G such that ei [ eiC1 � gi :.l1/R . Given e 2EF , a basic loop at e
is a basic chain for which e1D e and there exists g 2GF nf1g such that enD ge . We
claim that if e �F e0, then either

� there is a basic chain of length � jEF =GF j joining e to e0, or

� there exist two basic loops, at e and e0, respectively, both of length �2jEF =GF j.

Indeed, assume first that in any basic chain starting from e , there is no pair of edges
ei ¤ ej lying in the same GF –orbit. Then there is such a chain going from e to e0
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(one can never apply (4)), and the first conclusion holds. Since the symmetric argument
holds for basic chains starting from e0, we can assume that there is a basic chain
eD e1; : : : ; ei ; : : : ; ej and a basic chain e0D e01; : : : ; e

0
i 0 ; : : : ; e

0
j 0 and g; g0 2GF nf1g

such that ej D gei and e0j 0 D g
0ei 0 . Choosing the shortest such chains, one can assume

j; j 0 � jEF =GF j C 1. Now one can produce a basic loop e D e1; : : : ; ej D gei ,
gei�1; : : : ; ge1 D ge of length j C i � 1 joining e to ge . Arguing similarly for e0

shows that the second conclusion holds in this case.

Using the arationality of T , we will now prove that the above equivalence relation is in
fact trivial.

Lemma 12.12 For all e; e0 2EF , we have e �F e0.

Proof By collapsing F (and its orbit) in R , we reduce to the case where F is a point v
(and the collapsed tree is still a Grushko tree), so from now on we assume that we are
in this case. We denote by Ev the set of edges in R incident on v . Assume towards
a contradiction that the lemma fails. Let B � Ev be the set of edges e 2 Ev such
that there is a basic loop at e . By definition, all edges in B are equivalent, so we can
assume Ev nB ¤∅. Let A0 �Ev nB be an equivalence class, and A1DEv nGv:A0
(notice that B � A1 , but this inclusion might be strict). It follows from Remark 12.11
and the definition of B that any two edges in A0 are joined by a basic chain, and
therefore that no two edges in A0 are in the same Gv –orbit (otherwise two such edges
would be joined by a basic loop). Thus, for any g 2 Gv n f1g, gA0 and A0 have no
edge in common, whereas A1 is Gv–invariant. By construction, any turn fe; e0g at v
crossed by a G–translate of l1 is either contained in A1 or in g:A0 for some g 2Gv .

Let Y be the tree (represented in Figure 17) obtained from
�F

g2Gv
g:A0

�
tA1 by

attaching a new edge g" from vA1 to gvA0 for all g 2Gv , where vA0 and vA1 denote
respectively the copies of v in A0 and A1 . Collapsing the orbit of " yields a natural
map from Y to the star of v in R . There is a natural way to attach back the edges
of R to Y , which yields a Grushko tree R0 that collapses onto R . In addition, every
G–translate of l1 in R lifts to a bi-infinite line in R0 which does not cross any edge in
the orbit of ". This contradicts the fact that l1 is not carried by any proper .G;F/–free
factor (Lemma 11.4).

Proof of Lemma 12.8 Let .˛; !/ 2L2.T /\ .@1.G;F//2 be a liftable leaf. We aim
to prove that .˛; !/ 2 P.l1/. Notice however that we do not make any assumption
concerning the endpoints of l1 (they could either be both in @1.G;F/, or one of them
could belong to V1.G;F/).
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Y

A0

gA0

g0A0

"

g"

g0"

A1

Figure 17: Proof of the triviality of the equivalence relation �F .

We realize .˛; !/ as a †–leaf line L, and let x 2† be a point contained in L. Since
.˛; !/ is liftable, for all i 2 N the line L naturally lifts to a †.i/–leaf line Li , and
we have Œ˛; !�R.i/ D pR.i/.Li /. We let zxi be the lift of x in Li , and xi WD pR.i/.zxi /.
Notice that if fR.i/ W R

.i/!R is the map obtained by composing the successive maps
from R.kC1/ to R.k/ , then fR.i/.xi /D x0 for all i 2N .

Define a natural edge of R.i/ as a connected component in R.i/ of the complement
of the set of branch points together with G:xi . In particular, each natural edge is an
open segment. We denote by Ei the set of natural edges in R.i/ . Up to passing to a
subsequence, we can therefore assume that jEi=Gj is constant, we denote it by r . We
denote by �i1 � � � � � �

i
r the lengths of the orbits of natural edges. Let r0 2 f1; : : : ; rg

be such that the sequence .�ir0/i2N is bounded, while �ir0C1 converges to C1 as
i goes to C1 (we also allow for r0 D 0 in case all lengths are unbounded). Notice
that r0 < r because the number of G–orbits of edges in R.i/ goes to C1 as i goes
to C1. The r0 first natural edges will be called short edges; the other natural edges
will be called long edges. Note that there is no claim that the maps R.i/ ! R.j /

preserve the natural edges or the decomposition into short and long edges.

Let Fi � R.i/ be the union of all short edges containing xi in their closure (this is
a connected subtree of R.i/ ). Clearly, Fi is a closed subtree such that for all g 2G,
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gFi \Fi D∅ or gFi DFi . We claim that Fi has bounded diameter. Since short edges
have bounded length, it suffices to prove that for i large enough, any segment J � Fi
contains at most 2r natural edges, necessarily short (recall that r is the number of
orbits of natural edges). If not, J contains two natural edges ei and giei which are
in the same orbit as oriented edges, with the orientation induced by some orientation
of J. Thus gi is hyperbolic with bounded translation length; this is a contradiction for
i large enough since the systole of R.i/ goes to infinity (Lemma 12.10).

Since Fi has finite diameter, the stabilizer GFi of Fi is either trivial or peripheral. We
claim that GFi eventually does not depend on i . Let i0 and M be such that for all
i � i0 , short edges and Fi have diameter at most M, and every long edge has length
greater than M. We first note that for each i � i0 , there is at most one vertex w 2R.i/

with nontrivial stabilizer such that d.xi ; w/�M. Indeed, such a vertex w cannot be
separated from xi by a long edge, so lies in Fi . But Fi contains at most one vertex
with nontrivial stabilizer since no hyperbolic element stabilizers Fi . This proves the
uniqueness of w and that Gw DGFi . Now consider i � i0 such that GFi is nontrivial
(if there is no such i , the claim is obvious). Then GFi fixes some vertex vi 2 Fi , and
GFi D Gvi . Since Fi has diameter at most M, dR.i/.xi ; vi / �M. For j � i , the
image of vi in R.j / is a vertex w with stabilizer GFi , and at distance at most M
from xj . It follows that GFi DGw DGFj and the claim follows.

We are now ready to prove that .˛; !/2P.l1/. Fix i � i0 , and let ei and e0i be the long
edges in Œ˛; !�R.i/ incident on Fi (these are well-defined because ˛; ! 2@1.G;F/ and
xi 2 Œ˛; !�R.i/ ). Let EFi be the set of (long) natural edges incident on Fi , and consider
the equivalence relation �Fi on EFi defined above using the leaf l1 . Lemma 12.12
implies that ei �Fi e

0
i . By Remark 12.11, either ei and e0i are joined by a basic chain

or there are two basic loops at ei and e0i , respectively. Up to passing to a subsequence,
we can assume that the same case occurs for all i .

In the first case, for any given i 2 N , let l1i D .˛1i ; !
1
i /; : : : ; l

k
i D .˛ki ; !

k
i / be a

finite sequence of G–translates of l1 corresponding to a basic chain provided by
Remark 12.11 (up to passing to a subsequence, we can assume that k is independent
of i ). This means that the semiline Œxi ; ˛1i �R.i/ contains ei , Œxi ; !ki �R.i/ contains e0i
and, for all 1� j � k� 1, the semilines Œxi ; !

j
i �R.i/ and Œxi ; ˛

jC1
i �R.i/ share a long

edge in EFi (see Figure 18). Up to passing to a subsequence again, we can assume that
all ˛ji and all !ji converge in @.G;F/ as i goes to C1, and we denote the limits by ˛j1
and !j1 . Since .l1i /R.i/\ Œ˛; xi �R.i/ contain the long edge ei , and since the projection
map piRW R

.i/!R is isometric in restriction to both l1i and Œ˛; !�R.i/ (because these
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Figure 18: A basic chain of translates of l1 .

two leaves are liftable), we deduce that .l1i /R \ Œ˛; x0�R contains arbitrarily long
segments as i goes to C1. This implies that ˛11 D ˛ . A similar argument shows
that !k1 D ! , and !j1 D ˛

jC1
1 for all j 2 f1; : : : ; k � 1g. Up to deleting some of

these points, we can assume in addition that ˛j1 ¤ !
j
1 for all j 2 f1; : : : ; kg. Then

the leaves .˛j1; !
j
1/ are obtained as limits of G–translates of l1 , and therefore they

all belong to P.l1/. This implies that .˛; !/ 2 P.l1/.

We now assume that for all i , there are basic loops at both ei and e0i . Let

.˛1i ; !
1
i /; : : : ; .˛

k
i ; !

k
i / and .˛01i ; !

01
i /; : : : ; .˛

0s
i ; !

0s
i /

be the two corresponding sequences of G–translates of l1 . In particular, Œxi ; ˛1i �R.i/
contains ei and Œxi ; !

k
i �R.i/ contains giei for some gi 2 Gv n f1g. Passing to a

subsequence we can take limits ˛j1 and !j1 as above. As above, ˛11 D ˛ , and either
!k1D g:˛ if gi eventually coincides with some g 2Gv nf1g, or !k1D v 2 V1.R/ if
gi takes infinitely many distinct values. Thus, P.l1/ either contains a leaf of the form
.˛; g˛/ with g 2Gv nf1g or the leaf .˛; v/, in which case it also contains all the leaves
.g˛; v/ for g 2 Gv , hence the leaf .˛; g˛/ for any g 2 Gv n f1g. Arguing similarly
with the second basic loop, we get that P.l1/ contains a leaf of the form .!; g0!/ for
some g0 2Gv n f1g. By definition of the peritransitive closure, .˛; !/ 2 P.l1/.

12.4 Additional arguments for trees of quadratic type

We will now assume that T is of quadratic type with respect to a Grushko tree R , and
that †D†.R; T / is clean. We aim to prove Lemmas 12.6 and 12.9 (we mention that
cleanness will actually only be used in the proof of Lemma 12.9).

Proof of Lemma 12.6 Given an algebraic leaf l 2 L2.T /, denote by l.i/ (resp. l.0/ )
the †.i/–leaf line (resp. †–leaf line) corresponding to l . We first prove the following
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Figure 19: An unliftable leaf.

general claim. Given a leaf l 2L2.T / which is not liftable, l is isolated in the following
sense: there exists i 2N and a †.i/–leaf segment � � l.i/ such that for any sequence
.lk/k2N of leaves in L2.T / converging to l and any k large enough, the †.i/–leaf
line l.i/

k
contains � (in particular l.i/

k
is contained in the same complete †.i/–leaf

as l ). Indeed, since l is not liftable, there exists i 2N such that (see Figure 19)

� l lifts isometrically to a †–leaf line l.i/ in †.i/ , and

� there is a splitting germ � based at some point x 2 †.i/ such that l.i/ goes
through the band B0 in which � is terminal, followed by some band B 0 with
degenerate intersection with �.

Let � � B0 be the leaf segment containing x . For k large enough, l.i/
k

also goes
through the bands B0 and B 0 in †.i/ . Since B0\B 0D fxg, this implies that � � l.i/

k
.

This proves the claim.

Now consider the algebraic leaf l0 of the statement of the lemma, and denote by
˛; ! 2 @.G;F/ the endpoints of l0 . We claim that, up to exchanging ˛ and ! , we
can assume that a˛ ¤ ˛ for all a 2G n f1g (equivalently, ˛ 2 @1.G;F/ and that ˛
is not of the form cC1 for some nonperipheral element c 2G ). Indeed, if a:˛ D ˛
and b:! D ! for some a; b 2 G n f1g, then ha; bi fixes the point z DQ.˛/DQ.!/
in T . If ha; bi is contained in a peripheral group Gv , then ˛D vD ! , a contradiction.
If ha; bi is not peripheral, then T is not relatively free so T is arational surface and
Gz D hci is cyclic, so .˛; !/D .c˙1; c�1/ is carried by Gz . This contradicts our
hypothesis on l0 , so the claim follows.

Now let gk :e be a sequence of oriented edges in pR.i/.l0/ converging to ˛ , and let
l1 2 L

2.T / be a limit of a subsequence of g�1
k
l0 . We claim that the leaf l1 is liftable.

Indeed, assume towards a contradiction that it is not. The claim established in the first
paragraph of the proof then implies that there exists i such that g�1

k
l
.i/
0 contains �
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for all k 2N larger than some k0 2N . Thus, gkg�1k0 is nonperipheral and fixes the
point z D pT .l

.i/
0 / (D Q.˛/ D Q.!/). In particular, T is not relatively free, so as

above, Gz D hci for some c nonperipheral. Thus, gkg�1k0 D c
jk , and ˛ is a limit of

gkg
�1
k0
D ajk , a contradiction.

We now turn to the proof of Lemma 12.9, saying that any leaf in L2.T / lies in the
peritransitive closure of the set of liftable leaves. Since †–leaves that do not contain
a splitting semiline are automatically liftable, one only has to take care of leaves
containing a splitting semiline. Splitting semilines themselves lift, and in several ways.
The following lemma allows us to lift the concatenation of a splitting semiline with
another liftable segment:

Lemma 12.13 Assume that † is clean. Let � be a †–leaf segment (either finite,
semi-infinite or bi-infinite) that lifts to z�i in †.i/ for some i 2N. Let � be a splitting
semiline in † whose intersection with � is reduced to one extremity of �.

Then there exists a lift z�i of � such that z�i [ z�i is a lift of �[ � .

Proof This is illustrated in Figure 20. Let x be the intersection point of � and �,
and let zx be its lift in z�i . Let zB be the unique band of †.i/ that contains zx and a
nondegenerate leaf segment of z�i . Let z� be a direction transverse to zB at zx . Let
� be its projection in †. Since † is clean, the direction � can be pushed to infinity
along � . There is a unique lift z�i of � in †.i/ starting from zx , along which z� can be
pushed to infinity. Then z�i [ z�i is a lift of �[ � .

B

�
�

x

�
†

� z�i

zx
z�

z�i
†.i/

zB

Figure 20: Lifting � [� to †.i/ .
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Corollary 12.14 Assume that † is clean. Let L be a complete †–leaf. Then the
following holds:

(i) Let � D Œy; ��L and � 0 D Œy0; � 0�L be two splitting semilines contained in L,
with � ¤ � 0, and let x 2 � and x0 2 � 0 be such that Œx; x0�L is liftable. Then
Œ�; � 0�L is liftable.

(ii) Let I D Œx; ˛�L be a liftable leaf semiline contained in L, and � D Œy; ��L be a
splitting semiline with x 2 � , with ˛ ¤ � . Then Œ˛; ��L is liftable.

Proof We will only prove the first claim, the second being a reformulation of
Lemma 12.13. Up to changing Œx; x0�L to a subsegment, we can assume that

Œx; x0�L\ � D fxg and Œx; x0�L\ �
0
D fx0g:

If x D x0, we can further change x so that Œx; ��L\ Œx; � 0�L D fxg. Assume first that
x ¤ x0. Lemma 12.13 applied to �D Œx; x0�L and � , and to � and � 0, yields the result.
If x D x0, we apply Lemma 12.13 to �D � 0 and � .

We are now in position to complete our proof of Lemma 12.9.

Proof of Lemma 12.9 Let .˛; !/ 2 L2.T /. We aim to prove that .˛; !/ belongs
to the peritransitive closure of the set of all liftable leaves in L2.T /\ @1.G;F/2 .
As mentioned above, we can assume that the complete †–leaf L containing .˛; !/
contains a splitting semiline.

Case 1 We have ˛; ! 2 @1.G;F/.

Let L be the unique complete †–leaf that admits ˛ and ! as some of its extremities. Let
GL be the stabilizer of L, and let CL be the core of its stabilizer (see Definition 9.18).

Case 1.1 The intersection Œ˛; !�L\ CL is compact.

We observe that the †–leaf line Œ˛; !�L is a finite concatenation of liftable leaf segments.
Indeed, if some subray Œx0; !�L does not intersect CL , then either it eventually agrees
with a splitting semiline, or else it eventually misses every splitting semiline; this is
because there are only finitely many orbits of splitting semilines in †, and therefore
there are only finitely many splitting semilines that intersect the connected component
of L n CL that contains Œx0; !�L .

As represented in Figure 21, we write Œ˛; !�L as a finite concatenation

Œ˛; x1�L[ Œx1; x2�L[ � � � [ Œxn; !�L;
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˛

x1

y1

x2

y2

x3

y3

xn

yn

!

�1

�2

�3 �n

Figure 21: In Case 1.1, the leaf .˛; !/ is in the transitive closure of the set
of red leaves, which are all liftable leaves in L2.T /\ @1.G;F/2 .

where each segment in the decomposition is liftable. We can also assume that this
decomposition is minimal, ie none of the leaf segments Œxi ; xiC2�L is liftable. Since †
is clean, this implies that each xi lies in a splitting semiline �iD Œyi ; �i �L (represented in
green in the figure), with �i 2@1.G;F/. To simplify, assume first that all �i are distinct
and distinct from ˛ and ! . Corollary 12.14 shows that Œ˛; �1�L; Œ�1; �2�L; : : : ; Œ�n; !�L
are liftable. Since ˛ , ! and all �i belong to @1.G;F/, we conclude that .˛; !/ is in
the transitive closure of liftable leaves in L2.T /\ @1.G;F/2 , as required. If there
are repetitions, say for example ˛ ¤ �1 D �i1 ¤ �i1C1 D �i2 ¤ � � � ¤ �ik ¤ ! with
1 � i1 < i2 < � � � < ik , then we obtain a chain Œ˛; �1�L; Œ�i1 ; �i2 �L; : : : ; Œ�ik ; !�L of
liftable leaf lines. The case where ˛ D �1 or ! D �n is similar and left to the reader.

Case 1.2 The intersection Œ˛; !�L\ CL is not compact.

The argument is illustrated in Figure 22. In particular, CL is nonempty and not reduced
to a point, so its stabilizer GL is nontrivial and not peripheral. It follows that T is
not relatively free, hence T is an arational surface tree, therefore the stabilizer of L

CL
L

!

!n D c
n�

˛n D ˛

�

Figure 22: In Case 1.2, the green leaf .˛; !/ is in the peritransitive closure
of the red leaves .˛n; !n/ , which are treated by Case 1.1.

Algebraic & Geometric Topology, Volume 19 (2019)



2394 Vincent Guirardel and Camille Horbez

is a nonperipheral infinite cyclic group hci (and hci is conjugate to the fundamental
group of the free boundary curve of the underlying orbifold of T ). In particular, CL is
a c–invariant line. We can assume that Œ˛; !�L meets a splitting semiline � D Œy; ��L ,
otherwise Œ˛; !�L would be liftable because † is clean, and there is nothing to prove.
By Remark 9.2, L contains a point of valence at least 3 (namely the origin of � ), so L
is not a line. Since L has no terminal point (Proposition 8.24), L has an end � not in CL .
We claim that there exist ˛n converging to ˛ and !n converging to ! , corresponding
to endpoints of L, such that Œ˛n; !n�L \ CL is compact. Indeed, if ˛ … @1CL (as in
Figure 22), then ˛n D ˛ works, and otherwise we can take ˛n D c˙n:� . By Case 1.1,
for all n 2N the leaf Œ˛n; !n�L lies in the peritransitive closure of the set of liftable
leaves in L2.T /\ @1.G;F/2 . Therefore, so does Œ˛; !�L .

Case 2 Either ˛ or ! , say ˛ , belongs to V1.G;F/.

Then ! 2 @1.G;F/, for otherwise the subgroup of G generated by the stabilizers
of ˛ and ! would be elliptic in T , contradicting arationality. Therefore, for all
g 2 G˛ n f1g, we have .!; g!/ 2 L2.T /\ @1.G;F/2 , so it follows from the above
argument that .!; g!/ is in the peritransitive closure of the set of liftable leaves in
L2.T /\ @1.G;F/2 . Since .˛; !/ is the limit of .gi!;!/ for any infinite sequence
.gi /i2N 2G

N
˛ , we deduce that .˛; !/ also belongs to this peritransitive closure.

13 Unique biduality for arational trees

13.1 Main result

We will now establish our unique biduality result for arational trees. Given T; T 0 2AT ,
we write T � T 0 if the trees yT and yT 0 are homeomorphic when equipped with the
observers’ topology (where we recall that yT D T [ @1T ).

Theorem 13.1 Let T; T 0 2O . Assume that T 2AT , and that L2.T /\L2.T 0/¤∅.
Additionally, if T is not relatively free, assume that L2.T /\L2.T 0/ contains a leaf not
carried by hci, with c a representative of the unique conjugacy class of nonperipheral
elliptic subgroups in T .

Then T 0 2AT , and T � T 0.

Proof Let l 2L2.T /\L2.T 0/ be a leaf that is not carried by any subgroup of G that
is elliptic in T . By Theorem 12.5, L2.T / is equal to the peritransitive closure of l .
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We first prove that T 0 has dense orbits. Assume towards a contradiction that it does
not. Then the leaf l is carried by a vertex group B of the Levitt decomposition
of T 0 (Corollary 4.5). In particular, B is elliptic in a Z–splitting of .G;F/. By
Proposition 11.5, the B –action on its minimal subtree TB in T is simplicial. Lemma 4.4
applied to TB then shows that l is carried by a subgroup of G that is elliptic in TB ,
hence in T ; this is a contradiction. Therefore, T 0 has dense orbits.

By Lemma 12.3, L2.T 0/ is peritransitively closed. This implies that L2.T /�L2.T 0/.

We claim that there exists a surjective G–equivariant continuous map pW yT ! yT 0 that
makes the following diagram commute:

@.G;F/ QT // //

QT 0

"" ""

yT

p
����

yT 0

where QT and QT 0 are the maps Q associated to T and T 0. Indeed, since T

and T 0 have dense orbits, Corollary 6.11 shows that the map QT induces a homeo-
morphism from @.G;F/=L2.T / to yT , and the map QT 0 induces a homeomorphism
from @.G;F/=L2.T 0/ to yT 0 . In addition, since L2.T / � L2.T 0/, we get a map
pW yT ! yT 0 .

We finally check that p is a homeomorphism. Assume towards a contradiction that it
is not. Since T is mixing, by [6, Proposition 3.2] there are uncountably many points
x 2 yT 0 such that jp�1.x/j � 3 (notice here that Bestvina and Reynolds are assuming
indecomposability of T in the statement of [6, Proposition 3.2], however their argument
only requires T to be mixing). Since QT is surjective, we have jQ�1T 0 .x/j � 3 for all
these points x . This contradicts Theorem 8.1.

Corollary 13.2 Let T; T 0 2O , with T 2AT relatively free. Let .Tn/n2N ; .T
0
n/n2N 2

ON be sequences that converge to T and T 0 such that for all n 2 N , we have
L2.Tn/\L

2.T 0n/¤∅.

Then T 0 2AT , and T � T 0.

Proof Corollary 4.25 implies that L2.T /\L2.T 0/ ¤ ∅. As T is assumed to be
relatively free, no element in L2.T /\L2.T 0/ can be carried by a subgroup that is
elliptic in T . Corollary 13.2 then follows from Theorem 13.1.
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To remove the assumption that T is relatively free, we need a stronger assumption on
the dual laminations of Tn and T 0n . Recall that an algebraic leaf is simple if it is a
limit of axes of simple elements (ie contained in a proper .G;F/–free factor), and that
L2simple.T / denotes the set of simple leaves in L2.T / (see Section 5.2).

Corollary 13.3 Let T; T 0 2 O , with T 2 AT . Let .Tn/n2N ; .T
0
n/n2N 2 ON be

sequences that converge to T and T 0 such that for all n 2N , we have

L2simple.Tn/\L
2
simple.T

0
n/¤∅:

Then T 0 2AT , and T � T 0.

Proof We can assume that T is arational surface since, otherwise, Corollary 13.2
applies. Let ADhci<G be a representative of the unique conjugacy class of nonperiph-
eral elliptic subgroups in T . Corollary 5.7 implies that L2simple.T /\L

2
simple.T

0/¤∅.
Since c is not a simple element because T is arational, Lemma 5.4 says that a simple
leaf cannot be carried by hci. Corollary 13.3 then follows from Theorem 13.1.

13.2 The equivalence class of an arational tree

We will finally use the above analysis to deduce information about the geometry of
the equivalence class of an arational tree. We recall that a map between two R–trees
is alignment-preserving if it sends segments to segments. Two trees T1; T2 2 O are
compatible if there exists a tree T0 2O that admits G–equivariant alignment-preserving
maps onto both T1 and T2 .

Corollary 13.4 Let T 2AT , and let T 0 2O . The following assertions are equivalent :

(i) The compact trees yT and yT 0 are homeomorphic when equipped with the ob-
servers’ topology.

(ii) The trees T and T 0 are homeomorphic when equipped with the observers’
topology.

(iii) There exist G–equivariant alignment-preserving maps from T to T 0 and from
T 0 to T .

(iv) The trees T and T 0 have a common refinement in O .

(v) The trees T and T 0 are both compatible with a common tree in O .

Proof Since T is the complement of endpoints of yT , we have (i)D) (ii). Since
every homeomorphism for the observers’ topology is alignment-preserving, we have
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(ii)D) (iii). The implications (iii)D) (iv) and (iv)D) (v) are obvious. We now prove
that (v)D) (i). Let T 00 be a tree which is compatible with both T and T 0, and let
T0 2 @O be a common refinement of T and T 00. Then L2.T0/ � L2.T /\L2.T 00/.
Since T0 belongs to @O , it follows from Proposition 5.8 that L2simple.T0/¤∅. Since
the unique conjugacy class of nonperipheral cyclic subgroups that is elliptic in an
arational surface tree is always nonsimple, we can apply Theorem 13.1 to deduce that
yT and yT 00 are homeomorphic for the observers’ topology. The same argument also
shows that yT 00 and yT 0 are homeomorphic for the observers’ topology, and assertion (i)
follows.

Given a tree T 2 @O with dense orbits, a length measure on T is a collection of
finite Borel measures �I on all segments I � T such that for all J � I, we have
�J D .�I /jJ , and for all I �T and all g2G, we have �gI D .gjI /��I . The set M.T /
of projective classes of nonatomic length measures on T is a finite-dimensional simplex,
spanned by the set of ergodic measures on T ; this was proved in [20, Corollary 5.4]
in the context of free groups, however the proof adapts to our more general setting
because @PO is known to be finite-dimensional by [30]. Any length measure � on T
determines a tree T� , obtained by making Hausdorff the pseudometric on T given by
d�.x; y/D�.Œx; y�/, and there exists a G–equivariant alignment-preserving map from
T to T� . Conversely, if T admits an alignment-preserving map onto a tree T 0 2 @O ,
then there exists a length measure � on T such that T 0 D T� . The map that sends a
length measure � 2M.T / to the projective length function of the tree T� is a linear
injection [20, Lemma 5.3], so the image of M.T / in @PO is a simplex †.T / of the
same dimension. In view of Corollary 13.4, two trees T; T 0 2 PAT are equivalent if
and only if there exist alignment-preserving maps from T to T 0 and from T 0 to T , so
it follows that the equivalence class of T is the finite-dimensional simplex †.T /. We
sum up the above discussion in the following statement:

Proposition 13.5 For all T 2 PAT , the set of projective classes of arational .G;F/–
trees that are equivalent to T is a finite-dimensional simplex.
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