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Representing a point and the diagonal as
zero loci in flag manifolds

SHIZUO KAJI

The zero locus of a generic section of a vector bundle over a manifold defines a
submanifold. A classical problem in geometry asks to realise a specified submanifold
in this way. We study two cases: a point in a generalised flag manifold and the
diagonal in the direct product of two copies of a generalised flag manifold. These
cases are particularly interesting since they are related to ordinary and equivariant
Schubert polynomials, respectively.

57T20; 55R25

1 Introduction

Let N be a manifold of dimension 2n. Consider a smooth function f W N ! Cm

having 0 2 Cm as a regular value. Then, M D f �1.0/ � N is a submanifold of
codimension 2m. Conversely, we can ask if a submanifold M �N of codimension 2m

can be realised in this way, or more generally, as the zero locus of a generic section of
a rank m complex vector bundle � ! N. Here, by a generic section, we mean it is
transversal to the zero section. We say M is represented by � if such a bundle � exists.

The following example shows that even for the simplest case the question is not as
trivial as it may appear to be.

Example 1.1 Consider the representability of a point in S2 . Identify S2 DCP1 and
let 
 �!CP1 be the dual of the tautological bundle


 D f.Œz0; z1�; .cz0; cz1// j Œz0; z1� 2CP1; z0z1 ¤ 0; c 2Cg:

One of its generic sections is given by the projection .cz0; cz1/ 7! cz0 , whose zero
locus is exactly the south pole Œ0; 1�2CP1 . Since S2 is homogeneous with a transitive
SO.3/ action, for any pair of points x;y 2 S2 there is an element g 2 SO.3/ such that
gx D y . By choosing g appropriately, we can represent any point in S2 by g�.
 �/.

Published: 16 August 2019 DOI: 10.2140/agt.2019.19.2061

http://msp.org
http://www.ams.org/mathscinet/search/mscdoc.html?code=57T20, 55R25
http://dx.doi.org/10.2140/agt.2019.19.2061


2062 Shizuo Kaji

On the other hand, consider the representability of a point in S2n for n > 2. Bott’s
integrality theorem tells that the top Chern class cn of any rank n complex vec-
tor bundle on S2n is divisible by .n� 1/! (see for example Konstantis and Parton
[8, Proposition 6.1]). However, if there is a rank n bundle with a generic section whose
zero locus is a point, the top Chen class of the bundle has to be the generator of
H 2n.S2nIZ/. Hence, there is no such bundle. In fact, we can show that a point in S2n

is representable if and only if n� 2. A point in S4 is representable by Lemma 2.2.

From now on, all spaces are assumed to be based, and the basepoints are denoted by pt.
The following two submanifolds are particularly interesting (see Pragacz, Srinivas and
Pati [13]):

(1) The basepoint fptg �X.

(2) The diagonal �.X /D f.x;x/ j x 2X g �X �X.

In the language of [13], if any point in X (resp. the diagonal in X �X ) is representable,
X is said to have property .Pc/ (resp. .Dc/). Note that the choice of the basepoint does
not make any difference when X is connected since for any pair of points x;y 2X

there exists a diffeomorphism f W X ! X satisfying f .y/ D x , so that the bundle
and the section for the representability of the point x are pulled back to represent the
point y . Note also that when �.X /� X �X is represented by � , then fptg � X is
represented by ��.�/, where � is the inclusion N ,!N �N defined by �.x/D .x; pt/.

In [13] analogous problems in different settings are considered: in an algebraic setting
and in topological settings with complex bundles, real bundles and real oriented bundles.
In this note, we focus on the following topological variant:

Problem 1.2 Let X be a (generalised) flag manifold G=P, where G is a complex,
connected, simple Lie group and P is a parabolic subgroup. Find a rank dimC.X /

complex bundle � ! X (resp. � ! X �X ) with a smooth generic section which
vanishes exactly at the basepoint (resp. along �.X /).

The problem is related to Schubert calculus. The Poincaré dual to the fundamental class
of the basepoint defines a cohomology class, which corresponds to the top Schubert
class. Similarly, the class of the diagonal can be thought of as a certain restriction of
the torus-equivariant top Schubert class (see Section 3).

Fulton showed a remarkable result [3, Proposition 7.5]: that the diagonal in X �X

for any type A flag manifold X D SL.kC 1/=P with any parabolic subgroup P is
representable. Note that Fulton’s result works in a holomorphic setting and is stronger
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than our topological setting. On the other hand, for full (ie complete) flag manifolds
(when P DB is the Borel subgroup) of other Lie types, Pragacz and the author showed
[6, Theorem 17] that the basepoint in G=B (and hence the diagonal in G=B �G=B )
is not representable unless G is of type A or C. Indeed, we show in this note:

Theorem 1.3 (Proposition 3.2 and Theorem 3.3) The basepoint (resp. the diagonal)
of G=B is representable if and only if G is of type A or C. Moreover, the basepoint
of G=P is not representable for any proper parabolic subgroup P when G is of
exceptional type.

Thus, the remaining cases are those of flag manifolds of type B, C and D. In
[13, Theorem 12], nonrepresentability of the diagonal is shown for the odd complex
quadrics, which are partial flag manifolds of type B. Naturally, we may ask if there
is any flag manifold where the basepoint is representable but the diagonal is not. The
main result of this note is to give such an example. Namely, we show:

Theorem 1.4 (Theorem 4.2) Let Lag!.C
2k/ be the Lagrangian Grassmannian of

maximal isotropic subspaces in the complex symplectic vector space C2k with a
symplectic form ! . The basepoint in Lag!.C

2k/ is representable for any k , but its
diagonal is not when k � 2 mod 4.

We also see that the basepoint is not representable for many type B and D partial flag
manifolds (Proposition 4.1 and Remark 4.7).

Throughout this note, H�.X / stands for the singular cohomology X with integer
coefficients. Denote by M �N a closed oriented submanifold M of codimension 2m

embedded in a closed oriented 2n–manifold N. The cohomology class which is
Poincaré dual to the fundamental class of M is denoted by ŒM � 2H 2m.N /.

Acknowledgements

This work was partially supported by KAKENHI, Grant-in-Aid for Scientific Research
(C) 18K03304.

The author would like to thank the referee for his/her careful reading and valuable
comments.

2 Criteria for representability

We begin with trivial but useful criteria for the representability of submanifolds in
general.
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Proposition 2.1 Let N be a closed oriented manifold of dimension 2n. Assume that
�!N represents a submanifold M �N of codimension 2m.

(1) The top Chern class cm.�/ 2H 2m.N / is equal to the class ŒM �.

(2) The restriction �jM is isomorphic to the normal bundle �.M / of M �N .

Note that the converse to (1) does not hold; the equality of classes cm.�/D ŒM � does
not necessarily mean that we can find a generic section whose zero locus is exactly M.
However, when M is a point, we can pair zeros with opposite orientations of any
generic section to cancel out. This means:

Lemma 2.2 The basepoint in a closed oriented 2n–manifold N is representable if
and only if there is a rank n complex bundle whose top Chern class is the generator
of H 2n.N /.

The complex K–theory K0.N / can be identified with the set of stable equivalence
classes of vector bundles over N , where

�1 � �2 () �1˚Cl
' �2˚Cl for some l � 0:

The Chern class cm.�/ 2 H 2m.N / of a bundle � ! N depends only on the stable
equivalence class of � in K0.N /. Therefore, if for a complete set of representatives of
K0.N / there is no bundle whose mth Chern class is equal to the class ŒM �2H 2m.N /,
we can conclude that M is not representable.

3 Flag manifolds

From now on, we focus on flag manifolds G=P with the basepoint taken to be the
identity coset eP. We assume G is a complex, connected, simple Lie group with a fixed
Borel subgroup B containing a maximal compact torus T � B, and its Weyl group is
denoted by W .G/. A parabolic subgroup P is a closed subgroup of G containing B.
Parabolic subgroups are in one-to-one correspondence with the subgraphs of the Dynkin
diagram of G. Denote by K the maximal compact subgroup of G containing T

and by H its subgroup P \K . We have a diffeomorphism K=H ' G=P by the
Iwasawa decomposition, and in particular, K=T ' G=B. We use the notation G=P

and K=H interchangeably. We also have a diffeomorphism K=H ' zK=p�1.H /,
where pW zK!K is the universal covering. So we can assume K is simply connected
if necessary.

Algebraic & Geometric Topology, Volume 19 (2019)



Representing a point and the diagonal as zero loci in flag manifolds 2065

The universal flag bundle is denoted by K=T c,�! BT ! BK , where BK is the
classifying space of K . More generally, we have the universal partial flag bundle
K=H ,! BH ! BK . We say a bundle K=H ! E ! X is a flag bundle if it is a
pullback of the universal (partial) flag bundle via a map X ! BK . The Atiyah–
Hirzebruch homomorphism H�.BT / ! K0.K=T / is defined by assigning to a
character � 2 Hom.T;C�/'H 2.BT / the line bundle L� WDK �T C� over K=T

and extending multiplicatively. Here, denoted by C� , is the space C acted by T via �.
This map is known to be surjective when K is simply connected (see [9]).

We first note how the representability of the basepoint and the diagonal is related to
Schubert polynomials. One way to look at Schubert polynomials [1] is that they are
elements in H�.BT / which pull back via cW K=T ! BT to the classes of Schubert
varieties in K=T . In other words, they are polynomials in the first Chern classes of
line bundles on K=T representing the Schubert classes. The top Schubert polynomial
represents the class of the basepoint and it is known by [1] that it “produces” all the
other Schubert polynomials when the divided difference operators are applied to it. So
in a sense, the top Schubert polynomial carries the information of the whole H�.K=T /.
This is why we are interested in representing the basepoint. A similar story goes for the
(Borel) T –equivariant cohomology H�

T
.K=T /, the top double Schubert polynomial

and the diagonal, as is explained below.

Let EK be the universal K–space; that is, EK is contractible, on which K acts freely.
Then, the classifying spaces are taken to be BK DEK=K and BT DEK=T . The
Borel construction K=T is defined to be EK�T K=T , where Œx;gT �D Œxt�1; tgT �2

EK �T K=T for t 2 T . Consider the commutative diagram

K=T

��

K=T

c

��

K=T // EK �T K=T
p2
//

p1

��

BT

��

K=T
c

// BT // BK

where the lower-right square is a pullback, p1.Œx;gT �/D Œx� and p2.Œx;gT �/D Œxg�.
We have the sequence of maps K=T �K=T i

�!EK�T K=T
p
�!BT �BT; where

i.g1T;g2T /D Œpt �g2;g
�1
2

g1T � and pD .p1;p2/. The class of the equivariant point
EK�T eT=T pulls back via i to the class of the diagonal in K=T �K=T . The class
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of EK�T eT=T corresponds to the class of the top Schubert variety in the equivariant
cohomology, which in turn corresponds to the top double Schubert polynomial.

Let us look at the concrete example of K D U.k/. Note that U.k/=T ' SU.k/=T 0

with T 0DT\SU.k/. Although U.k/ is not simple, we consider U.k/ for convenience.
Lascoux and Schützenberger’s top double Schubert polynomial [10]

Sw0
.x;y/D

Y
1�i<j�k

.xi �yj /

can be considered as an element in

H�.BT �BT /'H�.BT /˝H�.BT /' ZŒx1; : : : ;xk �˝ZŒy1; : : : ;yk �;

which pulls back via p to the class of the equivariant point EK �T eT=T in the
equivariant cohomology H�.EK�T K=T /DH�

T
.K=T /. This class further pulls back

via i to the class of the diagonal in H�.K=T �K=T /. For a character � 2H 2.BT /,
let yL� be the line bundle ET �T C�!BT such that c1. yL�/D �. As Sw0

.x;y/ is
a product of linear terms, we can define the rank dimC.K=T /D 1

2
k.k � 1/ bundle

� D
M

1�i<j�k

yLxi
y̋ yL�yj

! BT �BT

such that its top Chern class is equal to Sw0
.x;y/. We have ck.k�1/=2.i

�p�.�//D

Œ�.K=T /� 2H k.k�1/.K=T �K=T /.

Similarly, for K D Sp.k/, consider the rank dimC.K=T /D k2 bundle

� D
M

1�i�j�k

yLxi
y̋ yLyj

˚

M
1�i<j�k

yLxi
y̋ yL�yj

! BT �BT:

Then, the top Chern class of p�.�/ is the equivariant top Schubert class [5, Section 8].
We have ck2.i�p�.�// D Œ�.K=T /� 2 H 2k2

.K=T �K=T /. This means that there
is a generic section s of � such that ŒZ.s/�D Œ�.K=T /� but this does not imply the
existence of s such that Z.s/ is exactly �.K=T /. We will show that the diagonal of
Sp.k/=T is actually representable.

For this, we recall the following slight generalisation of Proposition 7.5 of Fulton [3]
in the current smooth setting:

Proposition 3.1 [6, Theorem 14] If a point in (the diagonal of ) X is representable ,
then so is any point in (the diagonal of ) the total space E of any flag bundle of type A,

SL.k/=P ,!E
p
�!X;

where P is any parabolic subgroup of SL.k/.
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Proof We reproduce a proof for the diagonal case here for the sake of completeness.
By universality, E

p
�!X is the pullback of the universal flag bundle along some map

f W X ! BSL.k/. The idea is to consider the pullback diagram

E �E //

p�p

��

BP �BP

��

X �X
f�f

// BSL.k/�BSL.k/

and construct a bundle over E �E as the sum of pullbacks of bundles over BP �BP

and X �X. Let G be SL.k/ and G=P ! BP ! BG be the universal flag bundle,
whose fibre we identify with the space of flags f0� U1 � U2 � � � � � Ul �Ckg. We
have the corresponding tautological sequence of bundles on BP,

U1
�

,�! U2
�

,�! � � �
�

,�! Ul
�

,�! 
k
q
�! V1

q
�! � � �

q
�! Vl ;

where 
k is the pullback of the universal vector bundle over BG and Vi D 
k=Ui .
Denote by �1; �2W BP �BP ! BP the left and the right projections. The following
rank dimC.G=P / bundle over BP �BP is defined in [3, Proposition 7.5]:

�BP D

� lM
iD1

hi 2

lM
iD1

Hom.��1 .Ui/; �
�
2 .Vi//

ˇ̌̌
q ı hi D hiC1 ı � for all i

�
:

Restricted on the fibre product BP �BG BP � BP � BP, this admits a section
sBP W BP �BG BP ! �BP defined by the tautological map ��

1
.Ui/ ! ��

1
.
k/ D

��
2
.
k/! ��

2
.Vi/, which vanishes exactly along the diagonal �.BP /�BP �BG BP.

By a partition of unity argument, we can extend sBP to the whole BP �BP, which
we denote by the same symbol sBP (note that this is the place where we have to work
in our smooth setting, unlike Fulton’s original work in the holomorphic setting).

Let �X be a bundle over X�X with a generic section sX which represents the diagonal
of X. Note that the pullback bundle .p�p/�.�X / admits a section .p�p/�.sX / whose
zero locus is .p�p/�1.�.X //DE�X E. The bundle �D.p�p/�.�X /˚.f �f /

�.�BP /

over E has rank 1
2

dim.E/D 1
2
.dim.G=P /C dim.X //. The section of � defined by

.p�p/�.sX /˚ .f �f /
�.sBP / vanishes exactly along the diagonal as the following

is a pullback:

E �X E
f�f

// BP �BG BP

�.E/ //

OO

�.BP /

OO

This concludes the proof.
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Proposition 3.2 When G is of type C, the diagonal of G=P for any parabolic sub-
group P of type C (including P D B ) is representable. Consequently, the basepoint
in G=B (resp. the diagonal in G=B �G=B ) is representable if and only if G is of type
A or C.

Proof For 1 � k 0 � k , let Fk
k0 D Sp.k/=.T k0

� Sp.k � k 0// be the isotropic flag
manifold with respect to a symplectic form ! in C2k :

Fk
k0 D f0� U1 � U2 � � � � � Uk0 � U?k0 � � � � � U?1 �C2k

j dimC.Ui/D ig;

where U?i D fv 2 C2k j !.u; v/ D 0 for all u 2 Uig. Denote the tautological bun-
dle on Fk

k0 corresponding to Ui by Ui . By dropping Uk0 , we obtain a projection
pW Fk

k0 ! Fk
k0�1

, which makes Fk
k0 the projectivisation of U?

k0�1
=Uk0�1 over Fk

k0�1
.

By Proposition 3.1, if the diagonal of Fk
k0�1

is representable, so is that of Fk
k0 . This

procedure can be iterated to Fk
1
D CP2k�1, of which the diagonal is representable

since it is a type A partial flag manifold.

For a full flag manifold of an arbitrary type, as is reviewed in the introduction, the
basepoint in G=B is not representable unless G is of type A or C [6, Theorem 17],
and the diagonal is representable when G is of type A [3, Proposition 7.5]. Thus, the
second statement follows from the first.

For exceptional Lie groups, the arguments in [6, Section 6] extend to show:

Theorem 3.3 When G is of exceptional type, the basepoint in G=P is not repre-
sentable for any (proper) parabolic subgroup P (including P D B ).

Proof By taking the universal covering, we can assume K is simply connected. Let
H D P \K . We shall see that there is no bundle � with cn.�/D u2n 2H 2n.K=H /,
where u2n is the generator of the top-degree cohomology. The flag bundle H=T ,!

K=T !K=H induces isomorphisms

H�.K=H /'H�.K=T /W .H /; K0.K=H /'K0.K=T /W .H /;

where W .H / is the Weyl group of H. The universal flag bundle K=T c,�!BT !BK

induces a map c�W H�.BT / ! H�.K=T /, which is compatible with the action
of W .K/. The Atiyah–Hirzebruch homomorphism H�.BT /! K0.K=T / is also
compatible with the action of W .K/ and it restricts to a surjection H�.BT /W .H /!

K0.K=T /W .H / 'K0.K=H /. This asserts that any bundle over K=H stably splits
into line bundles when pulled back via K=T !K=H, and hence its Chern classes are
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polynomials in the elements of H 2.K=T /' c�.H 2.BT //. Let �K=H be the smallest
positive integer such that �K=H �u2n is in the image of

c�W H�.BT /W .H /
!H�.K=T /W .H /

'H�.K=H /;

induced by c�W H�.BT /!H�.K=T /. Consider the flag bundle

H=T ,!K=T !K=H:

There is a class v 2 H�.K=T / which restricts to the class of the basepoint in
H�.H=T /. Since the class of the basepoint in H 2n.K=T / is the product of the
pullback of u2n with v , we have

�K=T � �H=T � �K=H :

On the other hand, it is known (see [14]) that

�SU.k/=T D �Sp.k/=T D 1; �Spin.k/=T D

8<:
2 if 7� k � 12;

4 if k D 13; 14;

8 if k D 15; 16;

�G2=T D 2; �F4=T D 6; �E6=T D 6; �E7=T D 12; �E8=T D 2880:

Parabolic subgroups are in one-to-one correspondence with subgraphs of the Dynkin
diagram. So for any (proper) parabolic subgroup of an exceptional Lie group, we can
see �K=T > �H=T from the list above. Therefore, tK=H > 1 and u2n cannot be the
Chern class of a bundle.

4 Grassmannian manifolds

An argument similar to the one in the previous section also works for some G=P with
G of classical types. Due to the low-rank equivalences A1DB1DC1DD1 , B2DC2 ,
D2 DA1 �A1 and D3 DA3 , we assume k > 2 for Bk and k > 3 for Dk .

Proposition 4.1 When G is of type Bk (k > 2) or Dk (k > 3) and P is a parabolic
subgroup of type A, then the basepoint in G=P is not representable. In particular , the
basepoint in the maximal orthogonal Grassmannian OGk.C

2k/ of maximal isotropic
subspaces in the complex quadratic vector space C2k is representable if and only if
k � 3.

Proof If the basepoint in G=P is representable, so would be G=B by Proposition 3.1
applied to the flag bundle P=B ,! G=B ! G=P. The first statement follows from
Proposition 3.2.
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For the second statement, recall from [11, Section 1.7] that the connected compo-
nent of OGk.C

2k/ containing the identity is diffeomorphic to the flag manifold
SO.2k/=U.k/' SO.2k � 1/=U.k � 1/. Thus, the basepoint is representable if and
only if k � 3.

The basepoint is representable in G=P if the diagonal is representable in G=P �G=P.
The following example shows that the converse is not always true:

Theorem 4.2 Let Lag!.C
2k/' Sp.k/=U.k/ be the complex Lagrangian Grassman-

nian of maximal isotropic subspaces in the complex symplectic vector space C2k with
a symplectic form ! (see [11, Section 1.7]).

(1) The basepoint in Lag!.C
2k/ is representable.

(2) When k � 2 mod 4, the diagonal in Lag!.C
2k/ � Lag!.C

2k/ is not repre-
sentable.

Note that there is a p–local homotopy equivalence Sp.k/=U.k/'p SO.2kC1/=U.k/

for odd primes p [4], so 2–torsion plays an important role in our problem. Our
proof of the theorem is based on the Steenrod operations, which is similar to that of
[13, Theorem 11]. We need a few lemmas.

Lemma 4.3 The tangent bundle of a flag manifold K=H is

T .K=H /D
M

ˇ2…Cn…
C

H

Lˇ;

where …C (resp. …C
H

) is the set of positive roots of K (resp. H ). In particular, for
Sp.k/=U.k/, we can take …C D f2xi j 1 � i � kg [ fxi ˙ xj j 1 � i < j � kg and
…C

H
D fxi �xj j 1� i < j � kg; hence , we have

T .Sp.k/=U.k//'

�M
i

L2xi

�
˚

�M
i<j

LxiCxj

�
:

Proof The assertion follows from the standard isomorphism

T .K=H /'K �H .L.K/=L.H //;

where L.K/ and L.H / are Lie algebras of K and H, respectively.

Let 2nD dim.Sp.k/=U.k//D k.kC 1/.
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Lemma 4.4 (see [12]) Let ci (resp. qi ) be elementary symmetric functions in xj

(resp. x2
j ), where H�.BT /D ZŒx1; : : : ;xk �. Then ,

H�.Sp.k/=U.k//'
ZŒc1; c2; : : : ; ck �

.ZŒq1; q2; : : : ; qk �/
C
;

where .ZŒq1; q2; : : : ; qk �/
C is the ideal of positive-degree polynomials in qj . In partic-

ular ,

u2n D

Y
i

xi

Y
i<j

.xi Cxj /D

kY
iD1

ci ;

u2n�2 D

kY
iD2

ci ;

u1 D c1

are generators of H 2n.Sp.k/=U.k//, H 2n�2.Sp.k/=U.k// and H 2.Sp.k/=U.k//,
respectively.

Proof Let X D Sp.k/=U.k/. Since H�.Sp.k// has no torsion, by [2] we have

H�.X /'
H�.BT /W .U.k//

.HC.BT /W .Sp.k///
;

where .HC.BT /W .Sp.k/// is the ideal generated by the positive-degree Weyl group
invariants. Since W .U.k// Õ H�.BT / is permutation and W .Sp.k// Õ H�.BT /

is signed permutation, we have

H�.X /'
ZŒc1; c2; : : : ; ck �

.ZŒq1; q2; : : : ; qk �/
C
:

By the degree reason, it is easy to see that
Qk

iD1 ci 2H 2n.X /,
Qk

iD2 ci 2H 2n�2.X /

and c1 2H 2.X / are generators. The Euler characteristic �.X / is equal to

jW .Sp.k//j
jW .U.k//j

as the cells in the Bruhat decomposition of X are indexed by the cosets

W .Sp.k//=W .U.k//:

SinceY
i

.2xi/
Y
i<j

.xi Cxj /D cn.TX /D �.X /u2n D
jW .Sp.k//j
jW .U.k//j

u2n D 2ku2n;

we have u2n D
Q

i xi

Q
i<j .xi Cxj /.
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Lemma 4.5 When k � 2 mod 4, any bundle � ! Sp.k/=U.k/ representing the
basepoint in Sp.k/=U.k/ is spin.

Proof We show cn.�/D˙u2n implies c1.�/� w2.�/D 0 mod 2, where w2.�/ is
the second Stiefel–Whitney class. Since H�.Sp.k/=U.k// has no torsion,

H�.Sp.k/=U.k/IZ=2Z/'H�.Sp.k/=U.k/IZ/˝Z=2Z:

We use the same symbol for an integral class and its mod 2 reduction, and the equations
below are meant to hold in H�.Sp.k/=U.k/IZ=2Z/. By Wu’s formula, we have
Sq2.ci/D c1ciC.2i�1/.i�1/ciC1 . Since c2

i 2Z=2ZŒq1; q2; : : : ; qk �, by Lemma 4.4
we have

Sq2u2n�2 D Sq2

� kY
iD2

ci

�
D .k � 1/

kY
iD1

ci D u2n:

Set c1.�/ D au1 and cn�1.�/ D bun�1 for some a; b 2 Z. Since k � 2 mod 4, we
have n� 1 mod 2. Again by Wu’s formula, we have

bun D Sq2.cn�1.�//D c1.�/cn�1.�/C cn.�/D .abC 1/un:

So b.aC 1/� 1, and hence a� 0 mod 2.

Proof of Theorem 4.2 Denote Sp.k/=U.k/ by X.

(1) Consider the bundle

y� D

�M
i

Lxi

�
˚

�M
i<j

LxiCxj

�
over Sp.k/=T . Since y� is invariant under the action of W .U.k//, there is a bundle �
over Sp.k/=U.k/ which pulls back to y� via the projection Sp.k/=T ! Sp.k/=U.k/.
Then, cn.�/D

Q
i xi

Q
i<j .xiCxj /Du2n is a generator of the top-degree cohomology

by Lemma 4.4. By Lemma 2.2, the basepoint is represented by � .

(2) Assume that � 0!X�X represents the diagonal �.X /. By Proposition 2.1(2), the
pullback of � 0 along �W X !X �X is isomorphic to the normal bundle �.�/, which
is isomorphic to TX. On the other hand, the pullback of � 0 along the inclusion to each
factor i1; i2W X !X �X represents the class of the basepoint, where i1.x/D .x; pt/
and i2.x/D .pt;x/. Since i�

1
˝ i�

2
W H 2.X �X /'H 2.X /˝H 2.X /, we see

c1.TX /D c1.�
�.�//D��.c1.�//D c1.i

�
1 .�//C c1.i

�
2 .�//� 0 mod 2

by Lemma 4.5. However, c1.TX / D .k C 1/u1 by Lemma 4.3 and this contradicts
that k is even.
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Corollary 4.6 Let G be of type Ck and P be of type A. The basepoint in G=P is
representable.

Proof Note that any type A parabolic subgroup P is contained in the maximal
parabolic subgroup Pk of type Ak�1 . Apply Proposition 3.1 to the flag bundle
Pk=P ,!G=P !G=Pk , where G=Pk ' Sp.k/=U.k/.

Remark 4.7 A result of Totaro [15] shows �Spin.2kC1/=T D �Spin.2kC2/=T D 2u.k/ ,
where u.k/ is either k �

�
log2

��
kC1

2

�
C 1

�˘
or that expression plus 1. Let G be of

type Bk (resp. DkC1 ), so that its compact form is Spin.2kC1/ (resp. Spin.2kC2/).
Since any parabolic subgroup of G is a product of type B (resp. of type D ) and type A

subgroups, the basepoint is not representable in G=P for any P when u.k�1/ < u.k/

by the same argument as in the proof of Theorem 3.3. Note that u.k�1/D u.k/ rarely
occurs when k gets bigger. A list of u.k/ for small k is given in [15].

For example, let Ql D fx 2 CP lC1 j x2
1
C � � � C x2

lC2
D 0g be the complex quadric.

In [13, Theorem 12], it is shown that the diagonal in Ql is not representable for any
odd l . Since Ql is isomorphic to the real oriented Grassmannian (see [7, page 280])eGr2.R

lC2/ WD SO.l C 2/=.SO.2/�SO.l//;

the basepoint in Ql is not representable for many l . For example, 0D u.2/ < u.3/D 1

shows that the basepoint in Q5 is not representable as �Spin.7/=T � �H=T � �Spin.7/=H ,
and hence 2 � �Spin.7/=H D �Q5

, where H is the inverse image of SO.2/ � SO.5/
under the covering Spin.7/! SO.7/. Note the low-rank equivalences Q1 D CP1 ,
Q2 D CP1 �CP1 , Q3 D Lag!.C

4/, Q4 D Gr2.C
4/ and Q6 D OG4.C

8/. So, up
to l � 6, the basepoints are representable for Q1 , Q2 , Q3 and Q4 but not for Q5

or Q6 .

type of G A B C D exceptional

point for G=B ı � ı � �

point for G=P (P of type A) ı � ı � �

point for G=P (otherwise) ı ? ? ? �

diagonal for G=B ı � ı � �

diagonal for G=P (P of type A) ı � ? � �

diagonal for G=P (otherwise) ı ? ? ? �

Table 1: Summary of representability
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Theorem 4.2 shows that the converse to Proposition 3.1 does not hold in general; even
when the diagonal of the total space of the type A flag bundle U.2/=T ! Sp.2/=T !

Sp.2/=U.2/ is representable, that of the base space is not representable. This makes
it difficult to complete the study of representability for partial flag manifolds of type
B , C and D. The current status of the problem is summarised in Table 1. The partial
information obtained in this note on the entries with the symbol “?” suggests that a
case-by-case analysis may be necessary to settle the remaining cases.
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