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Uniform exponential growth for CAT(0) square complexes

ADITI KAR

MICHAH SAGEEV

We start the inquiry into proving uniform exponential growth in the context of groups
acting on CAT(0) cube complexes. We address free group actions on CAT(0) square
complexes and prove a more general statement. This says that if F is a finite
collection of hyperbolic automorphisms of a CAT(0) square complex X, then either
there exists a pair of words of length at most 10 in F which freely generate a free
semigroup, or all elements of F stabilize a flat (of dimension 1 or 2 in X ). As a
corollary, we obtain a lower bound for the growth constant, 10

p
2 , which is uniform

not just for a given group acting freely on a given CAT(0) cube complex, but for all
groups which are not virtually abelian and have a free action on a CAT(0) square
complex.

20F65

1 Introduction

Given a group G and a finite generating set S, we let C.G;S/ denote the Cayley
graph of G relative to S. The length of an element g 2 G with respect to the word
metric relative to S is denoted by jgjS and we let B.S; n/ denote the ball of radius n

in C.G;S/. The exponential growth rate of G relative to S is defined to be the
following limit (which always exists):

!.G;S/D lim
n!1

jB.S; n/j1=n:

The exponential growth rate of G is then given by

!.G/D inff!.G;S/ j finite generating sets Sg:

The group G is said to have exponential growth if !.G;S/ > 1 for some and therefore
for all finite generating sets S. Moreover, G is said to have uniform exponential growth
if !.G/ > 1. See de la Harpe [9] for details.

Gromov asked if every group of exponential growth is also of uniform exponential
growth. The first example of a group with exponential growth which is not of uniform
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exponential growth was constructed by Wilson [15]. Wilson’s group and future counter-
examples were finitely generated. Whether Gromov’s question has an affirmative
answer for finitely presented groups remains open.

Uniform exponential growth is known to hold for groups with virtually free quotients,
hyperbolic groups, soluble groups, linear groups in characteristic zero and groups acting
on trees in the sense of Bass–Serre theory (see [9]). Uniform exponential growth is
typically established by constructing free semigroups; see Alperin and Noskov [1].

Lemma Let G be a group. Suppose there exists a constant C > 0 such that
for any finite generating set S of G, one can find two elements u; v 2 G with
maxfjujS ; jvjSg< C that freely generate a free semigroup. Then !.G/� C

p
2.

This method and variations of it often allow one to establish “uniform uniform exponen-
tial growth”. Bucher and de la Harpe considered actions on trees and showed in [10]
that the constant in the above lemma is 4

p
2 for nondegenerate amalgams and HNN

extensions. Mangahas [12] proved that finitely generated subgroups of the mapping
class group Mod.S/ of a surface S which are not virtually abelian have uniform
exponential growth with minimal growth rate bounded below by a constant depending
exclusively on the surface S. Breuillard [2, Main Theorem] established a different sort
of uniformity for linear groups: for every d 2 N there is N.d/ 2 N such that if K

is any field and F a finite symmetric subset of GLd .K/ containing 1, either FN.d/

contains two elements which freely generate a nonabelian free group, or the group
generated by F is virtually solvable. We refer the reader to Button [5] for further
examples.

In this paper we start the inquiry into proving uniform exponential growth in the context
of groups acting on CAT(0) cube complexes. We address free group actions on CAT(0)
square complexes. We do this by proving a more general statement about groups
generated by hyperbolic elements.

Theorem 1 Let F be a finite collection of hyperbolic automorphisms of a CAT(0)
square complex. Then either

(1) there exists a pair of words of length at most 10 in F which freely generate a
free semigroup , or

(2) there exists a flat (of dimension 1 or 2) in X stabilized by all elements of F.
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As a corollary, we obtain a “uniform uniform” type result, which says that there is a
uniform lower bound for growth, not just for a given group, but for all groups acting
freely on any CAT(0) square complex.

Corollary 2 Let G be a finitely generated group acting freely on a CAT(0) square
complex. Then either w.G/� 10

p
2 or G is virtually abelian.

We expect that a similar result will hold for all dimensions, in that for a finitely generated
group G acting freely on a CAT(0) cube complex of dimension n, G will be virtually
abelian or w.G/� w0 > 1 where, w0 will depend only on the dimension n, and not
on the group or the complex.
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2 Hyperplanes and group elements

We review some relevant basic facts regarding hyperplanes and halfspaces. See for
example [6] or [13] for more details. We let X be a CAT(0) square complex. We use
h , k to denote halfspaces, yh , yk to denote the corresponding hyperplanes and h� , k �

to denote the complementary halfspaces.

We let Aut.X / denote the collection of cubical, inversion-free automorphisms of X.
(An inversion is an isometry of X that preserves a hyperplane and inverts the corre-
sponding halfspaces.) If G is an action on X which contains inversions, then we may
subdivide X so that there are no inversions.

In a CAT(0) cube complex of dimension n, any collection of nC1 hyperplanes contains
a disjoint pair. In particular, in the case of our 2–dimensional complex, if g 2 Aut.X /
and yh is a hyperplane, then the triple fyh;gyh;g2yhg contains a pair that is either disjoint
or equal. Thus, either g2yh D yh , or one of the pairs fyh;gyhg or fyh;g2yhg is a disjoint
pair.

Given a hyperplane yh in X and g 2 Aut.X / a hyperbolic isometry of X, we say that
g skewers yh if for some choice of halfspace h associated to yh , we have g2h � h (note
that this includes the case gh � h ). This property is equivalent to saying that any axis
for g intersects yh in a single point.
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We say that a hyperbolic isometry g 2 Aut.X / is parallel to yh if any axis for g is a
bounded distance from yh , and a hyperbolic isometry is peripheral to yh if it neither
skewers yh nor is parallel to yh . In this case, any axis lies in a halfspace h bounded by
the hyperplane yh and is not contained in any neighborhood of yh . It follows that either
gh� � h or g2h� � h .

Definition 3 Given a hyperbolic isometry g 2Aut.X /, we define the skewer set of g ,
denoted by sk.g/, as the collection of all hyperplanes skewered by g . We define a
disjoint skewer set for g as a collection of disjoint hyperplanes in sk.g/ which is
invariant under g2 .

If g is parallel to a hyperplane yh , then any hyperplane in sk.g/ intersects yh . Since
there are no intersecting triples of hyperplanes in X, this means that no two hyperplanes
in sk.g/ intersect. Furthermore, any two translates of yh under hgi are parallel to g

and hence cross every hyperplane in sk.g/. Again, by the 2–dimensionality of X, this
means that the two translates of yh under hgi are disjoint. We record this observation,
since we will make use of it.

Observation 4 If g is parallel to yh , then all the hyperplanes in sk.g/ are disjoint and
two distinct hyperplanes in the orbit of yh under hgi are disjoint.

Lemma 5 Let g be a hyperbolic automorphism of X ; then sk.g/ is a union of finitely
many disjoint skewer sets.

Proof Consider yh 2 sk.g/. If gyh \ yh D∅, we let P1 D fg
n.yh/ j n 2 Zg. Otherwise,

since X is 2–dimensional, we have g2yh \ yh D∅. We then set P1 D fg
2n.yh/ j n 2 Zg

and P2 D fg
2nC1yh j n 2 Zg. Thus, P1 and P2 break up the orbit of yh under hgi into

two disjoint skewer sets. Since there are finitely many orbits of hyperplanes in sk.g/
under the action of hgi, this breaks up sk.g/ into finitely many disjoint skewer sets.

Example 6 Let X denote the Euclidean plane, squared in the usual way by unit
squares. Let g be an integer translation in the vertical direction. Then the skewer set
of g is the collection of horizontal hyperplanes and the number of disjoint skewer sets
depends on the translation length of g .

Example 7 Again, let X denote the Euclidean plane. Let g be a glide reflection
along the diagonal axis, g.x;y/D .yC1;xC1/. Then the skewer set of g is a union
of four disjoint skewer sets, each invariant under g2 .
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3 The parallel subset of an element

Given a hyperbolic g 2 Aut.X /, we describe combinatorially a certain invariant
subcomplex associated to g which consists of all the lines parallel to axes in G. (This
subcomplex is discussed also in [11] and is slightly different than the minimal set of G,
as described in [3] or [7].)

We consider the following partition of hyperplanes yH of X. Let

yHk.g/Dfyh j yh intersects every hyperplane in sk.g/g; yHP .g/D yH�.sk.g/[yHk.g//:

Since the elements of yHP .g/ are peripheral to g , it follows that for each hyperplane
yh 2 yHP .g/, there exists a well-defined halfspace h containing all the axes of g . Recall
that the collection of cubes intersecting a hyperplane yh has a product structure yh� Œ0; 1�.
We let N.yh/D yh � .0; 1/. For a halfspace h we let R.h/D h �N.yh/.

We define
Yg D

\
`g2h and yh2yHP .g/

R.h/:

The subspace Yg is a hgi–invariant convex subcomplex of X, and as Yg contains the
axes of g , it is nonempty.

The hyperplanes intersecting Yg are the hyperplanes of sk.g/ and yHk.g/. Since sk.g/
and yHk.g/ are transverse collections of hyperplanes, we obtain (by [6]) that Yg admits
a product structure Yg Š Eg � Tg , where Eg is defined by the hyperplanes sk.g/
and Tg is defined by the hyperplanes in yHk.g/. Note that sk.g/ does not contain any
disjoint facing triples of hyperplanes. As g does not skewer any hyperplane in yHk.g/,
g fixes a vertex in Tg . Since Yg is 2–dimensional, there are two possibilities:

(1) Eg D R and Tg is isomorphic to a tree.

(2) Eg is 2–dimensional and Tg is a point.

We call Yg the parallel set of g and Eg its Euclidean factor.

We need a further understanding of Eg in order to conclude that groups that stabilize
it have nice properties.

Lemma 8 Let Eg be the Euclidean factor of Yg . Then either Eg is a Euclidean plane
or Eg contains an Aut.Eg/–invariant line.
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Proof See [4] or [6] for a discussion of ultrafilters, intervals and medians, which are
used in the following argument. We claim first that Eg is an interval complex. That is,
there exist two ultrafilters ˛ and ˇ on H such that Eg D Œ˛; ˇ� (where Eg denotes
the ultrafilter closure of Eg ). To see this, choose a point on an axis `g for g and let
RC and R� be the two subrays of `g defined by p . Define two ultrafilters

˛C D fh 2H jRC\ h is unboundedg;

˛� D fh 2H jR�\ h is unboundedg:

Note that since `g intersects every hyperplane of Eg , ˛C and ˛� are ultrafilters.
Moreover, ˛C and ˛� make the opposite choices for each hyperplane, which is to say
˛C\˛� D∅. It follows that for every other ultrafilter ˇ , we have that

med.˛C; ˛�; ˇ/D .˛C\˛�/[ .˛C\ˇ/[ .˛�\ˇ/D ˇ:

This means that Eg D Œ˛C; ˛��, as claimed.

It follows, by [4, Theorem 1.16], that Eg embeds isometrically in the standard squaring
of the Euclidean plane. We can thus assume that Eg is an isometrically embedded
subset of the standard squaring of the Euclidean plane. It follows that the hyperplanes
in Eg are either lines, rays or closed intervals. Since g 2 Aut.Eg/ is a hyperbolic
element, we also have that there are finitely many orbits of hyperplanes under the action
of Aut.Eg/ on Eg .

If all the hyperplanes are lines, then we obtain that Eg is itself a Euclidean plane
and we are done. If some hyperplane, say a horizontal one, is a ray, then we claim
that all the other horizontal hyperplanes are rays. For if some horizontal hyperplane
were a line, then by the fact that g is acting cofinitely on the hyperplanes, we would
obtain two horizontal line hyperplanes, separated by a horizontal ray hyperplane. This
would contradict the fact that Eg is isometrically embedded in the Euclidean plane.
By the same reasoning, there can be no closed interval horizontal hyperplanes, for we
would obtain two ray intervals a bounded Hausdorff distance apart in Eg separated by
a closed interval hyperplane. From this it follows that all the vertical hyperplanes are
rays as well and we have that Eg is a “staircase”, as in Figure 1.

In this “stairstep” case, the space of lines which coarsely contains the endpoints of the
hyperplanes is itself a ray R which is Aut.Eg/–invariant; hence, there is an Aut.Eg/

fixed point in R and hence an Aut.Eg/–invariant line in Eg .

If there exists a hyperplane in Eg which is a closed interval, then by similar considera-
tions as above, we may conclude that all hyperplanes are closed intervals. Since hgi
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:::

:::

Figure 1: The case in which all hyperplanes in Eg are rays. The endpoints
of the rays are invariant, and hence any line in Eg a bounded distance from
all endpoints is Aut.Eg/–invariant.

acts cocompactly on Eg , it follows that all lines in Eg are parallel and the space of
such lines is a compact interval I. Since the action of Aut.Eg/ on I has a fixed point,
it then follows that there is an Aut.Eg/–invariant line.

4 The ping pong lemma and hyperplane patterns that yield
free semigroups

We will use the following version of the ping pong lemma (see for example [8]):

Lemma 9 (semigroup ping pong) Suppose that a group G is acting on a set X and
U and V are disjoint subsets of X. If the elements a; b 2Gnf1g satisfy

� a.U [V /� U,

� b.U [V /� V ,

then a and b freely generate a free subsemigroup in G.

Proof Let † be the semigroup generated by a and b in G. Observe that for any
g; h 2†�G, ag D ah or bg D bh in † if and only if g D h in †. Therefore, it is
enough to check that two words of the form ag and bh cannot be equal in †. But,
ag.U [V /� U and bh.U [V /� V . Since U \V D∅, ag ¤ bh.

4.1 On groups acting on trees

To warm up, and to record a few observations we use later on, we first explore what
happens for a pair of hyperbolic isometries acting on a tree. We include the proofs
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here because we will need these types of arguments. However, this is not new. See
for example [1]. Let T be a simplicial tree. Recall if an element g of Aut.T / is
hyperbolic then there is a unique geodesic `g (called the axis of g ) which is invariant
under g , on which g induces a translation.

Proposition 10 If a and b are two hyperbolic automorphisms of a tree T , then one
of the following occurs:

� a and b share the same axis.

� a˙1 and b˙1 freely generate a free semigroup.

Proof Suppose that `a ¤ `b . First assume that `a\ `b is nonempty and contains an
edge e D Œp; q�. (See Figure 2.) Choose e so that q is a point of bifurcation of `a and
`b . Let Tq be the component of T � interior.e/ containing q . After possibly replacing
a by a�1 and/or b by b�1 , we see that ae � Tq and be � Tq . Set U D aTq and
V D bTq . Then U and V satisfy the hypothesis of Lemma 9. We will generalize this
argument in our context.

p e q
Tq

ae

U

`a

be

V

`b

Figure 2: The hyperbolic isometries a and b have unequal but overlapping axes.

The case when `a \ `b D ∅ calls for a different argument (see Figure 3). Consider
an edge e D Œp; q� situated along the geodesic arc joining `a and `b . Let Tp be the
component of T �interior.e/ containing p and Tq be the component of T �interior.e/
containing q . Suppose (without loss of generality) that `a � Tp and `b � Tq . Then,
letting U D

S
n>0 anTq and V D

S
n>0 bnTp , we see that a.U [ V / � U and

b.U [V /� V , as required. In fact, in this case, we can argue that a and b generate a
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Tq

Tp

q

p
aTq

a2Tq

`a

`b

Figure 3: The hyperbolic isometries a and b have disjoint axes.

free group by adjusting U and V to include all nonzero powers of a and b , but we
will not need this fact. Note that there is a singular case in which `a and `b intersect
in a single point. In this case, we simply use the intersecting vertex to separate T into
two subtrees, each containing a different axis, and proceed in the same manner.

4.2 Back to CAT(0) cube complexes

The following lemma works in any dimension and so, just for the paragraph below, we
let X be an n–dimensional CAT(0) cube complex.

Lemma 11 Let g1;g2 2 Aut.X / and suppose that there exists a halfspace h of X

such that gih � h and g1h � g2h� . Then g1 and g2 generate a free semigroup.

Proof This argument resembles the first case in the proof of Proposition 10. Set
U D g1h and set V D g2h and apply Lemma 9.

We call the triple fh;g1h;g2hg a ping pong triple for g1 and g2 .

5 Main argument

Now, let X be a CAT(0) square complex.

Lemma 12 (all or nothing) Let a and b be hyperbolic isometries of X and let P

be a disjoint skewer set for a. Suppose that no pair of words of length at most 6 in a

and b generate a free semigroup; then either b skewers every hyperplane in P or b

does not skewer any hyperplane in P.

Algebraic & Geometric Topology, Volume 19 (2019)



1238 Aditi Kar and Michah Sageev

Proof Recall that for any yh in sk.a/, there exists an associated halfspace h such that
a2h � h . If b skewers some element in P, but not all, we may also choose h such that
h is skewered by b but a2h is not skewered by b . After replacing b possibly by b�1 ,
we may assume that b2h � h. Note that b , and hence b2 , is peripheral to a2yh .

Now, by the 2–dimensionality of X, either b2a2yh \ a2yh D∅ or b4a2yh \ a2yh D ∅.
We further have that b2a2h � b2h � h and b4a2h � b4h � h .

We thus have that either fh; a2h; b2a2hg or fh; a2h; b4a2hg is a ping pong triple of
halfspaces for the pairs fa2; b2a2g or fa2; b4a2g. See Figure 4. In either case, we
obtain words of length at most 6 freely generating a free semigroup, a contradiction.

hh

`b

b2a2h

a2h

`a

Figure 4: The element b skewering h but not ah

Proposition 13 (not skewering means parallel) Let a and b be hyperbolic isometries
of X and let P be a disjoint skewer set for a. Let `b be an axis for b . Suppose that b

does not skewer any element of P and that no pair of words of length no more than 10

freely generate a free semigroup. Then:

(1) The axis `b is parallel to every hyperplane yh 2 P.

(2) bP 2 sk.a/.

(3) b2 stabilizes every hyperplane in P.

Proof The disjoint skewer set P decomposes as a finite union of ha2i–orbits. So,
the assumption that b does not skewer any hyperplane in P holds for each orbit. If
the conclusion of the proposition holds for each ha2i–orbit, then it holds for all of P.
Therefore, it suffices to prove the proposition for when P is a single ha2i–orbit: there
exists h 2 P such that a2h � h and P D fa2k yh j k 2 Zg. We set c D a2 . Since b
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does not skewer any hyperplane in P, we may assume that `b � h \ ch� . (We are
using here that the action is without inversions, so that if `b �

yh for some hyperplane,
there is a parallel axis for b on either side of yh .) We will now use our assumptions to
remove the possibility that b is peripheral to yh or cyh .

First, suppose b is peripheral to both yh and cyh . We claim that we can find a facing
triple of hyperplanes of the form fyh; bs yh; bt yhg with jsj; jt j � 4.

To see this, consider the six translates fb�2yh; b�1yh; yh; byh; b2yh; b3yhg. Construct the
intersection graph � for these six hyperplanes: the vertices of � are the elements
of fb�2yh; b�1yh; yh; byh; b2yh; b3yhg, and two vertices are joined by an edge if and only
if the respective hyperplanes cross. Since R.3; 3/ D 6, the graph � possesses a
clique or an anticlique on three vertices. However, as in a CAT(0) square complex,
three distinct hyperplanes cannot pairwise intersect; the intersection graph � must
have an anticlique T consisting of three hyperplanes. If T contains yh , then we are
done; else, we take a suitable translate of T . The highest exponents appear when
T D fb�2yh; b2yh; b3yhg, and, in this case, we take b�2T as our chosen set of facing
triples.

We now have s and t of absolute value at most 4, such that yh , bs yh and bt yh are disjoint
and form a facing triple. Translating by c , we get that cyh , cbs yh and cbt yh form a
facing triple of hyperplanes. As b is also peripheral to cyh , there exists �� 2 such that
b�cyh \ cyh D ∅. Now, cbsh� and cbt h� are both disjoint halfspaces that lie inside
the halfspace b�ch� . This implies that the two elements cbsc�1b�� and cbtc�1b��

(each of length � 10) freely generate a free semigroup, a contradiction.

Let us now assume that b is parallel to yh but peripheral to cyh . It follows from
Observation 4 that for any i 2Z, bi yh D yh or bi yh\ yh D∅. First let us consider the case
that b2yh D yh . Note that since we are assuming that Aut.X / acts with no inversions,
we have that b2h D h . Now, since b is peripheral to cyh , for k D 1 or 2 we have that
b2kcyh \ cyh D∅. We thus obtain a ping pong triple of halfspaces fh; ch; b2kchg for
the elements c and b2kc . From Lemma 11 we see that c and b2kc freely generate a
free semigroup, a contradiction since these are words of length at most 6 in a and b .
(See Figure 5.)

We may thus assume that byh \ yh D∅ and b2yh \ yh D∅. Only one of byh or b2yh can
separate yh and cyh , for otherwise we would have bh � b2h or b2h � h . So for some
� D 1 or 2, we can assume that b� yh does not separate yh and cyh . Note also that since
cyh is peripheral to b , one cannot have b� yh � ch .
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h

`b

b2kch

ch

Figure 5: If b stabilizes h , we obtain a ping pong triple of hyperplanes.

If cyh \ b� yh D∅, then we obtain a ping pong triple of halfspaces fch�; h�; b�h�g for
the words c�1 and b�c�1 . Since these are words of length at most 4 in a and b , we
have a contradiction. (See Figure 6.)

h
b�h

`b

ch

Figure 6: If cyh \ b� yh D∅ and b� yh does not separate yh and cyh , we obtain a
ping pong triple.

Thus, we assume that b� yh \ cyh ¤ ∅ and refer to Figure 7. Since, by Observation 4,
any hyperplane in sk.b/ intersects b� yh , and we are assuming that b� yh \ cyh ¤ ∅,
the 2–dimensionality of X implies that any hyperplane in sk.b/ is disjoint from cyh .
Moreover, by Observation 4, we have that for any hyperplane yk in sk.b/, bk � k

for some choice of halfspace k associated to yk . We may further choose k such that
ch � k \ bk � .
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Applying c�1 , we see that h � c�1k \ c�1bk � . Applying b� , we see that b�c�1yk �
b�h�� h . Thus, we have a ping pong triple of half spaces fc�1bk �; c�1k �; b�c�1k �g
for the elements c�1b�1c and b�c�1b�1c . So, by Lemma 9 we have that c�1b�1c

and b�c�1b�1c generate a free semigroup and these are words of length at most 7.

c�1bk

c�1h

c�1k

h

b�h

bk

ch

k

`b

Figure 7: If cyh \ b� yh ¤∅ , we obtain a ping pong triple.

We may thus assume that b is parallel to both yh and cyh . Assume that d.`b; yh/ �
d.`b; cyh/. (There is no loss of generality here, for if d.`b; cyh/ � d.`b; yh/, we will
reverse the roles of yh and cyh in the following argument.)

As before, we first consider what happens if yh is not stabilized by b2 . Here we obtain
that yh , byh and b2yh are disjoint. We cannot have that byh D cyh or b2yh D cyh , for then we
would obtain that c�1byh or c�1b2yh is an inversion of yh . Thus, we have that byh � ch�

and b2yh � ch� . We now proceed as in the case in which cyh is peripheral to b to
produce a ping pong triple of halfspaces fch�; h�; b�h�g for the words c�1 and b�c�1 .
(The configuration is the same as in Figure 6 except that here cyh is parallel to `b .)

So assume b2yh D yh . Again, as above, if b2 did not also stabilize cyh , we would obtain
a small ping pong triple. Thus, b2 stabilizes cyh as well. Since b2 stabilizes cyh (and
the action is inversion-free), we have an axis for b2 in ch \ c2h� . We can now carry
out all the above arguments, replacing yh and cyh with cyh and c2yh , to conclude that b2

stabilizes c2yh . Proceeding in this way we see that b is parallel to every hyperplane
of P and that b2P D P.

We are left to show that bP � sk.a/. We now argue as in the proof of Lemma 12
using the pair bab�1 and a. The pairs fba2b�1; a2ba2b�1g and fba2b�1; a4ba2b�1g

made of words of length at most 8 in a and b may freely generate free semigroups. But
we have assumed that there are no such free semigroups. Hence, in our current case,
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Lemma 12 implies that a skewers every hyperplane in bP or none of the hyperplanes
in bP. In the former case, we get bP � sk.a/, as required. So suppose that a does not
skewer any hyperplane in bP. Note that byh must be disjoint from yh and cyh because `b

is parallel to all three. Similarly, bcyh is disjoint from yh and cyh . Since `b � h \ ch� ,
we have either bh� � h \ ch� or bch � h \ ch� , depending on which of yh or cyh is
closer to `b . In either case, we then get a small ping pong triple, a contradiction.

If a and b are elements such that there exists a disjoint skewer set P for a as in
Proposition 13, then we say that b is subparallel to a.

Corollary 14 Given hyperbolic isometries a and b such that no words of length at
most 10 generate a free semigroup of rank 2, b is subparallel to a if and only if
sk.a/� sk.b/¤∅.

Proof If b is subparallel to a, then, by definition, there exists a disjoint skewer set
for a such that b is parallel to all the hyperlanes in P. Thus, P � sk.a/ � sk.b/.
Conversely, if there exists yh 2 sk.a/� sk.b/, then by Lemma 12, the entire disjoint
parallel set P for a containing yh is not skewered by b . Then, by Proposition 13, b is
subparallel to a.

From this corollary, we see that there are three possibilities for two hyperbolic elements
a and b such that words of length at most 10 do not freely generate a free semigroup:

(I) sk.a/D sk.b/.

(II) b is subparallel to a and a is subparallel to b .

(III) b is subparallel to a and a is not subparallel to b (or the same with the roles of
a and b reversed).

We claim that in each of these cases, we can find an invariant line or flat for ha; bi.

Proposition 15 Let a and b be hyperbolic isometries such that no words in a and b

of length at most 10 freely generate a free semigroup; then there exists a Euclidean
subcomplex of X invariant under ha; bi.

Proof We analyze the three cases above. Suppose we are in case I, so that sk.a/D
sk.b/. Then we consider Y D Ya D Yb D E � T . If T is trivial (ie a single point),
then we have that both a and b leave E invariant, as required. Otherwise we have that
Y D R�T , where a and b both act by vertical translation. We consider the action
of a and b on T . Both a and b have nonempty fixed point sets, which we denote by
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Fa and Fb . If Fa\Fb ¤∅, then, choosing p 2 Fa\Fb we have that both a and b

stabilize the line R� fpg � R�T .

So suppose that Fa\Fb D∅. As in [14], we have that ab is hyperbolic in its action
on T , stabilizing a line ` which intersects both Fa and Fb . We claim that a stabilizes `.
For, otherwise, consider the line a`. This is stabilized by the element uD a.ab/a�1 .
If a`¤ `, then we obtain that .ab/˙1 and u˙1 freely generate a free semigroup by
Proposition 10, contradicting our assumption. Similarly, we see that b stabilizes ` as
well. Thus, ha; bi stabilizes the flat R� `� R�T , as required.

We now consider case II, where a and b are subparallel to one another. Note that
since an axis for a is parallel to a hyperplane (in sk.b/), then all the hyperplanes
in sk.a/ are disjoint. Similarly all the hyperplanes in sk.b/ are disjoint. Note also
every hyperplane in sk.a/ crosses every hyperplane in sk.b/, so that they determine a
flat ED Ya\Yb . Moreover, since b is parallel to one of the hyperplanes in sk.a/, it is
parallel or peripheral to all hyperplanes in sk.a/. But then Proposition 13 implies that
for all disjoint skewer sets P � sk.a/, we have bP � sk.a/. Thus, b sk.a/ � sk.a/.
By the same argument, we obtain b�1 sk.a/� sk.a/, so that b sk.a/D sk.a/.

Similarly, we have that a sk.b/D sk.b/. We thus have that ha; bi stabilizes the flat E.

Finally, we consider case III. In this case there exists a disjoint skewer set P for a, so
that b is parallel to P. However, since a is not subparallel to b , a also skewers every
element in sk.b/. Since the hyperplanes in sk.b/ all intersect the hyperplanes in P,
we have that sk.a/ has crossing hyperplanes. It follows that the parallel set Ya for a is
of the form Ya DE � fpointg. It is also easy to see that b stabilizes E, so that ha; bi
stabilizes E.

We are now ready to prove Theorem 1, which we restate here for convenience:

Theorem 1 Let F be a finite collection of hyperbolic automorphisms of a CAT(0)
square complex. Then either

(1) there exists a pair of words of length at most 10 in F which freely generate a
free semigroup , or

(2) there exists a flat (of dimension 1 or 2) in X stabilized by all elements of F.

Proof Consider F D fs1; s2; : : : ; sng. Each of the pairs fsi ; sj g satisfy one of the
cases I, II or III, above.

If there exists a pair of type III, without loss of generality, assume that is the pair
fs1; s2g, with s2 subparallel to s1 and s1 not subparallel to s2 . In this case, the parallel
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set Ys1
DE �fpointg. In this case, for every other si , we have that the pair fs1; sig is

either of type I or III. In either case, we obtain that si stabilizes E and we are done.

So we suppose that no pair fsi ; sj g is of type III. Suppose, that there exists a pair,
say fs1; s2g, which is of type II. Let E be the flat in X on which hs1; s2i acts. For
any other si , we have that the pairs fs1; sig and fs2; sig are of type I or II. It cannot
be that both pairs are of type I since sk.s1/\ sk.s2/D ∅. Also, it cannot be that si

is subparallel to both s1 and s2 , for otherwise `si
would be parallel to hyperplanes

in sk.s1/ and in sk.s2/, but every hyperplane in sk.s1/ crosses every hyperplane in
sk.s2/ in a single point. Thus, a line cannot be parallel to a hyperplane in sk.s1/ and a
hyperplane in sk.s2/. It follows that, without loss of generality, si is subparallel to s1

and sk.si/D sk.s2/. It then follows that si stabilizes E.

Finally, suppose that all the pairs fsi ; sj g are of type I. Thus, sk.si/D sk.sj / for all i

and j . Thus, G stabilizes Y DE �T DEsi
�Tsi

. If E contains squares, then T is
trivial and si stabilizes E, as required. So suppose that Y D R�T , and each si acts
“vertically”. That is, si acts by translation along R and has a fixed point in T .

We now examine the action of G on T . Let Fi denote the fixed set of si . If for each
pair i and j , Fi \Fj ¤∅, then by a standard result, Xn D

Tn
iD1 Fi ¤∅. Choose a

vertex pn 2Xn . Then Hn D hs1; : : : ; sni acts on `n D R�pn by translations. Thus,
Hn stabilizes a flat in X.

So suppose that there exists a pair, say F1 and F2 , such that F1 \F2 D ∅. In this
case, as in the proof of Proposition 15, there exist a line `� T on which hs1; s2i acts
as a dihedral group. As in the proof of Proposition 15, we also obtain that for every i ,
si stabilizes `. Thus, G stabilizes `, and therefore the flat R� `, as required.

Remark 16 The proof of the theorem shows that in case (1), there is a subset F0

of F made of two or three elements and a pair of words of length � 10 in F0 which
generate the free semigroup of rank 2.

Corollary 2 now follows from the main theorem since when the action of a group is
free, stabilizing a flat implies the group is virtually abelian, by the Bieberbach theorem.
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