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Symplectic homology and the Eilenberg–Steenrod axioms
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We give a definition of symplectic homology for pairs of filled Liouville cobordisms,
and show that it satisfies analogues of the Eilenberg–Steenrod axioms except for the
dimension axiom. The resulting long exact sequence of a pair generalizes various
earlier long exact sequences such as the handle attaching sequence, the Legendrian
duality sequence, and the exact sequence relating symplectic homology and Rabi-
nowitz Floer homology. New consequences of this framework include a Mayer–
Vietoris exact sequence for symplectic homology, invariance of Rabinowitz Floer
homology under subcritical handle attachment, and a new product on Rabinowitz
Floer homology unifying the pair-of-pants product on symplectic homology with a
secondary coproduct on positive symplectic homology.

In the appendix, joint with Peter Albers, we discuss obstructions to the existence of
certain Liouville cobordisms.
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1954 Kai Cieliebak and Alexandru Oancea

1 Introduction

To begin with, a story. At the Workshop on conservative dynamics and symplectic
geometry held at IMPA, Rio de Janeiro in August 2009, the participants had seen in the
course of a single day at least four kinds of Floer homologies for noncompact objects,
among which were wrapped Floer homology, symplectic homology, Rabinowitz–Floer
homology and linearized contact homology. The second author was seated in the
audience next to Albert Fathi, who at some point suddenly turned to him and exclaimed:

“There are too many such homologies!”. Hopefully this paper can serve as a structuring
answer: although there are indeed several versions of symplectic homology (non-
equivariant, S1–equivariant, Lagrangian, each coming in several flavours determined
by suitable action truncations), we show that they all obey the same axiomatic pattern,
very much similar to that of the Eilenberg–Steenrod axioms for singular homology.
In order to exhibit such a structured behaviour we need to extend the definition of
symplectic homology to pairs of cobordisms endowed with an exact filling.

We find it useful to explain immediately our definition, although there is a price to pay
regarding the length of this introduction.

We need to first recall the main version of symplectic homology that is currently in
use, which can be interpreted as dealing with cobordisms with empty negative end.
This construction associates to a Liouville domain — meaning an exact symplectic
manifold .W 2n; !; �/, ! D d� such that ˛ D �j@W is a positive contact form (see
Section 2.1) — a symplectic homology group SH�.W / which is an invariant of the
symplectic completion . yW ; y!/D .W; !/[ .Œ1;1/� @W; d.r˛//. The generators of
the underlying chain complex can be thought of as being either the critical points of
a Morse function on W which is increasing towards the boundary, or the positively
parametrized closed orbits of the Reeb vector field R˛ on @W defined by d˛.R˛; � /D0
and ˛.R˛/D 1. Since the generators of the underlying complex are closed Hamiltonian
orbits, we also refer to symplectic homology as being a theory of closed strings (compare
with the discussion of Lagrangian symplectic homology, or wrapped Floer homology,
below). We interpret a Liouville domain .W; !; �/ as an exact symplectic filling of its
contact boundary .M; � D ker˛/, or as an exact cobordism from the empty set to M,
which we call the positive boundary of W , also denoted by M D @CW .

The implementation of this setup is the following. One considers on yW (smooth
time-dependent 1–periodic approximations of) Hamiltonians H� which are identically
zero on W and equal to the linear function � r�� for r 2 Œ1;1/ on the symplectization
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part Œ1;1/�M, where � > 0 is different from the period of a closed Reeb orbit on M.
One then sets

SH�.W /D lim
��!
�!1

FH�.H� /;

where FH�.H� / stands for Hamiltonian Floer homology of H� , which is generated by
closed Hamiltonian orbits of period 1, and the direct limit is considered with respect to
continuation maps induced by increasing homotopies of Hamiltonians. The dynamical
interpretation of these homology groups reflects the fact that the Hamiltonian vector
field of a function h.r/ defined on the symplectization part Œ1;1/ �M is equal
to Xh.r; x/ D h0.r/R˛.x/. A schematic picture for the Hamiltonians underlying
symplectic homology of such cobordisms with empty negative end is given in Figure 1,
in which the arrows indicate the location of the two kinds of generators for the underlying
complex, constant orbits in the interior of the cobordism and nonconstant orbits located
in the “bending” region near the positive boundary. The vertical thick dotted arrow in
Figure 2 indicates that we consider a limit over � !1.

r

H�

MW

Figure 1: Symplectic homology of a domain

Key to our construction is the notion of Liouville cobordism with filling. The definition
of a Liouville cobordism W 2n is similar to that of a Liouville domain, with the notable
difference that we allow the volume form ˛ ^ .d˛/n�1 determined by ˛ on @W to
define the opposite of the boundary orientation on some of the components of @W ,
the collection of which is called the negative boundary of W and is denoted by @�W ,
while the positive boundary of W is @CW D @W n @�W . In addition, we assume
that one is given a Liouville domain F whose positive boundary is isomorphic to the
contact negative boundary of W , so that the concatenation F ıW is a Liouville domain
with positive boundary @CW .

Given a Liouville cobordism W with filling F, the output of the closed theory is
a symplectic homology group SH�.W /. Although we drop the filling F from the
notation for the sake of readability, this homology group does depend on F. The
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dependence is well understood in terms of the geometric augmentation of the contact
homology algebra of @�W induced by the filling; see Bourgeois and Oancea [15].
Symplectic homology SH�.W / is an invariant of the Liouville homotopy class of W
with filling, and the generators of the underlying chain complex can be thought of as
being of one of the following three types: negatively parametrized closed Reeb orbits
on @�W , constants in W , and positively parametrized closed Reeb orbits on @CW .

To implement this setup one considers (smooth time-dependent 1–periodic approxima-
tions of) Hamiltonians H�;� described as follows: they are equal to the linear function
� r�� on the symplectization part Œ1;1/�@CW , they are identically equal to 0 on W ,
they are equal to the linear function ��r C � on some finite but large part of the
negative symplectization .ı; 1�� @�W � F with ı > 0, and finally they are constant
on the remaining part of F . Here � > 0 is required not to be equal to the period of a
closed Reeb orbit on @CW , and � > 0 is required not to be equal to the period of a
closed Reeb orbit on @�W . Finally, one sets

SH�.W /D lim
��!
b!1

lim
 ��

a!�1

lim
��!

�;�!1

FH.a;b/� .H�;� /;

where FH.a;b/� denotes Floer homology truncated in the finite action window .a; b/.

Though the definition may seem frightening when compared to the one for Liouville
domains, it is actually motivated analogously by the dynamical interpretation of the
groups that we wish to construct. Let us consider the corresponding shape of Hamil-
tonians depicted in Figure 2. (The vertical thick dotted arrows in Figure 2 indicate
that we consider limits over � ! 1 and � ! 1.) A Hamiltonian H�;� has 1–
periodic orbits either in the regions where it is constant, or in the small “bending”
regions near fıg � @�W and @˙W where it acquires some derivative with respect to
the symplectization coordinate r . The role of the finite action window .a; b/ in the
definition is to take into account only the orbits located in the areas indicated by arrows
in Figure 2: as � and � increase, the orbits located deep inside the filling F have very
negative action and naturally fall outside the action window. The order of the limits
on the extremities of the action window, first an inverse limit on a!�1 and then a
direct limit on b!1, is important. It has two motivations:

(i) The inverse limit functor is not exact except when applied to an inverse system
consisting of finite-dimensional vector spaces. Should one wish to exchange
the order of the limits on a and b , such a finite-dimensionality property would
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typically not hold on the inverse system indexed by a!�1, and this would
have implications on the various exact sequences that we construct in the paper.

(ii) With this definition, symplectic homology of a cobordism is a ring with unit (see
Section 10). Should one wish to reverse the order of the limits on a and b , this
would not be true anymore.

r

H�;�

@CWW@�W

� �

rF

Figure 2: Symplectic homology of a cobordism

It turns out that the full structure of symplectic homology involves in a crucial way a
definition that is yet more involved, namely that of symplectic homology groups of a
pair of filled Liouville cobordisms. To give the definition of such a pair it is important to
single out the operation of composition of cobordisms, which we already implicitly used
above. Given cobordisms W and W 0 such that @CW D @�W 0 as contact manifolds,
one forms the Liouville cobordism W ıW 0 DW @CW[@�W 0 W

0 by gluing the two
cobordisms along the corresponding boundary. The resulting Liouville structure is
well-defined up to homotopy. A pair of Liouville cobordisms .W; V / then consists
of a Liouville cobordism .W; !; �/ together with a codimension-0 submanifold with
boundary V �W such that .V; !jV ; �jV / is a Liouville cobordism and .W nV; !j; �j/
is the disjoint union of two Liouville cobordisms W bottom and W top such that W D
W bottom ıV ıW top . We allow any of the cobordisms W bottom , W top or V to be empty.
If V D¿, we think of the pair .W;¿/ as being the cobordism W itself. A convenient
abuse of notation is to allow V D @CW or V D @�W , in which case we think of V
as being a trivial collar cobordism on @˙W . This setup does not allow for V D @W
in case the latter has both negative and positive components, but one can extend it in
this direction without much difficulty at the price of somewhat burdening the notation;
see Remark 1.1 and Section 2.6. A pair of Liouville cobordisms with filling is a pair
.W; V / as above, together with an exact filling F of @�W . In this case the cobordism
V inherits a natural filling F ıW bottom . See Figure 3.

Given a cobordism pair .W; V / with filling F , we define a symplectic homology group
SH�.W; V / by a procedure similar to the above, involving suitable direct and inverse
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W

F

@CW@CV

W top

@�V@�W

W bottom V

Figure 3: Cobordism pair .W; V / with filling F

limits and based on Hamiltonians that have the more complicated shape depicted in
Figure 4. The Hamiltonians depend now on three parameters �; �; � >0 and the vertical
thick dotted arrows in Figure 4 indicate that we consider limits over �; �; �!1. One
sets

SH�.W; V /D lim
��!
b!1

lim
 ��

a!�1

lim
��!

�;�!1

lim
 ��
�!1

FH.a;b/� .H�;�;� /:

This is as complicated as it gets. The definition is again motivated by the dynamical
interpretation of the groups that we wish to construct. For a given finite action window
and for suitable choices of the parameters, the orbits that are taken into account
in FH�.H�;�;� / are located in the regions indicated by arrows in Figure 4. They
correspond (from left to right in the picture) to negatively parametrized closed Reeb
orbits on @�W , to constants in W bottom , to negatively parametrized closed Reeb orbits
on @�V , to positively parametrized closed Reeb orbits on @CV , to constants in W top ,
and finally to positively parametrized closed Reeb orbits on @CW (see Section 6).

We wish to emphasize at this point the fact that the above groups of periodic orbits
cannot be singled out solely from action considerations. Filtering by the action and
considering suitable subcomplexes or quotient complexes is the easiest way to extract
useful information from some large chain complex, but this is not enough for our
purposes here. Indeed, getting hold of enough tools in order to single out the desired
groups of orbits was one of the major difficulties that we encountered. We gathered
these tools in Section 2.3, and there are no fewer than four of them: a robust maximum
principle (Lemma 2.2) due to Abouzaid and Seidel [3], an asymptotic behaviour lemma
(Lemma 2.3) which appeared for the first time in Bourgeois and Oancea [15], a new
stretch-of-the-neck argument tailored to the situation at hand (Lemma 2.4), and a
new mechanism to exclude certain Floer trajectories asymptotic to constant orbits
(Lemma 2.5). The simultaneous use of these tools is illustrated by the proof of the
excision theorem, Theorem 6.8.
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Figure 4: Symplectic homology of a cobordism pair

Important particular cases of such relative symplectic homology groups are the sym-
plectic homology groups of a filled Liouville cobordism relative to (a part of) its
boundary. Recalling that we think of a contact-type hypersurface in W as a trivial
collar cobordism, we obtain groups SH�.W; @˙W /. It turns out that these can be
equivalently defined using Hamiltonians of a much simpler shape, as shown in Figure 5.
It is then straightforward to define also symplectic homology groups SH�.W; @W /,
which play a role in the formulation of Poincaré duality; see Section 3.2. We refer to
Section 2.4 for the details of the definitions.

SH�.W; @CW /

W @CW@�WF
r r @CW

W@�W
r
F r

W@�WF

r @CW
r

SH�.W; @�W /SH�.W; @W /

Figure 5: Symplectic homology of a cobordism relative to its boundary

Remark 1.1 Our previous conventions for Liouville pairs do not allow us to interpret
SH�.W; @W / as symplectic homology of the pair .W; Œ0; 1�� @W / if @W has both
negative and positive components. To remedy for this one needs to further extend the
setup to pairs of multilevel Liouville cobordisms with filling; see Section 2.6.

The mnemotechnic rule for all these constructions is the following:
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To compute SH�.W; V / one must use a family of Hamiltonians that vanish
on W nV , that go to �1 near @V and that go to C1 near @W n @V .

Some of these shapes of Hamiltonians already appeared, if only implicitly, in Viterbo’s
foundational paper [68], as well as in Cieliebak [24]. We make their use systematic.

These constructions have Lagrangian analogues, which we will refer to as the open
theory. The main notion is that of an exact Lagrangian cobordism with filling, meaning
an exact Lagrangian submanifold L�W of a Liouville cobordism W which intersects
@W transversally and is such that @�LD L\ @�W is the Legendrian boundary of an
exact Lagrangian submanifold LF � F inside the filling F of W . We call LF an
exact Lagrangian filling. There is also an obvious notion of exact Lagrangian pair
with filling. The open theory associates to such a pair .L;K/ a Lagrangian symplectic
homology group SH�.L;K/, which is an invariant of the Hamiltonian isotopy class
preserving boundaries of the pair .L;K/ inside the Liouville pair .W; V /. (In the
case of a single Lagrangian L with empty negative boundary this is known under
the name of wrapped Floer homology of L.) Formally the implementation of the
Lagrangian setup is the same, using exactly the same shapes of Hamiltonians for a
Lagrangian Floer homology group. The generators of the relevant chain complexes
are then Hamiltonian chords which correspond either to Reeb chords with endpoints
on the relevant Legendrian boundaries, or to constants in the interior of the relevant
Lagrangian cobordisms. One can also mix the closed and open theories together as
in Ekholm and Oancea [39] — see Section 8.3 — and there are also S1–equivariant
closed theories; see Section 8.2. In order to streamline the discussion, we shall restrict
in this introduction to the nonequivariant closed theory described above.

Remark (grading) For simplicity we shall restrict in this paper to Liouville domains
W whose first Chern class vanishes. In this case the filtered Floer homology groups are
Z–graded by the Conley–Zehnder index, where the grading depends on the choice of a
trivialization of the canonical bundle of W for each free homotopy classes of loops.
If c1.W / is nonzero, the groups are only graded modulo twice the minimal Chern
number.

As announced in the title, one way to state our results is in terms of the Eilenberg–
Steenrod axioms for a homology theory. We define a category, which we call the
Liouville category with fillings, whose objects are pairs of Liouville cobordisms with
filling, and whose morphisms are exact embeddings of pairs of Liouville cobordisms
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with filling. Such an exact embedding of a pair .W; V / with filling F into a pair
.W 0; V 0/ with filling F 0 is an exact codimension-0 embedding f W W ,!W 0, meaning
that f ��0�� is an exact 1–form, together with an extension xf W F ıW ,! F 0 ıW 0

which is also an exact codimension-0 embedding, such that f .V /� V 0. A cobordism
triple .W; V; U / (with filling) is a topological triple such that .W; V / and .V; U / are
cobordism pairs (with filling).

Theorem 1.2 Symplectic homology with coefficients in a field K defines a contra-
variant functor from the Liouville category with fillings to the category of graded
K–vector spaces. It associates to a pair .W; V / with filling the symplectic homology
groups SH�.W; V /, and to an exact embedding f W .W; V / ,! .W 0; V 0/ between pairs
with fillings a linear map

fŠW SH�.W 0; V 0/! SH�.W; V /;

called the Viterbo transfer map or shriek map. This functor satisfies the following
properties:

(i) Homotopy If f and g are homotopic through exact embeddings, then

fŠ D gŠ:

(ii) Exact triangle of a pair Given a pair .W; V / for which we have the inclusions
V i
�!W

j
�! .W; V /, there is a functorial exact triangle in which the map @ has

degree �1:

SH�.W; V /
jŠ

// SH�.W /

iŠyy

SH�.V /
@

Œ�1�
ff

(Here we identify as usual a cobordism W with the pair .W;¿/.)

(iii) Excision For any cobordism triple .W; V; U /, the transfer map induced by the
inclusion .W n int.U /; V n int.U // i

�! .W; V / is an isomorphism

iŠW SH�.W; V /
'
�! SH�.W n int.U /; V n int.U //:

These are symplectic analogues of the first Eilenberg–Steenrod axioms [34] for a
homology theory. The one fact that may be puzzling about our terminology is that we
insist on calling this a homology theory, though it defines a contravariant functor. Our
arguments are the following. The first one is geometric: With Z=2–coefficients we have
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an isomorphism SH�.T �M/ ' H�.LM/ between the symplectic homology of the
cotangent bundle of a closed manifold M and the homology of LM, the space of free
loops on M. Moreover, the product structure on SH�.T �M/ is isomorphic to the Chas–
Sullivan product structure on H�.LM/, and the latter naturally lives on homology since
it extends the intersection product on H�.M/ŠHnC�.T

�M;T �M nM/. The second
one is algebraic and uses the S1–equivariant version of symplectic homology (see
Section 8.2): We wish that S1–equivariant homology with coefficients in any ring R be
naturally a RŒu�–module, with u a formal variable of degree �2, and that multiplication
by u be nilpotent. In contrast, S1–equivariant cohomology should naturally be a RŒu�–
module, with u of degree C2, and multiplication by u should typically not be nilpotent.
This is exactly the kind of structure that we have on the S1–equivariant version of our
symplectic homology groups. The third one is an algebraic argument that refers to the
0–level part of the S1–equivariant version of a filled Liouville cobordism: Given such
a cobordism W 2n , this 0–level part is denoted by SHS

1;D0
k

.W / and can be expressed
either as the degree nC k part of H�.W; @W /˝RŒu�1�, with R the ground ring and
u of degree �2, or as the degree n�k part of H�.W /˝RŒu�. Since H�.W /˝RŒu�
is nontrivial in arbitrarily negative degrees, it is only the first expression that allows
the interpretation of SHS

1;D0
� .W / as the singular (co)homology group of a topological

space via the Borel construction. This natural emphasis on homology determines our
interpretation of the induced maps as shriek or transfer maps.

Our bottom line is that the theory is homological in nature, but contravari-
ant because the induced maps are shriek maps.

Note that in the case of a pair .W; V / the simplest expression for SHS
1;D0
k

.W; V /

is obtained by identifying it with the degree n � k part of the cohomology group
H�.W; V /˝RŒu�1�. To turn this into homology one needs to use excision followed
by Poincaré duality, and the expression gets more cumbersome. A similar phenomenon
happens for the nonequivariant version SHD0� .W; V /. In order to simplify the notation
we identify the 0–level part of symplectic homology with singular cohomology.

Remark (coefficients) The symplectic homology groups are defined with coeffi-
cients in an arbitrary ring R , and statement (i) in Theorem 1.2 is valid with arbitrary
coefficients too. Field coefficients are necessary only for statements (ii) and (iii). As a
general fact, the statements in this paper which involve exact triangles are only valid
with field coefficients, and the proof of excision does require such an exact triangle;
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see Section 6. The reason is that we define our symplectic homology groups as a first-
inverse-then-direct-limit over symplectic homology groups truncated in a finite action
window. The various exact triangles involving symplectic homology are obtained by
passing to the limit in the corresponding exact triangles for such finite action windows,
at which point the question of the exactness of the direct limit functor and of the inverse
limit functor arises naturally. While the direct limit functor is exact, the inverse limit
functor is not. Nevertheless, the inverse limit functor is exact when applied to inverse
systems consisting of finite-dimensional vector spaces, which is the case for symplectic
homology groups truncated in a finite action window. In order to extend the exact
triangle of a pair (and also the other exact triangles which we establish in this paper) to
arbitrary coefficients one would need to modify the definition of our groups by passing
to the limit at chain level and use a version of the Mittag-Leffler condition, a path that
we shall not pursue here. See also the discussion of factorization homology below, the
discussion in Section 4 and Remark 8.2. More generally, one can define symplectic
homology with coefficients in a local system with fibre K — see Abouzaid [1] and
Ritter [63] — and most of the results of this paper adapt in a quite straightforward way
to that setup. One notable exception is the duality results in Section 3, in which the
treatment of local coefficients would be more delicate.

In view of the above discussion, we henceforth adopt the following convention:

Convention (coefficients) In this paper we use constant coefficients in a field K.

Let us now discuss briefly the two other Eilenberg–Steenrod axioms, namely the direct
sum axiom and the dimension axiom, and explain why they do not, and indeed cannot,
have a symplectic counterpart.

(I) The direct sum axiom expresses the fact that the homology of an arbitrary disjoint
union of topological spaces is naturally isomorphic to the direct sum of their homologies,
whereas in contrast a cohomology theory would involve a direct product. The distinction
between direct sums and direct products is not relevant in the setup of Liouville domains,
which are by definition compact and therefore consist of at most finitely many connected
components. Passing to arbitrary disjoint unions would mean to go from Liouville
domains to Liouville manifolds as in Seidel [66], and the contravariant nature of the
functor would imply that it behaves as a direct product. This is one of the reasons
why [66] refers to the same object as “symplectic cohomology”. However, in view
of the extension of the definition to cobordisms this appears to be only a superficial
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distinction. The deeper fact is that, whichever way one turns it around, symplectic
homology of a cobordism with nonempty negative boundary is an object of a mixed
homological–cohomological nature because its definition involves both a direct limit
(on b!1) and an inverse limit (on a!�1). We actually present in Section 3.3 an
example showing that algebraic duality fails already in the case of symplectic homology
of a trivial cobordism.

(II) The dimension axiom of Eilenberg and Steenrod expresses the fact that the value of
the functor on any pair homotopy equivalent to a pair of CW–complexes is determined
by its value on a point. This fact relies on the homotopy axiom and illustrates the strength
of the latter: since any ball is homotopy equivalent to a point, the homotopy axiom
allows one to go up in dimension for computations. As a matter of fact, the dimension
of a space plays no role in the definition of a homology theory in the sense of Eilenberg
and Steenrod, although it is indeed visible homologically via the fact that the homology
of a pair consisting of an n–ball and of its boundary is concentrated in degree n. In
contrast, symplectic homology is a dimension-dependent theory. Moreover, it cannot
be determined by its value on a single object. No change in dimension is possible, and
no dimension axiom can exist. For example, symplectic homology vanishes on the
2n–dimensional ball since the latter is subcritical, but the theory is nontrivial. The
symplectic analogue of the class of CW–complexes is that of Weinstein manifolds, and
the whole richness of symplectic homology is encoded in the way it behaves under
critical handle attachments; see Bourgeois, Ekholm and Eliashberg [13]. One could
say that it is determined by its value on the elementary cobordisms corresponding to a
single critical handle attachment, but that would be an essentially useless statement,
since it would involve all possible contact manifolds and all their possible exact fillings.
The complexity of symplectic homology reflects that of Reeb dynamics and is such
that there is no analogue of the dimension axiom.

We show in Section 3.2 how to interpret Poincaré duality by defining an appropriate
version of symplectic cohomology, and we establish in Section 7.4 a Mayer–Vietoris
exact triangle.

It is interesting to note at this point a formal similarity with the recent development
of factorization homology; see Ayala and Francis [7]. Roughly speaking, a factoriza-
tion homology theory is a graded vector space valued monoidal functor defined on
some category of open topological manifolds of fixed dimension n, with morphism
spaces given by topological embeddings and which obeys a dimension axiom involving
the notion of an En–algebra. (Such a category includes in particular that of closed
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manifolds of dimension n� 1, which are identified with open trivial cobordisms of
one dimension higher, a procedure very much similar to our viewpoint on contact
hypersurfaces as trivial cobordisms.) If one forgets the monoidal property then one
essentially recovers the restriction of an Eilenberg–Steenrod homology theory to a
category of manifolds of fixed dimension. Conjecturally, the symplectic analogue of a
factorization homology theory should involve some differential graded algebra (DGA)
enhancement of symplectic homology in the spirit of Ekholm and Oancea [39], and the
axioms satisfied by factorization homology should provide a reasonable approximation
to the structural properties satisfied by such a DGA enhancement.

One other lesson that the authors have learned from Ayala and Francis [7] is that
the Eilenberg–Steenrod axioms can, and probably should, be formulated at chain
level. More precisely, the target of a homological functor is naturally the category of
chain complexes up to homotopy rather than that of graded R–modules. This kind of
formulation in the case of symplectic homology seems to lie at close hand using the
methods of our paper, but we shall not deal with it.

A fruitful line of thought, pioneered by Viterbo [68] in the case of Liouville domains,
is to compare the symplectic homology groups of a pair .W; V / with the singular
cohomology groups, the philosophy being that the difference between the two measures
the amount of homologically interesting dynamics on the relevant contact boundary.
The singular cohomology Hn��.W; V / is visible through the Floer complex generated
by the constant orbits in W nV of any of the Hamiltonians H�;�;� (see Figure 4) with
the degree shift being dictated by our normalization convention for the Conley–Zehnder
index, and this Floer complex coincides with the Morse complex since we work on
symplectically aspherical manifolds and the Hamiltonian is essentially constant in
the relevant region; see Salamon and Zehnder [65]. Note also that these constant
orbits are singled out among the various types of orbits involved in the computation of
SH�.W; V / by the fact that their action is close to zero, whereas all the other orbits
have negative or positive action bounded away from zero. Accordingly, we denote the
resulting homology group by SHD0� .W; V /, with the understanding that we have an
isomorphism

SHD0� .W; V /'Hn��.W; V /:

In the case of a Liouville domain (Figure 1) we see that these constant orbits form a
subcomplex since all the other orbits have positive action. As such, for a Liouville
domain there is a natural map Hn��.W /! SH�.W /. In the case of a cobordism or
of a pair of cobordisms such a map does not exist anymore since the orbits on level
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zero do not form a subcomplex. The correct way to heal this apparent ailment is to
consider symplectic homology groups truncated in action with respect to the zero level,
which we denote by

SH>0� .W; V /; SH�0� .W; V /; SH�0� .W; V /; SH<0� .W; V /:

Their meaning is the following: each of them, respectively, takes into account, among
the orbits involved in the definition of SH�.W; V /, the ones which have strictly positive
action (on @CV and @CW ), nonnegative action (on @CV , @CW and W n V ), non-
positive action (on @�V , @�W and W nV ), and negative action (on @�V and @�W ).
We refer to Sections 2.4 and 2.5 for the definitions.

We have maps SH<0� .W; V /! SH�0� .W; V /! SH�.W; V / induced by inclusions of
subcomplexes, and also maps SH�.W; V /! SH�0� .W; V /! SH>0� .W; V / induced
by projections onto quotient complexes. The group SHD0� .W; V / can be thought of
as a homological cone since it completes the map SH<0� .W; V /! SH�0� .W; V / to an
exact triangle. The various maps which connect these groups are conveniently depicted
as forming an octahedron as in

(1)

SH�

~~ ��

SH�0�

Œ�1�xx

// SH>0�
Œ�1�

{{

Œ�1�

zz

SH<0� //

;;

SH�0�

~~

OO

SHD0� 'H
n��

Œ�1�

``

OO

The continuous arrows preserve the degree, whereas the dotted arrows decrease the
degree by 1. Among the eight triangles forming the surface of the octahedron, the
four triangles whose sides consist of one dotted arrow and two continuous arrows
are exact triangles (see Proposition 2.18), and the four triangles whose sides consist
either of three continuous arrows or of one continuous arrow and two dotted arrows
are commutative. The structure of this octahedron is exactly the same as the one
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involved in the octahedron axiom for a triangulated category — see Kashiwara and
Schapira [54, Chapter 1] — and for a good reason: this tautological octahedron can be
deduced from the octahedron axiom of a triangulated category starting from (the chain
level version of) a commuting triangle which involves SH<0� , SH�0� and SH� , and
in which the composition of the natural maps SH<0� ! SH�0� ! SH� is the natural
map SH<0� ! SH� . Turning this around, this action-filtered octahedron can serve as
an interpretation of the octahedron axiom for a triangulated category fit for readers
with a preference for variational methods over homological methods.

Our uniform and emotional notation for these groups is

SH~� .W; V /; ~ 2 f¿; > 0;� 0;D 0;� 0;< 0g;

with the meaning that SH¿
� D SH� .

Definition 1.3 A functor from the Liouville category with fillings to the category of
graded K–vector spaces satisfying the conclusions of Theorem 1.2 is called a Liouville
homology theory.

Theorem 1.4 For ~ 2 f¿; > 0;� 0;D 0;� 0;< 0g the action-filtered symplectic
homology group SH~� with coefficients in a field K defines a Liouville homology
theory.

The octahedron (1) defines a diagram of natural transformations which is compatible
with the functorial exact sequence of a pair.

In particular, each of the symplectic homology groups SH~� defines a Liouville ho-
motopy invariant of the pair .W; V /. Note that such an invariance statement can only
hold provided we truncate the action with respect to the zero value, which is the
level of constant orbits. Indeed, answering a question of Polterovich and Shelukhin,
we can define symplectic homology groups SH.a;b/� .W; V / truncated in an arbitrary
action interval .a; b/�R (see Section 2.5) and the exact triangle of a pair still holds
for SH.a;b/� . However, the homotopy axiom would generally break down and the
resulting homology groups would not be Liouville homotopy-invariant, except if the
interval is either small and centred at 0, or semi-infinite with the finite end close enough
to 0, which are the cases that we consider. Failure of Liouville homotopy-invariance
for most truncations by the action can be easily detected by rescaling the symplectic
form. We believe this action filtration carries interesting information for cobordisms in
the form of spectral invariants, or more generally persistence modules; see Polterovich
and Shelukhin [62].
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What do we gain from this extension of the theory of symplectic homology from
Liouville domains to Liouville cobordisms, and from having singled out the action-
filtered symplectic homology groups SH~� ? Firstly, a broad unifying perspective.
Secondly, new computational results. We refer to Sections 8, 9 and 10 for a full
discussion, and give here a brief overview.

(a) Our point of view encompasses symplectic homology, wrapped Floer homology,
Rabinowitz–Floer homology, S1–equivariant symplectic homology, linearized contact
homology and nonequivariant linearized contact homology. Indeed:

In view of Cieliebak, Frauenfelder and Oancea [29], Rabinowitz–Floer homology of a
separating contact hypersurface † in a Liouville domain W is SH�.†/, understood
to be computed with respect to the natural filling int.†/.

We show in Section 8.2 that Viterbo’s S1–equivariant symplectic homology SHS
1

�

and its flavours SHS
1;~
� define Liouville homology theories, and the same is true for

negative and periodic cyclic homology. The Gysin exact sequences are diagrams of
natural transformations which are compatible with the exact triangles of pairs and with
the octahedron (1).

In view of Bourgeois and Oancea [18, Theorem 1.3], linearized contact homology
is encompassed by SHS

1;>0
� and nonequivariant linearized contact homology is en-

compassed by SH>0� . Moreover, our enrichment of symplectic homology to (pairs of)
cobordisms indicates several natural extensions of linearized contact homology theories
which blend homology with cohomology and whose definition involves the “banana”,
ie the genus-zero curve with two positive punctures; see also Bourgeois, Ekholm and
Eliashberg [12] and Remark 9.22. Indeed, such an enrichment should exist at the level
of contact homology too, ie nonlinearized.

(b) Most of the key exact sequences established in recent years for symplectic invariants
involving pseudoholomorphic curves appear to us as instances of the exact triangle of a
pair. Examples are the critical handle attaching exact sequence (see Bourgeois, Ekholm
and Eliashberg [13]), the new subcritical handle attaching exact sequence of Section 9.6
(see also Bourgeois and Koert [19]), the exact sequence relating Rabinowitz–Floer
homology and symplectic homology (see Cieliebak, Frauenfelder and Oancea [29]),
and the Legendrian duality exact sequence (see Ekholm, Etnyre and Sabloff [36]). We
discuss these in detail in Section 9. Our point of view embeds all these isolated results
into a much larger framework and establishes compatibilities between exact triangles,
eg with Gysin exact triangles; see Section 8.2.
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(c) Since our setup covers Rabinowitz–Floer homology, it clarifies in particular its
functorial behaviour. Unlike for symplectic homology, a cobordism does not give rise
to a transfer map but rather to a correspondence

SH�.@�W / SH�.W /! SH�.@CW /:

This allows us in particular to prove invariance of Rabinowitz–Floer homology un-
der subcritical handle attachment and understand its behaviour under critical handle
attachment as a formal consequence of [13]. See Section 9.

(d) We describe in Section 10 which of the symplectic homology groups carry product
structures, with respect to which transfer maps are ring homomorphisms as in the
classical case of symplectic homology of a Liouville domain. As a consequence we
construct a degree �n product on Rabinowitz–Floer homology which induces a degree
1�n coproduct on positive symplectic homology.

(e) We give a uniform treatment of vanishing and finite-dimensionality results in
Section 9.3.

(f) We establish in Section 7.4 Mayer–Vietoris exact triangles for all flavours SH~� .
To the best of our knowledge such exact triangles have not appeared previously in the
literature.

A word about our method of proof. We already mentioned the confinement lemmas of
Section 2.3. There are two other important ingredients in our construction: continuation
maps and mapping cones. We now describe their roles. It turns out that the key map of
the theory is the transfer map

iŠW SH~� .W /! SH~� .V /

induced by the inclusion i W V ,!W for a pair of Liouville cobordisms .W; V / with
filling; see Section 5.1. It is instrumental for our constructions to interpret this transfer
map as a continuation map determined by a suitable increasing homotopy of Hamilto-
nians. (Compare with the original definition of Viterbo [68] of the transfer map for
Liouville domains, where its continuation nature is only implicit and truncation by the
action plays the main role.) The next step is to interpret the homological mapping cone
of the transfer map as being isomorphic to the group SH~� .W; V / shifted in degree
down by 1 (Proposition 7.13). This is achieved via a systematic use of homological
algebra for mapping cones (see Section 4) in which a higher homotopy-invariance
property of the Floer chain complex plays a key role (Lemma 4.7). While it is possible
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to show directly, starting from the definitions, that the groups SH�.W; V /, SH�.W /
and SH�.V / fit into an exact triangle, we did not succeed in proving this directly
for the truncated versions SH~� . The situation was unlocked and the arguments were
streamlined upon adopting the continuation map and mapping cone point of view.

We implicitly described the structure of the paper in the body of the introduction, so we
shall not repeat it here. The titles of the sections should now be self-explanatory. We
end the introduction by mentioning two further directions that unfold naturally from the
present paper. The first one is to extend symplectic homology, which is a linear theory
in the sense that its output is valued in graded R–modules, possibly endowed with a
ring structure, to a nonlinear theory at the level of DGAs. This is accomplished for
SH>0� in Ekholm and Oancea [39], but the other flavours may admit similar extensions
too. The second one is a further categorical extension of the theory to the level of the
wrapped Fukaya category, in the spirit of Abouzaid and Seidel [3], where this is again
accomplished for Liouville domains. We expect in particular a meaningful theory of
wrapped Fukaya categories for cobordisms, with interesting applications.
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tion homology, to Mihai Damian for having kindly provided the environment that
allowed us to overcome one last obstacle in the proof, to Stéphane Guillermou and
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Advanced Study, Princeton, NJ in 2012 and of the Simons Center for Geometry and
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Council via the Starting Grant StG-259118-STEIN and by the Agence Nationale de
la Recherche, France via the project ANR-15-CE40-0007-MICROLOCAL. Oancea
acknowledges support from the School of Mathematics at the Institute for Advanced
Study in Princeton, NJ during the Spring Semester 2017, funded by the Charles Simonyi
Endowment.

2 Symplectic (co)homology for filled Liouville cobordisms

Symplectic homology for Liouville domains was introduced by Floer and Hofer [42; 26]
and Viterbo [68]. In this section we extend their definition to filled Liouville cobordisms.
Since symplectic homology is a well-established theory, we will omit many details of
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the construction and concentrate on the new aspects. For background we refer to the
excellent account [1].

2.1 Liouville cobordisms

A Liouville cobordism .W; �/ consists of a compact manifold with boundary W and
a 1–form � such that d� is symplectic and � restricts to a contact form on @W . We
refer to � as the Liouville form. If the dimension of W is 2n, the last condition means
that � ^ .d�/n�1 defines a volume form on @W . We denote by @CW � @W the
union of the components for which the orientation induced by �^ .d�/n�1 coincides
with the boundary orientation of W and call it the convex boundary of W . We call
@�W D @W n @CW the concave boundary of W . The convex/concave boundaries
of W are contact manifolds .@˙W; ˛˙ WD �j@˙W /.

1 We refer to [25, Chapter 11] for
an exhaustive discussion of Liouville cobordisms and their homotopies. A Liouville
domain is a Liouville cobordism such that @W D @CW .

Example 2.1 Given a Riemannian manifold .N; g/, its unit codisk bundle D�rN WD
f.q; p/ 2 T �N W kpkg � rg is a Liouville domain with the canonical Liouville form
�D p dq , whereas T �r;RN WDD

�
RN n intD�rN for r < R is a Liouville cobordism

with concave boundary given by S�r N WD @D
�
rN.

Define the Liouville vector field Z 2 X .W / by �Z d� D � and denote by ˛˙ the
restriction of � to @˙W . It is a consequence of the definitions that Z is transverse
to @W and points outwards along @CW , and inwards along @�W . The flow �tZ of the
vector field Z defines Liouville trivializations of collar neighbourhoods N˙ of @˙W ,

‰CW ..1� "; 1�� @CW; r˛C/! .NC; �/;

‰�W .Œ1; 1C "/� @�W; r˛�/! .N�; �/;
via the map

.r; x/ 7! �ln r
Z .x/:

Given a contact manifold .M; ˛/, its symplectization is given by .0;1/�M with
the Liouville form r˛ . We call .0; 1��M and Œ1;1/�M (both equipped with the
form r˛ ) the negative and positive parts, respectively, of the symplectization.

1Unless otherwise stated our contact manifolds will be always cooriented and equipped with chosen
contact forms.
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Given a Liouville cobordism .W; �/, we define its completion by

yW D ..0; 1�� @�W /t‰� W ‰Ct Œ1;1/� @
CW;

with the obvious Liouville form still denoted by �.

Given a contact manifold .M; ˛/ we define a (Liouville) filling to be a Liouville
domain .F; �/ together with a diffeomorphism �W @F !M such that ��˛ D �j@F .

We view a Liouville cobordism .W; !; �/ as a morphism from the concave boundary to
the convex boundary, W W .@�W;˛�/! .@CW;˛C/. We view a Liouville domain W
as a cobordism from ¿ to its convex boundary. Given two Liouville cobordisms W
and W 0 together with an identification �W .@�W;˛�/ Š�! .@CW 0; ˛0C/, we define
their composition by

W ıW 0 DW t�W @�W Š
�!@CW 0 W

0:

The gluing is understood to be compatible with the trivializations ‰� and ‰0C , so
that the Liouville forms glue smoothly.

2.2 Filtered Floer homology

A contact manifold .M; ˛/ carries a canonical Reeb vector field R˛ 2 X .M/ defined
by the conditions iR˛ d˛ D 0 and ˛.R˛/D 1. We refer to the closed integral curves
of R˛ as closed Reeb orbits, or just Reeb orbits. We denote by Spec.M; ˛/ the set of
periods of closed Reeb orbits. This is the critical value set of the action functional given
by integrating the contact form on closed loops, and a version of Sard’s theorem shows
that Spec.M; ˛/ is a closed nowhere dense subset of Œ0;1/. If M is compact, the set
Spec.M; ˛/ is bounded away from 0 since the Reeb vector field is nonvanishing.

Consider the symplectization ..0;1/ �M; r˛/ and let hW .0;1/ �M ! R be a
function that depends only on the radial coordinate, ie h.r; x/D h.r/. Its Hamiltonian
vector field, defined by d.r˛/.Xh; � /D�dh, is given by

Xh.r; x/D h
0.r/R˛.x/:

The 1–periodic orbits of Xh on the level frg �M are therefore in one-to-one corre-
spondence with the closed Reeb orbits with period h0.r/. Here we understand that a
Reeb orbit of negative period is parametrized by �R˛ , whereas a 0–periodic Reeb
orbit is by convention a constant.
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Let .W; �/ be a Liouville domain and yW its completion. We define the class

H. yW /

of admissible Hamiltonians on yW to consist of functions H W S1� yW !R such that in
the complement of some compact set K �W we have H.r; x/D arCc with a; c 2R

and a … ˙Spec.@W; ˛/[ f0g. In particular, H has no 1–periodic orbits outside the
compact set K .

An almost complex structure J on the symplectization ..0;1/ �M; r˛/ is called
cylindrical if it preserves � D ker˛ , if J j� is independent of r and compatible
with d.r˛/j� , and if J.r@r/D R˛ . Such almost complex structures are compatible
with d.r˛/ and are invariant with respect to dilations .r; x/ 7! .cr; x/ for c > 0. In the
definition of Floer homology for admissible Hamiltonians on yW we shall use almost
complex structures which are cylindrical outside some compact set that contains W ,
which we call admissible almost complex structures on yW .

Consider an admissible Hamiltonian H and an admissible almost complex structure J
on the completion yW of a Liouville domain W . To define the filtered Floer homology
we use the same notation and sign conventions as in [29], which match those of
[24; 3; 39]:

d�. � ; J � /D gJ (Riemannian metric);

d�.XH ; � /D�dH; XH D JrH (Hamiltonian vector field);

L yW WD C1.S1; yW /; S1 DR=Z (loop space);

AH W L yW !R; AH .x/ WD

Z
S1
x���

Z
S1
H.t; x.t// dt (action);

rAH .x/D�J.x/. Px�XH .t; x// (L2–gradient);

uW R! LW; @suDrAH .u.s; � // (gradient line);

where the last equation is equivalent to

(2) @suCJ.u/.@tu�XH .t; u//D 0 (Floer equation);

and

P.H/ WD Crit.AH /D f1–periodic orbits of the Hamiltonian vector field XH g;

M.x�; xCIH;J /D fuW R�S
1
!W j @suDrAH .u.s; � //; u.˙1; � /D x˙g=R

(moduli space of Floer trajectories connecting x˙ 2 P.H/);
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dimM.x�; xCIH;J /D CZ.xC/�CZ.x�/� 1;

AH .xC/�AH .x�/D

Z
R�S1

j@suj
2ds dt D

Z
R�S1

u�.d�� dH ^ dt/:

Here the formula expressing the dimension of the moduli space in terms of Conley–
Zehnder indices is to be understood with respect to a symplectic trivialization of u�TW .

Let K be a field and a < b with a; b … Spec.@W; ˛/. We define the filtered Floer chain
groups with coefficients in K by

FC<b� .H/D
M

x2P.H/
AH .x/<b

K � x; FC.a;b/� .H/D FC<b� .H/=FC<a� .H/;

with the differential @W FC.a;b/� .H/! FC.a;b/
��1 .H/ given by

@xC D
X

CZ.x�/DCZ.xC/�1

#M.x�; xCIH;J / � x�:

Here # denotes the signed count of points with respect to suitable orientations. We
think of the cylinder R�S1 as the twice-punctured Riemann sphere, with the positive
puncture at C1 as incoming, and the negative puncture at �1 as outgoing. This
terminology makes reference to the corresponding asymptote being an input and an
output, respectively, for the Floer differential. Note that the differential decreases both
the action AH and the Conley–Zenhder index. The filtered Floer homology is now
defined as

FH.a;b/� .H/D ker @= im @:

Note that for a < b < c the short exact sequence

0! FC.a;b/� .H/! FC.a;c/� .H/! FC.b;c/� .H/! 0

induces a tautological exact triangle

(3) FH.a;b/� .H/! FH.a;c/� .H/! FH.b;c/� .H/! FH.a;b/� .H/Œ�1�:

Remark We will suppress the field K from the notation. As noted in the introduction,
the definition can also be given with coefficients in a commutative ring, and more
generally with coefficients in a local system as in [63; 1].
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2.3 Restrictions on Floer trajectories

We shall frequently make use of the following three lemmas to exclude certain types of
Floer trajectories. The first one is an immediate consequence of Lemma 7.2 in [3]; see
also [64, Lemma 19.3]. Since our setup differs slightly from the one there, we include
the proof for completeness.

Lemma 2.2 (no escape lemma) Let H be an admissible Hamiltonian on a completed
Liouville domain . yW ;!; �/. Let V � yW be a compact subset with smooth boundary
@V such that �j@V is a positive contact form, J is cylindrical near @V and H D h.r/
in cylindrical coordinates .r; x/ near @V D fr D 1g. If both asymptotes of a Floer
cylinder uW R�S1! yW are contained in V , then u is entirely contained in V .

The result continues to hold if Hs depends on the coordinate s 2 R on the cylin-
der R � S1 such that @sHs � 0 and the action Ahs .r/ D rh0s.r/ � hs.r/ satisfies
@sAhs .r/� 0 for r near 1.

Proof Assume first that H is s–independent. Arguing by contradiction, suppose
that u leaves the set V . After replacing V by the set fr � r0g for a constant r0 > 1
close to 1, we may assume that u leaves V and is transverse to @V . In cylindrical
coordinates near @V we have XH D h0.r/R and �D r˛ , where R is the Reeb vector
field of ˛ D �j@V , so the functions H D h.r/ and �.XH /D rh0.r/ are both constant
along @V . Note that their difference equals the action Ah.r/.

Now S WD u�1. yW n intV / is a compact surface with boundary. We denote by j and ˇ
the restrictions of the complex structure and the 1–form dt from the cylinder R�S1

to S, so that on S the Floer equation for u can be written as .du�XH .u/˝ˇ/0;1D 0.
We estimate the energy of ujS :

E.ujS /D
1

2

Z
S

jdu�XH ˝ˇj
2 volS

D

Z
S

.u�d��u�dH ^ˇ/

D

Z
S

d.u��� .u�H/ˇ/C

Z
S

.u�H/dˇ

D

Z
@S

.u��� .u�H/ˇ/

D

Z
@S

�.du�XH .u/˝ˇ/
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D

Z
@S

�
�
J ı .du�XH .u/˝ˇ/ ı .�j /

�
D

Z
@S

dr ı du ı .�j /

� 0:

Here the equality in the 4th line follows from Stokes’ theorem and dˇ � 0. The
equality in the 5th line holds because the r –component of uj@S equals r0 and thusZ

@S

u�.�.XH /�H/ˇ D

Z
@S

Ah.r0/ˇ D

Z
S

Ah.r0/ dˇ D 0:

The equality in the 6th line follows from the Floer equation, and the equality in the
7th line from � ı J D dr and dr.XH / D 0 along @V . The last inequality follows
from the fact that for each tangent vector � to @S defining its boundary orientation,
j� points into S, so du.j�/ points out of V and dr ı du.j�/ � 0. Since E.ujS /
is nonnegative, it follows that E.ujS /D 0, and therefore du�XH .u/˝ˇ � 0. So
each connected component of ujS is contained in an XH –orbit, and since XH is
tangent to @V , u.S/ is entirely contained in @V . This contradicts the hypothesis that u
leaves V and the lemma is proved for s–independent H.

If Hs is s–dependent, we get an additional term
R
S .u
�@sHs/ ds ^ dt � 0 in the 3th

line, so the equality in the 4th line becomes an inequality �. The equality in the 5th

line also becomes an inequality � due to the nonpositive additional term inZ
@S

Ahs .r0/ˇ D

Z
S

Ahs .r0/ dˇC

Z
S

@sAhs .r0/ ds ^ dt � 0:

This proves the lemma for s–dependent Hs .

Remark The proof shows that Lemma 2.2 continues to hold if the cylinder R�S1

is replaced by a general Riemann surface S with a 1–form ˇ satisfying H dˇ � 0

and Ah.r/ dˇ � 0 for all r near 1. In this case we can allow H to depend on s in
holomorphic coordinates sC i t on a region U � S in which ˇ D c dt for a constant
c� 0, with the requirements @sHs � 0 and @sAhs .r/� 0 as before. This generalization
underlies the definition of product structures in Section 10.

The second lemma summarizes an argument that appeared first in [15, pages 654–655].
Since the conventions in [15] differ from ours, we include the short proof for complete-
ness.
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Lemma 2.3 (asymptotic behaviour lemma) Let .RC�M; r˛/ be the symplectization
of a contact manifold .M; ˛/. Let H D h.r/ be a Hamiltonian depending only on
the radial coordinate r 2 RC , and let J be a cylindrical almost complex structure.
Let u D .a; f /W R˙ � S1 ! RC �M be a solution of the Floer equation (2) with
lims!˙1 u.s; � /D .r˙; 
˙. � // for suitably parametrized Reeb orbits 
˙ .

(i) Assume h00.r�/ > 0. Then either there exists .s0; t0/ 2 R � S1 such that
a.s0; t0/ > r� , or u is constant equal to .r�; 
�/.

(ii) Assume h00.rC/ < 0. Then either there exists .s0; t0/ 2 R � S1 such that
a.s0; t0/ > rC , or u is constant equal to .rC; 
C/.

Proof In coordinates .s; t/ 2 R˙ � S1 , the Floer equation for u D .a; f / with
Hamiltonian H D h.r/ expands to

(4) @sa�˛.@tf /C h0.a/D 0; @taC˛.@sf /D 0; ��@sf CJ.f /��@tf D 0;

where �� W TM ! � D ker˛ is the projection along the Reeb vector field R . In case (i),
suppose h00.r�/ > 0 and a.s; t/� r� for all .s; t/2R��S1 . After replacing R��S1

by a smaller half-cylinder we may assume that h00.a.s; t//� 0 for all .s; t/ 2R��S1 .
Then the average xa.s/ WD

R 1
0 a.s; t/ dt satisfies

xa0.s/D

Z 1

0

@sa.s; t/ dt

D

Z 1

0

˛.@sf /.s; t/ dt �

Z 1

0

h0.a.s; t// dt

�

Z 1

0

f �˛.s/�

Z 1

0

h0.r�/ dt

�

Z

�

˛� h0.r�/D h
0.r�/� h

0.r�/D 0:

Here the second equality follows from the first equation in (4), the first inequality from
a.s; t/� r� and h00.a.s; t//� 0, and the second inequality from Stokes’ theorem and
f �d˛ � 0. For the third equality observe that x�.t/ D .r�; 
�.t// is a 1–periodic
orbit of XH D h0.r/R if and only if P
� D h0.r�/R , so that

R

�
˛ D h0.r�/.

Now xa0.s/� 0 and xa.�1/D r� imply that xa.s/� r� for all s , which is compatible
with a.s; t/� r� only if a.s; t/D r� for all .s; t/. Then all of the preceding inequalities
are equalities; in particular, f �d˛� 0, and therefore u.s; t/D .r�; 
t .t// for all .s; t/.
This proves case (i). Case (ii) follows from case (i) by replacing h by �h and u.s; t/
by u.�s;�t /.

Algebraic & Geometric Topology, Volume 18 (2018)



1978 Kai Cieliebak and Alexandru Oancea

Lemma 2.3 can be rephrased by saying that nonconstant Floer trajectories must rise
above their output asymptote if the Hamiltonian is convex at the asymptote, and they
must rise above their input asymptote if the Hamiltonian is concave at the asymptote.
Combined with Lemma 2.2, it forbids Floer trajectories of the kind shown in Figure 6.

yW

H

�C

Figure 6: Such Floer trajectories are forbidden by Lemma 2.3 in combination
with Lemma 2.2.

The third lemma follows from a neck-stretching argument using the compactness
theorem in symplectic field theory (SFT). We refer to Figure 7 for a sketch of a
situation in which a certain kind of Floer trajectory is forbidden by this technique.

Lemma 2.4 (neck-stretching lemma) Let H be an admissible Hamiltonian on a
completed Liouville domain . yW ;�/. Let V � yW be a compact subset with smooth
boundary @V such that H � c near @V and �j@V is a positive contact form. Let
JR be the compatible almost complex structure on yW obtained from J by inserting
a cylinder of length 2R around @V . Then for sufficiently large R there exists no
JR–Floer cylinder uW R�S1! yW with asymptotic orbits x˙ at ˙1 such that

(1) x� � intV and xC � yW nV with AH .xC/ < �c , or

(2) xC � V and x� � yW nV with AH .x�/ > �c .

Proof Let us first describe more precisely the neck-stretching along M D @V . Pick
a tubular neighbourhood Œ�"; "� �M of M in yW on which H � c and � D e�˛ ,
where ˛ D �jM and � denotes the coordinate on R. Let J be a compatible almost
complex structure on yW whose restriction J0 to Œ�"; "��M is independent of � and
maps � D ker˛ to � and @� to R˛ . Let �R be any diffeomorphism Œ�R;R�! Œ�"; "�

with derivative 1 near the boundary. Then we define JR on yW by .�R � id/�J0 on
Œ�"; "��M, and by J outside Œ�"; "��M.
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yW

c


C

�

H

@VV

Figure 7: Such Floer trajectories are forbidden if �c > AH .xC/ .

Consider a JR–Floer cylinder uW R�S1! yW with asymptotic orbits x˙ . Its Floer
energy is given by

AH .xC/�AH .x�/D

Z
R�S1

j@suj
2ds dt D

Z
R�S1

u�.d�� dH ^ dt/:

Set †D u�1.Œ�"; "��M/ and write the restriction of u to † as

uj† D .�R ı a; f /; .a; f /W †! Œ�R;R��M:

Let  W Œ�R;R�! Œe�"; e"� be any nondecreasing function which equals e�R on the
boundary. Using nonnegativity of the integrand in the Floer energy, vanishing of dH
on Œ�"; "��M and Stokes’ theorem, we obtain

AH .xC/�AH .x�/�

Z
†

u�.d�� dH ^ dt/D

Z
†

u�d�

D

Z
†

.a; f /�d.e�R˛/D

Z
†

.a; f /�d. ˛/

D

Z
†

. 0.a/ da^f �˛C .a/f �d˛/:

Since .a; f / is J0–holomorphic, da ^ f �˛ and f �d˛ are nonnegative 2–forms
on †. Since  0.a/� 0 and  .a/� e�" , and  was arbitrary with the given boundary
conditions, this yields a uniform bound (independent of R) on the Hofer energy
of .a; f / (see [14, Section 5.3; 30, Section 4.1]).

Now suppose there exists a sequence Rk!1 and JRk–Floer cylinders uk W R�S1!
yW with asymptotic orbits x˙ lying on different sides of M. By the SFT compact-

ness theorem [14; 30], uk converges in the limit to a broken cylinder consisting of
components in the completions of V and yW n V satisfying the Floer equation and
J0–holomorphic components in R�M, glued along closed Reeb orbits in M. Since x˙
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lie on different sides of M, the punctures asymptotic to x˙ lie on different components.
Hence, for large k there exists a separating embedded loop ık � R� S1 such that
uk ı ık is C 1–close to a (positively parametrized) closed Reeb orbit 
 on M (which
we view as a loop in yW lying on @V ). Here ık is parametrized as a positive boundary
of the component of R�S1 that is mapped to yV . Now we distinguish two cases.

Case (i) (x� � V and xC � yW n V ) Then ık winds around the cylinder in the
positive S1–direction, and since the Hamiltonian action increases along Floer cylinders
we conclude

AH .xC/� AH .
/� AH .x�/:

Since
R

 �D

R

 ˛�0, we obtain AH .
/D

R

 ��

R 1
0 c dt��c and thus AH .xC/��c .

Case (ii) (xC � V and x� � yW n V ) Then ık winds around the cylinder in the
negative S1–direction, and since the Hamiltonian action increases along Floer cylinders
we conclude

AH .xC/� AH .�
/� AH .x�/:

Since
R

 � D

R

 ˛ � 0, we obtain AH .�
/ D �

R

 � �

R 1
0 c dt � �c and hence

AH .x�/� �c .

Our fourth lemma prohibits certain trajectories asymptotic to constant Hamiltonian
orbits. We consider the setup consisting of a completed Liouville domain yW , a cobor-
dism V �W such that .W; V / is a Liouville pair, ie W DW bottom ıV ıW top , and a
Hamiltonian H W yW !R which is constant on V , which depends only on the radial
coordinate r in an open neighbourhood of @V and which is either strictly convex
or strictly concave as a function of r outside V in each component of the given
neighbourhood of @V . Denote by c the value of H on V .

Let f W V !R be a Morse function which depends only on the radial coordinate r in
some neighbourhood of @V and such that @˙V are regular level sets. We require the
gradient of f to point inside/outside V along @�V if H is concave/convex near @�V ,
and to point inside/outside V along @CV if H is concave/convex near @CV .

Given " > 0 we denote by V " D .Œ1 � "; 1� � @�V / [ V [ .Œ1; 1C "� � @CV / an
"–thickening of V inside yW . For " > 0 small enough let

Hf;"W S
1
� yW !R

be a smooth Hamiltonian which is equal to c C "2f on V , which is equal to H

outside V " and which smoothly interpolates between H and cC"2f on Œ1�"; 1��@�V

Algebraic & Geometric Topology, Volume 18 (2018)



Symplectic homology and the Eilenberg–Steenrod axioms 1981

and Œ1; 1C "�� @CV as a function of r which is either concave or convex, according
to H being concave or convex on each of these regions.

We consider admissible almost complex structures on yW which are time-independent
on V , cylindrical near @V , and such that the gradient flow of f is Morse–Smale.

Lemma 2.5 Let f W V ! R be a Morse function and Hf;" a Hamiltonian as above.
For " > 0 small enough the following hold:

(1) If the gradient of f points inside V along @�V , then there is no Floer trajectory
for Hf;" which is asymptotic at the positive end to a constant orbit given by
a critical point of f and which is asymptotic at the negative end to an orbit
in W bottom .

(2) If the gradient of f points outside V along @�V , then there is no Floer trajectory
for Hf;" which is asymptotic at the negative end to a constant orbit given by
a critical point of f and which is asymptotic at the positive end to an orbit
in W bottom .

Proof To prove (1) we argue by contradiction and assume without loss of generality
that there is a sequence of positive real numbers "n ! 0 and a sequence of Floer
trajectories unW R�S1! yW solving @sunC Jt .un/.@tun �XHf;"n .un//D 0 such
that lims!1 un.s; t/D pC and lims!�1 un.s; t/D x�.t/, with pC a critical point
of f , x�W S1! yW a 1–periodic orbit of H inside W bottom and J D .Jt / an admissible
almost complex structure which is time-independent on V and such that the flow of
the gradient of f for the corresponding Riemannian metric is Morse–Smale.

We interpret V as a Morse–Bott critical manifold with boundary for the action functional
AH and we view Hf;"n , n � 1 as determining a sequence of Morse perturbations
of AH along V . The Morse–Bott compactness theorem, proved in a more restricted
Hamiltonian setting in [16, Proposition 4.7] and in a general SFT setting in [14; 30],
applies to our situation. Indeed, the fact that the Morse–Bott manifold V has boundary
plays no role and the proof of [16, Proposition 4.7] carries over mutatis mutandis.

It follows that, up to extracting a subsequence, the sequence un converges in the
terminology of [16, Definition 4.2] to a broken Floer trajectory Œu� with gradient
fragments. The critical manifold V may be disconnected, but all its components are
located on the same action level AH D �c . Since Floer trajectories for H strictly
increase the action from the asymptote at the negative puncture to the asymptote at the
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positive puncture, we infer that each level of the limit Œu� contains at most one gradient
trajectory of f . Moreover, Œu� has a representative xu D .u1; : : : ;ul/ described as
follows: There exists 1� i � l such that:

� u1; : : : ;ui�1 are Floer trajectories for H, with u1.�1/D x� and uj .C1/D

ujC1.�1/ for 1� j � i � 2.

� ui is a Floer trajectory with one gradient fragment, ie ui D .ui ; 
i / with ui a
Floer trajectory for H and 
i W Œ0;C1/!V a negative gradient trajectory for f ,
ie solving P
i D �rf .
i /, subject to the following conditions: ui�1.C1/ D

ui .�1/ if i > 1 and ui .�1/ D x� if i D 1; ui .C1/ D 
i .0/ 2 V ; and

i .C1/D pC if i D l .

� uiC1; : : : ;ul are negative gradient trajectories uj D 
j W R ! V for f , ie
solving P
j D�rf .
j / for j D iC1; : : : ; l subject to the conditions 
j .�1/D

j�1.C1/ for j D i C 1; : : : ; l and 
l.C1/D pC .

We now focus on the level ui D .ui ; 
i /. Three situations can arise:

Case 1 (
.0/ 2 V n @V ) Then the Floer trajectory ui solves the Cauchy–Riemann
equation @suCJ.u/ @tuD 0 on some half-cylinder Œs0;C1/�S1 with s0� 0. We
identify biholomorphically Œs0;C1/�S1 with a punctured disc PD and, by assumption,
uW PD! V admits a continuous extension at the puncture. Thus, 0 2D is a removable
singularity and we can view ui W R�S1! yW as being defined on a Riemann sphere
with a single negative puncture, on which it solves a Floer equation. The asymptote
at the negative puncture is located in W bottom by assumption, and the image of ui
intersects @�V . Then Lemma 2.2 gives a contradiction.

Case 2 (
.0/2 @CV ) Pick ı > 0 such that Œ1�ı; 1��@CV does not contain critical
points of f . Since Œu� is the limit of the sequence un , there exists n0 � 1 such that
the image of un intersects the set .1� ı; 1�� @CV . By assumption, both asymptotes
of un are located in W bottom[V n .Œ1� ı; 1�� @CV /, and Lemma 2.2 again gives a
contradiction.

Case 3 (
.0/ 2 @�V ) The map 
i W Œ0;1/! V solves P
i D �rf .
i / and enters
V in positive time, but at the same time �rf points outwards along @V , which is a
contradiction.

The proof of (2) is entirely analogous: Cases 1 and 2 are treated exactly in the same
way, while Case 3 is proved similarly to (1) using that negative gradient trajectories
of a Morse function on V whose gradient points outwards along @V must exit V in
negative time.
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Remark 2.6 The conclusions of Lemma 2.5 most likely do not hold if one exchanges
“positive” and “negative” in either of the statements (1) or (2). Although we do not
have an explicit example involving Floer trajectories, ie twice-punctured spheres,
we can easily give an example involving pairs of pants. Consider to this effect a
Liouville domain W and the trivial cobordism V D

�
1
2
; 1
�
� @W over the boundary.

As discussed in Section 10, the symplectic homology group SH�0� .V /D SH�0� .@W /
is a unital graded commutative ring, and the unit maps to 1 2 Hn��.@W / under
the projection SH�0� .V / ! SHD0� .V / ' Hn��.@W /. Assume now that the map
SH<0� .V /! SH�0� .V / is nontrivial — which holds for example in the case of unit
cotangent bundles of closed manifolds — and consider a class ˛¤ 0 in its image. Since
1 �˛ D ˛ ¤ 0 we infer the existence of at least one solution to a Floer equation defined
on a pair of pants with two positive punctures and one negative puncture, asymptotic at
one of the positive punctures to a constant orbit inside V , and asymptotic at the two
other punctures to orbits located in W bottom DW nV .

2.4 Symplectic homology of a filled Liouville cobordism

Let .W; �/ be a Liouville cobordism and .F; �/ a Liouville filling of .@�W;˛�D�@�W /.
We compose F and W to form the Liouville domain

WF WD F ıW

and denote its completion by yWF . We define the class

H.W IF /

of admissible Hamiltonians on yWF with respect to the filling F to consist of functions
H W S1� yWF !R such that H 2H. yWF / and H D 0 on W . When there is no danger
of confusion we shall use the notation

H.W /

for the set H.W IF / and refer to its elements as admissible Hamiltonians on W .

Remark 2.7 For the purposes of this section it would have been enough to define
admissible Hamiltonians by the condition H � 0 on W . This would have allowed for
cofinal families consisting of Hamiltonians with nondegenerate 1–periodic orbits. The
definition that we have adopted requires us to use small perturbations in order to define
Floer homology and is slightly cumbersome in that respect. However, it will prove very
convenient when we come to the definition of symplectic homology groups for pairs.

Algebraic & Geometric Topology, Volume 18 (2018)



1984 Kai Cieliebak and Alexandru Oancea

Next we consider continuation maps. Let H� � HC be admissible Hamiltonians
and Hs for s 2R be a decreasing homotopy through admissible Hamiltonians such
that Hs D H˙ near ˙1. Let Js be a homotopy of admissible almost complex
structures. Solutions of the Floer equation @suC Js.u/.@tu�XHs .u// D 0 satisfy
a maximum principle in the region where all the Hamiltonians Hs are linear and all
the almost complex structures are cylindrical, and their count defines continuation
maps FH�.HC/! FH�.H�/. Since the homotopy is decreasing, the action increases
along solutions of the preceding s–dependent Floer equation, so it decreases under
the continuation map. We infer from this the existence of filtered continuation maps
FH.�1;b/� .HC/! FH.�1;b/� .H�/ for b 2 R, and more generally the existence of
filtered continuation maps

FH.a;b/� .HC/! FH.a;b/� .H�/; a < b:

For an admissible Hamiltonian H we also have natural morphisms determined by
inclusions of and quotients by appropriate subcomplexes

FH.a;b/� .H/! FH.a
0;b0/
� .H/; a � a0; b � b0:

These morphisms commute with the continuation morphisms, and we obtain more
general versions of the latter,

FH.a;b/� .HC/! FH.a
0;b0/
� .H�/; a � a0; b � b0:

Given real numbers �1 < a < b <1, we define the filtered symplectic homology
groups of W (with respect to the filling F ) to be

(5) SH.a;b/� .W /D lim
��!

H2H.W IF /
FH.a;b/� .H/:

The direct limit is taken here with respect to continuation maps and with respect to the
partial order � on H.W IF / defined as follows: H �K if and only if H.t; x/�K.t; x/
for all .t; x/. Note that in a cofinal family the Hamiltonian necessarily goes to C1
on F [ .Œ1;1/� @CW /. Recall also that, in order to achieve nondegeneracy of the
1–periodic orbits, the Hamiltonian H needs to be perturbed on W , where it is constant
equal to zero. Our convention is that we compute the direct limit using a cofinal family
for which the size of the perturbation goes to zero.

Taking the direct limit in (3) we obtain for a < b < c the tautological exact triangle

(6) SH.a;b/� .W /! SH.a;c/� .W /! SH.b;c/� .W /! SH.a;b/� .W /Œ�1�:
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Definition 2.8 We define six versions of symplectic homology groups of W (with
respect to the filling F ):

SH�.W /D lim
��!
b!1

lim
 ��

a!�1

SH.a;b/� .W / (full symplectic homology);

SH>0� .W /D lim
��!
b!1

lim
 ��
a&0

SH.a;b/� .W / (positive symplectic homology);

SH�0� .W /D lim
��!
b!1

lim
��!
a%0

SH.a;b/� .W / (nonnegative symplectic homology);

SHD0� .W /D lim
 ��
b&0

lim
��!
a%0

SH.a;b/� .W / (zero-level symplectic homology);

SH�0� .W /D lim
 ��
b&0

lim
 ��

a!�1

SH.a;b/� .W / (nonpositive symplectic homology);

SH<0� .W /D lim
��!
b%0

lim
 ��

a!�1

SH.a;b/� .W / (negative symplectic homology):

Since the actions of Reeb orbits are bounded away from zero, the direct/inverse limits
as a (or b ) goes to zero stabilize for a (respectively b ) sufficiently close to zero, so
they are not actual limits. Note that the actual inverse limits as a! �1 in these
definitions are always applied to finite-dimensional vector spaces when considering
field coefficients. This ensures that the inverse and direct limits preserve exactness of
sequences; see [28] for further discussion of the order of limits, and also [34, Chapter 8]
for a discussion of exactness.

The geometric content of the definition is the following: Let H be a Hamiltonian as
depicted in Figure 8, which is constant and very positive on F n .Œı; 1�� @F / with
0 < ı < 1, which is linear of negative slope with respect to the r –coordinate on
Œı; 1�� @F, which vanishes on W , and which is linear of positive slope with respect
to the r –coordinate on Œ1;1/ � @CW . The 1–periodic orbits of H fall in four
classes, denoted by F (orbits in the filling), I� (orbits that correspond to negatively
parametrized closed Reeb orbits on @�W ), I 0 (constant orbits in W ), and IC (orbits
that correspond to positively parametrized closed Reeb orbits on @CW ). As ı! 0

and as the absolute values of the slopes go to 1, Hamiltonians of this type form a
cofinal family in H.W IF /. The action of orbits in the class F becomes very negative
and falls outside any fixed and finite action window .a; b/, so the homology groups
SH.a;b/� .W / take into account only orbits of type I�0C . Each flavour of symplectic
homology group SH~� .W / for ~ 2 f¿; > 0;� 0;D 0;� 0;< 0g, with SH¿

� .W / as
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a notation for SH�.W /, takes into account orbits in the class I�0C , IC , I 0C , I 0 ,
I�0 , I� , respectively, for arbitrarily large values of the slope. As such, each of these
symplectic homology groups corresponds to a certain count of negatively parametrized
closed Reeb orbits on @�W , of constant orbits in W , and of positively parametrized
closed Reeb orbits on @CW .

1ı r

@�W @CW

I 0

IC

H

F

I�

F

1

Figure 8: Cofinal family of Hamiltonians for SH~� .W /

The next proposition will be proved as Proposition 5.5 below.

Proposition 2.9 Each of the above six versions of symplectic homology is an invariant
of the Liouville homotopy type of the pair .W IF /.

The following computation is fundamental in applications.

Proposition 2.10 Let dimW D 2n. Then we have a canonical isomorphism

SHD0� .W /ŠHn��.W /:

Proof Consider a Hamiltonian K of the shape as in Figure 8. Since yWF is symplecti-
cally aspherical, it follows from [65, Theorem 7.3] (see also [68, Proposition 1.4]) that
if K is sufficiently C 2–small on W , then its Floer chain complex reduces to the Morse
cochain complex for an appropriate choice of almost complex structure. Fix such a K
and denote by c > 0 its constant value on the filling F . Pick " with 0 < " < c , so that
the constant orbits in F have action �c < �". Since the Conley–Zehnder index of
a critical point is related to its Morse index by CZD n�Morse, we get a canonical
isomorphism FH.�";"/� .K/ŠHn��.W /.

Consider any other Hamiltonian H of the shape as in Figure 8 with K �H. We choose
" smaller than the smallest action of a closed Reeb orbit on @W . Then all nonconstant

Algebraic & Geometric Topology, Volume 18 (2018)



Symplectic homology and the Eilenberg–Steenrod axioms 1987

orbits of H have action outside .�"; "/ and a monotone homotopy from K to H
yields a continuation isomorphism FH.�";"/� .K/ Š�! FH.�";"/� .H/, which induces in
the direct limit over H a canonical isomorphism

FH.�";"/� .K/ Š�! SH.�";"/� .W /D SHD0� .W /:

Remark 2.11 If W is a Liouville domain, we have

SH<0� .W /D 0; SH�0� .W /D SHD0� .W /; SH�0� .W /D SH�.W /;

and the group SH>0� .W / coincides by definition with the group SHC� .W / of [15]. If W
is a Liouville cobordism with Liouville filling F , we have (by a standard continuation
argument)

SH>0� .W /Š SH>0� .WF /:

Proposition 2.12 The following “tautological” exact triangles hold for the symplectic
homology groups of W :

SH<0� // SH�

~~

SH�0�
Œ�1�

aa
SH�0� // SH�

~~

SH>0�
Œ�1�

aa

SH<0� // SH�0�

}}

SHD0�
Œ�1�

aa
SHD0� // SH�0�

}}

SH>0�
Œ�1�

aa

Proof We prove the exactness of the triangle

(7) SH�0� .W /! SH�.W /! SH>0� .W /! SH�0� .W /Œ�1�:

The proofs for the other three triangles are similar and left to the reader.

Let " > 0 be smaller than the minimal period of a closed characteristic on @CW . It
follows from the definitions that

SH�0� .W /D lim
 ��

a!�1

SH.a;"/� .W /

and

SH>0� .W /D lim
��!
b!1

SH.";b/� .W /:
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For fixed a; b 2 R such that �1 < a < 0 < " < b <1 we have from (6) an exact
triangle

SH.a;"/� .W /! SH.a;b/� .W /! SH.";b/� .W /! SH.a;"/� .W /Œ�1�:

All the terms in this exact triangle are finite-dimensional vector spaces. The inverse
limit functor is exact on directed systems consisting of finite-dimensional vector spaces,
and the direct limit functor is always exact. We then obtain (7) by first taking the
inverse limit on a!�1, and then taking the direct limit on b!1.

Symplectic homology groups relative to boundary components Let A� @W be a
union of boundary components of W and write

A˙ D A\ @˙W:

We further assume that A� is a union of boundaries of components of F . We refer to
such an A as an admissible subset of @W .

Examples One obvious choice is A� D @�W , which satisfies the assumption for
any F . If each component of F has connected boundary then one can take A�� @�W
arbitrarily. If F consists of a single connected component then the only possible
choices are A�D @�W or A�D¿. Note also that, if A satisfies the assumption, then
Ac WD @W nA also does.

Let FA� denote the filling of .A�; ˛�/ consisting of the union of the components
of F with boundary contained in A� . Let

. yWF nW /A D intFA� [ ..1;1/�AC/;

so that
yWF nW D . yWF nW /A t . yWF nW /Ac :

Given real numbers �1 < a < b <1, we define the filtered symplectic homology
groups of W relative to A (with respect to the filling F ) to be

(8) SH.a;b/� .W;A/D lim
��!

H2H.W IF /
H!1 on . yWF nW /Ac

lim
 ��

H2H.W IF /
H!�1 on . yWF nW /A

FH.a;b/� .H/:

Definition 2.13 We define six flavours of symplectic homology groups of W relative
to A, or symplectic homology groups of the pair .W;A/,

SH~� .W;A/; ~ 2 f¿; > 0;� 0;D 0;� 0;< 0g;
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SH�.W; @CW /

SH�.W / SH�.W; @W /

@CW@�W

@CW@�W @�W

@�W @CW

@CW

SH�.W; @�W /

Figure 9: Shape of Hamiltonians for SH�.W;A/ with AD¿; @W; @�W; @CW

by the formulas in Definition 2.8 with SH.a;b/� .W / replaced by SH.a;b/� .W;A/. The
notation SH~� with ~D¿ refers to SH� .

We refer to Figure 9 for an illustration of several significant cases of Hamiltonians
used in the computation of relative symplectic homology groups. The case A D ¿
corresponds to Figure 8. In each case, in the limit the orbits that appear in the filling
either fall below or fall above any fixed and finite action window, so that only orbits
appearing near W are taken into account. As an example, SH�.W; @�W / corresponds
to a certain count of positively parametrized closed Reeb orbits on @�W , of constant
orbits in W and of positively parametrized closed Reeb orbits on @CW . Similar
interpretations hold for SH�.W; @CW / and SH�.W; @W /, and also for all their ~–
flavours. In Figure 9 we encircled with a dashed line the region which contains the
orbits that are taken into account. The mnemotechnic rule is the following:

To compute SH~� .W;A/ one must use a family of Hamiltonians that go
to �1 near A and that go to C1 near @W nA.
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Our notation is motivated by the following analogue of Proposition 2.10, which is
proved in the same way.

Proposition 2.14 Let dimW D 2n and A � @W be admissible. Then we have a
canonical isomorphism

SHD0� .W;A/ŠHn��.W;A/:

The tautological exact triangles described in Proposition 2.12 also exist for the relative
symplectic homology groups SH~� .W;A/ (same proof). Also, the relative symplectic
homology groups SH~� .W;A/ are invariants of the Liouville homotopy type of the pair
.W; F / (see Section 7.3; compare Propositions 2.9 and 2.16).

2.5 Symplectic homology groups of a pair of filled Liouville cobordisms

A Liouville pair, or pair of Liouville cobordisms, is a triple .W; V; �/ where .W; �/ is
a Liouville cobordism and V � W is a codimension-0 submanifold with boundary
such that

(i) .V; �jV / is a Liouville cobordism;

(ii) W nV is a disjoint union of two (possibly empty) Liouville cobordisms W bottom

and W top such that

W DW bottom
ıV ıW top:

We fix a filling F of W and define WF and yWF as above. We define the class

H.W; V IF /

of admissible Hamiltonians on .W; V / (with respect to the filling F ) to consist of
elements H W S1 � yWF ! R such that H 2 H. yWF / and H D 0 on W n V (see
Figure 14). Given real numbers �1 < a < b < 1, we define the action-filtered
symplectic homology groups of .W; V / (with respect to the filling F ) to be

(9) SH.a;b/� .W; V /D lim
��!

H2H.W;V IF /
H!1 on . yWF nW /

lim
 ��

H2H.W;V IF /
H!�1 on intV

FH.a;b/� .H/:

Definition 2.15 We define six flavours of symplectic homology groups of the Liouville
pair .W; V /,

SH~� .W; V /; ~ 2 f¿; > 0;� 0;D 0;� 0;< 0g;
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by the formulas in Definition 2.8 with SH.a;b/� .W / replaced by SH.a;b/� .W; V /. The
notation SH~� with ~D¿ refers to SH� .

To describe the geometric content of the definition we consider a cofinal family of
Hamiltonians H of the shape described in Figure 14. Heuristically, each of the groups
SH~� .W; V / represents a certain count of negatively parametrized closed Reeb orbits on
@�W and @�V , of constant orbits in W nV , and of positively parametrized closed Reeb
orbits on @CV and @CW , which correspond to generators of type I�0C and III�0C in
Figure 14. However, unlike in the case of (relative) symplectic homology groups for a
single cobordism, it is not possible to arrange the parameters of the Hamiltonians in the
cofinal family so that for a fixed and finite value of the action window .a; b/ the group
FH.a;b/� .H/ takes into account only orbits of types I�0C and III�0C . Instead, we will
use in Section 6 an indirect argument relying on the confinement lemmas in Section 2.3
and on the properties of continuation maps in order to prove an isomorphism between
SH~� .W; V / and SH~� .W

bottom; @�V /˚ SH~� .W
top; @CV / (Theorem 6.8). There we

will also see (Corollary 6.9) that Definition 2.13 is a special case of Definition 2.15 by
taking for V a tubular neighbourhood of a union of boundary components A.

The following three results generalize the corresponding ones for a single cobordism.

Proposition 2.16 Each of the above six versions of symplectic homology is an invari-
ant of the Liouville homotopy type of the triple .W; V; F /.

Proof See Proposition 7.14.

Proposition 2.17 Let dimW D 2n. Then we have a canonical isomorphism

SHD0� .W; V /ŠHn��.W; V /:

Proof The proof of Proposition 2.10 does not carry over to this situation because
Hamiltonians as in Figure 14 may have nonconstant orbits of action zero of type II� .
Instead, we combine the excision theorem, Theorem 6.8, with Proposition 2.14 and
excision in singular cohomology to obtain canonical isomorphisms

SHD0� .W; V /Š SHD0� .W bottom; @�V /˚SHD0� .W top; @CV /

ŠHn��.W bottom; @�V /˚Hn��.W top; @CV /

ŠHn��.W; V /:
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The proof of the following proposition is verbatim the same as that of Proposition 2.12.
Recall to this effect that we are using field coefficients, and note that SH.a;b/� .W; V /

is finite-dimensional for any choice of parameters �1 < a < b <1. This holds
because in the nondegenerate case there are only a finite number of closed Reeb orbits
on @.W nV / with action smaller than max.jaj; jbj/, and only these orbits contribute to
the relevant Floer complex for the cofinal family of Hamiltonians described in Section 6.

Proposition 2.18 The tautological exact triangles

SH<0� // SH�

~~

SH�0�
Œ�1�

aa
SH�0� // SH�

~~

SH>0�
Œ�1�

aa

SH<0� // SH�0�

}}

SHD0�
Œ�1�

aa
SHD0� // SH�0�

}}

SH>0�
Œ�1�

aa

hold for the symplectic homology groups of a pair .W; V /.

2.6 Pairs of multilevel Liouville cobordisms with filling

As mentioned in the introduction, according to our conventions for pairs of Liouville
cobordisms the symplectic homology group SH�.W; @W / cannot be interpreted as
SH�.W; Œ0; 1��@W / if @W has both negative and positive components. We explain in
this section a further extension of the setup which removes this limitation.

Let l � 0 be an integer. A Liouville cobordism with l levels is, if l � 1, a disjoint
union W DW1tW2t� � �tWl of Liouville cobordisms, called levels, and is the empty
set if l D 0. We think of W1 as being the “bottom-most” level, and of Wl as being
the “top-most” level. Each Wi may itself be disconnected. Our previous definition of
Liouville cobordisms corresponds to the case l D 1. We also refer to such a W as
being a multilevel Liouville cobordism.

Let V and W be two Liouville cobordisms with l levels. We say that V and W can be
interweaved if @CVi D@�Wi for iD1; : : : ; l and @CWi D@�ViC1 for iD1; : : : ; l�1.
The interweaving of V and W , denoted by V ˘W , is the Liouville cobordism with
one level V1 ıW1 ı � � � ı Vl ıWl . We allow in the definition the bottom-most or the
top-most level of V or W to be empty, and in that case the condition for interweaving
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@CWl

Vl WlW1V1

@�V1

Figure 10: Interweaving of two multilevel cobordisms

V and W which involves that level has to be understood as being void. In the case of
cobordisms with one level, interweaving specializes to composition. See Figure 10.

Given a Liouville cobordism W with l � 1 levels, a Liouville filling for W is a
Liouville cobordism with l levels F D F1 t � � � t Fl such that F1 is a nonempty
Liouville domain and F and W can be interweaved. In the case l D 1, this notion
specializes to our previous notion of a Liouville filling.

Given a Liouville cobordism W with one level, a Liouville subcobordism V �W is a
codimension-0 submanifold such that, with respect to the induced Liouville form, V
and V c DW nV are multilevel Liouville cobordisms that can be interweaved. If V
has only one level then .W; V / is a Liouville pair in the sense of Section 2.5.

Given a multilevel Liouville cobordism W , a Liouville subcobordism V �W consists
of a collection of (possibly empty) multilevel Liouville subcobordisms, one for each
of the levels of W . We speak in such a situation of a pair of multilevel Liouville
cobordisms. If W has a filling, we speak of a pair of multilevel Liouville cobordisms
with filling.

Let .W; V / be a pair of multilevel Liouville cobordisms with filling F . Let WF DF˘W
and consider the symplectization yWF . We define the class

H.W; V IF /

of admissible Hamiltonians on .W; V / (with respect to the filling F ) to consist of
elements H W S1 � yWF ! R such that H 2 H. yWF / and H D 0 on W n V (see
Figure 11). Given real numbers �1 < a < b < 1, we define the action-filtered
symplectic homology groups of .W; V / (with respect to the filling F ) to be

(10) SH.a;b/� .W; V /D lim
��!

H2H.W;V IF /
H!1 on . yWF nW /

lim
 ��

H2H.W;V IF /
H!�1 on intV

FH.a;b/� .H/:
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F1

W1

V1

F2

W2

V2

Fl

Wl

Vl

r

Figure 11: Hamiltonian in H.W; V IF / for a multilevel cobordism

Definition 2.19 We define six flavours of symplectic homology groups of the multilevel
Liouville pair .W; V /,

SH~� .W; V /; ~ 2 f¿; > 0;� 0;D 0;� 0;< 0g;

by the formulas in Definition 2.8 with SH.a;b/� .W / replaced by SH.a;b/� .W; V /. The
notation SH~� with ~D¿ refers to SH� .

The above definition obviously specializes to Definition 2.15 when W is a filled
Liouville cobordism with one level.

Within the paper we state and prove all the results for pairs of one-level Liouville
cobordisms with filling. However, all these results hold more generally for pairs .W; V /
of multilevel Liouville cobordisms with filling. The formulation of these more general
statements is verbatim the same. The proofs are only superficially more involved: a
repeated application of the excision theorem, Theorem 6.8, allows one to restrict to
the case where W is a one-level cobordism with filling, and the case of a multilevel
subcobordism V is treated in exactly the same way as that of a one-level subcobordism.
For these reasons, we will not give in the sequel any more details regarding multilevel
Liouville cobordisms and will restrict to one-level pairs.

3 Cohomology and duality

3.1 Symplectic cohomology for a pair of filled Liouville cobordisms

We continue with the notation of the previous section. Our definition of symplectic
cohomology for a pair of filled Liouville cobordisms extends the one for Liouville
domains used in [29, Section 2.5].
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The starting point of the definition is the dualization of the Floer chain complex with
coefficient field K. We write

FC�>a.H/D
Y

x2P.H/
AH .x/>a

K � x:

The grading is given by the Conley–Zehnder index, and the differential ıW FCk>a.H/!
FCkC1>a .H/ is defined by

ıx� D
X

CZ.xC/DCZ.x�/C1

#M.x�; xCIH;J / � xC:

The differential increases the action, so FC�>b.H/ � FC�>a.H/ is a subcomplex if
a < b . We define filtered Floer cochain groups

FC�.a;b/.H/D FC�>a.H/=FC�>b.H/:

We have a natural identification

FC�.a;b/.H/Š FC.a;b/� .H/_; ı D @_;

where FC.a;b/� .H/_ D HomR.FC.a;b/� .H/;R/.

We have natural morphisms at the filtered cochain level defined by shifting the action
window

FC�.a0;b0/.H/! FC�.a;b/.H/; a � a0; b � b0:

These morphisms are dual to the ones defined on Floer chain groups. Also, given
admissible Hamiltonians H� �HC and a decreasing homotopy from H� to HC , we
have filtered continuation maps, which commute with the differentials,

FC�.a;b/.H�/! FC�.a;b/.HC/:

These continuation maps are dual to the ones defined on Floer chain groups, and
commute with the morphisms defined by shifting the action window. The homotopy
type of the continuation maps does not depend on the choice of decreasing homotopy
with fixed endpoints.

Let W be a Liouville cobordism with filling F, and let A � @W be an admissible
union of boundary components as in Section 2.4. Recall also the notation Ac D @W nA
and . yWF nW /A D intFA� [ ..1;1/�AC/, and recall also the class H.W IF / of
admissible Hamiltonians from Section 2.4. Let �1 < a < b <1 be real numbers.
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We define the filtered symplectic cohomology groups of W relative to A (with respect
to the filling F ) to be

(11) SH�.a;b/.W;A/D lim
��!

H2H.W IF /
H!�1 on . yWF nW /A

lim
 ��

H2H.W IF /
H!1 on . yWF nW /Ac

FH�.a;b/.H/:

The mnemotechnic rule is the same as in the case of symplectic homology:

To compute SH�.a;b/.W;A/ one must use a family of Hamiltonians that go
to �1 near A and that go to C1 near @W nA.

Definition 3.1 We define six flavours of symplectic cohomology groups of W relative
to A, or symplectic cohomology groups of the pair .W;A/,

SH�~.W;A/; ~ 2 f¿;� 0;> 0;D 0;� 0;< 0g;

by the following formulas (the notation SH�¿ refers to SH�/:

SH�.W;A/D lim
��!

a!�1

lim
 ��
b!1

SH�.a;b/.W;A/ (full symplectic cohomology),

SH�<0.W;A/D lim
��!

a!�1

lim
 ��
b%0

SH�.a;b/.W;A/ (negative symplectic cohomology),

SH��0.W;A/D lim
��!

a!�1

lim
��!
b&0

SH�.a;b/.W;A/ (nonpositive symplectic cohomology),

SH�D0.W;A/D lim
 ��
a%0

lim
��!
b&0

SH�.a;b/.W;A/ (zero-level symplectic cohomology),

SH��0.W;A/D lim
 ��
a%0

lim
 ��
b!1

SH�.a;b/.W;A/ (nonnegative symplectic cohomology),

SH�>0.W;A/D lim
��!
a&0

lim
 ��
b!1

SH�.a;b/.W;A/ (positive symplectic cohomology).

Now let .W; V / be a pair of Liouville cobordisms with filling F as in Section 2.5,
and recall the class H.W; V IF / of admissible Hamiltonians for the pair .W; V / with
respect to the filling F . Let �1< a < b <1 be real numbers. We define the filtered
symplectic cohomology groups of .W; V / (with respect to the filling F ) to be

(12) SH�.a;b/.W; V /D lim
��!

H2H.W;V IF /
H!�1 on V

lim
 ��

H2H.W;V IF /
H!1 on . yWF nW /

FH�.a;b/.H/:
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Definition 3.2 We define six flavours of symplectic cohomology groups of the Liouville
pair .W; V /,

SH�~.W; V /; ~ 2 f¿; > 0;� 0;D 0;� 0;< 0g;

by the formulas in Definition 3.1 with SH�.a;b/.W;A/ replaced by SH�.a;b/.W; V /. The
notation SH�¿ refers to SH� .

The discussion from Section 2.5 regarding the geometric content of the definition
holds for cohomology as well. The following proposition is proved similarly to
Proposition 2.17.

Proposition 3.3 Let .W; V / be a pair of Liouville cobordisms with filling of dimen-
sion 2n. Then we have a canonical isomorphism

SH�D0.W; V /ŠHn��.W; V /:

3.2 Poincaré duality

The differences and the similarities between symplectic homology and symplectic
cohomology are mainly dictated by the order in which we consider direct and inverse
limits. We illustrate this by the following theorem, which was one of our guidelines for
the definitions.

Theorem 3.4 (Poincaré duality) Let W be a filled Liouville cobordism and A� @W
be an admissible union of connected components. Then we have a canonical isomor-
phism

SH~� .W;A/Š SH���~.W;A
c/:

Here the symbol ~ takes the values ¿, > 0, � 0, D 0, � 0 and < 0, and �~ is by
convention equal to ¿, < 0, � 0, D 0, � 0 and > 0, respectively.

Proof Given a time-dependent 1–periodic Hamiltonian H W S1 � yW !R we define
H W S1 � yW !R, H.t; x/D�H.�t; x/. Given a time-dependent 1–periodic family
of almost complex structures J D .Jt /t2S1 on yW , we define xJ D . xJt / for t 2 S1 ,
where xJt D J�t . Given a loop xW S1! yW , we define xxW S1! yW , xx.t/ D x.�t /.
Given a cylinder uW R�S1! yW , we define xuW R�S1! yW , xu.s; t/D u.�s;�t /.

The key to the proof of Poincaré duality for symplectic homology is the canonical
isomorphism, which will be also referred to as Poincaré duality,

(13) FC.a;b/� .H; J /Š FC��.�b;�a/.H; xJ /;
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obtained by mapping each 1–periodic orbit x of H to the 1–periodic orbit of H given
by the oppositely parametrized loop xx , and each Floer cylinder u for .H; J / to the
cylinder xu, which is a Floer cylinder for .H; xJ /. Note that the positive and negative
punctures get interchanged when passing from u to xu, so that a chain complex is
transformed into a cochain complex. It is straightforward that AH .xx/D�AH .x/. It
is less straightforward, but true, that CZ.xx/D�CZ.x/. The proof follows from [29,
Lemma 2.3], taking into account that the flows of H and H satisfy the relation
�t
H
D ��tH . We refer to [29, Proposition 2.2] for a discussion of this Poincaré duality

isomorphism in the context of autonomous Hamiltonians, and for a precise statement
of its compatibility with continuation maps.

The isomorphism (13) directly implies a canonical isomorphism

(14) SH.a;b/� .W;A/Š SH��.�b;�a/.W;A
c/:

To see this, note that the class of admissible Hamiltonians H.W IF / is stable under
the involution H 7! H. It follows that we can present SH��.�b;�a/.W;A

c/ as a first-
inverse-then-direct limit on FH��

.�b;�a/
.H/ for H 2H.W IF /, whereas SH.a;b/� .W;A/

is presented as a first-inverse-then-direct limit on FH.a;b/� .H/. In view of (13) it is
enough to see that the inverse and direct limits in the definitions are taken over the same
sets. Indeed, for SH.a;b/� .W;A/ the inverse limit is taken over Hamiltonians H that go
to �1 on . yWF nW /A , which is equivalent to H going to 1 on . yWF nW /A , and this
is precisely the directed set for the inverse limit in the definition of SH��.�b;�a/.W;A

c/.
A similar discussion holds for the direct limit.

The isomorphisms SH~� .W;A/Š SH��
�~
.W;Ac/ follow from (14) and from the defini-

tions. We analyze the case that ~ is “> 0” and leave the other cases to the reader. In
the definition of SH>0� .W;A/ the inverse limit is taken over a& 0 and the direct limit
is taken over b!1, which is equivalent to �a% 0 and �b!�1. After relabelling
.�b;�a/D .a0; b0/, this is the same as b0% 0 and a0!�1, which corresponds to
the definition of SH��<0.W;A

c/.

3.3 Algebraic duality and universal coefficients

We discuss in this section the algebraic duality between homology and cohomology in
the symplectic setting that we consider. Recall that we use field coefficients.

The starting observation is that, given a degree k , real numbers a < b , admissible
Hamiltonians H �H 0, an admissible decreasing homotopy .Hs/ for s 2R connecting
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H 0 to H, and a regular homotopy of almost complex structures .Js/ for s 2 R

connecting an almost complex structure J 0 which is regular for H 0 to an almost
complex structure J which is regular for H, there are canonical identifications

FCk.a;b/.H; J /Š FC.a;b/
k

.H; J /_; �k Š .�k/
_;

where �k W FC.a;b/
k

.H; J /!FC.a;b/
k

.H 0; J 0/ and �k W FCk.a;b/.H
0; J 0/!FCk.a;b/.H; J /

are the continuation maps induced by the homotopy .Hs; Js/. These identifications
follow from the definitions and hold with arbitrary coefficients.

We now turn to the relationship between SH.a;b/� .W; V / and SH�.a;b/.W; V /. Since we
work in a finite action window .a; b/, both the direct and the inverse limits in the defini-
tion of SH.a;b/� .W; V / and SH�.a;b/.W; V / eventually stabilize, so that we can compute
these groups using only one suitable Hamiltonian. The universal coefficient theorem
then implies with coefficients in a field K the existence of a canonical isomorphism
(see for example [20, Section V.7])

(15) SHk.a;b/.W; V IK/Š SH.a;b/
k

.W; V IK/_:

The issue of comparing SHk
~
.W; V / and SH~

k
.W; V / becomes therefore a purely

algebraic one, as it amounts to comparing via duality the various double limits involved
in Definitions 2.8 and 3.1 (see also Definitions 2.15 and 3.2). The key property is the
following: given a direct system of modules M˛ and a module N over some ground
ring R , the natural map

(16) HomR.lim��!M˛; N /
'
�! lim

 ��
HomR.M˛; N /

is an isomorphism. However, it is generally not true that, given an inverse system M˛ ,
the natural map

HomR.lim ��M˛; N / lim
��!

HomR.M˛; N /

is an isomorphism (the two sets actually have different cardinalities in general). In our
situation, N DR is the coefficient field K.

We omit in the sequel the field K from the notation.

Proposition 3.5 Let .W; V / be a pair of Liouville cobordisms with filling. Using
field coefficients we have canonical isomorphisms

SHk~.W; V /Š SH~
k
.W; V /_; ~ 2 f> 0;� 0;D 0g;

and
SH~

k
.W; V /Š SHk~.W; V /

_; ~ 2 f< 0;� 0;D 0g:
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Proof Assume first ~2 f>0;� 0;D 0g. In all three cases, the limit over a! 0 in the
definition of SH~� .W; V / and SH�

~
.W; V / stabilizes, and the result follows from (15)

and (16) applied to the limit b!1.

Assume now ~ 2 f< 0;� 0;D 0g. In all three cases, the limit over b ! 0 in the
definition of SH~� .W; V / and SH�

~
.W; V / stabilizes, and the result follows again

from (16) applied to the limit a!�1, by rewriting (15) as

SH.a;b/
k

.W; V /Š SHk.a;b/.W; V /
_:

This holds because the vector spaces which are involved are finite-dimensional.

Corollary 3.6 (a) Let .W; V / be a pair of filled Liouville cobordisms with vanish-
ing first Chern class. Suppose that @V and @W carry only finitely many closed
Reeb orbits of any given degree. Then with field coefficients we have for all
flavours of ~ canonical isomorphisms

SHk~.W; V /Š SH~
k
.W; V /_ and SH~

k
.W; V /Š SHk~.W; V /

_:

(b) Let W be a Liouville domain. Then with field coefficients we have canonical
isomorphisms

SHk.W /Š SHk.W /
_:

Proof Part (a) follows from the proof as Proposition 3.5, using that all inverse limits
remain finite-dimensional. Part (b) holds because for a Liouville domain we have
SHk.W /D SH�0

k
.W /.

Remark 3.7 Proposition 3.5 illustrates the fact that the full symplectic homology
and cohomology groups of a cobordism or of a pair of cobordisms are of a mixed
homological–cohomological nature. This is due to the presence of both a direct and
an inverse limit in the definitions. As such, the full version SH�.W; V / does not
satisfy in general any form of algebraic duality. In fact, in Example 9.8 we construct
a Liouville cobordism W for which, in some degree k (and with Z2–coefficients),
neither SHk.W /Š SHk.W /_ nor SHk.W /Š SHk.W /_ holds.

4 Homological algebra and mapping cones

4.1 Cones and distinguished triangles

Let R be a ring. Let Ch denote the category of chain complexes of R–modules.
The objects of this category are chain complexes of R–modules, and the morphisms
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are chain maps of degree 0. Let Kom denote the category of chain complexes of R–
modules up to homotopy. The objects are the same as the ones of Ch, and the morphisms
are equivalence classes of degree 0 chain maps with respect to the equivalence relation
given by homotopy equivalence. We use homological Z–grading, and we use the
following notational conventions:

(i) Given a morphism X ! Y in Kom, we use the notation X f
�!Y for a specific

representative f of this morphism. Thus f is a morphism in Ch.

(ii) All diagrams are understood to be commutative in Kom. If we specify represen-
tatives in Ch for the morphisms, we say that a diagram is strictly commutative if
it commutes in Ch.

(iii) We use the notation

X

s

f
//

�

��

Y

 

��

X 0
g
// Y 0

for a diagram in Ch which is commutative modulo a specified homotopy s , ie
such that  f �g� D s @X C @Y 0 s . In particular, the diagram

X
f

//

�

��

Y

 

��

X 0
g
// Y 0

is commutative in Kom.

(iv) Given a chain complex X D f.Xn/; @Xg and k 2 Z, we define the shifted
complex XŒk� by

XŒk�n DXnCk; n 2 Z; @XŒk� D .�1/
k@X :

Given a morphism f W X ! Y , we define f Œk�W XŒk�! Y Œk� by f Œk�D f .

Our conventions for cones and distinguished triangles follow the ones of Kashiwara
and Schapira [54, Chapter 1], except that we use dual homological grading. Given a
chain map f W X ! Y , we define its cone to be the chain complex

C.f /D Y ˚XŒ�1�; @C.f / D

�
@Y f

0 @XŒ�1�

�
D

�
@Y f

0 �@X

�
:
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We have in particular a short exact sequence of chain complexes

(17) 0! Y
˛.f /
��!C.f /

ˇ.f /
��!XŒ�1�! 0;

where
˛.f /D

�
IdY
0

�
is the canonical inclusion and ˇ.f /D . 0 IdXŒ�1� / is the canonical projection. For
simplicity we abbreviate in the sequel the identity maps by 1, eg we write ˛.f /D

�
1
0

�
and ˇ.f /D . 0 1 /.

One of the key features of the cone construction is that the connecting homomorphism
in the homology long exact sequence associated to the short exact sequence (17) is
equal to f� , the morphism induced by f .

By definition, a triangle in Kom is a sequence of morphisms

(18) X
f
�!Y

g
�!Z h

�!XŒ�1�:

A distinguished triangle is a triangle which is isomorphic in Kom to a triangle of the
form

(19) X
f
�!Y

˛.f /
��!C.f /

ˇ.f /
��!XŒ�1�:

We call (19) a model distinguished triangle.

It follows from the definition that a distinguished triangle (18) induces a long exact
sequence in homology

(20) � � �H�.X/
f�
�!H�.Y /

g�
�!H�.Z/

h�
�!H��1.X/

f�
�!� � � :

We shall often represent such a long exact sequence as

H.X/
f�

// H.Y /

g�zz

H.Z/

h�

Œ�1�
dd

We call such a diagram an exact triangle.

The above definition of the class of distinguished triangles makes Kom into a triangu-
lated category in the sense of Verdier. This means that the class of distinguished triangles
satisfies Verdier’s axioms (TR0)–(TR5) (see for example [54, Sections 1.4–1.5]). One
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of the essential axioms is (TR3): a triangle (18) is distinguished if and only if the
triangle

Y
g
�!Z h

�!XŒ�1�
�f Œ�1�
����!Y Œ�1�

is distinguished. This follows from Lemma 4.1(i); see also [54, Lemma 1.4.2].

Lemma 4.1 Let f W X ! Y be a morphism in Ch.

(i) [54, Lemma 1.4.2] There exists a morphism in Ch

ˆW XŒ�1�! C.˛.f //

which is an isomorphism in Kom, with an explicit homotopy inverse in Ch,
denoted by

‰W C.˛.f //!XŒ�1�;

and such that the diagram below commutes in Kom:

Y
˛.f /

// C.f /
ˇ.f /

// XŒ�1�
�f Œ�1�

//

ˆ

��

Y Œ�1�

Y
˛.f /

// C.f /
˛.˛.f //

// C.˛.f //
ˇ.˛.f //

//

‰

OO

Y Œ�1�

(ii) There exists a morphism in Ch

� W Y Œ�1�! C.ˇ.f //

which is an isomorphism in Kom, with an explicit homotopy inverse in Ch,
denoted by

� W C.ˇ.f //! Y Œ�1�;

and such that the diagram below commutes in Kom:

C.f /
ˇ.f /

// XŒ�1�
�f Œ�1�

// Y Œ�1�

�

��

�˛.f /Œ�1�
// C.f /Œ�1�

C.f /
ˇ.f /

// XŒ�1�
˛.ˇ.f //Œ�1�

// C.ˇ.f //

�

OO

ˇ.ˇ.f //

// C.f /Œ�1�
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Proof (i) (following [54]) Taking into account that C.˛.f //DY ˚XŒ�1�˚Y Œ�1�,
we define in matrix form

ˆD

0@ 0

1

�f

1A ; ‰ D
�
0 1 0

�
:

(Here 1 stands for IdXŒ�1� , according to our convention.) A direct verification shows
that these are chain maps, and also that the third square in the diagram commutes
in Ch, ie ˇ.˛.f //ˆ D �f Œ�1�. Such verifications formally amount to elementary
multiplications of matrices. For example,

@C.˛.f //ˆD

0@ @Y f 1

0 @XŒ�1� 0

0 0 @Y Œ�1�

1A0@ 0

1

�f

1AD
0@ 0

@XŒ�1�
�@Y Œ�1�f

1A
and

ˇ.˛.f //ˆD
�
0 0 1

�0@ 0

1

�f

1AD�f:
The second square in the diagram is commutative in Kom. Indeed, direct verification
shows that ‰˛.˛.f //D ˇ.f /. On the other hand, the maps ˆ and ‰ are homotopy
inverses to each other. Indeed, direct verification shows that ‰ˆD IdXŒ�1� and

IdC.˛.f //�ˆ‰ D

0@ 1 0 0

0 0 0

0 f 1

1AD @C.˛.f //KCK@C.˛.f //;
where KW C.˛.f //! C.˛.f //Œ1� is a homotopy given in matrix form by

K D

0@ 0 0 00 0 0

1 0 0

1A :
(ii) Taking into account that C.ˇ.f //DXŒ�1�˚Y Œ�1�˚XŒ�2�, we define in matrix
form

� D

0@ 0

�1

0

1A ; � D
�
�f �1 0

�
:

Here 1 stands for IdY Œ�1� . Direct verification shows that these are chain maps, that
ˇ.ˇ.f //� D �˛.f /Œ�1�, so that the third square is commutative in Ch, and that
�˛.ˇ.f //D�f Œ�1�.
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Commutativity in Kom of the second square follows again from the fact that � and �
are homotopy inverses to each other. Indeed, we have �� D IdY Œ�1� , whereas

IdC.ˇ.f //� �� D

0@ 1 0 0

�f 0 0

0 0 1

1AD @C.ˇ.f //LCL@C.ˇ.f //;
where LW C.ˇ.f //! C.ˇ.f //Œ1� is a homotopy defined in matrix form by

LD

0@ 0 0 00 0 0

1 0 0

1A :
Remark 4.2 One consequence of Lemma 4.1 (ie axiom (TR3)) is that a triangle

X
f
�!Y

g
�!Z h

�!XŒ�1�

is distinguished if and only if the triangle

XŒ�1�
�f Œ�1�
����!Y Œ�1�

�gŒ�1�
����!ZŒ�1�

�hŒ�1�
����!XŒ�2�

is distinguished. The triangle

XŒ�1�
f Œ�1�
���!Y Œ�1�

gŒ�1�
���!ZŒ�1�

hŒ�1�
���!XŒ�2�

is in general not distinguished, but rather antidistinguished in the sense of [54, Defini-
tion 1.5.9]. The class of distinguished triangles is distinct from that of antidistinguished
triangles, as explained to us by S Guillermou.

We use Lemma 4.1 in order to replace by cones in Kom the kernels and cokernels of
certain maps in Ch.

Lemma 4.3 Let

(21) 0! A i
�!B

p
�!C ! 0

be a short exact sequence in Ch which is split as a short exact sequence of R–modules.

(i) Given a splitting sW C ! B , ie a degree 0 map such that ps D IdC , there is a
canonical chain map f W C Œ1�! A and there are canonical identifications in Ch

B D C.f /; i D ˛.f /; p D ˇ.f /:
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(ii) The maps
ˆW C '

�!C.i/; � W AŒ�1� '�!C.p/

defined in Lemma 4.1(i)–(ii) are isomorphisms in Kom and they determine
isomorphisms of distinguished triangles

A
i

// B
p

// C
�f Œ�1�

//

ˆ'

��

AŒ�1�

A
i

// B
˛.i/

// C.i/
ˇ.i/

// AŒ�1�

and

B
p

// C
�f Œ�1�

// AŒ�1�
�iŒ�1�

//

�'

��

BŒ�1�

B
p

// C
˛.p/

// C.p/
ˇ.p/

// BŒ�1�

In particular, the homology long exact sequences determined by the top and
bottom line in each of the above diagrams are isomorphic.

(iii) Assume that the splitting sW C!B is a chain map. We then have an isomorphism
in Kom

A '
�!C.s/:

(The same holds if we assume that the splitting s is homotopic to a chain map.)

Proof For item (i) let .i s/W C.f /DA˚C Š
�!B be the isomorphism of R–modules

induced by s . Since p.@Bs� s@C /D 0 and i is injective, we can define f W C Œ1�!A

uniquely by if D @B s� s @C and one checks that this map has the desired properties.
Item (ii) is simply a rephrasing of Lemma 4.1.

Item (iii) is a consequence of (ii) as follows: Let us write s D
�
�
1

�
with �W C ! A.

Viewing B as the cone of f as in (i), the condition that s is a chain map translates
into � @C D @A �Cf . (This in turn can be reinterpreted as saying that �� is a chain
homotopy between f and 0.)

We consider the map � W B DA˚C !A given by � D . 1 �� /. Then � is a chain
map and ker� D im s , so we have a split short exact sequence

0! C s
�!B �

�!A! 0

and we conclude using the first assertion in (ii).
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The class of chain maps is closed under homotopies: if s is homotopic to a chain map,
then it is an actual chain map.

Remark It is not true that a short exact sequence of complexes 0!A i
�!B

p
�!C!0

can always be completed to a distinguished triangle A i
�!B

p
�!C ! AŒ�1�. Thus

the splitting assumption in Lemma 4.3 is necessary. Indeed, consider the example of
the short exact sequence of Z–modules

0! Z i
�!Z

p
�!Z=2! 0;

where p is the canonical projection and i is multiplication by 2, thought of as an
exact sequence of chain complexes supported in degree 0. The cone of i is equal
to Z in degrees 0 and 1, with differential

�
0
0
�2
0

�
. The map . p 0 /W C.i/! Z=2

is a quasi-isomorphism, yet Z=2 is not homotopy equivalent to C.i/ since the only
morphism Z=2!C.i/ is the zero map. This shows that the above short exact sequence
cannot be completed to a distinguished triangle.

Proposition 4.4 Let

X
f

//

�

��

Y

 

��

X 0
g
// Y 0

be a commutative diagram in Kom. This can be completed to a diagram whose rows and
columns are distinguished triangles in Kom and in which all squares are commutative
(in Kom), except the bottom-right square, which is anticommutative:

X
f

//

�

��

Y //

 

��

Z //

�

��

XŒ�1�

��

X 0
g

//

��

Y 0 //

��

Z0 //

��

X 0Œ�1�

��

X 00
h

//

��

Y 00 //

��

Z00

�

//

��

X 00Œ�1�

��

XŒ�1� // Y Œ�1� // ZŒ�1� // XŒ�2�
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Remark 4.5 This statement, attributed to Verdier, is proved in Beilinson, Bernstein
and Deligne [8, Proposition 1.1.11] by a repeated use of the octahedron axiom (TR5).
This is also proved in [57, Lemma 2.6] under the name “3� 3 lemma”, where it is
shown that it is actually equivalent to the octahedron axiom. The same statement
appears as Exercise 10.2.6 in [69]. Our proof is more explicit and produces a diagram
in which all the squares except the initial one and the bottom-right one are commutative
in Ch, and in which the bottom-right square is anticommutative in Ch. This result
encompasses [18, Lemma 2.18] and [17, Lemma 5.7]. For completeness, we will
reprove [17, Lemma 5.7] as Lemma 4.6 below as a consequence of Proposition 4.4
(under an additional splitting assumption).

Proof of Proposition 4.4 We start with the square

X

s

f
//

�

��

Y

 

��

X 0
g
// Y 0

which is commutative modulo the homotopy s , meaning in our notation that

(22)  f �g� D s @X C @Y 0 s:

We construct the grid diagram in the statement by a repeated use of the cone construction.
The first two lines and the first two columns are constructed as model distinguished
triangles. More precisely, we define

Z D C.f /D Y ˚XŒ�1�; Z0 D C.g/D Y 0˚X 0Œ�1�; �D

�
 s

0 �

�
:

The condition that � is a chain map is equivalent to (22), and the second and third
square formed by the first two lines are then commutative in Ch:

X
f

//

�

��

Y
˛.f /

//

 

��

Z
ˇ.f /

//

�

��

XŒ�1�

�Œ�1�

��

X 0
g
// Y 0

˛.g/
// Z0

ˇ.g/
// X 0Œ�1�

Similarly, we define

X 00 D C.�/DX 0˚XŒ�1�; Y 00 D C. /D Y 0˚Y Œ�1�; hD

�
g �s

0 f

�
:
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Again, the condition that h is a chain map is equivalent to (22) and the first two columns
determine a diagram in which the second and third square are commutative in Ch:

X
f

//

�

��

Y

 

��

X 0
g

//

˛.�/

��

Y 0

˛. /

��

X 00
h

//

ˇ.�/

��

Y 00

ˇ. /

��

XŒ�1�
f Œ�1�

// Y Œ�1�

We define

Z00 D C.�/:

We construct the third and fourth columns of the grid diagram as model distinguished
triangles, and we are left to specify the morphisms A, B , C and D below:

X
f

//

�

��

Y
˛.f /

//

 

��

C.f /
ˇ.f /

//

�

��

XŒ�1�

�Œ�1�

��

X 0
g

//

˛.�/

��

Y 0
˛.g/

//

˛. /

��

C.g/
ˇ.g/

//

˛.�/

��

X 0Œ�1�

˛.�Œ�1�/

��

C.�/
h
//

ˇ.�/

��

C. /
A

//

ˇ. /

��

C.�/
B
//

ˇ.�/

��

C.�Œ�1�/

ˇ.�Œ�1�/

��

XŒ�1�
f Œ�1�

// Y Œ�1�
C
// C.f /Œ�1�

D
// XŒ�2�

The key point is that we have isomorphisms of chain complexes

I W C.�/D Y 0˚X 0Œ�1�˚Y Œ�1�˚XŒ�2� '�!C.h/D Y 0˚Y Œ�1�˚X 0Œ�1�˚XŒ�2�;

I WD

0BB@
1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 �1

1CCA ;
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and

(23)

J.f /W C.f /Œ�1�D Y Œ�1�˚XŒ�2� '�!C.f Œ�1�/D Y Œ�1�˚XŒ�2�;

J.f / WD

�
1 0

0 �1

�
:

One checks directly that the maps I and J.f / commute with the differentials.

The third line in our diagram, involving the maps A and B , is defined using the
isomorphisms I and J.�/ from the model distinguished triangle associated to h, ie
AD I�1˛.h/ and B D J.�/ˇ.h/I :

C.�/
h
// C. /

A
// C.�/

B
//

I '

��

C.�Œ�1�/

C.�/
h
// C. /

˛.h/
// C.h/

ˇ.h/
// C.�/Œ�1�

J.�/ '

OO

In matrix form we have

AD

0BB@
1 0

0 0

0 1

0 0

1CCA ; B D

�
0 1 0 0

0 0 0 1

�
:

The fourth line in our diagram, involving the maps C and D, is defined using the
isomorphism J.f / from the model distinguished triangle associated to f Œ�1�, ie
C D J.f /�1˛.f Œ�1�/ and D D ˇ.f Œ�1�/J.f /:

XŒ�1�
f Œ�1�

// Y Œ�1�
C

// C.f /Œ�1�
D

//

J.f / '

��

XŒ�2�

XŒ�1�
f Œ�1�

// Y Œ�1�
˛.f Œ�1�/

// C.f Œ�1�/
ˇ.f Œ�1�/

// XŒ�2�

In matrix form we have

C D

�
1

0

�
; D D . 0 �1 /:

A direct check shows that

A˛. /D ˛.�/˛.g/; B˛.�/D ˛.�Œ�1�/ˇ.g/;

Cˇ. /D ˇ.�/A; Dˇ.�/D�ˇ.�Œ�1�/B:
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For later use, we recall [17, Lemma 5.7] and show how it follows from Proposition 4.4
under an additional assumption.

Lemma 4.6 [17, Lemma 5.7] Let

(24)
0 // A

i
//

f
��

B
p
//

g
��

C //

h
��

0

0 // A0
i 0
// B 0

p0
// C 0 // 0

be a morphism of short exact sequences of complexes. We then have a diagram whose
rows and columns are exact and in which all squares are commutative, except the
bottom-right one, which is anticommutative:

H�.A/
i�

//

f�

��

H�.B/
p�

//

g�

��

H�.C / //

h�

��

H��1.A/

f�

��

H�.A
0/

i 0�
//

˛.f /�

��

H�.B
0/

p0�
//

˛.g/�

��

H�.C
0/ //

˛.h/�

��

H��1.A
0/

˛.f /�

��

H�.C.f // //

ˇ.f /�

��

H�.C.g// //

ˇ.g/�

��

H�.C.h//

�

//

ˇ.h/�

��

H��1.C.f //

ˇ.f /�

��

H��1.A/
i�

// H��1.B/
p�

// H��1.C / // H��2.A/

Proof Up to changes in notation, this is exactly Lemma 5.7 in [17].

To wrap up the story, we show here how this result follows from Proposition 4.4 under
the additional assumption that the short exact sequences are split as sequences of
R–modules (this is always the case if R is field or, more generally, if we work with
chain complexes of free R–modules).

Choose splittings sW C!B and s0W C 0!B 0. By Lemma 4.3, these determine canonical
chain maps �W C Œ1�! A and �0W C 0Œ1�! A0, together with canonical identifications
B D C.�/, i D ˛.�/, p D ˇ.�/, B 0 D C.�0/, i 0 D ˛.�0/ and p0 D ˇ.�0/.

The map gW B ! B 0 can then be identified with a map C.�/! C.�0/, written in
matrix form as

g D

�
f t

0 h

�
W A˚C ! A0˚C 0:
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The condition that g be a chain map is then equivalent to the three relations

f @A D @A0f; h @C D @C 0 h; f � ��0hD @A0 t � t @C :

We interpret the last relation as f � ��0hŒ1�D @A0 t C t @CŒ1� , which means that the
square

(25)

C Œ1�

t

�
//

hŒ1�

��

A

f

��

C 0Œ1�
�0

// A0

is commutative up to a homotopy given by t W C ! A0. The initial diagram (24)
appears then as the horizontal extension of this commutative square in Kom to a map
of distinguished triangles.

We now apply Proposition 4.4 to the square (25) in order to obtain the grid diagram

C Œ1�

t

�
//

hŒ1�

��

A
i

//

f

��

B
p

//

g

��

C

h

��

C 0Œ1�
�0

//

��

A0
i 0

//

��

B 0
p0

//

��

C 0

��

C.hŒ1�/ //

��

C.f / //

��

C.g/

�

//

��

C.h/

��

C // AŒ�1� // BŒ�1� // C Œ�1�

The anticommutativity of the bottom-right corner can be traded for anticommutativity
of the bottom-left corner by changing the sign of the two bottom-middle vertical
arrows. The grid diagram in the statement of the lemma is then obtained by passing to
homology.

4.2 Uniqueness of the cone

We now spell out what is the additional piece of structure that is needed in order for
the cone of a map to be uniquely and canonically defined up to homotopy.
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(i) Hom complexes Let X and Y be chain complexes of R–modules and denote
by

Homd .X; Y /; d 2 Z;

the R–module of R–linear maps of degree d . This is a chain complex with differential

@W Homd .X; Y /! Homd�1.X; Y /; @ˆD @Y ˆ� .�1/
jˆjˆ@X ;

where jˆj D d denotes the degree of a map ˆ 2Homd .X; Y /. The space of degree d
cycles

Zd .X; Y /D ker.@W Homd .X; Y /! Homd�1.X; Y //

is the space of degree d chain maps X!Y . Two degree d chain maps are homologous,
ie they differ by an element of

Bd .X; Y / WD im.@W HomdC1.X; Y /! Homd .X; Y //;

if and only if they are chain homotopic.

Remark/Notation We denote a degree d map f from X to Y by

f W X d
�!Y:

We do not use the notation f W X ! Y Œd �, which we reserve for chain maps. This
distinction is relevant in practice when using cones because the differential of the
complex Y Œd � is not @Y , but .�1/d@Y .

(ii) Chain maps between cones Let

X

s

f
//

�

��

Y

 

��

X 0
g
// Y 0

be a diagram of degree 0 chain maps which is commutative modulo a prescribed
degree 1 homotopy s 2 Hom1.X; Y 0/, meaning that  f � g� D @.s/. We have an
induced chain map

�s D

�
 s

0 �Œ�1�

�
W C.f /D Y ˚XŒ�1�! C.g/D Y 0˚X 0Œ�1�:

The homotopy class of the map �s depends only on the equivalence class of the
homotopy s modulo B1.X; Y 0/. Indeed, if t 2 Hom1.X; Y 0/ is another map such that
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 f �g� D @.t/ then s� t 2Z1.X; Y 0/. If s� t 2 B1.X; Y 0/, meaning that

s� t D @.b/

with b 2 Hom2.X; Y 0/, then

�s ��t D @

�
0 b

0 0

�
2 B0.C.f /; C.g//;

meaning that �s and �t are chain homotopic.

(iii) Lifts of B0 modulo B1 Let B1 D B1.X; Y /, Z1 D Z1.X; Y / and Hom1 D
Hom1.X; Y /. Let

V1 � Hom1

be a subspace such that V1\Z1 D B1 and V1CZ1 D Hom1 . Equivalently, B1 � V1
is a subspace and @ induces an isomorphism V1=B1

'
�!B0 . We call V1 a linear lift

of B0 modulo B1 .

Let such a linear lift V1 � Hom1.X; Y / be given. Given two homotopic maps f; g 2
Hom0.X; Y /, ie f �g D @.s/, we can assume without loss of generality that s 2 V1 .
The map s is uniquely defined modulo B1 , which implies that the homotopy class of
the map �sW C.f /! C.g/ is well-defined.

Thus, given a lift V1 �Hom1.X; Y /, the cone of any map X! Y is uniquely defined
in Kom.

4.3 Directed, bidirected and doubly directed systems

We now explain a setup in which one can speak of limits of ordered systems of mapping
cones. The motivation for the definitions to follow lies in the definition of symplectic
homology as a direct/inverse limit over directed systems in which the morphisms are
Floer continuation maps in Floer homology. To this effect, the reader my find it useful
to refer to Sections 4.4 and 5.1. We begin with a few definitions.

A directed set is a partially ordered set .I;�/ such that for any i and j there exists k
with i; j � k . An inversely directed set is a partially ordered set .I;�/ such that for
any i and j there exists l with l � i; j . Equivalently, we require that I with the
opposite order be a directed set. A bidirected set is a partially ordered set .I;�/ which
is both directed and inversely directed. Our typical example is I DR.

A system in Kom indexed by I is a collection of chain complexes X.i/ for i 2 I to-
gether with chain maps �ji W X.i/!X.j / for i � j such that �kj �

j
i D�

k
i for i � j �k
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and �ii D IdX.i/ in Kom. More precisely, there exist maps xijk 2 Hom1.X.i/; X.k//
for i � j � k and xi 2 Hom1.X.i/; X.i// such that

�ki ��
k
j �

j
i D @.xijk/; IdX.i/��

i
i D @.xi /:

We speak of a directed system, of an inversely directed system and of a bidirected system
if .I;�/ is a directed set, an inversely directed set or a bidirected set, respectively. We
call the maps �ji structure maps.

More generally, let .IC;�/ be a directed set and .I�;�/ be an inversely directed set.
A doubly directed set modelled on I˙ is a subset I � I��IC with the following two
properties:

� If .i; j / 2 I then .i 0; j / 2 I for all i 0 � i and .i; j 0/ 2 I for all j 0 � j .

� For every j 2 IC there exists i 2 I� such that .i; j / 2 I.

Our typical example is I˙ D R�
˙

and I D f.a; b/ 2 R�� �R�
C
W a � f .b/g, where

f W R�
C
!R�� is a decreasing function such that f .b/!�1 as b!1.

A doubly directed system in Kom indexed by the doubly directed set I is a collection of
chain complexes X.i;j / for .i;j /2I together with chain maps �iji 0j WX.i

0;j /!X.i;j /

for i 0 � i and �ij
0

ij W X.i; j /!X.i; j 0/ for j � j 0 with respect to which every X.i; � /
is a directed system and every X. �; j / is an inversely directed system, and such that
all diagrams

(26)

X.i 0; j / //

��

X.i; j /

��

X.i 0; j 0/ // X.i; j 0/

are commutative in Kom for any choice of indices such that i 0 � i , j � j 0 and
.i; j /; .i 0; j /; .i; j 0/; .i 0; j 0/ 2 I. We call the maps �iji 0j and �ij

0

ij structure maps.

Given a map of bidirected systems or a map of doubly directed systems, which means a
collection of chain maps indexed by the relevant indexing set which commute in Kom

with the chain maps defining each of the systems, we are interested in understanding
conditions under which the cone of that map is itself a bidirected or a doubly directed
system, respectively. The two situations are similar, except for more cumbersome
notation in the case of doubly directed systems since we need to work with two
indexing variables .i; j / rather than with just one index variable i . For this reason we
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shall focus in the sequel on bidirected systems and indicate how the discussion adapts
to doubly directed systems.

Let fX.i/; �ji g and fY.i/;  ji g be two bidirected systems in Kom with the same
index set I. A map of bidirected systems in Kom is a collection of chain maps
fi W X.i/! Y.i/ for i 2 I such that  ji fi and fj�

j
i are homotopic for all i � j .

Given sji 2Hom1.X.i/; Y.j // for i � j such that  ji fi�fj�
j
i D @.s

j
i /, let �ji D�sj

i

.
We then have a commutative diagram

X.i/

s
j

i

fi
//

�
j

i

��

Y.i/

 
j

i

��

// C.fi /

�
j

i

��

// X.i/Œ�1�

��

X.j /
fj

// Y.j / // C.fj / // X.j /Œ�1�

We are interested in finding conditions under which fC.fi /; �
j
i g is a bidirected system

in Kom.

Let us consider the following condition:

(B) There exists a collection fbijkg for i � j � k with bijk 2 Hom1.X.i/; Y.k//
such that

ski � 
k
j s
j
i � s

k
j �

j
i Cfkxijk �yijkfi D @.bijk/; i; j; k:

Here it is understood that fxijkg, fyijkg and fsji g are given as above. A direct
computation then shows that

�ki ��
k
j �

j
i D @

�
yijk bijk
0 �xijk

�
; i; j; k:

Indeed, the off-diagonal term on the left-hand side is ski � 
k
j s
j
i � s

k
j �

j
i , while the

off-diagonal term on the right-hand side is @.bijk/�fkxijkCyijkfi .

Remark Condition (B) is motivated both by the outcome of preliminary computations
for bidirected systems in Ch and by the example of Floer continuation maps discussed
below.

Condition (B) is clearly independent of the choice of fsji g, fxijkg and fyijkg up to
homotopy. This motivates the stronger condition (C) below, of a more intrinsic nature.
For the statement, recall the notion of a lift of B0 mod B1 from Section 4.2(iii).
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(C) We are given the data of collections of lifts of B0 mod B1

fX
j
i � Hom1.X.i/; X.j //g; i � j;

fY
j
i � Hom1.Y.i/; Y.j //g; i � j;

fV
j
i � Hom1.X.i/; Y.j //g; i � j

such that . kj /�V
j
i �V

k
i , .�ji /

�V kj �V
k
i , .fk/�Xki �V

k
i and .fi /�Y ki �V

k
i .

We claim that

.C/D) .B/:

For the proof we start by choosing sji 2V
j
i , xijk 2Xki and yijk 2Y ki . We then remark

that �yijkfi C ski C fkxijk and  kj s
j
i C s

k
j �

j
i are both contracting homotopies for

 kj  
j
i fi �fk�

k
j �

j
i , so that their difference is a cycle. Now condition (C) implies that

both these homotopies lie in V ki , which implies that their difference is a boundary
@.bijk/.

Condition (B) implies that fC.fi /; �
j
i g is a bidirected system in Kom. The same holds

in particular under condition (C).

We now indicate how the discussion adapts to the case of a map ffij W X.i; j /!Y.i; j /g

between doubly directed systems indexed by the same doubly directed set I. Denote
by �iji 0j and �ij

0

ij the structure maps for fX.i; j /g, and denote by  iji 0j and  ij
0

ij the

structure maps for fY.i; j /g. Denote by � ij
0

i 0j and � ij
0

i 0j the homotopies that express the
commutativity in Kom of the diagrams (26):

�
ij 0

ij �
ij
i 0j ��

ij 0

i 0j 0�
i 0j 0

i 0j D @.�
ij 0

i 0j /;  
ij 0

ij  
ij
i 0j � 

ij 0

i 0j 0 
i 0j 0

i 0j D @.�
ij 0

i 0j /:

Denote by siji 0j and sij
0

ij the homotopies that express the fact that f�j and fi � are maps
of directed systems.

The analogue of condition (B) for doubly directed systems is the following:

(zB) We require condition (B) to hold for each of the maps of directed systems fi �
and f�j , and in addition we require that there exists a collection fB ij

0

i 0j g with

B
ij 0

i 0j 2 Hom1.X.i 0; j /; Y.i; j 0// such that

 
ij 0

ij s
ij
i 0j C s

ij 0

ij �
ij
i 0j � 

ij 0

i 0j 0s
i 0j 0

i 0j � s
ij 0

i 0j 0�
i 0j 0

i 0j Cfij 0�
ij 0

i 0j � �
ij 0

i 0jfi 0j D @.B
ij 0

i 0j /:
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Similarly to the case of bidirected systems, a direct computation shows that

�
ij 0

ij �
ij
i 0j ��

ij 0

i 0j 0�
i 0j 0

i 0j D @

 
�
ij 0

i 0j B
ij 0

i 0j

0 ��
ij 0

i 0j

!
;

where �cd
ab
W C.fab/! C.fcd / are the maps induced between cones, as before. It is

important to note that condition (zB) is of the same nature as condition (B), and the
only difference between the two is that condition (zB) takes into account the additional
conditions of commutativity up to homotopy which are involved in the definition of a
doubly directed system.

One can also phrase for doubly directed systems an analogue (zC) of condition (C) for
bidirected systems, but we shall not need it and therefore we do not make it explicit.

Limiting objects Now let the coefficient ring be a field K, and recall [34] that
the inverse limit functor is exact on inversely directed systems consisting of finite-
dimensional vector spaces. Let ffij W X.i; j /! Y.i; j /g be a map of doubly directed
systems, and assume that each X.i; j / and Y.i; j / has finite-dimensional homology
in each degree. Under condition (zB) we obtain in the first-inverse-then-direct-limit a
homology exact triangle

lim
��!j

lim
 ��i

H.X.i; j //
lim
�!j

lim
 �i

.fij /�
// lim
��!j

lim
 ��i

H.Y.i; j //

uu

lim
��!j

lim
 ��i

H.C.fij //

Œ�1�
ii

Remark The following question is relevant: When is

lim
��!
j

lim
 ��
i

X.i; j /! lim
��!
j

lim
 ��
i

Y.i; j /! lim
��!
j

lim
 ��
i

C.fij /! lim
��!
j

lim
 ��
i

X.i; j /Œ�1�

a (model) distinguished triangle? This is related to exactness criteria for the inverse
limit functor and to the so-called Mittag-Leffler condition; see for example [28].

4.4 Floer continuation maps

We now show how condition (zB) above is satisfied in the case of Floer continuation maps
for a doubly directed system of Hamiltonians. In order to streamline the discussion we
shall actually treat the case of a directed system of Hamiltonians, the case of doubly
directed systems being conceptually equivalent, except for the more complicated
notation.
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Higher continuation maps Let K � L be two Hamiltonians and let .FC.K/; @K/
and .FC.L/; @L/ be the Floer complexes for some choice of regular almost complex
structures JK and JL . An s–dependent Hamiltonian H D Hs for s 2 R such that
Hs D L for s� 0, Hs DK for s� 0, and @sH � 0, together with an s–dependent
almost complex structure interpolating between JL and JK , determines a degree 0
chain map

�H W FC.K/! FC.L/:

We refer to H as a decreasing Hamiltonian homotopy (from L to K ), and to �H as
the associated continuation map.

Given two decreasing Hamiltonian homotopies H 0 and H 1 from L to K , the choice
of a homotopy fH�g for � 2 Œ0; 1� between the two, together with the choice of a
homotopy of almost complex structures which we ignore in the notation, determines a
degree 1 map

�fH�gW FC.K/ C1�! FC.L/:

We refer to fH�g as a homotopy of homotopies, or 1–homotopy, and to �fH�g as the
associated degree 1 continuation map. This is in general not a chain map. However, it
is a chain homotopy between �H0 and �H1 :

�H1 ��H0 D @.�fH�g/D @K �fH�gC�fH�g @H :

We now go one step further. Given two 1–homotopies fH 0
�g and fH 1

�g for � 2 Œ0; 1�,
the choice of a homotopy fH�

�g for � 2 Œ0; 1� connecting them, together with the
choice of a homotopy of homotopies of almost complex structures which we ignore in
the notation, determines a degree 2 map

�
fH�
�g
W FC.K/ C2�! FC.L/:

We refer to fH�
�g as a 2–homotopy, and to �

fH�
�g

as the associated degree 2 continua-
tion map. This is in general not a chain map. However, if fH 0

�g and fH 1
�g coincide at

�D 0 and at �D 1, and if fH�
�g is constant at �D 0 and at �D 1, the map �

fH�
�g

is a contracting chain homotopy for �
fH1
�g
��
fH0
�g

:

�
fH1
�g
��
fH0
�g
D @.�

fH�
�g
/:

More generally, let I D Œ0; 1� and, for d � 0, consider the d –dimensional cube Id .
(If d D 0 then Id consists of a single point.) A generic pair fHs;z; Js;zg for z 2 Id

and s 2R, consisting of an Id –family of decreasing Hamiltonian homotopies from
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L to K and of an Id –family of s–dependent almost complex structures which all
coincide with JL for s� 0 and with JK for s� 0, determines a map

�fHs;z ;Js;zg 2 Homd .FC.K/;FC.L//:

This map is defined on a generator x 2 FC.K/ by

x 7!
X

jxj�jyjD�d

#M.y; xI fHs;z; Js;zg/y

and then extended by linearity. Here M.y; xI fHs;z; Js;zg/ denotes the moduli space
of solutions to the Floer equation in the chosen Id –family, asymptotic to y at �1
and asymptotic to x at C1. In other words, the map �fHs;z ;Js;zg counts index �d
solutions of the Floer equation within the d –dimensional family parametrized by Id .
We refer to fHs;z; Js;zg as a d –homotopy and to �fHs;z ;Js;zg as the associated degree d
continuation map.

Let fH 0; J 0g and fH 1; J 1g be two d –homotopies which are equal on @Id . For any
choice of a .dC1/–homotopy fH�; J �g for � 2 Œ0; 1� which interpolates between the
two and which is constant on .@Id /�I � Id �I D IdC1 , the associated degree dC1
continuation map �fH�;J�g is a contracting chain homotopy for �fH1;J 1g��fH0;J 0g :

�fH1;J 1g��fH0;J 0g D @.�fH�;J�g/:

We have thus proved the following:

Lemma 4.7 The difference between any two degree d continuation maps determined
by d –homotopies which coincide on @Id is homotopic to zero. A contracting homo-
topy is provided by any degree d C 1 continuation map determined by an interpolating
.dC1/–homotopy which is constant on .@Id /� I � Id � I D IdC1 .

This statement generalizes to higher homotopies the well-known fact that any two
continuation maps in Floer theory are homotopic, so that the morphism that they induce
in homology is independent of all choices. This last property is sometimes referred to
as Floer homology being a connected simple system in the sense of Conley.

Directed systems of continuation maps

Let fKig and fLig be two directed systems of Hamiltonians, meaning that Ki �Kj
and Li � Lj for i � j . Let fKji g and fLji g for i � j be decreasing homo-
topies from Kj to Ki and from Lj to Li , respectively, yielding continuation maps
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�
j
i W FC.Ki /! FC.Kj / and  ji W FC.Li /! FC.Lj /. Then

fFC.Ki /; �
j
i g; fFC.Li /;  

j
i g

are bidirected systems in Kom.

Assume further that Ki � Li for all i . Let Hi be a decreasing homotopy from Li

to Ki , yielding continuation maps fi W FC.Ki /! FC.Li /. The collection ffig is then
a map of bidirected systems in Kom.

Indeed, the maps  ji fi and fj�
j
i are homotopic via a degree 1 continuation map

s
j
i W FC.Ki /

C1
�! FC.Lj /

that is associated to a 1–homotopy Hji connecting Lji #Hi and Hj #Kji . Here #
denotes the gluing of Hamiltonians for a large enough value of the gluing parameter.

Similarly, the maps �ki and �kj �
j
i , and  ki and  kj  

j
i , respectively, are homotopic

via degree 1 maps

xijk W FC.Ki /
C1
�! FC.Kk/; yijk W FC.Li /

C1
�! FC.Lk/

that are associated to 1–homotopies Kijk connecting Kki and Kkj #Kji , and Lijk
connecting Lki and Lkj #Lji , respectively.

We claim that condition (B) is satisfied in this setup. In view of Lemma 4.7 it is
enough to show that both  kj s

j
i C s

k
j �

j
i and fkxijkC ski �yijkfi are degree 1 Floer

continuation maps induced by 1–homotopies parametrized by � 2 Œ0; 1� with the same
endpoints Lkj #Lji #Hi at �D 0 and Hk #Kkj #Kji at �D 1. Consider the following
diagram, where in each entry we have indicated a composition of Floer continuation
maps and the 0–homotopy which induces it, and where on each arrow we have indicated
a homotopy between the target and source maps, together with the 1–homotopy which
induces it:

 ki fi
sk
i

Hk
i

// fk�
k
i

Lki #Hi

yijkfi Lijk#Hi

��

Hk #Kki

fkxijkHk#Kijk

��

 kj  
j
i fi

 k
j
s
j

i

Lk
j

#Hj
i

//  kj fj�
j
i

sk
j
�
j

i

Hk
j

#Kj
i

// fk�
k
j �

j
i

Lkj #Lji #Hi Lkj #Hj #Kji Hk #Kkj #Kji
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The main point is that a concatenation of 1–homotopies induces the sum of the corre-
sponding degree 1 maps, and the reversal of the direction of a 1–homotopy induces
minus the corresponding degree 1 map. The composition of the bottom horizontal
arrows is thus a degree 1–continuation map which equals  kj s

j
i C s

k
j �

j
i , while the

composition of the other three arrows is a degree 1 continuation map which equals
fkxijkC s

k
i �yijkfi . The corresponding 1–homotopies do have the same endpoints

at �D 0 and �D 1, as expected.

It follows from the results in Section 4.3 that the system

fC.fi /; �
j
i g

of cones C.fi / and induced maps �ji W C.fi /! C.fi / is a directed system in Kom.
In particular, the homotopy type of the maps �ji does not depend on the choice of
1–homotopies.

Similarly, for a doubly directed system of Hamiltonians we obtain a doubly directed
system

fC.fij /; �
cd
ab g

in Kom, together with the fact that the homotopy type of the maps �cd
ab

does not depend
on the choice of 1–homotopies.

5 The transfer map and homotopy invariance

Given a Liouville cobordism pair .W; V / we construct in this section a transfer map

f ~
Š
W SH~� .W /! SH~� .V /

for ~ 2 f¿;� 0;> 0;D 0;� 0;< 0g that is invariant under homotopy of Liouville
structures. This generalizes to cobordisms the transfer map defined for Liouville
domains by Viterbo [68]. The whole structure that we exhibit on symplectic homology
is actually governed by the underlying chain level map. Indeed, we prove in Section 7
that the shifted symplectic homology groups of the pair SH~� .W; V /Œ�1� are isomorphic
to the homology of the cone of the chain level transfer map.

We recall that we use coefficients in a field K.
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5.1 The transfer map

Let .W; V / be a Liouville cobordism pair with filling F . Recall from Section 2.4 the
definition of the symplectic homology groups

SH~� .W /D lim
b

lim
a

lim
��!

H2H.W IF /
FH.a;b/� .H/;

where H.W IF / is the class of Hamiltonians H W S1� yWF !R which are zero on W
and are linear of noncritical slope in the complement of WF , and the meaning of the
limits involving a and b is determined by the value of ~. In the previous formula
the first direct limit is considered with respect to continuation maps FH.a;b/� .HC/!

FH.a;b/� .H�/ for HC�H� induced by nonincreasing homotopies Hs for s 2R which
are equal to H˙ for s near ˙1.

The transfer map will be defined as a limit of a directed system of continuation maps.
For that purpose the definition of SH~� .V /, which involves Hamiltonians defined on
yVF ıW bottomDF ıW bottomıV ıŒ1;1/�@CV , needs to be recast in terms of Hamiltonians
defined on yWF D F ıW ı Œ1;1/� @CW . The manifold yWF is the domain of the
Hamiltonians involved in the definition of SH~� .W /.

Denote by HW .V IF / the space of Hamiltonians H W S1 � yWF !R such that H 2
H. yWF / and H D 0 on V .

Lemma 5.1 For any two real numbers �1< a < b <1 we have

SH.a;b/� .V /D lim
��!

H2HW .V IF /
FH.a;b/� .H/:

Proof By definition we have

SH.a;b/� .V /D lim
��!

H2H.V IF /
FH.a;b/� .H/;

and we claim that the two limits are equal. Recall that the space H.V IF / consists
of Hamiltonians H W yVF ıW bottom !R which are linear outside a compact set and such
that H D 0 on V . The claim is a consequence of the existence of a special cofinal
family in HW .V IF /, constructed as follows (see Figure 12): Consider a sequence
.�k/ for k 2 Z� of positive real numbers such that �k … Spec.@CV / and �k !1
as k!1, and let HV

k
W yVF ıW bottom ! R be a cofinal family in H.V IF / such that

HV
k
.r; x/D �k.r � 1/ on Œ1;1/� @CV . Consider, further, sequences

.�k/; .Rk/; .�k/; k 2 ZC;

Algebraic & Geometric Topology, Volume 18 (2018)



2024 Kai Cieliebak and Alexandru Oancea

such that

� �k > 0 is smaller than the distance from �k to Spec.@CV /, and �k ! 0 as
k!1;

� Rk >max.1; .�k � a/=�k/;

�
1
4
�k < �k <

1
2
�k and �k … Spec.@CW /.

Let Hk W yWF !R be a Hamiltonian that equals HV
k

on F ıW bottomıV ıŒ1; Rk��@
CV ,

is constant equal to �k.Rk � 1/ on RkW top , and equals �k.Rk � 1/C �k.r �Rk/
on ŒRk;1/� @CW . Here RkW top stands for the image of W top by the flow of the
Liouville vector field at time lnRk .

The Hamiltonian Hk has three more groups of 1–periodic orbits in addition to those
of the Hamiltonian HV

k
:

(III� ) Orbits corresponding to positively parametrized closed Reeb orbits on @CV D
@�W top and located near Rk@CV .

(III 0 ) Constants in RkW top .

(IIIC ) Orbits corresponding to positively parametrized closed Reeb orbits on @CW D
@CW top and located near Rk@CW top .

The orbits in group III 0 have action ��k.Rk � 1/, the maximal action of an orbit in
group III� is smaller than ��k.Rk�1/CRk.�k��k/D �k�Rk�k , and the maximal
action of an orbit in group IIIC is smaller than ��k.Rk�1/C 12Rk�kD��k

�
1
2
Rk�1

�
.

The largest of these actions is the one in group III� , which however falls below the
action window .a; b/ due to the condition Rk > max.1; .�k � a/=�k/, so the orbits
contributing to the Floer complex in the action window .a; b/ are the same for HV

k
and

for Hk . Lemma 2.2 for s–dependent Hamiltonians (decreasing in s outside VF ıW bottom )
shows that the continuation Floer trajectories for the family HV

k
and for the family

Hk stay within a neighbourhood of VF ıW bottom , where the two Hamiltonians coincide.
These continuation Floer trajectories are therefore the same, and they define the same
continuation maps in the two directed systems at hand. We obtain

SH.a;b/� .V /D lim
��!
k!1

FH.a;b/� .HV
k /D lim

��!
k!1

FH.a;b/� .Hk/:

Since Hk for k 2 Z� is a cofinal family in HW .V IF /, the conclusion of the lemma
follows.
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We obviously have H.W IF /�HW .V IF /, and for each Hamiltonian K in H.W IF /
there exists a Hamiltonian H in HW .V IF / such that K �H (while the converse is
not true). For any two such Hamiltonians we have continuation maps

f
.a;b/
HK W FC.a;b/� .K/! FC.a;b/� .H/

induced by nonincreasing homotopies which are linear at infinity, and these continua-
tion maps define a morphism between the directed systems determined by H.W IF /
and HW .V IF /.

Definition 5.2 The Viterbo transfer map in the action window .a; b/ is the limit
continuation map

f
.a;b/
Š
W SH.a;b/� .W /! SH.a;b/� .V /; f

.a;b/
Š

WD lim
��!
K�H

K2H.W IF /;H2HW .V IF /

f
.a;b/
HK :

By general properties of the continuation maps the Viterbo transfer maps f .a;b/
Š

fit
into a doubly directed system, inverse on a and direct on b .

Definition 5.3 For ~ 2 f¿;� 0;> 0;D 0;� 0;< 0g the Viterbo transfer map

f ~
Š
W SH~� .W /! SH~� .V /

is defined as
f ~
Š
D lim

b
lim
a
f
.a;b/
Š

;

where the limits are inverse or direct according to the value of ~, as in Definition 2.8.

Proposition 5.4 (functoriality of the transfer map) Let U � V �W be a triple of
Liouville cobordisms with filling. Let f ~VW , f ~UW and f ~UV be the transfer maps for
the pairs .W; V /, .W;U / and .V; U /, respectively, for ~2f¿;�0;>0;D0;�0;<0g.
Then

f ~UW D f
~

UV ıf
~

VW :

Proof This is a direct consequence of the definition of the transfer map as a limit
continuation map, together with functoriality of continuation maps. To see this, we
recall the notation W DW bottom ıV ıW top and V D V bottom ıU ıV top , and consider
on W the following three types of Hamiltonians (see Figures 12 and 13):

� Hamiltonians K which are admissible for W , and thus vanish on W and are
linear increasing towards @CW .
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�k.Rk � 1/ K
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Figure 12: Hamiltonians for the definition of the transfer map

� One-step Hamiltonians H which vanish on V , take a positive constant value on
W top , and are linear increasing towards @CV and @CW .

� Two-step Hamiltonians G which vanish on U, take a constant value on V top ,
take a constant value on W top , and are linear increasing towards @CU, @CV
and @CW .

The transfer maps f ~VW are defined above as limit continuation maps induced by
monotone homotopies from K (at C1) to H (at �1). Similarly, the transfer maps
f ~UW can be obtained as limit continuation maps induced by monotone homotopies
from K (at C1) to G (at �1), and the transfer maps f ~UV can be obtained as limit
continuation maps induced by monotone homotopies from H (at C1) to G (at �1).
We can choose the homotopies from K to G to factor through H, so that they can
be expressed as concatenation of homotopies from K to H, and from H to G. The
composition of the continuation maps induced by each of these last two homotopies is
equal to the continuation map induced by the concatenation of the two homotopies —
this is what we call functoriality of continuation maps — and the same property holds
in the limit. This proves f ~UW D f

~

UV ıf
~

VW .

In the sequel we shall often drop the symbol ~ from the notation for the transfer map,
and simply write fŠ instead of f ~

Š
.
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K

H

G

W bottom V bottom U V top W top

Figure 13: Hamiltonians for the proof of functoriality of the transfer map

5.2 Homotopy invariance of the transfer map

Given a pair of Liouville cobordisms .W; V / with filling, we denote the transfer map
for a given Liouville structure � by

SH~� .W I�/
fŠ;�
��!SH~� .V I�/:

Proposition 5.5 (homotopy invariance of the transfer map) Let .W; V / be a pair of
Liouville cobordisms with filling. Given a homotopy of Liouville structures �t on W
for t 2 Œ0; 1�, there are induced isomorphisms hW W SH~� .W I�0/! SH~� .W I�1/ and
hV W SH~� .V I�0/! SH~� .V I�1/, and a commutative diagram

SH~� .W I�0/
fŠ;�0

//

Š hW
��

SH~� .V I�0/

Š hV
��

SH~� .W I�1/
fŠ;�1

// SH~� .V I�1/

The isomorphisms hW and hV do not depend on the choice of homotopy �t with fixed
endpoints.
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Proof The homotopy invariance of the transfer map under deformations of the Liou-
ville structure which are constant along the boundaries of W and V is a consequence of
its definition as a limit continuation map. In particular, given a Liouville cobordism W

with two Liouville structures � and �0 which coincide along @W , the transfer map

SH~� .W I�/! SH~� .W I�
0/

is an isomorphism.

The homotopy invariance in the general case is obtained using the functoriality of the
transfer map, by a classical geometric construction which consists in attaching to @W
topologically trivial cobordisms with Liouville structures that interpolate between any
two given Liouville structures on the boundary of W ; see [24, Lemma 3.7]. A detailed
argument is given in [47] in an S1–equivariant setting.

That the isomorphisms hW and hV do not depend on the choice of homotopy .�t /
for t 2 Œ0; 1� is a consequence of the fact that any two such homotopies with the
same endpoints are homotopic, together with the usual “homotopy of homotopies”
argument in Floer theory (see also the discussion of Floer continuation maps at the end
of Section 4).

6 Excision

Let .W; V / be a pair of Liouville cobordisms and F a filling of W , and define WF and
yWF as in Section 2.4. Recall the class H.W; V IF / of admissible Hamiltonians defined

in Section 2.5. For 0 < r1 < r2 and a subset A � yWF , we denote by Œr1; r2��AD
�Œlog r1;log r2�.A/ the image of A under the Liouville flow �t on the time interval
Œlog r1; log r2�. For parameters

�; �; � > 0; 0 < ı; " < 1

(which will be specified later), let H 2 H.W; V IF / be a “staircase Hamiltonian”
on yWF , defined up to smooth approximation as follows (see Figure 14):

� H � .1� ı/� on F n .ı; 1�� @�W .

� H is linear of slope �� on Œı; 1�� @�W .

� H � 0 on W bottom .

� H is linear of slope �� on Œ1; 1C "�� @�V .

� H ��"� on V n .Œ1; 1C "�� @�V [ Œ1� "; 1�� @CV /.
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H

��
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.III�0C/

.II�0C/

Figure 14: Hamiltonian in H.W; V IF /

� H is linear of slope � on Œ1� "; 1�� @CV .

� H � 0 on W top .

� H is linear of slope � on Œ1;1/� @CW .

A smooth approximation of H will thus be of the form H.r; y/Dh.r/ on Œ0;1/�@CW
(and similarly near the other boundary components of W and V ). Hence, 1–periodic
orbits of XH on frg � @CW correspond to Reeb orbits on @CW of period h0.r/, and
their Hamiltonian action equals

rh0.r/� h.r/:

We assume that �, � , � and � do not lie in the action spectrum of @�W , @�V , @CV
and @CW , respectively. We denote by �� > 0 a positive real number smaller than the
distance from � to the union of the action spectra of @�V and @CV , and we define
similarly ��; �� > 0. The 1–periodic orbits of H fall into 11 classes:

(F 0 ) Constants in F n .Œı; 1�� @F /.

(FC ) Orbits corresponding to negatively parametrized closed Reeb orbits on
@F D @�W and located near ı� @�W .

(I� ) Orbits corresponding to negatively parametrized closed Reeb orbits on
@�W bottom D @�W and located near @�W .

(I 0 ) Constants in W bottom .
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(IC ) Orbits corresponding to negatively parametrized closed Reeb orbits on
@CW bottom D @�V and located near @�V .

(II� ) Orbits corresponding to negatively parametrized closed Reeb orbits on @�V
and located near .1C "/� @�V .

(II 0 ) Constants in V n .Œ1; 1C "�� @�V [ Œ1� "; 1�� @CV /.

(IIC ) Orbits corresponding to positively parametrized closed Reeb orbits on @CV
and located near .1� "/� @CV .

(III� ) Orbits corresponding to positively parametrized closed Reeb orbits on
@�W top D @CV and located near @CV .

(III 0 ) Constants in W top .

(IIIC ) Orbits corresponding to positively parametrized closed Reeb orbits on @CW
and located near @CW top D @CW .

Notational convention For two classes of orbits A and B we write A � B if the
homological Floer boundary operator maps no orbit from A to an orbit from B . A priori,
this relation is not transitive. However, when we write A� B � C we also mean that
A � C . We write A < B if all orbits in A have smaller action than all orbits in B .
Note that A < B implies A� B , and A < B < C implies A� B � C .

Lemma 6.1 Fix a < b . If the parameters �, � , � , ı and " above satisfy

(27) .1� ı/� >minf�a; � � ��g and "� >minfb; � � ��g;

and if we use an almost complex structure that is cylindrical and has a long-enough
neck near .1� 2"/� @CV , then the four groups of orbits in the action interval Œa; b�
satisfy

(28) F � I � III � II and III � I:

Moreover, within each group of orbits we have the relations

(29) FC � F 0; IC � I� � I 0; II� � II 0 � IIC; III 0 � III� � IIIC:

Proof The combination of Lemmas 2.2 and 2.3 yields the relations

F � I�; F; I � II�C; F; I; II; III�0� IIIC; IC�F; I�0; III��F; I; II:

For any choice of parameters, the actions satisfy

FC < F 0; F; I�C < I 0 D III 0 < II 0C; III�C; II� < II 0 < IIC:
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We see that F � I�0; II; III. The remaining relation F � IC follows if the actions
satisfy F 0 < IC , ie �.1 � ı/� < maxfa;�.� � ��/g, which is the first condition
in (27). Next we see that I � II; III and III� � I; II. For the remaining relation
III 0C � I; II we arrange the actions to satisfy IIIC < II 0 , ie minfb; � � ��g < "� ,
which is the second condition in (27). Then we have III 0 < IIIC < II 0 < IIC .
The relations I 0 � III 0 and III 0 � I 0 follow from monotonicity: there is an a priori
strictly positive lower bound on the energy of trajectories traversing V , and this rules out
trajectories running between III 0 and I 0 which after small Morse perturbation of H
have arbitrarily small energy. The remaining relation III 0C� I; II� now follows from
Lemma 2.4, stretching the neck at the hypersurface .1� 2"/� @CV where H ��"� ,
and "� is bigger than all actions in the groups III 0 and IIIC . This proves (28). The
relations in (29) also follow from the preceding discussion.

Remark 6.2 Under the conditions of Lemma 6.1, the Floer boundary operator has
upper triangular form if the periodic orbits are ordered by increasing action within each
class and the classes are ordered (for example) as

FC � F 0 � IC � I� � I 0 � III 0 � III� � IIIC � II� � II 0 � IIC:

Let us fix a < 0< b and 0< ı; " < 1 and consider �; �; � > 0 subject to the conditions

(30) � > �
a

1�ı
; � > b; � >max

n
�a;

b

"

o
:

Note that these conditions allow us to make �, � and � arbitrarily large, independently
of each other. They ensure condition (27) in Lemma 6.1. Moreover, the actions of all
orbits in the classes F , II 0 and IIC lie outside the interval Œa; b�. So the Floer chain
complex can be written as

FC.a;b/ D FC.a;b/III ˚FC.a;b/I ˚FC.a;b/II�

and with respect to this decomposition the Floer boundary operator has the form

(31)

0@� 0 �0 � �

0 0 �

1A :
Let us fix � and � and consider � < �0 both satisfying (30). We denote the correspond-
ing Hamiltonians by H�0 �H� and consider the continuation maps

���0 W FC.a;b/.H�0/! FC.a;b/.H�/
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induced by convex interpolation between H� and H�0 . These continuation maps may
not have the upper triangular form (31) since the combination of Lemmas 2.2 and 2.3
does not apply to the current homotopy situation. Therefore, we decompose the above
chain complex instead as

FC.a;b/ D FC.a;b/III ˚FC.a;b/I;II� ;

with differential written in upper triangular form as
�
�

0
�

�

�
. The continuation maps ���0

have upper triangular form with respect to this decomposition and we obtain the
commuting diagram with exact rows

(32)

0 // FC.a;b/III .H�0/ //

��

FC.a;b/.H�0/ //

��

FC.a;b/I;II�.H�0/
//

��

0

0 // FC.a;b/III .H�/ // FC.a;b/.H�/ // FC.a;b/I;II�.H�/
// 0

where FC.a;b/I;II� denotes the quotient complex FC.a;b/=FC.a;b/III .

Lemma 6.3 lim
 ��
�!1

FH.a;b/III .H�/Š SH.a;b/.W top; @CV /:

Proof We consider a homotopy of Hamiltonians which on V [W top[Œ1;1/�@CW is
constant and which on F [W bottom is a convex interpolation between the Hamiltonian
H� and the Hamiltonian H � that is constant equal to �"� . Since the homotopy
is constant on the cobordism V , Lemma 2.4 applies and shows that there is no in-
teraction between the orbits in III and the orbits appearing in F [W bottom . The
usual continuation argument then shows that the homology FH.a;b/III is invariant during
this homotopy. Since lim

 ���!1
FH.a;b/III .H �/D SH.a;b/.W top; @CV / by definition, we

obtain the desired isomorphism.

Lemma 6.4 lim
 ��
�!1

FH.a;b/I;II�.H�/Š SH.a;b/.W bottom; @�V /:

Proof We consider a homotopy of Hamiltonians which on F [W bottom[V is constant
and which on W top[ Œ1;1/�@CW is a convex interpolation between the Hamiltonian
H� and the Hamiltonian K� that is constant equal to �"� on V [W top and is linear
of slope � (the same as the slope of H� ) on Œ1;1/� @CW . See Figure 15.

We have FH.a;b/.K�/ D FH.a;b/I;II�.K�/ and so we have a well-defined continuation
map

�HK� W FH.a;b/I;II�.K�/! FH.a;b/I;II�.H�/
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Figure 15: The Hamiltonians H� and K�

obtained by composing the continuation map FH.a;b/.K�/! FH.a;b/.H�/ with the
map induced by projection FH.a;b/.H�/ ! FH.a;b/I;II�.H�/. Since the homotopy is
constant in the region F [W bottom[V , which contains the orbits of types I and II� ,
it follows that this continuation map is an isomorphism. Indeed, the generators of the
two chain complexes are canonically identified and upon arranging them in increasing
order by the action the continuation map at chain level has upper triangular form with
C1 on the diagonal. (Note that we do not use at this point Lemma 2.4.)

For ���0 we get commutative diagrams, in which all maps are continuation morphisms,

FH.a;b/I;II�.H�/ FH.a;b/I;II�.K�/Š

�HK�
oo

FH.a;b/I;II�.H�0/

���0

OO

FH.a;b/I;II�.K�0/Š

�HK
�0

oo

 ��0

OO

Here  ��0 W FH.a;b/I;II�.K�0/!FH.a;b/I;II�.K�/ is the continuation map induced by a convex
interpolation between K� and K�0 . As a consequence we have a canonical isomorphism

(33) lim
 ��
�!1

FH.a;b/I;II�.H�/ lim
 ��
�!1

FH.a;b/I;II�.K�/:Š

lim
 ��!1

�HK�
oo
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The complex FC.a;b/I;II�.K�/ can be decomposed as

(34) FC.a;b/I;II�.K�/D FC.a;b/I .K�/˚FC.a;b/II� .K�/;

with differential of upper triangular form
�
�

0
�

�

�
. Lemma 6.5 below shows that this

decomposition is preserved by the continuation maps  ��0 , which also have upper
triangular form. (That this precise property could a priori fail for the Hamiltonians H�
was the reason to deform them to the Hamiltonians K� .) In particular, there is a well-
defined inverse system of quotient homologies FH.a;b/II� .K�/ for �!1. Lemma 6.6
below shows that the inverse limit of this system vanishes, and we thus obtain a
canonical isomorphism

(35) lim
 ��
�!1

FH.a;b/I .K�/
Š
�! lim

 ��
�!1

FH.a;b/I;II�.K�/;

the map being induced in the limit by the inclusions FC.a;b/I .K�/ ,! FC.a;b/I;II�.K�/.

We now prove the isomorphism

(36) lim
 ��
�!1

FH.a;b/I .K�/Š SH.a;b/.W bottom; @�V /:

The Floer trajectories which are involved in the definition of the Floer differential for
FC.a;b/I .K�/ are contained in a neighbourhood of F [W bottom by Lemma 2.2. The key
point is that the Floer trajectories involved in the definition of the continuation maps
FC.a;b/I .K�0/! FC.a;b/I .K�/ are also contained in a neighbourhood of F [W bottom .
For this purpose we choose the Hamiltonians K� such that for �0 � � the Hamiltonian
K�0 coincides with K� on a neighbourhood of F [W bottom where the orbits in group I
for K� are located. This ensures that the assumptions in the last paragraph of Lemma 2.2
are satisfied for the homotopy obtained by convex interpolation between K� and K�0 .
Denote by K� the Hamiltonian defined on F [W bottom [ Œ1;1/ � @�V which is
equal to K� on F [W bottom and linear of slope �� (the same as the slope of K� ) on
Œ1;1/� @�V . The previous argument then shows the equality

lim
 ��
�!1

FH.a;b/I .K�/D lim
 ��
�!1

FH.a;b/I .K�/;

and the right-hand side is SH.a;b/.W bottom; @�V / by definition.

The conclusion of Lemma 6.4 now follows by combining the isomorphisms (33), (35)
and (36).

Algebraic & Geometric Topology, Volume 18 (2018)



Symplectic homology and the Eilenberg–Steenrod axioms 2035

The next lemma was used in the previous proof. We recall that K� denotes a Hamil-
tonian which coincides with H� on F [W bottom [ V , is constant equal to �"� on
V [W top , and is linear of slope � (the same as the slope of H� ) on Œ1;1/�@CW . We
choose the smoothings of the Hamiltonians K�0 and K� to coincide up to a translation
by ".�0 � �/ in the region II� but only for slopes in the interval .��C �� ; 0/. We
recall the decomposition (34) of FC.a;b/I;II�.K�/, with respect to which the differential
has upper triangular form.

Lemma 6.5 The Floer continuation map  ��0 W FC.a;b/I;II�.K�0/ ! FC.a;b/I;II�.K�/ in-
duced by a nonincreasing s–dependent convex interpolation from K� at �1 to K�0
at C1 has upper-triangular form with respect to the decompositions FC.a;b/I;II� D

FC.a;b/I ˚FC.a;b/II� for K� and K�0 .

Proof The only problematic relation is IK�0 � II
�
K�

. To prove it we use the fact
that in the region II� the two Hamiltonians coincide up to a translation, so in this
region the homotopy is simply given by adding to the Hamiltonian K� some function
R! Œ�".�0� �/; 0� of s with compactly supported derivative. As such, the constant
trajectories at the orbits in II�K� solve the s–dependent continuation Floer equation.

Assume there exists a continuation Floer trajectory uW R�S1! yWF from some orbit
xC D lims!C1 u.s; � / in IK�0 to some orbit x� D lims!�1 u.s; � / in II�K� . By
Lemma 2.3, either u is constant equal to x� for very negative values of the parameter s ,
or there exists .s; t/2R�S1 with s very negative such that r.u.s; t//> r�D r.x�.t//.
In the first situation the Floer trajectory would need to be constant equal to x� for all
values of s because of unique continuation and the fact that the constant trajectory
at x� solves the same equation. This is a contradiction since xC ¤ x� . In the second
situation we reach a contradiction using Lemma 2.2, which we can apply in the s–
independent case because the homotopy is just given by a shift by a function of s on
V [W top[ Œ1;1/� @CW .

The next lemma was used in the proof of Lemma 6.4 as well. By Lemma 6.5 we have
a well-defined inverse system FH.a;b/II� .K�/, �!1.

Lemma 6.6 lim
 ��
�!1

FH.a;b/II� .K�/D 0:

Proof For �0 > � , generators of FC.a;b/II� .K�0/ correspond to closed Reeb orbits 

on @�V with Hamiltonian action satisfying
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AK�0 .
/D�.1C "/

�Z



�

�
C "�0 2 .a; b/:

Since this condition is equivalent to

AK� .
/D�.1C "/

�Z



�

�
C "� 2 .aC ".� � �0/; bC ".� � �0//;

we see that the same Reeb orbits also correspond to generators of the Floer chain
group FC.aC".���

0/;bC".���0//
II� .K�/. Varying the slope continuously from �0 to � , we

obtain a continuation isomorphism between these two groups fitting into the commuting
diagram

FH.aC".���
0/;bC".���0//

II� .K�/
Š
//

�

))

FH.a;b/II� .K�0/

 ��0

��

FH.a;b/II� .K�/

That the horizontal map is an isomorphism follows from the fact that the Hamiltonian
is deformed outside a compact set only by a global shift by a constant, and from the
fact that there are no orbits that cross the boundary of the moving action window
during the homotopy. The horizontal map can be expressed as a composition of small-
time continuation maps induced by homotopies for fixed action windows, which are
isomorphisms since each of these homotopies can be followed backwards, and of
tautological isomorphisms given by shifting the action window by some small amount
in the complement of the action spectrum.

Now if bC ".� � �0/ < a , then the intervals ŒaC ".� � �0/; bC ".� � �0/� and Œa; b�
do not overlap and thus the projection � vanishes in homology. Hence, the Floer chain
map  ��0 vanishes whenever �0� � > .b� a/=", from which the lemma follows.

Proposition 6.7 (excision for filtered symplectic homology) Let .W; V / be a pair
of Liouville cobordisms with filling and consider parameters �1< a < b <1. There
is a short exact sequence

0! SH.a;b/� .W top; @CV /! SH.a;b/� .W; V /! SH.a;b/� .W bottom; @�V /! 0:

Moreover, this short exact sequence splits canonically, so that we have a canonical
isomorphism

SH.a;b/� .W; V /Š SH.a;b/� .W top; @CV /˚SH.a;b/� .W bottom; @�V /:
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Proof We fix the parameters 0 < ı; " < 1 and �; � > 0 so that the first two conditions
in (30) hold, and we work with the family of Hamiltonians H� DH�;�;� for �!1
discussed above. Then

lim
 ��
�!1

FH.a;b/� .H�/Š SH.a;b/� .W; V /

by definition. The short exact sequence of inverse systems (32) determines an inverse
system of homology exact triangles in which each term is a finite-dimensional vector
space. In this case the inverse limit preserves exactness and we obtain, using Lemmas 6.3
and 6.4, an exact triangle

SH.a;b/� .W top; @CV / // SH.a;b/� .W; V /

vv

SH.a;b/� .W bottom; @�V /

Œ�1�

ii

The proof of Lemma 6.4 shows that each class in SH.a;b/� .W bottom; @�V / is represented
by a sequence (indexed by � and representing an element of the inverse limit) of classes
in FH.a;b/I;II�.H�/ which are each represented by a cycle that is a linear combination
of orbits in IH� . Indeed, the proof provides such a representative by a cycle in
FC.a;b/I .K�/, and we have FC.a;b/I .K�/ D FC.a;b/I .H�/; on the other hand, since
IH� � II

�
H�

as already seen in (31), this continues to be a cycle in FC.a;b/I;II�.H�/.

To prove the existence of the short exact sequence in the statement we use that the
degree �1 connecting map FH.a;b/I;II�.H�/! FH.a;b/III .H�/ vanishes on elements of
IH� by (31). Thus the connecting map in the above exact triangle vanishes, and the
latter becomes the short exact sequence

0! SH.a;b/� .W top; @CV /! SH.a;b/� .W; V /! SH.a;b/� .W bottom; @�V /! 0:

To prove the existence of a canonical splitting for this exact sequence we use again
that I � III for H� . Thus a cycle in FC.a;b/I;II�.H�/ which is a linear combina-
tion of orbits in IH� is canonically also a cycle in FC.a;b/.H�/. The splitting
SH.a;b/� .W bottom; @�V / ! SH.a;b/� .W; V / associates to each class, represented by
a sequence of classes of cycles in FC.a;b/I;II�.H�/ which are linear combinations of orbits
in IH� , the sequence of classes represented by the same cycles viewed in FC.a;b/.H�/.
The latter indeed represents an element in the inverse limit of FH.a;b/.H�/, �!1
because the continuation maps ���0 W FC.a;b/.H�0/!FC.a;b/.H�/ preserve the relation
I � III.
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Taking limits over a and b , Proposition 6.7 implies:

Theorem 6.8 (excision) Let .W; V / be a pair of Liouville cobordisms with filling.
Then for each flavour ~ we have canonical isomorphisms

SH~� .W; V /Š SH~� .W
bottom; @�V /˚SH~� .W

top; @CV /:

In Proposition 6.7 and Theorem 6.8 we allow W bottom or W top to be empty, in which
case the corresponding term is not present in the diagram. In particular, taking V to be
a collar neighbourhood of some boundary components we obtain:

Corollary 6.9 Given a Liouville cobordism W and an admissible union of connected
components A� @W , we have

SH~� .W;A/Š SH~� .W; I �A/;

where I �A is a collar neighbourhood of A in W which we view as a trivial cobordism,
so that .W; I �A/ is a Liouville pair.

This is the precise sense in which Definitions 2.13 and 2.15 are compatible.

In order to make the excision theorem resemble the one in algebraic topology, we
introduce the following notion:

Definition 6.10 A Liouville cobordism triple .W; V; U / consists of three Liouville
cobordisms U � V �W such that .W; V / and .V; U / are Liouville cobordism pairs.
A filling of a Liouville cobordism triple is a filling of W , which induces fillings of V
and U in the obvious way.

Then we have:

Theorem 6.11 (excision for triples) Let .W; V; U / be a filled Liouville cobordism
triple. Then for each flavour ~ we have canonical isomorphisms

SH~� .W; V /Š SH~� .W nU ; V nU/:

Here, if some boundary component A of V and U coincides, then the homology on
the right-hand side has to be understood relative to A. (Alternatively, one can use
Proposition 9.3 below to move U into the interior of V and avoid this situation.) Also,
if W nU contains both a bottom and an upper part then the right-hand side has to be
understood according to Section 2.6 as a direct sum, as in the statement of Theorem 6.8.
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Proof Let us write

W nV DW bottom
qW top; V nU D V bottom

qV top:

Then
W nU D .W bottom

[V bottom/q .W top
[V top/

and we find

SH~� .W nU ; V nU/D SH~� .W
bottom

[V bottom; V bottom/˚SH~� .W
top
[V top; V top/

Š SH~� .W
bottom; @�V /˚SH~� .W

top; @CV /

Š SH~� .W; V /;

where the first equality is the definition and the other two isomorphisms follow from
Theorem 6.8.

7 The exact triangle of a pair of filled Liouville cobordisms

The main result of this section is:

Theorem 7.1 (exact triangle of a pair) For each filled Liouville cobordism pair
.W; V / and ~ 2 f¿;� 0;> 0;D 0;� 0;< 0g, there exist exact triangles

SH~� .W; V / // SH~� .W /

zz

SH~� .V /
Œ�1�

ee

and

SH�
~
.W; V /

ŒC1� %%

SH�
~
.W /oo

SH�
~
.V /

::

These triangles are functorial with respect to inclusions of Liouville pairs.

This theorem will be proved in Section 7.3.

7.1 Cofinal families of Hamiltonians

As a preparation, we now recast the definition of the symplectic homology groups
SH~� .W / and SH~� .V / and of the transfer map f ~

Š
W SH~� .W /! SH~� .V / at chain

level in terms of some carefully chosen cofinal families of Hamiltonians. This will
allow us to further express the relative symplectic homology groups SH~� .W; V / in
terms of the cone construction.

Let .W; V / be a Liouville pair with filling F .
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Notational convention Let P and Q denote sets of 1–periodic orbits of a given
Hamiltonian H. Recall that we write Q<P if all the orbits in group Q have strictly
smaller action than all the orbits in group P, and we write Q � P if there is no Floer
trajectory for H asymptotic at the positive puncture to an orbit in Q and asymptotic
at the negative puncture to an orbit in P. This implies that the expression of the
Floer boundary operator on any orbit in Q does not contain any element in P. It is
understood that the Floer equation involves some almost complex structure which is
not specified in the notation.

Similarly, given two Hamiltonians H˙ and a homotopy Hs for s 2 R equal to H˙
near ˙1, and given sets of 1–periodic orbits PH˙ for H˙ , we write

PHC � PH�

if there is no Floer continuation trajectory for the homotopy Hs asymptotic at the
positive puncture to an orbit in PHC and asymptotic at the negative puncture to an
orbit in PH� . This implies that the expression of the Floer continuation map on any
orbit in PHC does not contain any element in PH� . Here it is again understood that
the Floer continuation equation involves some almost complex structure which is not
specified in the notation. In the previous context, we write

PHC < PH�

if the HC–action of any orbit in PHC is smaller than the H�–action of any orbit
in PH� . This implies PHC�PH� if HC�H� and the homotopy Hs is nonincreasing
with respect to the s–variable.

Given c 2R, we write
PHC < PH� � c

if the difference between the HC–action of any orbit in PHC and the H�–action of
any orbit in PH� is smaller than �c .

Lemma 7.2 Consider Hamiltonians HC�H� and a homotopy Hs which is a convex
interpolation between HC and H� given by a nondecreasing s–dependent function,
ie Hs DH�C f .s/.HC �H�/ with f W R! Œ0; 1�, f 0 � 0, f D 0 near �1 and
f D 1 near C1. Then PHC < PH� �kHC�H�k1 implies PHC � PH� .

Proof If there is a continuation Floer trajectory uW R�S1! yWF solving

@suCJs;t .u/.@tu�XHs .u//D 0
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with lims!˙1 u.s; � /D x˙. � /, where x˙ are 1–periodic orbits of H˙ , then we have

AHC.xC/�AH�.x�/

D

Z 1
�1

d

ds
AHs .u.s; � // ds

D

Z 1
�1

dAHs .u.s; � //�@suds�

Z 1
�1

Z 1

0

@sHs.t; u.s; t// dt ds

D

Z 1
�1

Z 1

0

k@su.s; t/k
2 dt ds�

Z 1
�1

Z 1

0

f 0.s/
�
HC.t; u.s; t//�H�.t; u.s; t//

�
dt ds

� �

Z 1
�1

Z 1

0

f 0.s/ sup
t;x
.HC.t; x/�H�.t; x// dt ds

D�kHC�H�k1:

Since the domain of definition of the Hamiltonians that we use in this paper is a
noncompact manifold, it is appropriate to discuss the degree of applicability of the
previous principle: it holds for compactly supported homotopies, so that kHC�H�k1
is finite (and can be explicitly computed), but it also holds for noncompactly supported
homotopies if one knows a priori that the continuation Floer trajectories are contained in
a compact set, in which case it is enough to estimate kHC�H�k1 on that compact set.

7.1.1 Hamiltonians for SH~� .W / Let

�; � > 0

be such that � … Spec.@�W / and � … Spec.@CW /. Denote by �� > 0 the distance
from � to Spec.@�W / and let ı > 0 be such that

(37) ı� < ��:

We denote by
K�;� DK�;�;ı W yWF !R

the Hamiltonian which is defined up to smooth approximation as follows: it is constant
equal to �.1� ı/ on F n Œı; 1�� @F , it is linear equal to �.1� r/ on Œı; 1�� @F , it is
constant equal to 0 on W , and it is linear equal to �.r � 1/ on Œ1;1/� @CW . See
Figure 16.

A smooth approximation of K�;� will thus be of the form K�;� .r; y/ D k.r/ on
Œ1;1/�@CW (and similarly near the negative boundary @�W ). The 1–periodic orbits
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�.1� ı/

K�;�;ı

@CW@�Wı

I�0C

F 0C

�
��

F

W
0

Figure 16: Hamiltonians K�;�;ı for the definition SH~� .W /

of XK�;� on frg�@CW correspond to Reeb orbits on @CW of period k0.r/, and their
Hamiltonian action equals

rk0.r/� k.r/:

Since we assumed that � and � are not equal to the period of a closed Reeb orbit on
the respective boundaries of W , it follows that K�;� has no 1–periodic orbits in the
regions where it is linear.

The 1–periodic orbits of the Hamiltonian K�;� naturally fall into five classes as follows:

(F 0 ) Constants in F n Œı; 1�� @F .

(FC ) Orbits corresponding to negatively parametrized closed Reeb orbits on @F D
@�W and located near fıg � @�W .

(I� ) Orbits corresponding to negatively parametrized closed Reeb orbits on @�W
and located near @�W .

(I 0 ) Constants in W .

(IC ) Orbits corresponding to positively parametrized closed Reeb orbits on @CW
and located near @CW .

We denote by F the group of orbits F 0C , and by I the group of orbits I�0C . The
maximal action of an orbit in group F is ��.1� ı/D��C ı�, while the minimal
action of an orbit in group I is ��C �� . Condition (37) implies F < I, and in
particular

F � I:

This last relation actually holds regardless of the choice of parameters by combining
Lemmas 2.2 and 2.3 in order to prohibit trajectories from F to I� with the relation
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F < I 0C , which prohibits trajectories from F to I 0C . Alternatively, the relation
F � I 0 is also a consequence of Lemma 2.5, while F � IC is also a consequence of
Lemmas 2.2 and 2.3.

Now let .�i / for i 2Z� and .�j / for j 2ZC be two sequences which do not contain
elements in Spec.@�W /[Spec.@CW / and such that �i 0 >�i for i 0 < i and �j < �j 0
for j < j 0. We moreover require that �i !1 as i !�1 and �j !1 as j !1.
Choose a sequence .ıi / for i 2 Z� of positive numbers such that ıi 0 < ıi for i 0 < i ,
such that ıi ! 0 as i !�1, and such that condition (37) is satisfied:

ıi�i < ��i for all i 2 Z�:

We let
Ki;j WDK�i ;�j ;ıi ; i 2 Z�; j 2 Z;

so that Ki 0;j �Ki;j for i 0 � i , and Ki;j �Ki;j 0 for j � j 0. We consider FC�.Ki;j /
as a doubly directed system in Kom, inverse on i !�1 and direct on j !1, with
maps

FC�.Ki 0;j /! FC�.Ki;j /; i 0 � i;

induced by nondecreasing homotopies, and maps

FC�.Ki;j /! FC�.Ki;j 0/; j � j 0;

induced by nonincreasing homotopies. Denote by FCF .Ki;j / the Floer subcomplex
of FC�.Ki;j / generated by orbits in the group F , and denote by FCI .Ki;j / the Floer
quotient complex generated by orbits in the group I. The groups of orbits I� , I 0

and IC are ordered by action as I� < I 0 < IC within the group of orbits I, so
that we have corresponding subcomplexes and quotient complexes FCI~.Ki;j / for
~ 2 f¿;� 0;> 0;D 0;� 0;< 0g, where I~ has the following meaning:

I¿
D I; I�0 D I�0; I>0 D IC; I<0 D I�; ID0 D I 0; I�0 D I 0C:

Lemma 7.3 The homotopies that define the doubly directed system FC�.Ki;j / for
i 2 Z� and j 2 ZC induce doubly directed systems

FCI~.Ki;j /; i 2 Z�; j 2 ZC; for ~ 2 f¿;� 0;> 0;D 0;� 0;< 0g:

Proof Our choice of parameters ensures that

(38) FKi0;j � IKi;j ; FKi;j � IKi;j 0
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for i 0 � i and j � j 0. To prove these relations let �0D�i 0 , � 0D �j 0 and ı0D ıi 0 , and
similarly �, � and ı for the corresponding numbers not decorated with primes. The
first relation follows from Lemma 7.2 and the relation FKi0;j <IKi;j�kKi 0;j�Ki;j k1 :
the maximal action of an orbit in FKi0;j is ��0.1�ı0/, the minimal action of an orbit in
IKi;j is ��C�� , and the maximal oscillation of the homotopy is kKi 0;j �Ki;j k1D
�0.1� ı0/��.1� ı/; the desired relation then follows from (37). The second relation
in (38) follows from FKi;j <IKi;j 0 because in this case the homotopy is nonincreasing.
Now we have already seen that FKi;j <IKi;j , while the action of the orbits in IKi;j 0 is
never smaller than the action of the orbits in IKi;j . This proves the relations (38). They
imply that we have a doubly directed subsystem FCF .Ki;j / and a doubly directed
quotient system FCI .Ki;j / for i 2 Z� and j 2 ZC .

To prove that we have doubly directed systems FCI~.Ki;j / for i 2 Z� and j 2 ZC
for all values of ~ we need to show the relations

I�Ki0;j
� I 0CKi;j

and I�0Ki0;j
� ICKi;j

for i 0 � i;

I�Ki;j � I
0C
Ki;j 0

and I�0Ki;j � I
C

Ki;j 0
for j � j 0:

The last two relations follow from the fact that the nonincreasing homotopies which
induce maps FC�.Ki;j /! FC�.Ki;j 0/ for j � j 0 preserve the filtration by the ac-
tion. In contrast, this argument cannot be used to prove the first two relations since
nondecreasing homotopies typically do not preserve the action filtration. Instead we
argue using the confinement lemmas in Section 2.3: the first relation follows from
Lemma 2.5, and the second relation follows from Lemmas 2.2 and 2.3.

Lemma 7.4 We have isomorphisms

SH~� .W /Š lim
��!
j

lim
 ��
i

FHI~.Ki;j /

for ~ 2 f¿;� 0;> 0;D 0;� 0;< 0g.

Proof Recall that the slopes of Ki;j are ��i and �j , with ��i < 0 < �j . We claim
that

(39) SH.��i ;�j /� .W /Š FHI .Ki;j /:

To prove (39) recall that SH.a;b/� .W /D lim
��!K

FH.a;b/� .K/, where K ranges over the
space H.W IF / of admissible Hamiltonians on yWF with respect to the filling F and
the direct limit is considered with respect to nonincreasing homotopies; see Section 2.4.
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Consider a decreasing sequence ik ! �1 and an increasing sequence jk ! 1
as k ! 1. The sequence of Hamiltonians Kik ;jk for k 2 ZC is then cofinal in
H.W IF / and we have

SH.a;b/� .W /D lim
��!
k!1

FH.a;b/� .Kik ;jk /;

where the direct limit is considered with respect to continuation maps FH.a;b/� .Kik ;jk /!

FH.a;b/� .Kik0 ;jk0 / induced by nonincreasing homotopies. We can assume without
loss of generality that ��ik � a and �jk � b . The smoothings of any such two
Hamiltonians Kik ;jk and Kik0 ;jk0 for k � k0 can be constructed so that they coincide
in the neighbourhood of W where the periodic orbits in group I for Kik ;jk appear.
As such, the continuation map FC.a;b/� .Kik ;jk /! FC.a;b/� .Kik0 ;jk0 /, which is upper
triangular if we arrange the generators in increasing order of the action, has diagonal
entries equal to C1 and is therefore an isomorphism. This proves that the canonical
map FH.a;b/� .Kik ;jk /! SH.a;b/� .W / is an isomorphism for all k (such that ��ik � a
and �jk � b ).

The isomorphism (39) is proved by considering the following three isomorphisms: we
have FHI .Ki;j /D FH.��iC�;�j /� .Ki;j / for any � > 0 such that ıi�i < � < ��i ; we
have FH.��iC�;�j /� .Ki;j /ŠSH.��iC�;�j /� .W / by the above; and SH.��iC�;�j /� .W /Š

SH.��i ;�j /� .W / since there is no periodic Reeb orbit on @�W with period in the interval
.�i � �; �i /.

A variant of the same argument shows that, under the isomorphism (39), the contin-
uation maps FHI .Ki 0;j /! FHI .Ki;j / for i 0 � i and FHI .Ki;j /! FHI .Ki;j 0/ for
j � j 0 induced by a nondecreasing homotopy and a by a nonincreasing homotopy,
respectively, coincide with the canonical maps SH.��i0 ;�j /� .W /! SH.��i ;�j /� .W / and
SH.��i ;�j /� .W /! SH

.�i ;�j 0 /
� .W /, respectively. From this the conclusion of the lemma

follows in the case ~ is ¿.

The proof in the case ~¤¿ is similar in view of the isomorphisms

SH.0
C;�j /
� .W /Š FHI>0.Ki;j /; SH.��i ;0

C/
� .W /Š FHI�0.Ki;j /;

SH.0
�;�j /
� .W /Š FHI�0.Ki;j /; SH.��i ;0

�/
� .W /Š FHI<0.Ki;j /;

SH.0
�;0C/
� .W /Š FHID0.Ki;j /:

Here 0� and 0C denote a negative and a positive real number, respectively, which is
close enough to zero (with absolute value smaller than the minimal period of a closed
Reeb orbit on @�W and @CW , respectively).
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Figure 17: Hamiltonians K˙ for the definition of SH~� .W; @
˙W /

7.1.2 Hamiltonians for SH~� .W; @˙W / We shall need in the sequel (Lemma 7.9)
alternative descriptions of the homology groups SH~� .W; @

˙W / in the spirit of the
previous section, which we now explain. We refer freely to the notation of Section 7.1.1.

Given �; � > 0 such that � … Spec.@�W / and � … Spec.@CW /, and given ı 2 .0; 1/,
we consider Hamiltonians K˙ DK˙

�;�;ı
W yWF !R defined as follows:

� The Hamiltonian K�
�;�;ı

coincides with the Hamiltonian K�;�;ı of Section 7.1.1
on W [ Œ1;1/� @CW and is equal to �K�;�;ı on F . See Figure 17.

� The Hamiltonian KC
�;�;ı

coincides with the Hamiltonian K�;�;ı on F [W and
is equal to �K�;�;ı on Œ1;1/� @CW . See Figure 17.

The 1–periodic orbits of each of these Hamiltonians naturally fall into five groups,
which we denote by F 0C and III�0C for K� , and by F 0C and I�0C for KC . We
denote as usual by ��; �� > 0 positive numbers smaller than the distance from � to
Spec.@�W / and smaller than the distance from � to Spec.@CW /, respectively. If the
parameters are chosen so that

(40) ı� < �� and �� �� > � � �� ;

then we have F <I for KC and III <F for K� , respectively. We write IIID0D III 0

and III>0 D III�C , and also ID0 D I 0 and I<0 D I�C .

This construction is well-behaved in families, just like the construction in the previous
section. Consider first an indexing parameter j 2ZC . We choose sequences �j !1,
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�j !1 and ıj ! 0 as j !1 such that �j … Spec.@�W / and �j … Spec.@CW /,
such that .�j / and .�j / are increasing and .ıj / is decreasing, and such that (40) is
satisfied for each j . We define K�j D K�

�j ;�j ;ıj
. Given j � j 0 we consider the

interpolating homotopy from K�j at C1 to K�j 0 at �1 which is the concatenation of
the following two monotone homotopies: first keep K�j fixed on W [ Œ1;1/� @CW
and interpolate between K�j and K�

�j 0 ;�j ;ıj 0
on F, then keep the Hamiltonian fixed

on F [W and interpolate between K�
�j 0 ;�j ;ıj 0

and K�j 0 on Œ1;1/� @CW . We claim
that for such a homotopy we have

IIIK�
j
� FK�

j 0
; IIID0K�

j
� III>0K�

j 0
:

The proof of the first relation uses Lemma 7.2. Since the homotopy from K�j 0 to K�j 0
is nonincreasing on Œ1;1/� @CW , the continuation Floer trajectories are contained
in F [W , where the gap between the Hamiltonians is

gapD k.K�j �K
�
j 0/jF[W k1 D �j 0.1� ıj 0/��j .1� ıj /:

In view of Lemma 7.2 it is enough to show that the maximal action of an orbit in IIIK�
j

is smaller than the minimal action of an orbit in FK�
j 0

minus the gap. This is equivalent
to the inequality �j � ��j < �j 0.1� ıj 0/� .�j 0.1� ıj 0/��j .1� ıj //, which is in
turn equivalent to ıj�j < ��j .

To prove the second relation we observe that the map induced by the homotopy is the
composition of the maps induced by each of the monotone homotopies which constitute
it. For the first homotopy, supported in F, there are no trajectories from III 0K�

j
to

III�K��j 0 ;�j ;ıj 0
by Lemma 2.5, and there are no trajectories from III 0K�

j
to IIICK��j 0 ;�j ;ıj 0

by Lemmas 2.2 and 2.3. For the second homotopy, there are no trajectories from
III 0K�

�j 0 ;�j ;ıj 0

to III>0K�
j 0

because the homotopy is nonincreasing and

III 0K�
�j 0 ;�j ;ıj 0

< III>0K�
j 0
:

This proves the second relation. (Note that one could not argue here using the gap.)

As a consequence, we obtain well-defined directed systems in Kom,

FCIII~.K
�
j /; j !1; for ~ 2 f¿;D 0;> 0g:

Consider now an indexing parameter i 2Z� . Given sequences �i !1 , �i !1 and
ıi ! 0 as i !�1 such that �i … Spec.@�W / and �i … Spec.@CW /, such that .�i /
and .�i / are increasing with ji j and .ıi / is decreasing with ji j, and such that (40) is
satisfied for each i , we define KCi DK

C

�i ;�i ;ıi
. Given i 0 � i the homotopy from KCi 0
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at C1 to KCi at �1 defined as the concatenation of the two monotone homotopies
from KCi 0 to KC

�i0 ;�i ;ıi0
and from KC

�i0 ;�i ;ıi0
to KCi is such that

F
K
C

i0
� I

K
C

i

; I<0
K
C

i0

� ID0
K
C

i

:

The proof involves arguments entirely similar to the above ones for the Hamiltonians K�,
hence we omit the details. We obtain well-defined inverse systems in Kom

FCI~.K
C
i /; i !�1; for ~ 2 f¿; < 0;D 0g:

Lemma 7.5 (a) For ~ 2 f¿;� 0;> 0;D 0;� 0;< 0g we have isomorphisms

SH~� .W; @
�W /Š lim

��!
j

FHIII~.K
�
j /:

(b) For ~ 2 f¿;� 0;> 0;D 0;� 0;< 0g we have isomorphisms

SH~� .W; @
CW /Š lim

 ��
i

FHI~.K
C
i /:

Proof The proof is similar to that of Lemma 7.4. For part (a) observe first that the right-
hand side does not depend on the choice of the family K�j subject to conditions (40).
We pick �j D �j outside the action spectra of @�W and @CW such that ��j < ��j ,
and then ıj sufficiently small that (40) holds for all j . Then a similar proof to that
of (39) yields

SH.�1;�j /� .W; @�W /Š FH.�1;�j /� .K�j /Š FHIII .K�j /:

In the direct limit over j we obtain part (a) for ~ is ¿. The cases ~ is “> 0” and ~
is “D 0” are proved similarly, and the remaining cases are a formal consequence of
these three. The proof of part (b) is analogous, where now it suffices to treat the cases
~ 2 f¿;D 0;< 0g.

7.1.3 Hamiltonians for SH~� .V / inside yWF Heuristically, the construction pre-
sented in this section can be viewed as the “gluing” of the three constructions presented
in the two previous sections.

We consider a Liouville cobordism pair .W; V / with filling F and write W D

W bottom ıV ıW top . Let
�; �˙; � > 0

be such that � … Spec.@�W /, �˙ … Spec.@˙V / and � … Spec.@CW /. Let �� , ��˙
and �� be positive real numbers smaller than 1

2
and smaller than the distances from �,
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�˙ and � to the corresponding action spectra. Let

ı; " 2 .0; 1/; R 2 .1;1/

be such that

(41) ı� < ��; "�� < ��� ; �C <R��C ;

and

(42) R.� � �� / < R.�C� ��C/ < �C.R� 1/ < ��� ��� < �� ��:

Note that the second inequality in (42) is automatic in view of (41). Also note that the
inequalities in (42) impose relations between �, �C , �� and � . Typically, an ordering
of the kind

� � �C; �CR � ��; �� � �

is enough to ensure condition (42) if �� > ��C , ��� > �� and �C > 1. These last
three conditions are not in the least restrictive, since the parameters �� , ��˙ and ��
are to be thought of as arbitrarily small, and the slope �C is to be thought of as large.
However, the previous three conditions on � , �˙ and � are restrictive, and among
these three the most restrictive one is �CR � �� : it forces �� to be larger than �C ,
and indeed much larger, in an uncontrolled way. This has implications for the kind
of doubly directed systems that we will construct, namely systems for which we can
consider first an inverse limit as the negative slopes go to �1, then a direct limit as
the positive slopes go to C1, but not the other way around.

We denote by
H�;�˙;� DH�;�˙;�;ı;";RW

yWF !R

the Hamiltonian which is defined up to smooth approximation as follows: it is
constant equal to "�.1 � ı/ C ��.1 � "/ on F n Œı"; 1� � @F, it is linear equal to
�."� ı"/C ��.1� "/C�.ı"� r/ on Œı"; "�� @F, it is constant equal to ��.1� "/
on "W bottom , it is linear equal to ��.1� "/C ��."� r/ on Œ"; 1�� @�V , it is constant
equal to 0 on V , it is linear equal to �C.r � 1/ on Œ1; R�� @CV , it is constant equal to
�C.R�1/ on RW top , and it is linear equal to �C.R�1/C�.r�R/ on ŒR;1/�@CW .
See Figure 18.

The 1–periodic orbits of the Hamiltonian H�;�˙;� fall into 11 classes as follows:

(F 0 ) Constants in F n .Œı"; 1�� @F /.

(FC ) Orbits corresponding to negatively parametrized closed Reeb orbits on
@F D @�W and located near ı"@�W .
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C ��.1� "/

��

@�W

F 0C

"ı" " 1 1 R R

�."� ı"/

0

��.1� "/

��� �C

@CV @CW

III�0C

�

H�;�˙;�

II�0C

I�0C

@�V�C.R� 1/

Figure 18: Hamiltonian adapted to the construction of the transfer map
SH~� .W /! SH~� .V /

(I� ) Orbits corresponding to negatively parametrized closed Reeb orbits on
@�W bottom D @�W and located near "@�W .

(I 0 ) Constants in "W bottom .

(IC ) Orbits corresponding to negatively parametrized closed Reeb orbits on
@CW bottom D @�V and located near "@�V .

(II� ) Orbits corresponding to negatively parametrized closed Reeb orbits on @�V
and located near @�V .

(II 0 ) Constants in V .

(IIC ) Orbits corresponding to positively parametrized closed Reeb orbits on @CV
and located near @CV .

(III� ) Orbits corresponding to positively parametrized closed Reeb orbits on
@�W top D @CV and located near R@CV .

(III 0 ) Constants in RW top .

(IIIC ) Orbits corresponding to positively parametrized closed Reeb orbits on @CW
and located near R@CW top DR@CW .

We denote by F the group of orbits F 0C, and by J the group of orbits J�0C for
J D I; II; III.
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Lemma 7.6 For the previous choices of parameters the above groups of orbits for
H�;�˙;� are ordered as

F � I � III � II and III � I;

provided the almost complex structure is cylindrical and stretched enough on a collar
neighbourhood of @CV in V .

Proof The relation F � I holds because F < I. Indeed, the maximal action of an
orbit in F equals �"�.1�ı/���.1�"/ (and is attained on F 0 ). The minimal action
of an orbit in I is larger than ���.1� "/Cmin.�".�� ��/;�".�� � ���//. The
conclusion follows in view of ı� < �� and �.1� ı/ > �� �� > ��� ��� .

The relation I � III holds because I < III. Indeed, the maximal action of an orbit
in I equals ���.1� "/ (and is attained on I 0 ). The minimal action of an orbit in III
is equal to ��C.R� 1/ (and is attained on III 0 ). The conclusion follows in view of
�C.R� 1/ < ��� ��� < ��.1� "/.

The relation F � III holds because F < I < III by the above.

The relation I � II holds because I < II. Indeed, the maximal action of an orbit in
I equals ���.1� "/. The minimal action of an orbit in II is larger than ���C ��� .
The conclusion follows in view of "�� < ��� .

The relation F � II holds because F < I < II by the above.

The relation III � II is seen as follows. On the one hand we have III < II 0C . Indeed,
the maximal action of an orbit in III is smaller than

��C.R� 1/Cmax.R.�C� ��C/; R.� � �� //:

The minimal action of an orbit in II 0C equals 0, and the conclusion follows in view
of R.� � �� / < R.�C� ��C/ < �C.R� 1/. On the other hand we have III � II� by
Lemma 2.4 for an almost complex structure which is cylindrical and stretched enough
within a collar neighbourhood of @CV in V .

The relation III � I (and actually also III � F ) follows also from Lemma 2.4.

Remark Lemma 7.6 should be compared to Lemma 6.1, which asserts the same
ordering of groups of orbits. The latter concerns the simpler Hamiltonians in Figure 14
and its proof crucially uses Lemmas 2.2 and 2.3. The former concerns the more
complicated Hamiltonians in Figure 18 (with two additional parameters " and R) and
its proof uses only action estimates and Lemma 2.4. This has the advantage that the
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ordering in Lemma 7.6 is preserved by continuation maps (see the proof of Lemma 7.7
below), whereas the one in Lemma 6.1 is not.

We now define a special cofinal family of Hamiltonians in HW .V IF / of the form
above. Besides conditions (41) and (42), we will also need a finer relation, stated
as (45) below, which will be used in order to show that the continuation maps preserve
the decomposition into groups of orbits given by Lemma 7.6. We will first choose
the parameters �C , R and � in the region with positive slopes, and then choose the
parameters �� , ", � and ı in the region with negative slopes.

(a) Choice of the parameters in the region with positive slopes We start with a
sequence .�C;j / for j 2 ZC consisting of real numbers �C;j � 1, which does not
contain elements in Spec.@CV /, such that �C;j < �C;j 0 for j < j 0, and such that
�C;j !1 as j !1.

We further consider a sequence .�j / for j 2 ZC consisting of positive real numbers
such that �j 2

�
1
4
�C;j ;

1
2
�C;j

�
, which does not contain elements in Spec.@CW /, and

such that �j < �j 0 for j < j 0.

We choose the parameters ��C;j ; ��j 2
�
0; 1
2

�
such that they form monotone sequences

which converge to 0.

We then choose a sequence .Rj / for j 2ZC consisting of numbers Rj � 1, such that
Rj <Rj 0 for j < j 0 and Rj !1 for j !1, and such that the last condition in (41)
is satisfied under the stronger form

(43) Rj��C;j > 2�C;j for all j 2 ZC:

(This stronger form of (41) will be used in Lemma 7.8.) The first two inequalities
in (42) are then satisfied.

(b) Choice of the parameters in the region with negative slopes We start with
a sequence .��;i / for i 2 Z� consisting of real numbers ��;i � 1, which does not
contain elements in Spec.@�V /, such that

(44) ��;i�1 � ��;i C 2 for all i 2 Z�:

This implies ��;i 0 � ��;i C 2 for i 0 < i and ��;i !1 as i ! �1. We choose
the parameters ���;i 2

�
0; 1
2

�
and such that they form a monotone sequence which

converges to 0. We require that the third inequality in (42) is satisfied:

�C;j .Rj � 1/ < ��;i � ���;i for all i � �j:
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This last condition is implied by ��;i >�C;�i .R�i�1/C 1
2

for i 2Z� , which provides
an explicit recipe for the construction.

We choose a sequence ."i / for i 2 Z� of numbers "i 2
�
0; 1
2

�
such that "i 0 < "i

for i 0 < i , such that "i ! 0 as i !�1, and such that the second condition in (41) is
satisfied:

"i��;i < ���;i for all i 2 Z�:

We also require that the sequence 1="i does not contain any element in Spec.@�W /,
which is a generic property.

We then consider two sequences .�i / and .ıi / for i 2 Z� such that

(45) "i�i .1� ıi /D 1 for all i 2 Z�

and which moreover satisfy the following conditions: the sequence .�i / consists of
positive numbers and does not contain elements of Spec.@�W /, we have �i 0 >�i for
i 0< i and �i!1, i!�1; the sequence .ıi / is such that ıi 2 .0; 1/ for all i 2Z� ,
we have ıi 0 < ıi for i 0 < i and ıi ! 0 as i !�1, and the first condition in (41) is
satisfied:

ıi�i < ��i for all i 2 Z�:

Such sequences are easily constructed by choosing �i slightly larger than 1="i for all
i 2 Z� .

These conditions imply �i > 1="i > ��;i=���;i � 2��;i for all i 2Z� , so that the last
inequality in (42) is also satisfied since ��;i � 1.

Now let

Hi;j WDH�i ;��;i ;�C;j ;�j ;ıi ;"i ;Rj ; i 2 Z�; j 2 Z; i � �j:

Then we have Hi 0;j �Hi;j for i 0 � i and Hi;j �Hi;j 0 for j � j 0. Indeed, the first
inequality follows from conditions (44) and (45), which imply that for i 0 < i the value
of Hi 0;j on "i@�V satisfies

��;i 0.1� "i /� .��;i C 2/.1� "i /� ��;i .1� "i /C 1

D ��;i .1� "i /C "i�i .1� ıi /Dmax
F
Hi;j :

The second inequality follows from the conditions �C;j 0 � �C;j � �j and Rj 0 �

Rj � 1, which imply .�C;j 0 � �j /.Rj 0 � 1/ � .�C;j � �j /.Rj � 1/, or equivalently
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�C;j 0.Rj 0 � 1/ � �C;j .Rj � 1/C �j .Rj 0 �Rj /, so Hi;j 0 � Hi;j on Rj 0@CW and
therefore everywhere.

We consider FC�.Hi;j / as a doubly directed system in Kom, inverse on i!�1 and
direct on j !1, with maps

FC�.Hi 0;j /! FC�.Hi;j /; i 0 � i � �j;

induced by nondecreasing homotopies, and maps

FC�.Hi;j /! FC�.Hi;j 0/; j � j 0; i � �j 0;

induced by nonincreasing homotopies. (The nondecreasing homotopies will actually be
chosen more specifically, as a composition of “small-distance” homotopies; see the proof
of Lemma 7.7 below.) The choice of parameters ensures that for each Hi;j the groups
of orbits are ordered as in Lemma 7.6. Denote by FCF .Hi;j / the Floer subcomplex
of FC�.Hi;j / generated by orbits in the group F, denote by FCI;II;III .Hi;j / the
Floer quotient complex generated by orbits in the groups I, II and III, and consider
similarly FCI;III .Hi;j / and FCII .Hi;j /. The groups of orbits II� , II 0 and IIC

are ordered by the action as II� < II 0 < IIC within the group of orbits II, so
we have corresponding subcomplexes and quotient complexes FCII~.Hi;j / for ~ 2
f¿;� 0;> 0;D 0;� 0;< 0g, where II~ has the following meaning:

II¿
DII; II�0DII�0; II>0DIIC; II<0DII�; IID0DII 0; II�0DII 0C:

Similarly, we have orderings by the action I�C < I 0 within the group I, and
III 0 < III�C within the group III, as well as orderings I � III and III � I from
Lemma 7.6. We thus define FC.I;III/~.Hi;j / for ~2 f¿;� 0;> 0;D 0;� 0;< 0g via

.I; III /¿ D .I; III /; .I; III /�0 D .I; III 0/; .I; III />0 D III�C;

.I; III /<0 D I�C; .I; III /D0 D .I 0; III 0/; .I; III /�0 D .I 0; III /:

Lemma 7.7 The homotopies that define the doubly directed system FC�.Hi;j / can
be chosen so that they induce doubly directed systems

FCII~.Hi;j /; FCI~.Hi;j /; FCIII~.Hi;j / and FC.I;III/~.Hi;j /

for i 2 Z� , j 2 ZC , i � �j and ~ 2 f¿;� 0;> 0;D 0;� 0;< 0g.

Proof (1) We consider first the continuation maps

FC�.Hi 0;j /! FC�.Hi;j /; i 0 � i � �j;
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induced by nondecreasing homotopies equal to Hi 0;j near C1 and equal to Hi;j
near �1. The positive slopes �C;j and �j are fixed, as well as the parameter Rj , and
the homotopy is constant outside F ıW bottom .

Write for simplicity H D Hi;j , H 0 D Hi 0;j , and �� D ��;i , �0� D ��;i 0 , " D "i ,
"0 D "i 0 , �D �i and �0 D �i 0 . The gap kH �H 0k1 between the two Hamiltonians
is equal to the biggest value among .1� "0/�0�� .1� "/�� (the difference of values in
the region I 0 ) and .1�"0/�0�C"

0�0.1� ı0/� .1�"/���"�.1� ı/ (the difference of
values in the region F 0 ). Condition (45) ensures that these two values are equal, hence

gap WD kH �H 0k1 D .1� "0/�0�� .1� "/��:

In the sequel we will repeatedly apply Lemma 7.2 (without further mentioning it),
which asserts that, for two groups of orbits, PHC < PH� � gap implies PHC � PH� .

We first prove that

FH 0 ; IH 0 � IIH ;

so that we have induced maps FCII .H 0/ ! FCII .H/. We have F 0H 0 C gap <
I 0H 0Cgap<II�H : the first inequality is obvious, and the second inequality is equivalent
to �.1�"/�� <���C��� , which is implied by "�� <��� . This ensures FH 0 � IIH
and IH 0 � IIH .

We now prove

IIIH 0 � .F; I; II /H :

Note that H and H 0 coincide in the regions II 0C and III, and from the proof of
Lemma 7.6 we know that IIIH < II 0CH . The conditions IIIH 0 � .F; I; II�/H follow
from Lemma 2.4. To prove the condition IIIH 0 � II 0CH , we cannot argue directly by
action considerations as in the proof of IIIH � II 0CH since the gap between H and H 0

could be arbitrarily large. Instead, we use again IIIH < II 0CH , so we can find some
" > 0 such that IIIH < II 0CH � ". We specialize now to nondecreasing homotopies
from H to H 0 which are compositions of “small-distance” homotopies with gap
smaller than ". (This can always be achieved by cutting and reparametrizing a given
homotopy.) Note that all the homotopies are fixed on II 0C and III. For each of these
small-distance homotopies, say running from H� at �1 to HC at C1, we then have
IIIHC � II

0C
H�

by Lemma 7.2, and we also have IIIHC � .F; I; II
�/H� by Lemma 2.4.

In other words, IIIHC � .F; I; II /H� and the image through the continuation map
of a generator in IIIHC lies in IIIH� . As a result, the image of a generator in IIIH 0
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through a composition of such “small-distance” homotopies lies in IIIH and we have
IIIH 0 � .F; I; II /H . (This reproves in particular IIIH 0 � .F; I; II�/H .)

We now prove that

FH 0 � IH ; IIIH ;

wherefrom induced maps

FCI;II;III .H 0/! FCI;II;III .H/ and FCI;III .H 0/! FCI;III .H/:

The relation FH 0 � IH follows from F 0H 0 C gap<min.I�H ; I
C

H /, which is

�"0.1� ı0/�0� .1� "/�� < �.1� "/��Cmin.�".�� ��/;�".��� ���//

D�.1� "/��� ".�� ��/:

This is equivalent to �.1� ı/� < �.�� ��/ in view of (45), and holds in view of
ı� < �� . The relation FH 0 � IIIH follows from the previous one; indeed, IH < IIIH ,
hence F 0H 0 C gap< IIIH .

We also have

IH 0 � IIIH :

This follows from I 0H 0Cgap< III 0H , which is �.1�"0/�0�C .1�"
0/�0�� .1�"/�� <

��C.R � 1/, which is equivalent to �C.R � 1/ < .1� "/�� and is implied by (41)
and (42). Since we already proved IIIH 0 � IH , we infer that the continuation maps
therefore preserve the decomposition FCI;III .H/D FCI .H/˚FCIII .H/.

We now prove that

II�H 0 � II
0C
H and II�0H 0 � II

C

H ;

so that we have induced maps FCII~.H
0/! FCII~.H/ for all values of ~. The

first relation follows from Lemmas 2.2, 2.3 and 2.5, while the last relation follows
from Lemmas 2.2 and 2.3 (using H 0 D H outside F ıW bottom ). Note that in this
situation we cannot argue using the action because the homotopy only preserves the
action filtration up to an error given by the gap, and the latter can be arbitrarily large.

We now prove that

I�CH 0 � .I
0
H ; IIIH / and .IH 0 ; III

0
H 0/� III

�C

H ;

which implies that we have induced maps FC.I;III/~.H
0/! FC.I;III/~.H/ for all

values of ~.
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In view of IH 0 � IIIH , the first relation is a consequence of I�CH 0 � I
0
H , which is in

turn implied by I�CH 0 C gap < I 0H . The latter is seen to hold as follows. Denote by
T@�V and T@�W the minimal period of a closed Reeb orbit on @�V and on @�W ,
respectively, and set T� WDmin.T@�V ; T@�W / > 0. The desired inequality is implied
by �.1� "0/�0�� "

0T�C .1� "
0/�0�� .1� "/�� < �.1� "/�� , which holds because

�"0T� < 0.

In view of IH 0 � IIIH , the second relation is a consequence of III 0H 0 � III
�C

H . The
relation III 0H 0 � III

C

H is a consequence of Lemmas 2.2 and 2.3 in view of the fact
that the homotopy is constant outside F ıW bottom . The relation III 0H 0 � III

�
H is a

consequence of Lemma 2.5. Note that in both situations we cannot argue using the
action because the homotopy only preserves the action filtration up to an error given
by the gap, and the latter can be arbitrarily large.

(2) We now consider the continuation maps

FC�.Hi;j /! FC�.Hi;j 0/; j � j 0 � �i;

induced by nonincreasing homotopies equal to Hi;j near C1 and equal to Hi;j 0
near �1. The negative slopes ��;i and �i are fixed, as well as the parameters "i and
ıi , and the homotopy is constant on F ıW bottom ıV . This situation is easier than the
one in (1) because here the continuation maps preserve the action filtration.

Write again for simplicity H D Hi;j , H 0 D Hi;j 0 , and �C D �C;j , �0
C
D �C;j 0 ,

RDRj , R0 DR0j , � D �j and � 0 D �j 0 .

The relations

FH � IH 0 ; IIH 0 ; IIIH 0 and IH � IIH 0

follow as in Lemma 7.6. On the one hand we have IH 0 D IH and II�0H 0 D II
�0
H , so that

FH � IH 0 ; II
�0
H 0 and IH � II�0H 0 . On the other hand we have F 0H <II

0
H D II

0
H 0 <II

C

H 0

and F 0H DF
0
H 0 <III

0
H 0 <III

�C

H 0 for i ��j 0, which implies FH � IICH 0 ; IIIH 0 . Finally,
we also have IH D I 0H < II 0H 0 < II

C

H 0 , which implies IH � IIH 0 .

The relation

IIIH � IIH 0

is proved as follows. We have IIIH � II�H 0 as in Lemma 7.6, using Lemma 2.4.
We have III 0CH < II 0CH 0 by (42), namely R.� � �� / < �C.R � 1/. Finally we have
III�H < II 0CH 0 by (41), namely R��C > �C .
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The relation
IIIH � IH 0

is proved as in Lemma 7.6, using Lemma 2.4.

The continuation map
FCII .H/! FCII .H 0/

is induced by a nonincreasing homotopy, hence preserves the filtration by the action.
As a consequence we obtain well-defined continuation maps

FCII~.H/! FCII~.H
0/

for all values of ~.

Let us now prove that the continuation map

FCI;III .H/! FCI;III .H 0/

induces maps
FC.I;III/~.H/! FC.I;III/~.H

0/

for all values of ~. We need to show the relations

I�CH � I 0H 0 ; IIIH 0 and IH ; III
0
H � III

�C

H 0 :

The first relation follows from I�CH < I 0H D I
0
H 0 < III

0
H 0 < III

�C

H 0 , where the middle
inequality is ensured by (41) and (42), namely �C.R� 1/ < �� � ��� < ��.1� "i /.
The second relation follows from I 0H < III 0H 0 < III

�C

H 0 .

The above shows that we actually have noninteracting doubly directed systems

FCI~.Hi;j / and FCIII~.Hi;j /

for all values of ~ and Lemma 7.7 is proved.

Lemma 7.8 We have isomorphisms

SH~� .V /Š lim
��!
j

lim
 ��
i

FHII~.Hi;j /

for ~ 2 f¿;� 0;> 0;D 0;� 0;< 0g.

Proof The proof is very much similar to that of Lemma 7.4. Recalling that the slopes
near @˙V for Hi;j are ���;i and �C;j , the key identity is

(46) SH.���;i ;�C;j /� .V /Š FHII .Hi;j /:
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To prove (46), recall from Lemma 5.1 that SH.a;b/� .V / can be expressed as a direct
limit over Hamiltonians in HW .V IF / of Floer homology groups truncated in the
action window .a; b/. In particular, considering a decreasing sequence ik!�1 and
an increasing sequence jk !1 as k!1 with ik � �jk , we have SH.a;b/� .V /D

lim
��!k!1

FH.a;b/� .Hik ;jk /. Here the direct limit is understood with respect to continua-
tion maps FH.a;b/� .Hik ;jk /! FH.a;b/� .Hik0 ;jk0 / induced by nonincreasing homotopies.

We claim that for k large enough such that �C;jk � �a we have FC.a;b/� .Hik ;jk /D

FC.a;b/II .Hik ;jk /. The proof is similar to the proof of Lemma 5.1: We need to show that
the actions of orbits in groups F , I and III are below a . For the groups F and I this
is obvious. The actions within group III are ordered as III 0 < III�C . The maximal
action of the orbits in group III� is bounded above by ��C.R�1/CR.�C���C/D
�C�R��C < ��C � a , where we have dropped the index jk and the first inequality
follows from condition (43). Similarly, the maximal action of the orbits in group IIIC

is bounded above by ��C.R�1/CR.���� /<��C.R�1/CR.�C���C/<a , where
the first inequality follows from (42) and the second one from the one for group III� .
Combining this with the previous paragraph we obtain

SH.a;b/� .V /D lim
��!
k!1

FH.a;b/II .Hik ;jk /:

Assume now without loss of generality that ���;ik �a and �C;jk � b . The smoothings
of any such two Hamiltonians Hik ;jk and Hik0 ;jk0 for k � k0 can be constructed so
that they coincide in the neighbourhood of V where the periodic orbits in group II for
Hik ;jk appear. As such, the continuation map FC.a;b/II .Hik ;jk /! FC.a;b/II .Hik0 ;jk0 /,
which is upper triangular if we arrange the generators in increasing order of the
action, has diagonal entries equal to C1 and is therefore an isomorphism. This
proves that we have a canonical isomorphism FH.a;b/II .Hik ;jk /Š SH.a;b/� .V / for all k
(such that ���;ik � a and �C;jk � b ). This implies (46) by choosing a D ���;i
and b D �C;j .

A variant of this argument shows that, under the isomorphism (46), the continuation
maps FHII .Hi 0;j / ! FHII .Hi;j / for i 0 � i and FHII .Hi;j / ! FHII .Hi;j 0/ for
j � j 0 induced by a nondecreasing homotopy, respectively by a nonincreasing homo-
topy, coincide with the canonical maps SH

.���;i0 ;�C;j /
� .V /! SH.���;i ;�C;j /� .V / and

SH.���;i ;�C;j /� .V /! SH
.���;i ;�C;j 0 /
� .V /, respectively. The conclusion of the lemma

follows in the case ~ is ¿.

The proof in the case ~¤¿ is similar, as in Lemma 7.4.
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Lemma 7.9 We have isomorphisms

SH~� .W
bottom; @CW bottom/Š lim

��!
j

lim
 ��
i

FHI~.Hi;j /

and
SH~� .W

top; @�W top/Š lim
��!
j

lim
 ��
i

FHIII~.Hi;j /

for ~ 2 f¿;� 0;> 0;D 0;� 0;< 0g.

Proof (1) We prove the first isomorphism. Since the group of orbits I is located in
the region where the Hamiltonians Hi;j have negative slope the direct limit over j plays
no role and we can assume without loss of generality that j D j0 is constant. The Floer
trajectories involved in the differential for FCI .Hi;j / and also the relevant continuation
Floer trajectories are confined to a neighbourhood of F ıW bottom by Lemma 2.2. We
can thus replace the Hamiltonians Hi DHi;j0 by Hamiltonians zHi which coincide
with Hi in F ıW bottom ıV and are constant equal to 0 on V ıW top ı Œ1;1/� @CW .
We can further shift these Hamiltonians to H i D zHi � ��;i .1� "i / so that the orbits
in group I lie on level 0, and further replace H i by Hi D "iH i ı�

ln1="i
Z , so that the

orbits in group I for Hi lie in a neighbourhood of W bottom , and the slopes of Hi in
the linear regions are the same as the slopes of H i . Finally, we can further replace the
Hamiltonians Hi by zHi defined on yW bottom

F which coincide with Hi on F ıW bottom

and continue on Œ1;1/�@CW bottom linearly with the same slope ���;i . The resulting
inverse system is cofinal and, by Lemma 7.5(b), it computes SH~� .W

bottom; @CW bottom/.

(2) We prove the second isomorphism. Since the group of orbits III is located
in the region where the Hamiltonians Hi;j have positive slope, the inverse limit
over i plays no role. Consider the Hamiltonian zHj which coincides with Hi;j

on V ıW top ı Œ1;1/ � @CW , and is constant equal to 0 on F ıW bottom ı V . The
complex FCIII . zHj / is well-defined by the same action considerations, which show
that IIIHi;j < II 0CHi;j

. Consider a nonincreasing homotopy from Hi;j at �1 to
zHj at C1, and also the reverse nondecreasing homotopy from zHj at �1 to Hi;j

at C1. We claim that these homotopies induce chain maps between FCIII .Hi;j /
and FCIII . zHj / which are homotopy inverses to each other. We first prove that
III zHj

� .F; I; II /Hi;j and IIIHi;j � .F; II / zHj , where in the latter case F stands
for critical points in F ıW bottom and II D II 0C . The first relation follows from
Lemma 2.4 for .F; I; II�/Hi;j and from action considerations for II 0CHi;j since the
homotopy is nonincreasing. The second relation follows from Lemmas 2.2 and 2.3
for III�Hi;j , from Lemma 2.5 for III 0Hi;j , and it also follows for IIICHi;j by specializing
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to homotopies which are compositions of “small-distance” homotopies as in the proof
of Lemma 7.7. As a result, the induced chain maps between FC.Hi;j / and FC. zHj /
preserve the subcomplexes generated by IIIHi;j and III zHj . These chain maps are
homotopy inverses of each other, and a similar argument shows that the corresponding
chain homotopies also preserve the subcomplexes generated by IIIHi;j and III zHj .
This proves the claim.

We can now further shift these Hamiltonians zHj to Hj D zHj � �C;j .Rj � 1/ so that
the orbits in group III lie on level 0, and further replace Hj by Hj DRjHj ı�

ln1=Rj
Z ,

so that the orbits in group III for Hj lie in a neighbourhood of W top . The resulting
direct system is cofinal and, by Lemma 7.5(a), it computes SH~� .W

top; @�W top/.

Lemmas 7.8 and 7.9 imply that for all flavours ~ we have isomorphisms

SH~� .W
top; @�W top/˚SH~� .W

bottom; @CW bottom/Š lim
��!
j

lim
 ��
i

FH.I;III/~.Hi;j /:

On the other hand, by the excision theorem, Theorem 6.8, we have isomorphisms

SH~� .W; V /Š SH~� .W
bottom; @�V /˚SH~� .W

top; @CV /:

Combining these isomorphisms we obtain:

Corollary 7.10 We have isomorphisms

SH~� .W; V /Š lim
��!
j

lim
 ��
i

FH.I;III/~.Hi;j /

for ~ 2 f¿;� 0;> 0;D 0;� 0;< 0g.

7.1.4 The transfer map revisited Consider again a Hamiltonian H DH�;�˙;� as
in Figure 18. We associate to it a new Hamiltonian L �H defined as follows: it is
constant equal to �."� ı"/C ��.1� "/ on F n Œı"; 1�� @F, it is linear of slope ��
on Œı"; ��� @F , it is constant equal to 0 on Œ�; 1�� @F [W [ Œ1; R�� @CW , and it is
linear of slope � on ŒR;1/� @CW . See Figure 19.

Here the constant � is determined by the construction and given by

� D
��
�
.1� "/C " 2 ."; 1/:

The orbits of the Hamiltonian L fall as usual into five groups, F 0C and I�0C , and
we have F < I� < I 0 < IC . Indeed, the smallest action of an orbit in group I� is

Algebraic & Geometric Topology, Volume 18 (2018)



2062 Kai Cieliebak and Alexandru Oancea

��t�

��

"ı" R R

0

���

�

�C

1

H t

H

L

" 1� �

�tC

Figure 19: Hamiltonian L for the construction of the transfer map

��.�� ��/, whereas the largest action of an orbit in group F is ��.� � ı"/, and we
have ��.��ı"/<��.����/, which is equivalent to �ı"< ��� , in view of �ı <��
and "< � . Arguing differently, for the Hamiltonian L we have F � I regardless of the
choice of parameters using Lemmas 2.2, 2.3 and 2.5, and the orbits within each of the
groups F and I are naturally ordered by the action as FC < F 0 and I� < I 0 < IC .

Consider now a Hamiltonian K WDK�;�;ı 0 as in Figure 16, with ı0 2 .0; 1/ such that
�ı0 < �� and �.1� ı0/ > �.� � ı"/, ie the maximal level of K is larger than the
maximal level of L. We then have L�K .

Lemma 7.11 The homotopy from K to L given by slow convex interpolation induces
for all flavours ~ homotopy equivalences

FCI~.L/
��! FCI~.K/:

Proof Although the homotopy is decreasing in the convex end, the Floer equation
remains unchanged in the region fr �Rg where the Hamiltonians L and K have the
same slope. So the maximum principle applies and the continuation map FC.L/!
FC.K/ is well-defined. It is a homotopy equivalence with homotopy inverse given by
the continuation map induced by the reverse homotopy from L to K .

We assume without loss of generality that L has no critical points in the region
Œ�; 1�� @F [ Œ1; R�� @CW and that it coincides with K on W .
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It is useful to define the following Hamiltonians: LK is equal to L on F and is
equal to K on W [ Œ1;1/� @CW , and KL is equal to K on F ıW and is equal
to L on Œ1;1/� @CW . We accordingly have chain homotopy equivalences FC.L/!
FC.KL/ ! FC.K/ and also FC.L/ ! FC.LK/ ! FC.K/ induced respectively
by homotopies supported in the positive/negative end. We will show that we have
corresponding chain homotopy equivalences FCI~.L/! FCI~.KL/! FCI~.K/
for all flavours ~. The same statement holds if we replace KL with LK , but we will
not use it.

We first consider the homotopies connecting L and KL, supported in the negative end,
and show that they induce chain maps FCI~.L/! FCI~.KL/ and FCI~.KL/!
FCI~.L/ which are homotopy inverses of each other for all flavours ~. We first
consider the nondecreasing homotopy from L to KL, constant on W [ Œ1;1/�@CW .
Each element in the homotopy is of the following form: outside F it coincides with L,
and inside F it is linear of slope �� in some region Œa; b�� @F with 0 < a < b � 1
depending continuously on the Hamiltonian; it is constant equal to 0 on fb � r � 1g
and it is constant equal to �.b� a/ on fr � ag. Also, each element in the homotopy
satisfies F < I� < I 0 < IC . We can decompose the homotopy into “small-distance”
homotopies of gap e>0 small enough that, at the endpoints L˙ of each such homotopy,
we have FLC<IL��e , I�LC<I

0C
L�
�e and I 0LC<I

C

L�
�e . This ensures that we have

induced chain maps FCI~.LC/! FCI~.L�/ for all flavours ~, and the result of the
composition is a continuation chain map FCI~.KL/! FCI~.L/. By considering the
reverse homotopy, the same argument produces a chain map FCI~.L/! FCI~.KL/.
The same argument applied in 1–parametric families shows that each of the small-
distance chain maps FCI~.LC/! FCI~.L�/ is a chain homotopy equivalence, and
so is their composition.

The same arguments show that we have chain homotopy equivalences FCI~.KL/!
FCI~.K/ for all flavours ~. By composition we obtain chain homotopy equivalences
FCI~.L/! FCI~.K/ for all flavours ~.

Remark We have used an argument based on “small-distance” isomorphisms also in
the proof of Lemma 7.7. It is likely that it can be used in order to simplify further the
proof of Lemma 7.7.

Consider now a doubly directed system Hi;j as in Section 7.1.3. Let Li;j and Ki;j
be the Hamiltonians associated to Hi;j as in Lemma 7.11. We turn Li;j into a doubly
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directed system in Kom by composing the continuation maps FC.Ki 0;j /! FC.Ki;j /
and FC.Ki;j /! FC.Ki;j 0/ with the canonical maps in Lemma 7.11 and their inverses.
(Note that in general we do not have Li 0;j �Li;j for i 0 � i ��j .) Then all the results
for the system Ki;j in Section 7.1.1 carry over to the system Li;j .

Recall that Li;j �Hi;j and the orbits in group F for Li;j and Hi;j coincide. There-
fore, by Lemma 7.6 the actions of the orbit groups satisfy FLi;j < .I; II; III /Hi;j . We
thus obtain induced chain maps

fi;j W FCI .Li;j /! FCI;II;III .Hi;j /! FCII .Hi;j /

which define a morphism of doubly directed systems in Kom. Here the first map is the
continuation map and the second one the projection onto the quotient complex in view
of Lemma 7.6. Since these maps preserve the filtration by the action, we also have
induced chain maps

f ~i;j W FCI~.Li;j /! FCII~.Hi;j /

for ~ 2 f¿;� 0;> 0;D 0;� 0;< 0g, which define morphisms of doubly directed
systems in Kom. We denote by .f ~i;j /� the maps induced in homology.

Lemma 7.12 Under the isomorphisms of Lemmas 7.4, 7.8 and 7.11 we have

f ~
Š
D lim
��!
j

lim
 ��
i

.f ~i;j /�;

where f ~
Š
W SH~� .W /! SH~� .V / is the transfer map from Definition 5.3.

Proof Recall from (39) and Lemma 7.11 the isomorphisms

SH.��i ;�j /� .W /Š FHI .Ki;j /Š FHI .Li;j /:

Recall also from (46) the isomorphism

SH.���;i ;�C;j /� .V /' FHII .Hi;j /:

Recall that �i � ��;i and �j � �C;j . It follows from the proofs of Lemmas 7.4 and 7.8
that the continuation map .fi;j /�W FHI .Li;j /! FHII .Hi;j / coincides via the above
isomorphisms with the composition of the transfer map

f
.��i ;�j /

Š
W SH.��i ;�j /� .W /! SH.��i ;�j /� .V /

with the canonical map given by enlarging/restricting the action window

SH.��i ;�j /� .V /! SH.���;i ;�C;j /� .V /;
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ie

SH.��i ;�j /� .W /
.fi;j /�

//

f
.��i ;�j /

Š

''

SH.���;i ;�C;j /� .V /

SH.��i ;�j /� .V /

66

Since ���;i!�1 as i!�1 and �j!C1 as j!C1, and since the continuation
maps in the doubly directed systems for Li;j and Hi;j correspond under the previous
isomorphisms to enlarging/restricting the action windows (Lemmas 7.4 and 7.8), we
obtain

fŠ D lim
��!
j

lim
 ��
i

.fi;j /�:

This proves the lemma when ~ is ¿. The proof for the other values of ~ is entirely
analogous.

7.2 Symplectic homology of a pair as a homological mapping cone

Let f ~i;j be the chain maps constructed in Section 7.1.4. The discussion in Section 4
shows that the cones C.f ~i;j / form a doubly directed system, and we define (compare
with Corollary 7.10)

SH~;cone
� .W; V / WD lim

��!
j

lim
 ��
i

H�.C.f
~
i;j //:

The goal of this section is to prove the following proposition:

Proposition 7.13 Let .W; V / be a cobordism pair. Then we have an isomorphism

SH~;cone
� .W; V /Š SH~� .W; V /Œ�1�

for ~ 2 f¿;� 0;> 0;D 0;� 0;< 0g.

Proof In view of Corollary 7.10 it will be enough to prove

(47) lim
��!
j

lim
 ��
i

H�.C.f
~
i;j //D lim

��!
j

lim
 ��
i

FH.I;III/~.Hi;j /Œ�1�

for all values of ~.

We recall the notation W DW bottom ıV ıW top . Recall the families of Hamiltonians
Hi;j and Li;j from Section 7.1.4. For a fixed value of the double index .i; j / we
write for readability H DHi;j and LD Li;j .
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Let ~ be ¿. We claim that any monotone homotopy from L to H induces a homotopy
equivalence

FCI .L/ ��! FCI;II;III .H/:

To see this, consider for t 2 Œ0; 1� the nonincreasing homotopy of Hamiltonians H t

as in Figure 19 from H 0 D H to H 1 D L. Each H t has the shape considered in
Section 7.1.3 with parameters

�t D �; �t� 2 Œ0; ���; �tC 2 Œ0; �C�; � t D �; ıt > 0; "t 2 Œ"; ��; Rt DR

satisfying
ıt"t D ı"; �t�.1� "

t /D �.� � "t /:

Thus "t increases with t , while ıt and �t� decrease with t . The actions of orbits in the
regions I, II and III are bounded below by ��.� � "t /� "t .����/D���C "t�� ,
�z�t� and ��t

C
.R� 1/, respectively, all of which increase with t . Here z�t� denotes

�� � ��� for �t� � �� � ��� and �t� otherwise. Since the action of orbits in region
F is independent of t and the actions satisfy F < I; II; III for t D 0, it follows that
F < I; II; III holds for all t 2 Œ0; 1�. Considering a moving action window separating
the orbit group F from the groups I, II and III, we see that the continuation map
FHI .L/! FHI;II;III .H/ is a composition of small-distance homotopy equivalences
and thus an isomorphism. This proves the claim.

Let us consider the commutative diagram

FCI .L/
f

//

�

h:e: ''

FCII .H/

FCI;II;III .H/
p

77

in which p is the projection induced by the ordering I; III � II. By Lemma 4.3(ii)
we have an isomorphism in Kom,

C.f /Š C.p/Š FCI;III .H/Œ�1�:

This isomorphism is compatible with continuation maps, and hence with the structure
of a doubly directed system. In the first-inverse-then-direct limit this yields (47) for ~
is ¿.

Let ~ be “D 0”. The orbits of L in the group I 0 are constants, and we separate
them as I 0 D I 0 bottom t I 0V t I 0 top , according to whether they lie in W bottom ,

Algebraic & Geometric Topology, Volume 18 (2018)



Symplectic homology and the Eilenberg–Steenrod axioms 2067

V or W top , respectively, with the orbits lying in W bottom [ W top forming a sub-
complex, and the orbits lying in V forming a quotient complex (this is achieved
by perturbing L along W by a Morse function whose restriction to V is smaller
than its restriction to W bottom [ W top ). The Floer complex reduces to the Morse
complex by symplectic asphericity [65], and we therefore have canonical identifications
FCI0 bottom.L/� FCI0.H/, FCI0V .L/� FCII0.H/ and FCI0 top.L/� FCIII0.H/.

The continuation map f D0W FCI0.L/! FCII0.H/ is identified with the projection
FCI0.L/! FCI0V .L/, and by Lemma 4.3(ii) we have an isomorphism in Kom,

C.f D0/Š FCI0 bottom;0 top.L/Œ�1�� FCI0;III0.H/Œ�1�:

This identification is compatible with continuation maps, and hence with the structure
of a doubly directed system. In the first-inverse-then-direct limit this yields (47) for ~
is “D 0”.

Let ~ be “< 0”. We denote by FCI0 bottom.L/ the complex generated by the critical
points of L inside W bottom , and we recall the canonical identification FCI0 bottom.L/'

FCI0.H/, which we already discussed in the case ~ is “D 0” above. We claim that
any monotone homotopy from L to H induces a homotopy equivalence

FCI�;0 bottom.L/ ��! FCI;II�.H/:

To see this, consider the composition

gW FCI�;0 bottom.L/! FCI;II�;III .H/! FCI;II�.H/;

where the first map is the continuation map and the second one is the quotient pro-
jection according to Lemma 7.6. Note that the subcomplexes FCI�;0 bottom.L/ and
FCI;II�;III .H/ correspond to the negative action parts if we choose the perturbing
Morse functions to be positive on W bottom and negative on V [ W top . Since the
homotopy is constant on V , Lemma 2.2 shows that the Floer cylinders counted by the
map g lie entirely in F [W bottom . Therefore, the map g agrees with the continuation
map FC<0.zL/! FC<0. zH/, where zL and zH are the Hamiltonians that agree with L
and H on F [W bottom and are equal to zero on V [W top . The argument in the case
~ is ¿, setting the Hamiltonians H t also to zero on V [W top , shows that this map is
a homotopy equivalence. This proves the claim.

Consider now the commutative diagram
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FCI�;0 bottom.L/
�

//

�

h:e: ((

FCII�.H/

FCI;II�.H/
p

77

in which p is the projection determined by the ordering I � II� . It follows from
Lemma 4.3(ii) that we have an isomorphism in Kom

C.�/Š C.p/Š FCI .H/Œ�1�:

We then consider the diagram of short exact sequences of complexes

FCI�.L/ //

f <0

��

FCI�;0 bottom.L/ //

�

��

FCI0 bottom.L/

��

FCII�.H/

��

FCII�.H/ //

��

0

��

C.f <0/ C.�/Š FCI .H/Œ�1�
ŠprojŒ�1�

// C.0/Š FCI0.H/Œ�1�

The top-right square commutes up to homotopy by Proposition 4.4 because the cone
of the identity map on the second line is homotopic to zero. The cone of � has been
identified above, and the bottom-right map induced between the cones is homotopic to
the projection FCI .H/Œ�1�

projŒ�1�
����!FCI0.H/Œ�1�. It then follows from Proposition 4.4

and Lemma 4.3(ii) that we have isomorphisms in Kom,

C.f <0/Š C.projŒ�1�/Œ1�Š C.proj/Š FCI�C.H/Œ�1�:

For the middle isomorphism see (23). The identification C.f <0/Š FCI�C.H/Œ�1� is
compatible with continuation maps, and hence with the structure of a doubly directed
system. In the first-inverse-then-direct limit this yields (47) for ~ is “< 0”.

Let ~ be “� 0”. This is a consequence of the cases ~ is ∅ and ~ is “< 0”. For this,
we consider the diagram

FCI�.L/ //

f <0

��

FCI .L/ //

f

��

FCI0C.L/

f �0

��

FCII�.H/ //

��

FCII .H/ //

��

FCII0C.H/

C.f <0/Š FCI�C.H/Œ�1�
ŠinclŒ�1�

// C.f /Š FCI;III .H/Œ�1�

Algebraic & Geometric Topology, Volume 18 (2018)



Symplectic homology and the Eilenberg–Steenrod axioms 2069

The cones of f <0 and f have been identified above, and the map induced between the
cones is homotopic to the inclusion FCI�C.H/Œ�1�

inclŒ�1�
����! FCI;III .H/Œ�1�. It then

follows from Proposition 4.4 and Lemma 4.3(ii) that we have isomorphisms in Kom,

C.f �0/Š C.inclŒ�1�/Š C.incl/Œ�1�Š FCI0;III .H/Œ�1�:

For the middle isomorphism see (23). The identification C.f �0/Š FCI0;III .H/Œ�1�
is compatible with continuation maps, and hence with the structure of a doubly directed
system. In the first-inverse-then-direct limit this yields (47) for ~ is “� 0”.

Let ~ be “> 0”. This is a consequence of the cases ~ is “D 0” and ~ is “� 0”. The
proof is similar to that of the case ~ is “� 0”.

Let ~ be “� 0”. This is a consequence of the cases ~ is “> 0” and ~ is ¿. The proof
is similar to that of the case ~ is “� 0”.

Remarks on the proof of Proposition 7.13 It is worth noting that we really needed
to consider only three cases: ~ is ¿, ~ is “D 0” and ~ is “< 0”, the other three cases
being in a sense formal consequences. As a matter of fact, given the cases ~ is ¿ and
~ is “D 0”, any of the four remaining cases suffices in order to deal with the other
remaining three. A strategy that would have worked is to have considered the case ~
is “> 0”, ie work our way from the convex end throughout the cobordism (instead of
starting from the concave end as in the proof). Should one wish to start with one of the
cases ~ is “� 0” or ~ is “� 0”, an additional argument would be needed, related to
excision, that would allow one to decouple I from III 0 , and I 0 from III, respectively.

We can see a posteriori that the proof consists in a suitable iterative application of the
following two elementary steps:

(i) Identify suitable complexes for L and H which are homotopy equivalent via
the continuation map.

(ii) Embed the maps f ~ whose cone we wish to compute inside grid diagrams
of the type considered in Proposition 4.4, in which the other maps are either
some of the homotopy equivalences of step (i), or maps f ~ whose cones have
been already computed, or natural projections/inclusions for which the cones
are known via Lemma 4.3.

7.3 The exact triangle of a pair

The homotopy invariance of the transfer map, together with the identification between
the dynamical definition of the relative symplectic homology groups and the definition
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using cones given by Proposition 7.13 implies that for any exact inclusion of pairs
.W; V /

f
�! .W 0; V 0/ and for any ~2 f¿;� 0;> 0;D 0;� 0;< 0g we have an induced

transfer map
SH~� .W

0; V 0/
fŠ
�! SH~� .W; V /:

The following proposition establishes Theorem 7.1 (the case of symplectic cohomology
is completely analogous to that of symplectic homology).

Proposition 7.14 Let .W; V / be a cobordism pair, for which we denote the inclusions
by V i

�!W
j
�! .W; V /. Given ~ 2 f¿;� 0;> 0;D 0;� 0;< 0g the following hold:

(i) For any Liouville structure � there exists an exact triangle

SH~� .W; V I�/
jŠ

// SH~� .W I�/

iŠxx

SH~� .V I�/
@

Œ�1�
gg

where the various symplectic homology groups are understood to be computed
with respect to the Liouville structure �.

(ii) Given a homotopy of Liouville structures �t for t 2 Œ0; 1�, there are induced iso-
morphisms hW W SH~� .W I�0/!SH~� .W I�1/, hV W SH~� .V I�0/!SH~� .V I�1/
and hW;V W SH~� .W; V I�0/ ! SH~� .W; V I�1/ which define a morphism be-
tween the exact triangles in (i) corresponding to �0 and �1 .

(iii) Given an exact inclusion of pairs

.W; V /
f
�! .W 0; V 0/;

the transfer maps fŠW SH~� .V
0/ ! SH~� .V /, fŠW SH~� .W

0/ ! SH~� .W / and
fŠW SH~� .W

0; V 0/! SH~� .W; V / define a morphism between the exact triangles
of the pairs .W 0; V 0/ and .W; V /.

Proof The existence of the exact triangle in (i) is a consequence of the tautological ho-
mology exact triangle of a cone (20) and of the identification between SH~� .W; V /Œ�1�
and SH~;cone

� .W; V / proved in Proposition 7.13.

Part (ii) follows from the naturality of the homology exact triangle of a cone with respect
to chain maps, and from the naturality of the absolute transfer map SH~� .W I�/!
SH~� .V I�/ with respect to homotopies of Liouville structures.
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Part (iii) follows from the naturality of the homology exact triangle of a cone and from
the functoriality of transfer maps (Proposition 5.4).

The excision theorem, Theorem 6.11, can also be reinterpreted using transfer maps.
The proof uses the same kinds of arguments as above and we shall omit it.

Proposition 7.15 Given a Liouville cobordism triple .W; V; U /, denote the inclusion
by

.W nU ; V nU/ i
�! .W; V /:

The excision isomorphism in Theorem 6.11 is induced by the transfer map iŠ .

7.4 Exact triangle of a triple and Mayer–Vietoris exact triangle

Proposition 7.16 (exact triangle of a triple) Let U � V �W be a triple of Liouville
cobordisms with filling, meaning that .V; U / and .W; V / are pairs of Liouville co-
bordisms with filling, and denote the inclusions by .V; U / i

�! .W;U /
j
�! .W; V /. For

~ 2 f¿;� 0;> 0;D 0;� 0;< 0g there exists an exact triangle

SH~� .W; V /
jŠ

// SH~� .W;U /

iŠxx

SH~� .V; U /
@

Œ�1�
ff

which is functorial with respect to inclusions of triples, and which is invariant under
homotopies of the Liouville structure that preserve the triple.

Proof The proof is a formal consequence of the functorial properties of the long exact
sequence of a pair. The proof of Theorem I.10.2 in [34] holds verbatim.

Theorem 7.17 (Mayer–Vietoris exact triangle) Let U; V �W be Liouville cobor-
disms such that W D U [V and Z WD U \V is a Liouville cobordism such that

U D U bottom
ıZ; V DZ ıV top; W D U bottom

ıZ ıV top;

with U bottom D U nZ , V top D V nZ . We denote the inclusion maps by

U
jU

))
Z

iU
55

iV ))

W

V
jV

55
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There is a functorial Mayer–Vietoris exact triangle

SH~� .W /
.jUŠ;jV Š/

// SH~� .U /˚SH~� .V /

iUŠ�iV Švv

SH~� .Z/

Œ�1�

ı

ff

For SHD0 this exact triangle is isomorphic to the Mayer–Vietoris exact triangle in
singular cohomology.

Proof The Mayer–Vietoris exact triangle follows by a purely algebraic argument
from the exact triangle of a pair and its naturality, and from the excision theorem,
Theorem 6.11. The idea is to consider the following commutative diagram:

SH~
��1.W /
GG

ı 0

SH~
��1.V;Z/ SH~

��1.W;U /

OO

exc
Š
oo

SH~
��1.U;Z/ SH~� .Z/oo

OO

SH~� .U /oo

OO

SH~� .U;Z/oo SH~
�C1.Z/

oo

SH~
��1.W; V /

excŠ

OO

SH~� .V /oo

OO

SH~� .W /oo

OO

tt

ı 00

GG

ı 0

SH~� .W; V /oo

Š exc

OO

SH~� .V;Z/

OO

SH~� .W;U /
exc
Š

oo

OO

SH~
�C1.Z/

OO

The isomorphism SH~� .W; V /
��! SH~� .U;Z/ follows from the excision theorem,

Theorem 6.11, for the exact triple .W; V; V top/. Similarly, we have an isomorphism
SH~� .W;U /

��! SH~� .V;Z/. The maps ı0 and ı00 are obtained by inverting the corre-
sponding excision isomorphisms, and we actually have ı00 D�ı0 by the “hexagonal
lemma” of Eilenberg and Steenrod [34, Lemma I.15.1], which we recall below. We
define the map ı in the statement of Theorem 7.17 to be equal to ı00, and a direct
check by diagram chasing shows that the Mayer–Vietoris triangle is exact; see [34,
Section I.15] for details.
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„ ƒ‚ …
U

ZU bottom V top @CW@�W

W‚ …„ ƒ

„ ƒ‚ …
V

Figure 20: Cobordisms for the Mayer–Vietoris theorem

Lemma 7.18 [34, hexagonal lemma I.15.1] Consider the diagram of groups and
homomorphisms

G0
l1

vv

l2

((
i0

��

G01 G02

G

j1
ii

j2
55

j0

��

G2

Šk1

OO

i2
55

h1 ((

G1

Š k2

OO

i1
ii

h2vv
G00

Assume that each triangle is commutative, that k1 and k2 are isomorphisms, that the
two diagonal sequences are exact at G, and that j0i0 D 0. Then the two homomor-
phisms from G0 to G00 obtained by skirting the sides of the hexagon differ in sign
only.

The hexagonal lemma of Eilenberg and Steenrod is applied in the proof of Theorem 7.17
to the following configuration:

SH~
�C1.Z/

l1

tt

l2

**

i0

��

SH~� .V;Z/ SH~� .U;Z/

SH~� .W;Z/

j1jj j2 44

j0

��

SH~� .W;U /

Šk1

OO

i2 44

h1 **

SH~� .W; V /

Š k2

OO

i1jj

h2tt

SH~� .W /

Algebraic & Geometric Topology, Volume 18 (2018)



2074 Kai Cieliebak and Alexandru Oancea

The vertical isomorphisms k1 and k2 are the excision isomorphisms. The connecting
homomorphism ı in the Mayer–Vietoris exact sequence, or the homomorphism ı00 in
the notation of the proof of Theorem 7.17, is defined to be h2k�12 l2 .

7.5 Compatibility between exact triangles

In this section we use the notation .~;~0;~0=~/ for any one of the triples .<0;¿;�0/,
.� 0;¿; > 0/, .< 0;� 0;D 0/, or .D 0;� 0;> 0/. To any such triple there corresponds
a tautological exact triangle (see Propositions 2.12 and 2.18)

SH~� // SH~
0

�

{{

SH~
0=~
�

Œ�1�

bb

Proposition 7.19 Let .W; V / be a Liouville pair of cobordisms with filling. Let
.~;~0;~0=~/ be a triple as above.

(i) The transfer maps f ~WV , f ~
0

WV and f ~
0=~

WV induce a morphism between the
tautological exact triangles corresponding to .~;~0;~0=~/ for W and V .

(ii) The exact triangles of the pair .W; V / for .~;~0;~0=~/ determine “triangles
of triangles” together with the corresponding tautological exact triangles. More
precisely, upon expanding the exact triangles of a pair and the tautological ones
into long exact sequences, we obtain the following diagram, in which all squares
are commutative, except the bottom-right one, which is anticommutative:

SH~� .W; V / //

��

SH~� .W /
f ~Š

//

��

SH~� .V / //

��

SH~
��1.W; V /

��

SH~
0

� .W; V /
//

��

SH~
0

� .W /
f ~
0

Š
//

��

SH~
0

� .V /
//

��

SH~
0

��1.W; V /

��

SH~
0=~
� .W; V / //

��

SH~
0=~
� .W /

f
~0=~
Š

//

��

SH~
0=~
� .V /

�

//

��

SH~
0=~
��1 .W; V /

��

SH~
��1.W; V /

// SH~
��1.W /

f ~Š
// SH~
��1.V /

// SH~
��2.W; V /
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(iii) The exact triangle of a pair .W; V / for SHD0� is isomorphic to the exact triangle
of the pair .W; V / in singular cohomology Hn�� .

Proof Assertion (i) follows from the fact that continuation maps induced by increasing
homotopies respect the action filtration.

Assertion (ii) follows from Lemma 4.6, and from our identification of the relative sym-
plectic homology groups with limit homology groups of mapping cones corresponding
to chain level continuation maps (Proposition 7.13).

Lemma 4.6 is applied to the following morphism between action-filtration short exact
sequences given by the chain-level continuation maps:

0 // FCI~.Ki;j / //

f ~
i;j

��

FCI~0 .Ki;j / //

f ~
0

i;j

��

FCI~0=~.Ki;j / //

f
~0=~

i;j
��

0

0 // FCII~.Ki;j / // FCII~0 .Hi;j / // FCII~0=~.Hi;j / // 0

Assertion (iii) is proved mutatis mutandis like [29, Proposition 1.4]. We omit the
details.

Finally, we prove the following compatibility between the tautological exact triangles:

Proposition 7.20 For every filled Liouville pair .W; V / the four tautological exact
triangles fit into the commuting diagram

SH>0�C1.W; V /

��

SH>0�C1.W; V /

��

SH<0� .W; V / // SH�0� .W; V / //

��

SHD0� .W; V / //

��

SH<0��1.W; V /

SH<0� .W; V / // SH�.W; V / //

��

SH�0� .W; V / //

��

SH<0��1.W; V /

SH>0� .W; V / SH>0� .W; V /

Proof Fix " > 0 small enough. For any choice of real numbers a and b such that
�1< a <�" < " < b <1, and for any choice of admissible Hamiltonian and almost
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complex structure, we have a commutative diagram of short exact sequences

0 // FC.a;�"/�
// FC.a;"/�

//

��

FC.�";"/�
//

��

0

0 // FC.a;�"/�
// FC.a;b/�

// FC.�";b/�
// 0

in which the various maps are inclusions or projections. This induces a commutative
diagram between the corresponding long exact sequences in homology, and by passing
to the limit on the Hamiltonian and then on a!�1 and b!1 as in Section 2.5,
we obtain the commutativity of the diagram formed by the two horizontal lines in the
statement.

The commutativity of the diagram formed by the two vertical lines in the statement is
proved analogously.

We conclude this subsection with a compatibility result between the exact triangle of a
triple and Poincaré duality.

Proposition 7.21 (Poincaré duality and long exact sequence of a triple) For every
triple .W; V; U / of filled Liouville cobordisms and ~ 2 f¿; > 0;� 0;D 0;� 0;< 0g,
there exists a commuting diagram

SH~� .W; V / //

Šexc
��

SH~� .W;U / //

Šexc
��

SH~� .V; U / //

Šexc
��

SH~��1.W; V /

Šexc
��

SH~� .W nV; @V / //

ŠPD
��

SH~� .W nU; @U / //

ŠPD
��

SH~� .V nU; @U / //

ŠPD
��

SH~��1.W nV; @V /

ŠPD
��

SH��~ .W nV; @W / // SH��~ .W nU; @W / // SH��~ .V nU; @V / //

Šexc
��

SH1��~ .W nV; @W /

SH���~.W nV; @W / // SH���~.W nU; @W / // SH1���~ .W nU;W nV / // SH1���~ .W nV; @W /

where the first and last rows are the long exact sequences of the triples .W; V; U / and
.W nU;W nV; @W /, respectively, and the vertical arrows are the Poincaré duality and
excision isomorphisms from Theorems 3.4 and 6.8. (The remaining horizontal maps
are defined by this diagram.)

Proof The conclusion follows directly from the definition of the Poincaré duality
isomorphism in Theorem 3.4 and the observation that for a Hamiltonian G as in
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Figure 13 adapted to the triple .W; V; U /, the Hamiltonian �G is adapted to the triple
.W nU;W nV; @W /.

Alternatively, one can reduce the general case by a purely algebraic argument to the
case U D¿, as in the proof of Proposition 7.16. The case U D¿ is in turn treated by
noting that for a Hamiltonian H as in Figures 12 or 18 adapted to the pair .W; V /, the
Hamiltonian �H is adapted to the triple .W;W nV; @W /.

7.6 The exact triangle of a pair of Liouville domains revisited

The exact triangle

SH~� .W; V / // SH~� .W /

zz

SH~� .V /
@

Œ�1�
ee

can be established in a more direct way for a pair .W; V / of Liouville domains since
there is no need to first identify the symplectic homology of the pair with a homological
mapping cone. Instead, one can argue directly on the chain complexes using truncation
by the action. We find it instructive to spell out the argument. This proof is only
apparently simpler: since the transfer maps induced by the inclusions V ,!W and
W ,! .W; V / are only implicitly constructed, this proof would require additional
arguments in order to incorporate it into the larger framework that we discuss in this
paper, and these additional arguments would essentially amount to reinterpreting this
diagram in terms of transfer maps.

For a pair of Liouville domains we only need to consider three flavours ~2f¿;D0;>0g.
We prove below the compatibility of the exact triangle of the pair with the tautological
exact triangle relating these three flavours.

Let V � W be an inclusion of Liouville domains and denote by yW the symplectic
completion of W . Let H D H�;� for � > 0 and � > 0 be a one-step Hamiltonian
on yW , defined up to smooth approximation as follows (Figure 21):

� H D 0 on W nV .

� H is linear of slope � on yW nW .

� H is linear of slope � on a collar �ı; 1�� @V � V for some 0 < ı < 1.

� H is constant equal to ��.1� ı/ on the complement of this collar in V .

Algebraic & Geometric Topology, Volume 18 (2018)



2078 Kai Cieliebak and Alexandru Oancea

III 0

H�;�

@V @W

III�

�

IIC

II 0

�

IIIC

Figure 21: Hamiltonian for a pair of Liouville domains

For � and � not lying in the action spectrum of @V and @W , respectively, the 1–periodic
orbits of H fall into five classes:

(II 0 ) Constants in the complement of the collar in V .

(IIC ) Orbits corresponding to characteristics on @V and located in the region
fıg � @V .

(III� ) Orbits corresponding to characteristics on @V and located in the region @V .

(III 0 ) Constants in W nV .

(IIIC ) Orbits corresponding to characteristics on @W and located in the region @W .

Suitable choices of the parameters � and ı as a function of � ensure that the various
classes of orbits are ordered according to the action as follows:

III 0 < III˙ < II 0 < IIC:

As � !1 we can allow � !1. In general we need to let ı ! 0 if we wish to
acquire III� < II 0 . However, by Lemmas 2.3 and 2.2 we have

III� � II 0; IIC

for any fixed choice of ı > 0, independently of the choice of � . Also, by Lemma 2.3
we have

III� � IIIC; II 0; IIC � IIIC:

The outcome is that for suitable choices of the parameters we have

III 0 < III� � II 0 < IIC � IIIC

and
III 0 < III� � IIIC < II 0 < IIC:
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Let FCtot be the total Floer complex for the Hamiltonian H. For a subset I �
fII 0; IIC; III�; III 0; IIICg denote by FCI the complex generated by the orbits in
the classes belonging to I. For example, FCIII�;III0;IIIC stands for the subcomplex
generated by the orbits in the classes III� , III 0 and IIIC , and FCIII�;IIIC stands for
its quotient complex modulo FCIII0 etc. We will also abbreviate FCII D FCII0;IIC
and FCIII D FCIII�;III0;IIIC .

Let us consider the following diagram, whose first two rows and first two columns are
exact:

0

��

0

��

0 // FCIII0 //

��

FCII;III�;III0 //

��

FCII;III� //

p

��

0

0 // FCIII //

��

FCtot //

��

FCII //

f

��

0

FCIII�;IIIC q
//

��

FCIIIC g
//

��

FCIII� Œ�1�

0 0

Here the chain maps f W FCII ! FCIII� Œ�1� and gW FCIIIC ! FCIII� Œ�1� are
uniquely determined, so we have natural identifications

FCII;III� D C.f /Œ1�; p D ˇ.f /; FCIII�;IIIC D C.g/Œ1�; q D ˇ.g/:

Proposition 4.4 and its proof ensure that the bottom-right square in the above diagram
is commutative in Kom, and moreover the diagram can be completed to a diagram in
Kom whose lines and columns are distinguished triangles, and all of whose squares are
commutative except the bottom-right one, which is anticommutative:

(48)

FCIII0 //

��

FCII;III�;III0 //

��

FCII;III� //

p

��

FCIII0 Œ�1�

��

FCIII //

��

FCtot //

��

FCII //

f
��

FCIII Œ�1�

��

FCIII�;IIIC q
//

��

FCIIIC g
//

��

FCIII� Œ�1�

�

//

��

FCIII�;IIIC Œ�1�

��

FCIII0 Œ�1� // FCII;III�;III0 Œ�1� // FCII;III� Œ�1� // FCIII0 Œ�2�
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Indeed, the term FCIII� Œ�1� is isomorphic in Kom to C.p/Œ�1� on the one hand, and
to C.�q/Œ�1� on the other hand, and these two complexes are isomorphic as seen in
the proof of Proposition 4.4.

We now remark that we have a homotopy equivalence that is well-defined up to
homotopy

FCIII� Œ�1�Š FCIIC :

This follows again from Proposition 4.4. For the proof we consider a homotopy from a
Hamiltonian K DK� which is zero on W and coincides with H�;� outside W to the
Hamiltonian H. We denote by FCV .K/ the subcomplex of FC.K/ generated by critical
points inside the domain V , so the continuation map induces a homotopy equivalence
FCV .K/'FCII;III� . On the other hand, we have a canonical identification FCV .K/�
FCII0 , and a commutative diagram up to homotopy

FCV .K/

' h:e:
��

FCII0

incl
��

FCII;III� proj
// FCII

Then Proposition 4.4 yields the desired homotopy equivalence FCIII� Œ�1�Š FCIIC .

Remark 7.22 This chain homotopy equivalence provides one point of view on the
vanishing of SH�.I � @V; @�.I � @V // proved in Proposition 9.3.

Diagram (48) can now be used as a building block to prove the existence of a diagram
with exact lines and columns and in which all squares are commutative except the one
marked “�”, which is anticommutative:

(49)

Hn��.W; V / //

��

Hn��.W / //

��

Hn��.V / //

��

Hn��C1.W; V /

��

SH�.W; V / //

��

SH�.W / //

��

SH�.V / //

��

SH��1.W; V /

��

SH>0� .W; V / //

��

SH>0� .W / //

��

SH>0� .V /

�

//

��

SH>0��1.W; V /

��

Hn��C1.W; V / // Hn��C1.W / // Hn��C1.V / // Hn��C2.W; V /
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This grid diagram expresses the compatibility between the exact triangle of a pair
of Liouville domains .W; V / and the tautological exact triangle involving singular
cohomology, symplectic homology and positive symplectic homology. One relevant
ingredient here is the chain homotopy equivalence C III Œ�1�Š C II. The other ingredi-
ent is that all the above homological constructions are compatible with continuation
maps and with direct limits.

8 Variants of symplectic homology groups

8.1 Rabinowitz–Floer homology

Given a pair of Liouville domains .W; V /, Rabinowitz–Floer homology RFH�.@V;W /
was defined in [27] as a Floer-type theory associated to the Rabinowitz action functional

zAH W L yW �R!R; zAH .
; �/D A�H .
/;

where H W yW !R is a Hamiltonian such that @V DH�1.0/ is a regular level, H jV �0,
and H j yW nV � 0. The dynamical significance of Rabinowitz–Floer homology is that it
counts leafwise intersection points of @V under Hamiltonian motions [5], and one of
its most useful properties is that Hamiltonian displaceability of @V (and hence of V )
implies vanishing.

It was proved in [29] that RFH�.@V;W / does not depend on W , so we will denote it
by RFH.@V / (it does however depend on the filling V of @V ). The main result of [29]
is that, with our current notation, we have an isomorphism

(50) RFH�.@V /Š SH�.@V /;

ie Rabinowitz–Floer homology is the symplectic homology of the trivial cobordism
over @V . As such, Rabinowitz–Floer homology is naturally incorporated within the
setup that we develop in this paper.

8.2 S 1–equivariant symplectic homologies

The circle S1 DR=Z acts on the free loop space by shifting the parametrization. As
such, one can define S1–equivariant flavours of symplectic homology groups. In the
case of Liouville domains relevant instances have been defined in [68; 66; 18; 71; 4].
Following Seidel [66] and [18; 71], the relevant structure is that of an S1–complex,
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meaning a Z–graded chain complex .C�; @/ together with a sequence of maps @i W C�!
C�C2i�1 for i � 0 such that @0 D @ and

(51)
X

iCjDk

@i@j D 0

for all k � 0. An S1–complex for which @i D 0 for i � 2 is called a mixed complex in
the literature on cyclic homology. One should view S1–complexes as being 1–mixed
complexes, or mixed complexes up to homotopy; see [18]. Given a Hamiltonian H
one can endow FC.a;b/� .H/ with the structure of an S1–complex that is canonical up
to homotopy equivalence. Moreover, a homotopy of Hamiltonians induces a morphism
between the S1–complexes defined on the Floer chain groups at the endpoints.

Recall that we work with coefficients in a field K. Denote by u a formal variable of
degree �2. Given an S1–complex C D .C�; f@igi�0/ we define, following Jones [51]
and Zhao [71], the periodic cyclic chain complex

C�Œu; u
�1�; @u D

X
i�0

ui@i ; juj D �2:

Here elements in C�Œu; u
�1� of degree k are by definition Laurent polynomialsPN

jD�N xju
j with xj 2 CkC2j . Then @2u D 0 as a consequence of (51) and the

map @u is KŒu�–linear. We consider the subcomplex and quotient complex

C�Œu�; C�Œu
�1�D C�Œu; u

�1�=uC�Œu�

with differential induced by @u and the induced KŒu�–module structure. The homolo-
gies

HCŒu�� .C/ WDH�.C�Œu�/; HCŒu;u
�1�

� .C/ WDH�.C�Œu; u�1�/;

HC�.C/ WD HCŒu
�1�
� .C/ WDH�.C�Œu�1�/

correspond to certain versions of the negative cyclic homology, periodic (or Tate) cyclic
homology and cyclic homology, respectively, of the S1–complex C in the literature.
We will not use these names but rather indicate in the notation which version of
(Laurent) polynomials we are using. Due to the short exact sequence of complexes of
KŒu�–modules

0! C�Œu�! C�Œu; u
�1�! C�Œu; u

�1�=C�Œu�Š C�Œu
�1�Œ�2�! 0;
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these homology groups fit into the fundamental exact triangle

HCŒu�� .C/ // HCŒu;u
�1�

� .C/

Œ�2�
xx

HC�.C/:
ŒC1�

dd

Example 8.1 Given an S1–space X, its singular chain complex with arbitrary coeffi-
cients C� D .C�.X/; @/ carries the structure of a mixed complex C D .C�; @; @1/ such
that [49] (also Hingston, private communication, 2012) we have

HC�.C/ŠHS1

� .X/:

Here HS1

� .X/DH�.X �S1 ES
1/ is the usual S1–equivariant homology group of X

defined by the Borel construction. The map @1W C�! C�C1 is defined by inserting
a suitable representative of the fundamental class of the oriented circle S1 into the
first argument of the composite map C�.S1/˝C�.X/

EZ
�!C�.S

1 �X/
��
�!C�.X/,

where �W S1 �X !X is the S1–action and EZ is the Eilenberg–Zilber equivalence,
explicitly described by the Eilenberg–Mac Lane shuffle map [33, page 64]. Define the
homology groups

H
Œu;u�1�
� .X/D HCŒu;u

�1�
� .C/; H

Œu�
� .X/D HCŒu�� .C/:

While these groups cannot be described as homology groups of a topological space in
the manner of HS1

� .X/ — they typically have infinite support in the negative range —
they are nevertheless unavoidable should one wish to formulate duality. More precisely,
let us assume that X is an oriented manifold of dimension n with boundary preserved
by the S1–action. Denoting by H�

S1
.X/DH�.X�S1ES

1/ the usual S1–equivariant
cohomology groups, Poincaré duality in the S1–equivariant setting takes the form

H i
S1
.X/ŠH

Œu�
n�i .X; @X/:

More generally, dualizing the mixed complex structure on C�.X/ and changing the
degree of u to C2, one can define two other versions H�

Œu;u�1�
.X/ and H�

Œu�1�
.X/ of

S1–equivariant cohomology, with Poincaré duality isomorphisms

H i
Œu;u�1�

.X/ŠH
Œu;u�1�
n�i .X; @X/; H i

Œu�1�
.X/ŠH

Œu�1�
n�i .X; @X/DHS1

n�i .X/:

See [50; 23] for proofs of related statements. We shall use below the following simple
instance of duality: Consider an oriented manifold X of dimension n with boundary,

Algebraic & Geometric Topology, Volume 18 (2018)



2084 Kai Cieliebak and Alexandru Oancea

viewed as an S1–space with trivial action. Then

HS1

i .X/D
M
j�0

Hi�2j .X/

and

(52) H i
Œu�1�

.X; @X/D
Y
j�0

H iC2j .X; @X/D
M
j�0

H iC2j .X; @X/;

so that we indeed have HS1

i .X/ Š Hn�i
Œu�1�

.X; @X/ as a consequence of classical
Poincaré duality.

In order to define S1–equivariant symplectic homology and cohomology groups, we use
the structure of an S1–complex on each truncated Floer chain complex C WDFC.a;b/� .H/

and cochain complex C_ WD FC�.a;b/.H/ constructed in [18; 71]. We set

FH.a;b/;S
1

� .H/D HC�.C/; FH.a;b/;Œu;u
�1�

� .H/D HCŒu;u
�1�

� .C/;

FH.a;b/;Œu�� .H/D HCŒu�� .C/
and

FH�
.a;b/;S1

.H/D HC�.C_/; FH�
.a;b/;Œu;u�1�

.H/D HC�
Œu;u�1�

.C_/;

FH�
.a;b/;Œu�1�

.H/D HC�
Œu�1�

.C_/

and use these groups in formulas (5), (8), (9), (11) and (12), as well as in Definitions 2.8,
2.13, 2.15, 3.1 and 3.2. The outcome for a pair .W; V / of Liouville cobordisms with
filling is S1–equivariant symplectic homology groups

SHS
1;~
� .W; V /; SHŒu;u

�1�;~
� .W; V /; SHŒu�;~� .W; V /;

and S1–equivariant symplectic cohomology groups

SH�
S1;~

.W; V /; SH�
ŒŒu;u�1��;~

.W; V /; S�
ŒŒu�1��;~

.W; V /;

with ~ 2 f¿; > 0;� 0;D 0;� 0;< 0g as usual.

Remark 8.2 The notation ŒŒu�� and ŒŒu; u�1�� in the equivariant symplectic cohomology
groups is a reminder that, in the case of a Liouville domain, the inverse limit in the
definition leads in general to formal power series rather than polynomials. It also
indicates the analogy to the S1–equivariant cohomology groups defined by Jones and
Petrack [52]. Indeed, it is proved in [71; 4] that for a Liouville domain W and with
rational coefficients the second group satisfies fixed-point localization:

(53) SH�
ŒŒu;u�1��

.W IQ/ŠHnC�.W; @W IQ/˝Q QŒu; u�1�:
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One can define several other potentially interesting versions of S1–equivariant sym-
plectic homology by applying the direct/inverse limit over the bounds of the action
window .a; b/, the homology functor and the completions with respect to u and u�1 in
different orders [4]. In particular, this gives rise to a version of periodic/Tate symplectic
cohomology of a Liouville domain that equals the localization of S1–equivariant
cohomology and obeys Goodwillie’s theorem [45]. This can also serve as a motivation
to phrase the theory of symplectic homology at chain level; see also the discussion of
coefficients in the introduction regarding this point.

The equivariant symplectic (co)homology groups are connected to each other by funda-
mental exact triangles similar to the one for cyclic homology above, namely

SHŒu�;~� // SHŒu;u
�1�;~

�

Œ�2�zz

SHS
1;~
�

ŒC1�

bb
SH�

S1;~
// SH�

ŒŒu;u�1��;~

ŒC2�xx

SH�
ŒŒu�1��;~

Œ�1�

dd

The nonequivariant and equivariant theories are connected by Gysin exact triangles

SH~� // SHS
1;~
�

Œ�2�
xx

SHS
1;~
�

ŒC1�

ee
SH�

S1;~

ŒC2�
// SH�

S1;~

xx

SH�
~

Œ�1�

ff

and

SHŒu�;~�
Œ�2�

// SHŒu�;~�

xx

SH~�
ŒC1�

ff
SH�
~

// SH�
ŒŒu�1��;~

ŒC2�vv

SH�
ŒŒu�1��;~

Œ�1�

gg

respectively. By construction, all S1–equivariant symplectic homology and coho-
mology groups are modules over KŒu�. Moreover, the periodic versions are actually
modules over the larger ring KŒu; u�1�. In particular, this module structure induces
periodicity isomorphisms

SHŒu;u
�1�;~

� Š SHŒu;u
�1�;~

�C2 ; SH�
ŒŒu;u�1��;~

Š SH�C2
ŒŒu;u�1��;~

:

All the exact triangles above are obtained at the level of truncated Floer homology
by writing the complex that computes HCŒu;u

�1�
� .C/ as the product total complex of a

multicomplex of the form
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�� �� �� ��

C3oo

@
��

C2oo

��

C1
@1

oo

@
��

C0
@1

oo

@2

ii

C2oo

��

C1oo

@

��

C0
@1

oo

@2

gg

@3

ee

u�1

C1oo

@

��

C0
@1

oo

@2

gg

u0

C0oo u1

and considering natural subcomplexes and quotient complexes; see [51; 18]. The Œu�1�–
complex sits on the right half-plane with respect to the 0th column, the Œu�–complex
sits on the left half-plane, and the nonequivariant theory sits on the 0th column. For
cohomology the arrows need to be reversed. The resulting exact triangles for truncated
Floer (co)homology pass to the limit in symplectic (co)homology due to our choice of
order in the first-inverse-then-direct limit. Note that, since for a given Hamiltonian H
and finite action window .a; b/ the complex FC.a;b/� .H/ has finite rank, it actually
does not matter whether we consider the product total complex or the direct sum total
complex to compute HCŒu;u

�1�
� .C/.

Here are some further properties of these symplectic (co)homology groups:

(1) At action level zero we have

SHS
1;D0
� .W; V /ŠHn��

Œu�1�
.W; V /; SHŒu�;D0� .W; V /ŠHn��

S1
.W; V /

and
SHŒu;u

�1�;D0
� .W; V /ŠHn��

Œu;u�1�
.W; V /:

In particular, for a Liouville domain W of dimension 2n we have

SHS
1;D0
� .W /ŠHn��

Œu� .W /ŠH
S1

�Cn.W; @W /:

This formula appears already in [68]. We interpret in the introduction this formula as a
motivation for viewing the transfer maps as shriek maps.
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(2) For a Liouville domain W , it is proved in [18] that SHS
1;>0
� .W / is isomorphic

over Q to linearized contact homology of @W whenever the latter is defined; see
also [47; 48; 55] for applications.

(3) The arguments in [18] carry over to the setting of pairs of Liouville cobordisms with
filling in order to show that there is a spectral sequence converging to SHS

1;~
� .W; V /

with second page given by E2 D SH~� .W; V /˝KŒu�1�. In combination with the
Gysin exact triangle this yields the fact that the nonequivariant symplectic homology of
a pair .W; V / vanishes if and only if its S1–equivariant symplectic homology vanishes.
The fixed-point localization (53) shows that this is not true anymore for SHŒu;u

�1�
� .

(4) The above flavours of S1–equivariant symplectic homology satisfy Poincaré
duality in the following general form: given a Liouville cobordism W and an admissible
union of boundary components A� @W , for any ~ 2 f¿; > 0;� 0;D 0;� 0;< 0g we
have isomorphisms

SHS
1;~
� .W;A/Š SH��

ŒŒu�1��;�~
.W;Ac/; SHŒu�;~� .W;A/Š SH��

S1;�~
.W;Ac/;

SHŒu;u
�1�;~

� .W;A/Š SH��
ŒŒu;u�1��;�~

.W;Ac/;

where the notation �~ has the same meaning as in Section 3.2. There are also algebraic
dualities over the ring KŒu� analogous to those in [50] which pair SH�

S1;~
with SHŒu�;~� ,

SH�
ŒŒu�1��;~

with SHS
1;~
� and SH�

ŒŒu;u�1��;~
with SHŒu;u

�1�;~
� .

Each of the flavours of S1–equivariant symplectic homology groups obeys the same
set of Eilenberg–Steenrod-type axioms as their nonequivariant counterparts. Transfer
maps and invariance for the case of Liouville domains were previously discussed
in [68; 71; 47]. Moreover, it follows from the construction that the Gysin and funda-
mental exact triangles are functorial with respect to the tautological exact triangles and
also with respect to the exact triangles of pairs; see also [17; 18] for a basic instance of
this phenomenon.

8.3 Lagrangian symplectic homology, or wrapped Floer homology

Let W be a Liouville cobordism. An exact Lagrangian cobordism in W or, for short,
a Lagrangian cobordism, is an exact Lagrangian L�W which intersects the boundary
@W transversally along a Legendrian submanifold @LDL\@W . This means that �jL
is an exact 1–form which vanishes when restricted to @L. We write @˙LDL\@˙W .
Up to applying a Hamiltonian isotopy that fixes @W , one can assume without loss of
generality that L is invariant under the Liouville flow near the boundary [3, Section 3a].
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This means that near its negative or positive boundary we can identify L via the
Liouville flow with Œ1; 1C "� � @�L and with Œ1 � "; 1� � @CL, respectively. We
interpret L as a cobordism from @CL to @�L. We refer to @�L and @CL as being
the positive and negative (Legendrian) boundary of L, respectively.

Let F be a Liouville filling of @�W . An exact Lagrangian filling of @�L or, for
short, a filling of @�L, is a Lagrangian cobordism FL � F whose positive Legendrian
boundary is @�L (and which has empty negative boundary).

One can associate to a Lagrangian cobordism L with filling FL Lagrangian symplectic
homology groups

SH~� .L/; ~ 2 f¿; > 0;� 0;D 0;� 0;< 0g:

Similarly, given a pair of Lagrangian cobordisms K � L inside a pair of Liouville
cobordisms V �W , with Lagrangian filling FL inside a Liouville filling F , we define
Lagrangian symplectic homology groups of the pair .L;K/:2

SH~� .L;K/; ~ 2 f¿; > 0;� 0;D 0;� 0;< 0g:

These are “open string analogues” of the symplectic homology groups defined for the
filled Liouville cobordism W and for the pair of Liouville cobordisms .W; V / with
filling. They are defined using exactly the same shape of Hamiltonian as in the “closed
string” case. Given such a Hamiltonian, the generators of the corresponding chain
complexes are Hamiltonian chords with endpoints on L


 W Œ0; 1�!W; 
.f0; 1g/� L; P
 DXH ı 
;

and the Floer differential counts strips with Lagrangian boundary condition on L which
are finite-energy solutions of the Floer equation

uW R� Œ0; 1�!W; u.R� f0; 1g/� L; @suCJ.u/.@tu�XH ıu/D 0:

The theory is naturally defined over Z=2, and an additional assumption on the La-
grangian is needed (eg relatively spin) in order to define the theory with more general
coefficients.

Example 8.3 Let L be a Lagrangian cobordism inside a Liouville domain W , so that L
has empty negative boundary and empty filling. The Lagrangian symplectic homology
group SH�.L/ coincides with the wrapped Floer homology group of L introduced

2Not to be confused with the (wrapped) Lagrangian intersection Floer homology of a pair of
Lagrangians.

Algebraic & Geometric Topology, Volume 18 (2018)



Symplectic homology and the Eilenberg–Steenrod axioms 2089

in [3; 43]. The Lagrangian symplectic homology group SH>0� .L/ is isomorphic to
the linearized Legendrian contact homology group of @CL [35; 38]. The Lagrangian
symplectic homology group SHD0� .L/ is isomorphic to the singular cohomology group
Hn��.L/ of L. The Lagrangian symplectic homology group of the trivial cobordism
I�@CL� I�@CW , with I a closed interval in .0;1/ is isomorphic to the Lagrangian
Rabinowitz–Floer homology group of @CW [59; 11].

The Lagrangian symplectic homology groups obey the same formal properties as
their closed counterparts, reminiscent of the Eilenberg–Steenrod axioms: functoriality,
homotopy invariance, exact triangle of a pair and excision. Also, the various flavours
SH~� .L;K/ fit into tautological exact triangles, which are compatible with the exact
triangles of pairs. The proofs of all these properties are word-for-word the same as
for Liouville cobordisms, using Lagrangian analogues of our confinement lemmas,
Lemmas 2.2, 2.3 and 2.4; see also [39].

Open–closed theory Let .W; V / be a pair of Liouville cobordisms with filling F,
and .L;K/ � .W; V / be a pair of Lagrangian cobordisms with filling FL . One can
define open–closed symplectic homology groups

SH~� ..W; V /; .L;K//; ~ 2 f¿; > 0;� 0;D 0;� 0;< 0g;

by simultaneously taking into account closed Hamiltonian orbits in W and Hamiltonian
chords with endpoints on L, using the same shape of Hamiltonians as in the closed or
open setting (see also [39]). These homology groups fit into exact triangles

SH~� .W; V / // SH~� ..W; V /; .L;K//

uu

SH~� .L;K/
Œ�1�

gg

and can be thought of as the homology groups of the cone of the open–closed map,
defined by the count of solutions of a Hamiltonian Floer equation on a disk with one
interior negative puncture and one boundary positive puncture. The Eilenberg–Steenrod
package holds in this extended setup as well.

9 Applications

9.1 Ubiquity of the exact triangle of a pair

A certain number of previous computations in the literature can be reinterpreted from a
unified point of view and generalized from our perspective.
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(1) One of our original motivations for the definition of the symplectic homology
groups of a Liouville cobordism was the exact triangle relating symplectic homology
and Rabinowitz–Floer homology [29]

SH��.V / // SH�.V /

xx

RFH�.@V /
Œ�1�

ff

In view of Poincaré duality SH��.V /Š SH�.V; @V / and the isomorphism (50), this
is just the exact triangle of the pair .V; @V /. See Theorem 9.1 for a more detailed
discussion of this triangle.

(2) The subcritical and critical handle attaching exact triangles from [24; 13] are
special instances of the exact triangle of a pair; see Sections 9.6 and 9.7. Moreover, the
surgery exact triangles for linearized contact homology appear as formal consequences
of the corresponding triangles for symplectic homology, via the relations between
equivariant and nonequivariant symplectic homologies; see Section 9.8.

(3) Let L�V be an exact Lagrangian in a Liouville domain V satisfying SH�.L/D0.
For example, by a straightforward adaptation of the vanishing results in [27; 53], this
is the case if the completion yL is displaceable from V in the completion yV . Then the
tautological sequence yields the isomorphism

SH>0� .L/Š SH�0
��1.L/ŠH

n��C1.L/;

which was previously conjectured by Seidel (see [35, Conjecture 1.2]) and proved from
a Legendrian contact homology perspective by Dimitroglou Rizell [31, Theorem 2.5].
This isomorphism implies the refinement of Arnold’s chord conjecture given in [36]; see
Corollary 9.14. A combination of the tautological sequence with the exact sequence of
the pair .L; @L/ and Poincaré duality yields the Poincaré duality long exact sequence
for Legendrian contact homology in [36]

Hn��.@L/ // SH��C2>0 .@L/

ww

SH>0� .@L/
Œ�1�

ff

as well as its refinement in [35, Corollary 1.3; 31, Corollary 2.6]; see Proposition 9.15.
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(4) The results of Chantraine, Dimitroglou Rizell, Ghiggini and Golovko [22; 44] can
also be reinterpreted from the perspective of the exact triangle of a pair. As an example,
consider the following setup: L is an exact Lagrangian cobordism, @�L has an exact
Lagrangian filling FL , and we assume that 2FL ıL is displaceable from the Liouville
domain which contains FL ı L in the symplectic completion of the ambient exact
symplectic manifold. Then SH�.FL ıL/D 0 and SH�.FL/D 0 (see Theorems 9.11
and 9.13), hence also SH�.L; @�L/ D 0. The second long exact sequence in [44,
Theorem 1.2] is the exact triangle of the pair .FL ı L;FL/ for SH�>0 . The setup
considered in [22] is that in which L is a Lagrangian concordance, so that the transfer
map SHD0� .FL ıL/

Š
�! SHD0� .FL/ is an isomorphism. In view of the commutative

diagram given by the compatibility of tautological exact triangles with the exact triangle
of the pair .FL ıL;FL/

SH>0� .FL ıL/ //

��

SH>0� .FL/

��

SHD0��1.FL ıL/
Š
// SHD0��1.FL/

the vertical arrows being isomorphisms since SH�.FL ıL/ and SH�.FL/ vanish, we
obtain that the top transfer map is an isomorphism. This is the content of the main
result of [22] in the case of linearized Legendrian contact homology; see also [44]. The
more general bilinearized setup in [22] can be reinterpreted in a similar way.

This circle of ideas should be compared with the results of Biran and Cornea [9], and
also with the results of Dimitroglou Rizell and Golovko [32].

9.2 Duality results

The following consequence of the long exact sequence of a pair and Poincaré duality is
proved in [29]. For convenience, we provide the short proof in our framework.

Theorem 9.1 (duality sequence [29]) For a Liouville domain V there is a commuting
diagram with exact upper row

(54)

� � � ! SH��.V /

��

�
// SH�.V /

 
// SH�.@V / // SH1��.V /! � � �

HnC�.V / // Hn��.V /

OO
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Here the horizontal maps come from the long exact sequences of the pair .V; @V / in
view of the Poincaré duality isomorphisms SH�.V; @V /Š SH��.V / and HnC�.V /Š
Hn��.V; @V /, and the vertical maps are given by the compositions

SH��.V /! SH���0.V /D SH��D0.V /ŠHnC�.V /;

Hn��.V /Š SHD0� .V /D SH�0� .V /! SH�.V /:

Proof Commutativity of the diagram (54) follows from commutativity of the diagram

SH��.V /

��

Š
// SH�.V; @V /

��

// SH�0� .V /D SH�.V /

SH���0.V /D SH��D0.V /

Š

��

Š
// SHD0� .V; @V /D SH�0� .V; @V /

Š

��

//

44

SHD0� .V /

OO

HnC�.V /
Š

// Hn��.V; @V / // Hn��.V /:

Š

OO

Here the left horizontal maps are Poincaré duality isomorphisms and the lower-right
square commutes by Proposition 7.19. The commutativity of the upper-right square
can be interpreted as follows: by definition of the symplectic homology groups, the
composition of the three maps around the upper square is obtained by considering a
Hamiltonian vanishing on V and increasing its slope near @V from large negative to
small negative to small positive to large positive, which yields the upper horizontal
map.

Here is a computational application of the Poincaré duality result, Theorem 3.4, which
will be needed for the discussion of products in Section 10.

Proposition 9.2 Let W be a Liouville cobordism with Liouville filling F. Then we
have a canonical isomorphism

SH<0� .W /Š SH��C1>0 .F /:

Proof We successively have

SH<0� .W /Š SH<0��1.F [W;W /Š SH<0��1.F; @F /Š SH��C1>0 .F /:

The first isomorphism follows from the exact triangle of the pair .F [W;W / for SH<0�
(see Section 7) taking into account that SH<0� .F [W /D 0 because F [W has empty
negative boundary. The second isomorphism is the excision theorem, Theorem 6.8.
The third isomorphism is Poincaré duality.

For further duality results we will need the following vanishing result:
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Proposition 9.3 Let V be a Liouville domain. Then

SH~� .Œ0; 1�� @V; 0� @V /D 0:

for ~ 2 f¿; > 0;� 0;D 0;� 0;< 0g.

Proof We are computing the symplectic homology group of a cobordism relative to
the concave part of the boundary and therefore the relevant Floer complexes do not
involve orbits with negative action. Thus,

SH.a;b/� .Œ0; 1�� @V; 0� @V /D SH.�";b/� .Œ0; 1�� @V; 0� @V /

for all a<0, b>0 and ">0 smaller than the period of a closed Reeb orbit on @V . In the
definition of symplectic homology the inverse limit over a!�1 therefore stabilizes
and we have SH�.Œ0; 1�� @V; 0� @V /D lim

��!b!1
SH.�";b/� .Œ0; 1�� @V; 0� @V /.

The point now is that SH.�";b/� .Œ0; 1��@V; 0�@V /D 0 for all b > 0. Indeed, for b > 0
not lying in the action spectrum of @V , this homology group is computed using the Floer
complex generated by closed orbits near Œ0; 1�� @V for a Hamiltonian which vanishes
on Œ0; 1��@V , which has positive slope b near f0; 1g�@V , and which is constant in V
away from Œ0; 1�� @V . But such a Hamiltonian can be deformed to one which has
constant slope equal to b all over Œ0; 1�� @V and for which the corresponding chain
complex is zero. See Figure 22, in which the deformed Hamiltonian is drawn with a
dashed line. The conclusion follows using the homotopy invariance of the homology
under compactly supported deformations.

This proves SH�0� .Œ0; 1��@V; 0�@V /D 0. The vanishing of SHD0� .Œ0; 1��@V; 0�@V /

follows from the vanishing of relative singular cohomology, and the vanishing of
SH>0� .Œ0; 1�� @V; 0� @V / then follows from the truncation exact triangle. Since there
are no other versions to consider, this proves the proposition.

0� @V

b

1� @V

Figure 22: Symplectic homology relative to the negative boundary for a trivial cobordism
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Theorem 9.4 (Poincaré duality for a trivial cobordism) For every Liouville domain V
there exist canonical isomorphisms between the symplectic homology and cohomology
groups of the trivial cobordism over @V ,

PDW SH~� .@V /
Š
�! SH1���~ .@V /

for ~ 2 f¿; > 0;� 0;D 0;� 0;< 0g.

Proof We consider the trivial cobordism W D I � @V and apply Proposition 7.21 to
the triple .W; @W; @CW / to obtain the commuting diagram

SH~� .W; @CW / // SH~� .@W; @CW /
Š
//

Šexc
��

SH~
��1.W; @W /

//

ŠPD
��

SH~
��1.W; @CW /

0 // SH~� .W /
Š

//

ŠPD
��

SH1��
~

.W / //

Šexc
��

0

SH��
�~
.W; @�W / // SH1��

�~
.W; @W /

Š
// SH1��
�~

.@W; @�W / // SH��
�~
.W; @�W /

where the first and last row are the long exact sequences of the triples .W; @W; @CW /
and .W; @W; @�W /, respectively, and the vertical arrows are the Poincaré duality
and excision isomorphisms. The groups SH~� .W; @CW / and SH��

�~
.W; @�W / van-

ish by Proposition 9.3. The middle horizontal map defined by this diagram is the
desired Poincaré duality isomorphism from SH~� .@V /D SH~� .W / to SH1��

�~
.W /D

SH1��
�~

.@V /.

Theorem 9.5 (Poincaré duality and exact triangle of .V; @V /) For every Liouville
domain V and ~ 2 f¿; > 0;� 0;D 0;� 0;< 0g, there exists a commuting diagram

(55)

SH~� .V; @V / //

ŠPD
��

SH~� .V / //

ŠPD
��

SH~� .@V / //

ŠPD
��

SH~
��1.V; @V /

ŠPD
��

SH��
�~
.V / // SH��

�~
.V; @V / // SH1��

�~
.@V / // SH1��

�~
.V /

where the rows are the long exact sequences of the pair .V; @V / and the vertical
arrows are the Poincaré duality isomorphisms from Theorem 9.4 (the third one) and
Theorem 3.4 (the other ones). Moreover, the Poincaré duality isomorphisms are com-
patible with filtration exact sequences.
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Proof Denote by W the trivial cobordism given by a collar neighbourhood of the
boundary @V in V . Write U D V nW , so that @CW D @V and @�W D @U ' @V .
Consider the following diagram:

SH~� .V; @V / //

ŠPD

��

SH~� .V / //

ŠPD

��

SH~� .@V / //

ŠPD

��

SH~��1.V; @V /

ŠPD
��

SH���~.V / //

Šexc

��

SH���~.V; @V / // SH���~.V; U [ @V / // SH1���~ .V /

Šexc
��

SH���~.U [ @V; @V / // SH���~.V; @V / //

..

SH���~.V; U [ @V / // SH1���~ .U [ @V; @V /

SH���~.W; @W /

Šexc

OO

Š
//

((

SH��C1
�~

.@W; @CW /

OO

SH��C1
�~

.@�W /

Šexc

OO

The diagram is commutative. The first three rows with their vertical maps correspond to
the commutative diagram in Proposition 7.21 applied to the triple .V;W;¿/, so the first
and third rows are the long exact sequences of the triples .V;W;¿/Š .V; @V;¿/ and
.V; U [ @V; @V /, respectively. The right bottom-most square is commutative because
the maps are induced by the inclusion of triples .W; @W; @CW / ,! .V; U [ @V; @V /.
The bottom-right triangle is commutative by definition.

The third column vertical downward composition

SH~� .@V /! SH���~.V; U [ @V /! SH���~.W; @W /

! SH��C1
�~

.@�W /' SH��C1
�~

.@V /

is the Poincaré duality isomorphism of Theorem 9.4 (by inspection of the diagram in
its proof).

The bottom arrow composition

SH���~.V; @V /! SH���~.V; U [ @V /! SH���~.W; @W /

! SH��C1
�~

.@�W /' SH��C1
�~

.@V /

is the connecting homomorphism in the cohomology long exact sequence of the pair
.V; @V /.
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Finally, the fourth column vertical upward composition

SH1���~ .@V /' SH1���~ .@�W /! SH1��.@W; @CW /! SH1��.U [ @V; @V /

! SH1���~ .V /

is the cohomology transfer map for the inclusion @V ,! V .

Remark 9.6 Upon considering the triple .W; @W; @CW / in the proof of Theorem 9.4
and the triple .V; U [ @V; @V / in the proof of Theorem 9.5, we formally enter the
setup of multilevel cobordisms discussed in Section 2.6. While we have not explicitly
provided proofs for the excision theorem and for the existence of the homology long
exact sequences of pairs/triples in that setup, the particular situations that we consider
in Theorems 9.4 and 9.5 are the simplest possible and the proofs of those results clearly
follow from the corresponding theorems for cobordisms with one level. See also the
discussion at the end of Section 2.6.

Recall that at action zero symplectic homology specializes to singular cohomology,
SHD0� .V /ŠHn��.V /, and similarly for the other versions. Therefore, we obtain:

Corollary 9.7 The commuting diagram in Theorem 9.5 specializes at action zero to

(56)

Hn��.V; @V / //

ŠPD
��

Hn��.V / //

ŠPD
��

Hn��.@V / //

ŠPD
��

Hn��C1.V; @V /

ŠPD
��

HnC�.V / // HnC�.V; @V / // HnC��1.@V / // HnC��1.V /

where the rows are the long exact sequences of the pair .V; @V / and the vertical arrows
are the Poincaré duality isomorphisms for the closed manifold @V (the third one) and
the manifold with boundary V (the other ones).

We conclude this subsection with an example illustrating that full symplectic homology
and cohomology do not obey any kind of algebraic duality for general Liouville
cobordisms.

Example 9.8 Let V be the canonical Liouville filling of a Brieskorn manifold�
z 2CnC1

ˇ̌̌ nX
jD0

zaj D 0; jzj D 1

�
with n � 3 and integers aj � 2 satisfying

Pn
jD0 1=aj D 1. P Uebele (private com-

munication, 2015) has shown that with Z2–coefficients its symplectic homology in
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degrees n and 1�n is an infinite direct sum

SHk.V IZ2/Š
M
N

Z2 for k D n and k D 1�n:

By algebraic duality, it follows that its symplectic cohomology in these degrees is an
infinite direct product

SHk.V IZ2/Š SHk.V IZ2/
_
Š

Y
N

Z2 for k D n and k D 1�n:

In view of the exact sequence (54) with the map � of finite rank, SHk.@V IZ2/ agrees
with SHk.V /˚SH1�k.V / up to an error of finite dimension, hence

SHk.@V IZ2/Š
M
N

Z2˚
Y
N

Z2 for k D n and k D 1�n:

By Theorem 9.4, the symplectic cohomology groups in these degrees are the same:

SHk.@V IZ2/Š
M
N

Z2˚
Y
N

Z2 for k D n and k D 1�n:

Since the dual of the infinite direct product is not the infinite direct sum, this shows
that for k D n; 1 � n neither SHk.@V IZ2/ D SHk.@V IZ2/_ nor SHk.@V IZ2/ D
SHk.@V IZ2/_ .

9.3 Vanishing and finite-dimensionality

In this subsection we give some conditions under which symplectic homology groups
are zero or finite-dimensional. We begin with a simple consequence of the duality
sequence (54).

Corollary 9.9 For a Liouville domain V the following hold using field coefficients:

(a) If one among SHn.V /, SH�n.V /, SHn.@V / or SHn.V; @V / vanishes, then all
of SH�.V /, SH��.V /, SH�.@V / and SH�.V; @V / vanish.

(b) If one among SH�.V /, SH�.V /, SH�.@V / or SH�.V; @V / is finite-dimensional,
then so are the other three.

Proof Part (a) is [64, Theorem 13.3], except for the statement involving SH�.V; @V /,
which is a consequence of Poincaré duality. For part (b), in view of the Poincaré
duality SH�.V; @V / Š SH��.V / we only need to deal with SH�.V /, SH�.V / and
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SH�.@V /. Since SHk.V / Š Hom.SHk.V /;K/ in each degree, SH�.V / is finite-
dimensional if and only if SH�.V / is. If both are finite-dimensional, then two out
of three terms in the exact sequence (54) are finite-dimensional, so the third term
SH�.@V / is finite-dimensional as well. Conversely, suppose that dim SH.@V / <1.
Then the map  in (54) has finite rank, as does the map � (because it factors through
singular homology), and thus dim SH�.V / <1. Alternatively, one could argue by
contradiction: if dim SH.@V / <1 and SH�.V /, SH�.V / were infinite-dimensional,
then the long exact sequence (54) would imply dim SH�.V /D dim SH�.V /, which is
impossible by Remark 9.10 below.

Remark 9.10 A K–vector space is isomorphic to its dual space if and only if it is
finite-dimensional (see [60] for a nice proof — we thank I Blechschmidt for pointing
this out). Hence, for a pair of Liouville cobordisms with filling .W; V / and using
field coefficients we obtain that SHk

~
.W; V / is isomorphic to SH~

k
.W; V / for ~ 2

f< 0;� 0;D 0;� 0;> 0g if and only if both vector spaces are finite-dimensional.

We say that a subset of a symplectic manifold is displaceable if it can be displaced
from itself by a compactly supported Hamiltonian isotopy. It has been known for a
while that displaceability implies vanishing of Rabinowitz–Floer homology [27] and
symplectic homology [53] of a Liouville domain. In the context of this paper, these
appear as special cases of the following general vanishing result, whose proof is a
straightforward adaptation of the ones in [27; 53].

Theorem 9.11 (displaceability implies vanishing) (a) Let .W; V / be a Liouville
cobordism pair with filling F such that V is displaceable in the completion of
F ıW . Then SH�.V /D 0.

(b) Let L� V be an exact Lagrangian in a Liouville domain V whose completion
yL is displaceable from V in the completion yV . Then SH�.L/D 0.

For example, the displaceability hypothesis in (a) is always satisfied if the completion
of F ıW is a subcritical Stein manifold, or more generally the product of a Liouville
manifold with C .

Remarks 9.12 (i) If in Theorem 9.11(a) the cobordism V as well as its filling
E D F [W bottom are connected, then displaceability of V implies displaceability
of E [ V and the vanishing of SH�.V / follows from the vanishing of symplectic
homology of the Liouville domains E and E [V .
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(ii) In the situation of Theorem 9.11(a), displaceability of V implies that of @V ,
so we also have SH�.@˙V / D SH�.@V / D 0 and (via exact sequences of triples)
SH�.V; @˙V /D SH�.V; @V /D 0.

Another condition that ensures the vanishing of SH�.V / is the vanishing of SH�.W /
for a pair .W; V /. This was observed for Liouville domains by Ritter [64] as a
consequence of the product structure: vanishing of SH�.W / implies that its unit 1W
vanishes, hence so does its image 1V under the transfer map SH�.W /! SH�.V /,
which implies SH�.V /D 0. In view of Theorem 10.2, the same argument proves:

Theorem 9.13 (vanishing is inherited) Let .W; V / be a Liouville cobordism pair.
Then SH�.W /D 0 implies SH�.V /D 0.

Again, the hypothesis SH�.W / D 0 is satisfied if the completion of F ı W is a
subcritical Stein manifold, or more generally the product of a Liouville manifold
with C . However, there exist Liouville domains W that are not of this type and still
have vanishing symplectic homology, eg flexible Stein domains [25] as well as certain
nonflexible Stein domains [58; 2; 61; 63]. Conversely, there exist many examples of
Liouville pairs .W; V / with V displaceable and SH�.W /¤ 0. So neither of the two
vanishing theorems, Theorems 9.11 and 9.13, implies the other.

9.4 Consequences of vanishing of symplectic homology

Suppose that V is a Liouville domain with SH�.V /D0. Then the tautological sequence
yields

(57) SH>0� .V /Š SH�0
��1.V /ŠH

n��C1.V /¤ 0:

Similarly, if L� V is an exact Lagrangian with SH�.L/D 0, then

(58) SH>0� .L/Š SH�0
��1.L/ŠH

n��C1.L/¤ 0:

This has the following dynamical consequences [68; 64]:

Corollary 9.14 (a) Let V be a Liouville domain with SH�.V /D 0 (eg this is the
case if @V is displaceable in yV ). Then there exists at least one closed Reeb orbit.

(b) Let L be an exact Lagrangian L � V with SH�.L/ D 0 (eg this is the case
if yL is displaceable from V in yV ). Then there exists at least one Reeb chord
with boundary on @L. If all the Reeb chords are nondegenerate, their number is
bounded from below by rkH�.L/� 1

2
rkH�.@L/.
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Proof The assertion in (a) follows immediately from (57) because SH>0� .V / is gener-
ated by closed Reeb orbits. Similarly, the first assertion in (b) follows from (58).

The second assertion in (b) follows from (58) because, if all Reeb chords are non-
degenerate, their number is bounded from below by rk SH>0� .L/ D rkH�.L/. The
estimate rkH�.L/� 1

2
rkH�.@L/ follows readily from the long exact sequence of the

pair .L; @L/ in singular homology and Poincaré duality.

Vanishing of symplectic homology also implies the following refinement of the duality
sequence (54).

Proposition 9.15 (duality sequence for positive symplectic homology) (a) Let V
be a Liouville domain with SH�.V /D 0 (eg this is the case if @V is displaceable
in yV ). Then there exists a commuting diagram with exact rows

Hn��.@V /
�

//

D

��

SH2��>0 .@V /
�

// SH>0� .@V /
�
//

g Š
��

Hn��C1.@V /

D

��

Hn��.@V /
�0
// Hn��C1.V; @V /

�0
//

fŠ

OO

Hn��C1.V /
�0
// Hn��C1.@V /

(b) Let L� V be an exact Lagrangian in a Liouville domain with SH�.L/D 0 (eg
this is the case if yL is displaceable from V in yV ). Then there exists a commuting
diagram with exact rows

Hn��.@L/
�

//

D

��

SH2��>0 .@L/
�

// SH>0� .@L/
�
//

g Š
��

Hn��C1.@L/

D

��

Hn��.@L/
�0
// Hn��C1.L; @L/

�0
//

fŠ

OO

Hn��C1.L/
�0
// Hn��C1.@L/

Proof For part (a) consider the commuting diagram, whose columns are the exact
sequences of the pair .V; @V / and whose rows are the tautological sequences,

SHD0� .V / //

��

SH�0� .V / //

��

SH>0� .V / //

��

SHD0��1.V /

��

SHD0� .@V / //

��

SH�0� .@V / //

��

SH>0� .@V / //

��

SHD0��1.@V /

��

SHD0��1.V; @V / //

��

SH�0
��1.V; @V /

// SH>0��1.V; @V / // SHD0��2.V; @V /

SHD0��1.V /
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We replace the groups SHD0� by the corresponding singular cohomology groups, and
insert SH�0� .V /D SH�.V /D 0 (which holds by hypothesis) and SH>0��1.V; @V /D 0
(which always holds). Moreover, we replace SH�0

��1.V; @V / by the isomorphic group
SH�0
��1.V; @V /Š SH<0��2.V; @V /Š SH2��>0 .V /D SH2��>0 .@V /, where the first isomor-

phism comes from the tautological sequence in view of SH�.V; @V /D0 (which follows
from the hypothesis SH�.V /D 0 via Corollary 9.9) and the second one is Poincaré
duality. Then the diagram becomes

Hn��.V / //

��

0 //

��

SH>0� .V /
Š
//

Š

��

Hn��C1.V /

�0
��

Hn��.@V / //

�0
��

�
((

SH�0� .@V / //

Š

��

SH>0� .@V / �
//

��

g

Š

77

Hn��C1.@V /

��

Hn��C1.V; @V /
f

Š
//

�0
��

SH2��>0 .@V /
//

�

88

0 // Hn��C2.V; @V /

Hn��C1.V /

From this we read off the commuting diagram in Proposition 9.15(a). Part (b) is proved
analogously.

Corollary 9.14(b) and the upper long exact sequence in Proposition 9.15(b) were proved
in [36] in the context of contact manifolds of the form P �R (compare also with [64]).
The commuting diagram in Proposition 9.15(b) appears in [35, Corollary 1.3] and [31,
Corollary 2.6].

9.5 Invariants of contact manifolds

We describe in this subsection how to obtain invariants of contact manifolds from
the various symplectic homology groups that we defined in this paper. Recall that a
contact manifold with chosen contact form .M 2n�1; ˛/ is called hypertight if it has no
contractible closed Reeb orbits. Following [67] we call .M; ˛/ index-positive if either

(i) � D ker˛ satisfies c1.�/j�2.M/ D 0 and the Conley–Zehnder index of every
contractible closed Reeb orbit 
 in M satisfies CZ.
/Cn� 3 > 1, or

(ii) the space .M; ˛/ admits a Liouville filling F with c1.F /j�2.F / D 0 such that
CZ.
/Cn�3>0 for every closed Reeb orbit 
 in M which is contractible in F .
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We will call a (cooriented, as always) contact manifold .M; �/ hypertight or index-
positive if it admits a defining contact form with this property.

Remark 9.16 Condition (ii) is in particular satisfied if .M; ˛/ admits a subcritical
Stein filling F of dimension 2n � 4 with c1.F /j�2.F / D 0. Indeed, M D @F then
admits a contact form such that all Conley–Zehnder indices of closed Reeb orbits which
are contractible in @F are > 1 [70], and therefore > 3�n provided that n� 2. Since
F is Stein subcritical, the map �1.@F /! �1.F / induced by the inclusion is injective.
Indeed, the subcritical skeleton has codimension � nC 1� 3 and a generic homotopy
of paths will avoid it, so that it can afterwards be pushed by the Liouville flow to the
boundary. Thus any loop in @F which is contractible in F is also contractible in @F
and the condition on the indices therefore holds for all loops which are contractible
in F .

The following result follows in the index-positive case (ii) from the arguments of [15], as
remarked in [29; 18]. For the hypertight case or the index-positive case (i) see [67; 18].
For another instance in the S1–equivariant case see [47]. We sketch below a short
unified proof.

Proposition 9.17 Given a Liouville cobordism W whose negative boundary @�W is
hypertight or index-positive, the symplectic homology groups

SH~� .W / and SHS
1;~
� .W /; ~ 2 f¿; > 0;� 0;D 0;� 0;< 0g;

are defined, independent of the contact form ˛ on @�W in the given class, and inde-
pendent of the filling in case (ii).

Proof We will discuss the case SH~� .W /, the equivariant case being analogous.

In case (ii) we define SH~� .W / as the usual symplectic homology group with respect
to a filling F in the given class. To show independence of the filling, fix a finite
action window .a; b/ and consider a Hamiltonian H on the completion yWF as in
Figure 8. We perform neck-stretching as described in the proof of Lemma 2.4, inserting
cylindrical pieces Œ�Rk; Rk��M with Rk!1, at the hypersurface M WD fıg�@�W
where H � c for a constant c > �a . We claim that for k sufficiently large, Floer
cylinders appearing in the differential between 1–periodic orbits x˙ of H of types I� ,
I 0 and IC with action in .a; b/ do not enter the region F n Œı; 1��@F . Then it follows
that all these Floer cylinders can be viewed as lying in the 2–sided completion yW , so
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FH.a;b/� .H/ is independent of the filling. By the same claim applied to continuation
morphisms, we deduce independence of the filling for the filtered symplectic homology
groups SH.a;b/� .W / and the groups SH~� .W /.

To prove the claim, we argue by contradiction and suppose that for all k there exist
Floer cylinders uk as above entering F n Œı; 1��@F . In the limit k!1 they converge
in the SFT sense [14; 30] to a broken holomorphic curve C with punctures asymptotic
to closed Reeb orbits on M. Here it is understood that the almost complex structure is
chosen to be cylindrical and time-independent in the neck Œ�Rk; Rk��M that is inserted
near the hypersurface M D fıg � @�W . We first observe that C can have only one
component in yW . This follows by the argument in the proof of Lemma 2.4: otherwise,
there would exist for large k a separating loop ık on the domain R� S1 , winding
around in the negative S1–direction, such that uk.ık/ is C 1–close to a (positively
parametrized) closed Reeb orbit 
 on M, and the resulting estimate AH .x�/��c < a
would contradict the condition AH .x�/ > a . It follows that C consists of a Floer
cylinder CC in yW with p � 1 negative punctures asymptotic to closed Reeb orbits 
i
and holomorphic planes Ci in yF asymptotic to 
i . In particular, the orbits 
i are
contractible, and this already leads to a contradiction in the hypertight case. To reach a
contradiction in the index-positive case, we remark that the component CC belongs
to a moduli space which is transversely cut out. Indeed, the equation is perturbed
by an S1–dependent Hamiltonian term near the punctures where CC converges to
Hamiltonian periodic orbits, and the almost complex structure is chosen to be generic
and time-dependent in the region where all the Hamiltonian orbits are located, hence
transversality follows as in Hamiltonian Floer theory; see eg [65]. If nonempty, the
moduli space to which CC belongs has dimension at least 1 (due to R–translations in
the domain), so the Fredholm index of CC satisfies ind.CC/� 1. On the other hand,
the index of CC is given by

ind.CC/D CZ.xC/�CZ.x�/�
pX
iD1

.CZ.
i /Cn� 3/;

which in view of CZ.xC/� CZ.x�/ D 1 for contributions to the Floer differential
yields

pX
iD1

.CZ.
i /Cn� 3/� 0:

Now the assumption of index-positivity and the fact that the orbits 
i are contractible
implies CZ.
i /Cn� 3 > 0. This contradicts the fact that p � 1, and proves case (ii).
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The proof in case (i) is very similar. We again consider .a; b/ and H as above, where
H is now defined on the 2–sided completion yW rather than yWF . We define the
Floer differential for H by counting Floer cylinders between orbits x˙ in yW . This is
well-defined because SFT-type breaking of Floer cylinders at the negative end of yW is
ruled out by exactly the same argument as in case (ii). In contrast to case (ii), where
this was automatic, we now must also show that the Floer differential squares to zero.
For this, we must rule out SFT-type breaking of Floer cylinders connecting orbits x˙
of index difference 2. If such breaking occurs, the argument in case (ii) directly leads
to a contradiction in the hypertight case, while in the index-positive case it leads to
p � 1 contractible orbits 
i satisfying

pX
iD1

.CZ.
i /Cn� 3/� 1:

Under the stronger hypothesis CZ.
i /C n� 3 > 1 this is again a contradiction and
case (i) is proved.

This proposition leads to the definition of homological invariants of hypertight or
index-positive contact manifolds,

SHŒS
1;�~
� .M; �/D SHŒS

1;�~
� .I �M/; ~ 2 f¿; > 0;� 0;D 0;� 0;< 0g;

where I D Œ0; 1� and I �M is the trivial Liouville cobordism. Here the notation
SHŒS

1;�~
� means that the symbol S1 is optional.

Example 9.18 In view of [29], the group SH�.M; �/ can be interpreted as the
Rabinowitz–Floer homology group of .M; �/. A construction of Rabinowitz–Floer
homology for hypertight contact manifolds has recently been carried out in [6].

These contact invariants satisfy various functoriality relations, as dictated by our
functoriality relations for Liouville cobordisms. The general picture is the following:
Given a Liouville cobordism W whose negative boundary is hypertight or index-
positive, we have maps

SHŒS
1;�~
� .@�W / SHŒS

1;�~
� .W /! SHŒS

1;�~
� .@CW /

determined by the embedding of trivial cobordisms

I � @�W �W � I � @CW:
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Since I � @�W and W share the same negative boundary, we have an isomorphism

SHŒS
1;�<0
� .@�W / Š � SHŒS

1;�<0
� .W /;

and since W and I �@CW share the same positive boundary we have an isomorphism

SHŒS
1;�>0
� .W / Š�! SHŒS

1;�>0
� .@CW /:

In particular we obtain maps

SHŒS
1;�>0
� .@�W / SHŒS

1;�>0
� .@CW / and SHŒS

1;�<0
� .@�W /! SHŒS

1;�<0
� .@CW /:

In the equivariant case and under slightly different assumptions the first of these two
maps was previously constructed by Jean Gutt [47]. Such direct maps do not exist
for the other versions ~ 2 f¿;� 0;D 0;� 0g. In general the cobordism W has to be
interpreted as providing a correspondence, and this holds in particular for the case of
Rabinowitz–Floer homology.

Invariants of Legendrian submanifolds Let .M 2n�1; ˛/ be a manifold with cho-
sen contact form and ƒn�1 �M a Legendrian submanifold. Extending the earlier
definitions to the open case, we call ƒ hypertight if .M; ˛/ is hypertight and ƒ has
no contractible Reeb chords. We call ƒ index-positive if .M; ˛/ is index-positive and
in addition:

(i) In case (i), the Maslov class of ƒ vanishes on �2.M;ƒ/ and every Reeb chord
c that is trivial in �1.M;ƒ/ satisfies CZ.c/ > 1.

(ii) In case (ii), ƒ admits an exact Lagrangian filling L� F in the filling F whose
Maslov class vanishes on �2.F;L/ such that CZ.c/ > 0 for every Reeb chord
c for ƒ that is trivial in �1.F;L/.

We call a Legendrian submanifold in a contact manifold .M; �/ hypertight or index-
positive if it admits a defining contact form with this property.

The arguments given in the closed case adapt in a straightforward way in order to define
invariants of hypertight or index-positive Legendrian submanifolds by

SH~� .ƒ/D SH~� .I �ƒ/; ~ 2 f¿; > 0;� 0;D 0;� 0;< 0g:

9.6 Subcritical handle attaching

In this subsection we compute the symplectic homology groups corresponding to a
subcritical handle in the sense of [24], with coefficients in a field K.

Algebraic & Geometric Topology, Volume 18 (2018)



2106 Kai Cieliebak and Alexandru Oancea

Proposition 9.19 Let W 2n be a filled Liouville cobordism corresponding to a subcrit-
ical handle of index k < n. Then

SH�.W; @�W /D 0; SH�.W; @CW /D 0;

SHD0� .W; @�W /Š SHD0��.W; @
CW /D

�
K if � D n� k;
0 otherwise,

and the restriction maps induce isomorphisms

SH�.@�W /
Š
 � SH�.W /

Š
�! SH�.@CW /:

Proof The vanishing of SH�.W; @�W / is proved in [24] with arbitrary coefficients
as a consequence of the following fact: for each degree i there exists bi > 0 such that
SH.a;b/i .W; @�W /D 0 for any a < 0 and b � bi .

Since SH�.W; @�W / D SH�0� .W; @
�W /, we can apply the algebraic duality result,

Proposition 3.5, to obtain SH�.W; @�W /D SH��0.W; @
�W /D 0, which implies, by

Poincaré duality, SH��.W; @CW /D 0.

Since H�.W; @�W / equals K in degree k and vanishes in all the other degrees, we
obtain

SHD0� .W; @�W /ŠHn��.W; @�W /D

�
K if � D n� k;
0 otherwise:

The remaining two isomorphisms follow from the long exact sequences

0D SH�.W; @�W /! SH�.W /! SH�.@�W /! SH��1.W; @�W /D 0;

0D SH�.W; @CW /! SH�.W /! SH�.@CW /! SH��1.W; @CW /D 0:

Remarks 9.20 (a) From Proposition 9.19 and the tautological sequence we can
compute the remaining relevant symplectic homology groups of the pair .W; @˙W /,
namely

SH>0� .W; @
�W /Š SH<0��.W; @

CW /D

�
K if � D n� kC 1;
0 otherwise:

Note that the symplectic homology groups relative to one boundary component only
depend on the index k , whereas the group SH�.W / depends on the whole hypersurface
@�W and its filling.

(b) In view of (50), the last statement in Proposition 9.19 gives in particular the
isomorphism of Rabinowitz Floer homology groups

RFH.@CW /Š RFH.@�W /:
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(c) Suppose that .W; V; U / is a Liouville cobordism triple such that W nV is sub-
critical. Then Proposition 9.19 implies SH�.W; V /D 0, which together with the exact
sequence of the triple (Proposition 7.16) yields the isomorphism

SH�.W;U /
Š
�! SH�.V; U /:

In particular, for U D∅ we recover by induction the vanishing of symplectic homology
for subcritical Stein domains.

(d) The computation of Proposition 9.19 is valid more generally with coefficients in
an abelian group, but the proof uses filtered symplectic homology and a more general
universal coefficients theorem.

Together with the exact triangle of a pair, these computations provide a complete un-
derstanding of the behaviour of all the flavours of nonequivariant symplectic homology
groups under subcritical handle attachment, as a consequence of the exact triangle of
the pair .V ıW;V /, where V is a Liouville domain. The equivariant case is discussed
in Section 9.8.

9.7 Critical handle attaching

Recall that we use coefficients in a field K. In the previous section we saw that the
key computation was that of SH�.W; @�W /, and the key exact triangle was the exact
triangle of the pair .V 0; V /, where V is the filling of @�W and V 0 D V ıW is the
Liouville domain obtained after attaching the handle. These same objects form the
relevant structure in the case of a critical handle attachment.

Let V be a Liouville domain, let ƒ D ƒ1 t � � � t ƒl be a collection of disjoint
Legendrian spheres in @V , denote by W the cobordism obtained by attaching l critical
handles (of index n) along these spheres, and let V 0 D V ıW . Bourgeois, Ekholm and
Eliashberg [13] assert the existence of surgery exact triangles3

(59)

LHHo.ƒ/� // SH�.V 0/

{{

SH�.V /
Œ�1�

dd
LHHoC.ƒ/� // SH>0� .V

0/

zz

SH>0� .V /
Œ�1�

ee

3Since at the time of writing this article the proof of this result is not yet completed, we formulate its
consequences below as conjectures.
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in which LHHo
� .ƒ/ and LHHoC.ƒ/� are homology groups of Legendrian contact

homology flavour; see also [40, Section 2.8; 37]. More precisely, LHHoC.ƒ/� is
defined as the homology of a complex LHHoC.ƒ/� whose generators are words
in Reeb chords on @V with endpoints on ƒ, and whose differential counts certain
pseudoholomorphic curves in the symplectization of @V with boundary on the conical
Lagrangian Sƒ determined by ƒ, with a certain number of interior and boundary
punctures at which rigid pseudoholomorphic planes in yV or rigid pseudoholomorphic
half-planes in yV with boundary on Sƒ are attached (following the terminology of [13],
we call such curves anchored in V ). The homology group LHHo

� .ƒ/ is defined as
the cone of a map LCHoC.ƒ/� ! C n��C1 , where C n��C1 is the cohomological
Morse complex for the pair .W; @�W /, which has rank l in degree n��C1D n and
vanishes otherwise, and with zero differential. This map counts curves of the type taken
into account in LHHoC.ƒ/� , rigidified by imposing an intersection with an unstable
manifold of a critical point in W . The exact sequence of the cone of a map reads in
this case

(60)

Hn��.W; @�W / // LHHo.ƒ/�

ww

LHHoC.ƒ/�

Œ�1�

hh

The surgery exact triangles of Bourgeois, Ekholm and Eliashberg can be reinterpreted
in our language as follows:

Conjecture 9.21 Let W be a filled Liouville cobordism corresponding to attaching
l � 1 critical handles of index k D n along a collection ƒ of disjoint Legendrian
spheres. With field coefficients we have isomorphisms

SH>0� .W; @
�W /Š LHHoC.ƒ/�; SH�.W; @�W /Š LHHo.ƒ/�

such that the following hold:

(i) The tautological exact triangle involving SHD0� , SH� and SH>0� for the pair
.W; @�W / is isomorphic to (60).

(ii) The exact triangles (59) are isomorphic to the exact triangles of the pair .V 0; V /
for SH� and SH>0� , respectively.

Let us explain how this conjecture would follow from the surgery exact triangle
in [13]. To establish the first two isomorphisms, the first step is to give a description
of SH�.W; @�W / and SH>0� .W; @

�W / in terms of pseudoholomorphic curves in a
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symplectization; this is similar to the description of SH>0� .V / as a nonequivariant
linearized contact homology group given in [15] and used in [13] as a definition
of SH>0� .V /. The second step is to apply to this formulation of SH~� .W; @

�W / with
~ 2 f¿; > 0g the methods of [13]. The proof of (i) is then straightforward, since SH�
can naturally be expressed as the homology of a cone using the action filtration.

To prove (ii), the main step is to establish an isomorphism between the transfer map
SH~� .V

0/! SH~� .V / and the map with the same source and target that appears in (59)
for ~2 f¿; > 0g. The latter map is described in terms of anchored pseudoholomorphic
curves in the symplectization of the cobordism W , and the proof of the isomorphism
between these maps follows the same ideas as those in [15], applied to the monotone
homotopies which induce in the limit the transfer map. The claim in (ii) then follows
from the results of [13] because, up to rotating a triangle, the groups LHHoC.ƒ/� and
LHHo.ƒ/� can be expressed as homology groups of cones of such maps induced by
cobordisms.

Remark 9.22 Following [15; 18], all the constructions that we describe in the setup
of symplectic homology can be replicated in the language of symplectic field theory,
or SFT (with the usual caveat regarding the analytical foundations of the latter). One
outcome of this parallel is that our six flavours of symplectic homology provide some
new linear SFT-type invariants (the group SH�.@V / for V a Liouville domain is
the most prominent of these). It is a general fact that the Viterbo transfer maps for
symplectic homology correspond to the well-known SFT cobordism maps.

As in the proof of Proposition 9.19, Conjecture 9.21 would imply:

Conjecture 9.23 With coefficients in a field K the following isomorphisms hold:

(i) SH��.W; @CW /Š LHHo.ƒ/� and

SH��.W; @CW /Š SH�.W; @�W /Š .LHHo.ƒ/�/
_:

(ii) SH��<0.W; @
CW /Š LHHoC.ƒ/� and

SH<0��.W; @
CW /Š SH�>0.W; @

�W /Š .LHHoC.ƒ/�/
_:

We also have the obvious

SHD0� .W; @�W /Š SHD0��.W; @
CW /D

�
K if � D 0;
0 otherwise.
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Together with the long exact sequence of a pair, these computations provide a theo-
retically complete understanding of the behaviour of all the flavours of symplectic
homology groups under critical handle attachment.

A particular case of interest is that of comparing SH�.@�W / and SH�.@CW /. The
answer does not take the form of a long exact sequence because these groups do not sit
naturally in a long exact sequence of a pair. The best answer that one can give in such
a generality is that we have a correspondence

SH�.@�W / SH�.W /! SH�.@CW /;

in which the kernel and cokernel of each arrow can be described in terms of the
groups SH�.W; @�W / and SH�.W; @CW /, respectively, which in turn are described
in terms of the groups LHHo.ƒ/ as above, using the long exact sequences of the
pairs .W; @�W / and .W; @CW /. This situation parallels the one encountered when
comparing the singular cohomology groups of a manifold before and after surgery (in
this case @CW is obtained by surgery of index n on @�W ).

9.8 Handle attaching and S 1–equivariant symplectic homologies

The discussion in Sections 9.6 and 9.7 has S1–equivariant analogues. We treat here
only S1–equivariant symplectic homology, since negative S1–equivariant symplectic
homology and also (negative) S1–equivariant symplectic cohomology can be reduced
to the former using Poincaré and algebraic duality.

Subcritical handle attaching

Proposition 9.24 Let W be a Liouville cobordism corresponding to a subcritical
handle of index k < n. Then with K–coefficients we have

SHS
1

� .W; @˙W /D 0;

SHS
1;D0
� .W; @�W /D

�
K if � D n� kC 2N;
0 otherwise,

SHS
1;D0
� .W; @CW /D

�
K if � D k�nC 2N;
0 otherwise,

SHS
1;>0
� .W; @�W /D

�
K if � D n� kC 1C 2N;
0 otherwise,

SHS
1;<0
� .W; @CW /D

�
K if � D k�n� 1C 2N;
0 otherwise,
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and the restriction maps induce isomorphisms

SHS
1

� .@
�W / Š � SHS

1

� .W /
Š
�! SHS

1

� .@
CW /:

Proof The vanishing of SHS
1

� .W; @˙W / follows from that of SH�.W; @˙W / using
the spectral sequence from nonequivariant to equivariant symplectic homology. The
statement concerning SHS

1;D0
� .W; @˙W / is a direct computation, using the fact that

the Floer complex reduces in low energy to the Morse complex (see also [68; 18]):

SHS
1;D0
� .W; @˙W /ŠH

n��
S1

.W; @˙W /ŠH
n��.W; @˙W /˝KŒu�1�:

The statement concerning SHS
1;>0
� .W; @�W / and SHS

1;<0
� .W; @CW / follows from

tautological exact triangles in view of the fact that, by definition, SHS
1

� .W; @
�W /D

SHS
1;�0
� .W; @�W / and SHS

1

� .W; @
CW / D SHS

1;�0
� .W; @CW /. The last statement

follows from the exact triangles of the pairs .W; @˙W /.

Remark 9.25 Let D2n be the unit ball in R2n . Then SHS
1

� .D
2n/D 0 and a direct

computation, together with the tautological exact triangle, shows that

SHS
1;D0
� .W; @�W /Š SHS

1;D0
� .D2.n�k//

and
SHS

1;>0
� .W; @�W /Š SHS

1;>0
� .D2.n�k//:

These isomorphisms are not just algebraic or formal, but have the following geometric
interpretation [24]: for any given finite action window there exists a Liouville structure
on W for which the periodic Reeb orbits on @�W in the given action window survive
to @CW , and the new periodic Reeb orbits which are created after handle attachment are
in one-to-one bijective correspondence with the periodic Reeb orbits on the boundary
of the symplectic reduction of the coisotropic cocore disk in the handle, which is a
symplectic ball D2.n�k/ .

Corollary 9.26 Let V be a Liouville domain of dimension 2n and V 0 be obtained
from V by attaching a subcritical handle of index k <n. We then have an exact triangle

SHS
1;>0
� .D2.n�k// // SHS

1;>0
� .V 0/

xx

SHS
1;>0
� .V /

Œ�1�

gg

in which the map SHS
1;>0
� .V 0/! SHS

1;>0
� .V / is the transfer map.
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Proof This is simply a reformulation of the exact triangle of the pair .V 0; V /, using
excision and the computation of SHS

1;>0
� .W; @�W / above, with W D V 0 nV .

This statement can be interpreted as a subcritical surgery exact triangle for linearized
contact homology in view of [18]. In that formulation, the case k D 1 of contact
connected sums was proved using different methods by Bourgeois and van Koert [19].
Also in that formulation, the exact triangle implies Espina’s formula [41, Corollary 6.3.3]
for the behaviour of the mean Euler characteristic of linearized contact homology under
subcritical surgery. By induction over the handles, it yields M-L Yau’s formula for the
linearized contact homology of subcritical Stein manifolds [70].

Critical handle attaching

We restrict to rational coefficients, and recall the geometric setup of Section 9.7: V �V 0

is a pair of Liouville domains of dimension 2n such that V 0 is obtained by attaching
l � 1 handles of index n to @V along a collection ƒ of l disjoint embedded Legendrian
spheres. Following [13] we denote by CH.V / the linearized contact homology of @V .
One of the main statements in [13] is the existence of a surgery exact triangle

(61)

LHcyc.ƒ/� // CH.V 0/

zz

CH.V /
Œ�1�

ee

where LHcyc.ƒ/� is a homology group of Legendrian contact homology flavour. More
precisely, LHcyc.ƒ/� is defined as the homology of a complex LH cyc.ƒ/� whose
generators are cyclic words in Reeb chords on @V with endpoints on ƒ, and whose
differential counts certain pseudoholomorphic curves in the symplectization of @V ,
anchored in V , with boundary on the conical Lagrangian Sƒ determined by ƒ. This
exact triangle can be reinterpreted in our language as follows:

Conjecture 9.27 Let W be a Liouville cobordism corresponding to attaching l � 1
critical handles of index k D n along a collection ƒ of disjoint Legendrian spheres.
With rational coefficients we have an isomorphism

SHS
1;>0
� .W; @�W /Š LHcyc.ƒ/�

such that the exact triangle (61) is isomorphic to the exact triangle of the pair .V 0; V /
for SHS

1;>0
� .
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The proof should go along the same lines as the one of Conjecture 9.21, adding on top
the isomorphism between SHS

1;>0
� .V / and CH.V / whenever the latter is defined [18].

There is also an S1–equivariant counterpart of Conjecture 9.23(ii), which involves
duality and hence the groups SHŒu�;>0� .

Remark 9.28 One can also give a Legendrian interpretation of SHS
1

� .W; @
�W /.

This can be obtained either formally algebraically by computing ranks from the
S1–equivariant tautological exact triangle of the pair .W; @�W / using the fact that
SHS

1;D0
� .W; @�W / is supported in positive degrees, or geometrically along the lines

of [18], where a linearized contact homology counterpart of SHS
1

� .V / is defined.

10 Product structures

10.1 TQFT operations on symplectic homology

As before, we use coefficients in a field K. Recall from [66; 64] the definition of
TQFT operations on the Floer homology of a Hamiltonian H on a completed Liouville
domain yV . We freely use in this section the terminology therein, namely “negative
punctures”, “positive punctures”, “cylindrical ends” and “weights”; see also [39].
Consider a punctured Riemann surface S with p negative and q positive punctures.
Pick positive weights Ai ; Bj > 0 and a 1–form ˇ on S with the following properties:

(i) H dˇ � 0.

(ii) ˇ D Ai dt in cylindrical coordinates .s; t/ 2 R� � S1 near the i th negative
puncture.

(iii) ˇ D Bj dt in cylindrical coordinates .s; t/ 2 RC � S1 near the j th positive
puncture.

Note that ˇ and the weights are related by Stokes’ theorem
pX
iD1

Ai �

qX
jD1

Bj D�

Z
S

dˇ:

Conversely, if the quantity on the left-hand side is nonnegative (resp. zero, nonpositive),
then we find a 1–form ˇ with properties (ii) and (iii) such that dˇ� 0 (resp. D 0, � 0).
Thus, we can arrange conditions (i)–(iii) in the following situations:

(a) H arbitrary, dˇ � 0, p; q � 1.

(b) H � 0, dˇ � 0, p � 1.

(c) H � 0, dˇ � 0, q � 1.
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Note that the condition H � 0 is satisfied for admissible Hamiltonians on a Liouville
cobordism.

We consider maps uW S! yV that are holomorphic in the sense that .du�XH˝ˇ/0;1D0
and have finite energy E.u/ D 1

2

R
S jdu � XH ˝ ˇj

2 volS . They converge at the
negative/positive punctures to 1–periodic orbits xi and yj and satisfy the energy
estimate

(62) 0�E.u/�

qX
jD1

ABjH .yj /�

pX
iD1

AAiH .xi /

(beware that our action is minus that in [64]). The signed count of such holomorphic
maps yields an operation

 S W

qO
jD1

FH�.BjH/!
pO
iD1

FH�.AiH/

of degree n.2�2g�p�q/ which does not increase action. These operations are graded
commutative if degrees are shifted by �n and satisfy the usual TQFT composition
rules. Let us pick real numbers aj < bj for j D 1; : : : ; q and a0i < b

0
i for i D 1; : : : ; p

satisfying

(63)
X
i

a0i Dmax
j

�
aj C

X
j 0¤j

bj 0

�
; b0i D

X
j

bj �
X
i 0¤i

a0i 0 :

Consider a term x1˝� � �˝xp appearing in  S .y1˝� � �˝yq/. If ABjH .yj /� aj for
some j and ABj 0H .yj 0/ � bj 0 for all j 0 ¤ j , then the energy estimate and the first
condition in (63) yield

pX
iD1

AAiH .xi /� aj C
X
j 0¤j

bj 0 �
X
i

a0i ;

thus AAiH .xi / � a
0
i for at least one i . This shows that  S is well-defined as an

operation

 S W

qO
jD1

FH.aj ;bj �� .BjH/!

pO
iD1

FH
.a0
i
;1/

� .AiH/:

Similarly, if ABjH .yj /�bj for all j and AAiH .xi />a
0
i for all i (so a1˝� � �˝ap¤0

in the quotient space), then for each i the energy estimate yields

AAiH .xi /C
X
i 0¤i

a0i 0 � AAiH .xi /C
X
i 0¤i

AAiH .xi 0/�
X
j

bj ;
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thus AAiH .xi / � b
0
i by the second condition in (63). It follows that  S induces an

operation on filtered Floer homology,

 S W

qO
jD1

FH.aj ;bj �� .BjH/!

pO
iD1

FH
.a0
i
;b0
i
�

� .AiH/:

To proceed further, let us first assume p; q � 1, so we are in case (a) above. We
specialize the choice of actions to aj D a and bj D b for all j and a0i D a

0 and b0i D b
0

for all i . Then (63) becomes

(64) pa0 D aC .q� 1/b; b0 D qb� .p� 1/a0;

and, under these conditions,  S induces an operation

 S W

qO
jD1

FH.a;b�� .BjH/!

pO
iD1

FH.a
0;b0�
� .AiH/:

We now apply this to admissible Hamiltonians for a Liouville cobordism W relative
to some admissible union A of boundary components as in Section 2.4. The map  S
is compatible with continuation maps for H �H 0 in the obvious way, and therefore
passes through the inverse and direct limit to define a map on filtered symplectic
homology

 S W

qO
jD1

SH.a;b�� .W;A/!

pO
iD1

SH.a
0;b0�
� .W;A/:

Let us first consider the case pD 1. Then a0!�1 and b0 D qb remains constant as
a!�1, so we can pass to the inverse limits to obtain an operation

 S W

qO
jD1

SH.�1;b�� .W;A/! SH.�1;qb�� .W;A/:

In the direct limit as b!1 this yields an operation

 S W

qO
jD1

SH�.W;A/! SH�.W;A/:

Taking instead limits as b & 0 and b % 0, respectively, we see that this operation
restricts to operations

 S W

qO
jD1

SH�0� .W;A/! SH�0� .W;A/;  S W

qO
jD1

SH<0� .W;A/! SH<0� .W;A/:
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In the case p > 1 this procedure fails because b0!1 as a!�1, so we cannot take
the inverse limits a; a0!�1 keeping b and b0 fixed. If all actions are nonnegative,
as in the case of a Liouville domain or a pair .W; @�W /, then there is no need to take
the inverse limit a; a0!�1, but we can simply fix a; a0 <0 and take the direct limits
b; b0!1 to obtain operations  S on all symplectic homology groups.

Next consider the case qD 0 and p� 1, which is possible for H � 0 (and thus AD∅)
according to case (b) above. Pick a0 � 0 and consider the associated map

 S W K!
pO
iD1

SH.a
0;1/
� .W /;

with K the ground field. For a nonzero term x1˝ � � � ˝ xp appearing in  S .1/ we
have AAiH .xi / > a

0 for all i , so the energy estimate yields

AAiH .xi /C .p� 1/a
0
� AAiH .xi /C

X
i 0¤i

AAiH .xi 0/� 0;

thus AAiH .xi /� �.p� 1/a
0. So we obtain a map

 S W K!
pO
iD1

SH.a
0;�.p�1/a0�
� .W /:

If p D 1, then we take the inverse limit as a0!�1 to obtain the unit

 S W K! SH�0� .W /:

If p > 1, then we set a0 D 0 to obtain the operation

 S W K!
pO
iD1

SHD0� .W /:

So we have proved:

Proposition 10.1 For a filled Liouville cobordism W and an admissible union A of
boundary components, there exist operations

 S W

qO
jD1

SH~� .W;A/!
pO
iD1

SH~� .W;A/; ~ 2 f∅;� 0;< 0g;

of degree n.2 � 2g � p � q/ associated to punctured Riemann surfaces S with p
negative and q positive punctures, graded commutative if degrees are shifted by �n
and satisfying the usual TQFT composition rules, in each of the following situations:

(i) @�W D AD∅, p � 1, q � 0.
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(ii) AD @�W , p � 1, q � 1.

(iii) AD∅, p D 1, q � 0.

(iv) A arbitrary, p D 1, q � 1.

As a consequence, we have:

Theorem 10.2 (a) For a filled Liouville cobordism W and an admissible union A
of boundary components, the pair-of-pants product on Floer homology induces
a product on SH�.W;A/. The product has degree �n, and it is associative and
graded commutative when degrees are shifted by �n.

(b) The symplectic homology groups SH�0� .W;A/ and SH<0� .W;A/ also carry in-
duced products which are compatible with the tautological maps SH<0� .W;A/!
SH�0� .W;A/!SH�.W;A/. The image of the map SH<0� .W;A/!SH�0� .W;A/
is an ideal in SH�0� .W;A/.

(c) The symplectic homology group SHD0� .W;A/ carries a product, which coincides
with the cup product in cohomology via the isomorphism SHD0� .W;A/ Š

Hn��.W;A/. The map SH�0� .W;A/! SHD0� .W;A/ is compatible with the
product structures.

(d) In the case AD ∅, the products on SH�0� .W /, SH�.W / and SHD0� .W / have
units, and the tautological maps SH�0� .W / ! SH�.W / and SH�0� .W / !
SHD0� .W / are morphisms of rings with unit.

(e) For a filled Liouville cobordism pair .W; V /, the transfer map SH~� .W / !
SH~� .V / is a morphism of rings for ~ 2 f< 0;� 0;¿g, and a morphism of rings
with unit for ~ 2 f� 0;¿g.

Proof Parts (a)–(d) follow directly from the preceding discussion, so it remains to
prove part (e). For this, fix a finite action interval .a; b/ and consider two Hamiltonians
K �H for the Liouville cobordism pair .W; V / as in Figure 12.

Let us first describe more explicitly the transfer map from Section 5.1. For this, let
�W R! Œ0; 1� be a smooth nondecreasing function with �.s/D0 for s�0 and �.s/D1
for s � 1 and define the s–dependent Hamiltonian

yH WD .1��.s//H C�.s/K;

where .s; t/ are coordinates on the cylinder R�S1 . Then @s yH � 0 and the count of
Floer cylinders for yH defines a chain map f W FC.a;b�.K/! FC.a;b�.H/.
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Now we describe the products. Let S be the Riemann sphere with two positive
punctures and one negative puncture. Let � W S!R�S1 be a degree 2 branched cover
with �.s; t/D .s; t/ in cylindrical coordinates .s; t/ 2 Œ1;1/� S1 near the positive
punctures and �.s; t/D .s; t/ in cylindrical coordinates .s; t/ 2 .�1;�1��S1 near
the negative puncture. We use the 1–form ˇ WD ��dt on S (with dˇD 0) and weights
B1 DB2 D 1 and A1 D 2 at the positive/negative punctures to define the pair-of-pants
product

�K W FC.a;b�.K/˝FC.a;b�.K/! FC.aCb;2b�.2K/;

and similarly �H . Next, consider for � 2R the function �� .s; t/ WD �.s��/ and the
Hamiltonian

yH� WD .1��� ı �/H C��K

depending on points z 2 S. Since H dˇ D 0 and dzH ^ ˇ � 0 as 2–forms on S,
the maximum principle holds for the Floer equation of yH� (see eg [3; 39; 64]). It
follows that the moduli spaces M� .y1; y2I x1/ of pairs of pants for yH� are compact
modulo breaking, where y1 , y2 and x1 are 1–periodic orbits of K and 2H, respectively.
Considering for index CZ.y1/CCZ.y2/�CZ.x1/�nD0 the natural compactifications
of the 1–dimensional moduli spaces

S
�2Rf�g�M� .y1; y2I x1/, we obtain the relation

(65) �H .f ˝f /�f2�K D @2H� � � @K :

Here @K and @2H are the Floer boundary operators for K and 2H, respectively,
f2W FC.a;b�.2K/! FC.a;b�.2H/ is the chain map defined by 2 yH, and

� W FC.a;b�.K/˝FC.a;b�.K/! FC.aCb;2b�.2H/

counts index �1 pairs of pants for yH� occurring at isolated values of � .

Let us now choose K and H such that the orbits in group F for K and in groups
F , I and III 0C for H have actions below a , so that FC.a;b�.K/D FH.a;b�I .K/ and
FC.a;b�.H/D FH.a;b�II;III�.H/. By Lemmas 2.2 and 2.3, FH.a;b�III� .H/ is a 2–sided ideal
for the product �H , so the latter passes to the quotient as a product

�H W FC.a;b�II .H/˝FC.a;b�II .H/! FC.aCb;2b�II .2H/:

It follows that relation (65) persists when we compose the maps f , and f2 and � ,
with their projections to FC.a;b�II .H/ and FC.a;b�II .2H/, respectively (keeping the same
notation for the new maps). Passing to homology and the direct limit over K and H,
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we obtain the commuting diagram on filtered symplectic homology

SH.a;b�.W /˝SH.a;b�.W /
�W
//

f˝f
��

SH.aCb;2b�.W /

f
��

SH.a;b�.V /˝SH.a;b�.V /
�V
// SH.aCb;2b�.V /:

Passing to the limits a!�1 and b% 0, b& 0 or b!1, we conclude that the
transfer map SH~� .W /! SH~� .V / preserves the product for ~ 2 f< 0;� 0;¿g. A
similar argument shows that the transfer map preserves the unit for ~ 2 f� 0;¿g and
Theorem 10.2 is proved.

In particular, Theorem 10.2 provides a product of degree �n with unit and a coproduct
of degree �n (without counit) on SH�.W / for every filled Liouville cobordism W .
Applied to the trivial cobordism, this yields, via the isomorphism (50), a corresponding
product and coproduct on Rabinowitz–Floer homology. We refer to Uebele [67] and
the appendix for a discussion of conditions under which the product is defined in the
absence of a filling if the negative boundary is index-positive.

If W is a Liouville cobordism with filling and L�W is an exact Lagrangian cobordism
with filling, then the preceding discussion shows that Lagrangian symplectic homology
SH~� .L/ is a module over SH~� .W / for ~ 2 f< 0;� 0;¿g; see also [64].

10.2 Dual operations

Combining Proposition 10.1 with the Poincaré duality isomorphism S�
~
.W;A/ Š

SH�~�� .W;A
c/, we obtain:

Proposition 10.3 Consider a filled Liouville cobordism W and an admissible union
A of boundary components. Then there exist operations

 S W

qO
jD1

SH�~.W;A/!
pO
iD1

SH�~.W;A/; ~ 2 f∅;� 0;> 0g;

of degree �n.2� 2g � p � q/, graded commutative if degrees are shifted by n and
satisfying the usual TQFT composition rules, in the following situations:

(i) @�W D∅, AD @CW , p � 1, q � 0.

(ii) AD @CW , p � 1, q � 1.
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(iii) AD @W , p D 1, q � 0.

(iv) A arbitrary, p D 1, q � 1.

Note that in Propositions 10.1 and 10.3 the conditions on p and q are the same, whereas
~ is replaced by �~ and A by Ac .

Suppose now that the filled Liouville cobordism W has vanishing first Chern class
and that @W carries only finitely many closed Reeb orbits of any given Conley–
Zehnder index. Using field coefficients, Corollary 3.6 yields canonical isomorphisms
SH~

k
.W;A/ Š SHk

~
.W;A/_ for all A and all flavours ~. The dualization of the

operations in Proposition 10.3 then yields:

Corollary 10.4 Consider a filled Liouville cobordism W with vanishing first Chern
class and an admissible union A of boundary components. Suppose that @W carries
only finitely many closed Reeb orbits of any given Conley–Zehnder index. Then with
field coefficients there exist operations (note the reversed roles of p and q )

 _S W

pO
iD1

SH~� .W;A/!
qO

jD1

SH~� .W;A/; ~ 2 f∅;� 0;> 0g;

of degree n.2� 2g � p � q/, graded commutative if degrees are shifted by �n and
satisfying the usual TQFT composition rules, in the following situations:

(i) @�W D∅, AD @CW , p � 1, q � 0.

(ii) AD @CW , p � 1, q � 1.

(iii) AD @W , p D 1, q � 0.

(iv) A arbitrary, p D 1, q � 1.

10.3 A coproduct on positive symplectic homology

Consider a Liouville cobordism W filled by a Liouville domain V . The choice of W
will be irrelevant, so we can take eg W DI�@V . Proposition 10.1(iii) provides a product
of degree �n on SH<0� .W /. In view of the isomorphism SH<0� .W /Š SH��C1>0 .V /

from Proposition 9.2, this gives a product of degree n�1 on the symplectic cohomology
group SH�>0.V /. Note that this cannot be the product arising from Proposition 10.3(iv)
(with V in place of W and AD∅) because the latter has degree n. Under the finiteness
hypothesis in Corollary 10.4, this gives a coproduct of degree 1�n on the symplectic
homology group SH>0� .V /.
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Remark 10.5 Following Seidel, there is another coproduct of degree 1 � n on
SH>0� .V / obtained as a secondary operation in view of the fact that the natural coproduct
given by counting pairs of pants with one input and two outputs vanishes; see also [39]
for a generalization and [46] for a topological version of it. These two coproducts of
degree 1�n agree. The isomorphism between them is part of a larger picture related
to Poincaré duality and will be the topic of another paper.

Appendix: An obstruction to symplectic cobordisms
by P Albers, K Cieliebak and A Oancea

In this joint appendix we use the results of this paper to define an obstruction to
Liouville cobordisms between contact manifolds.

Consider a Liouville cobordism W whose negative end @�W is hypertight, index-
positive or Liouville fillable. As explained in Section 9.5, in these cases one can define
symplectic homology groups SH~� .W / for ~ 2 f¿;� 0;< 0;D 0;� 0;> 0g, which
will be independent of a filling in the first two cases but may depend on the filling
in the Liouville fillable case. We would like to show that vanishing of SH�.@CW /
implies vanishing of SH�.@�W /. However, it is unclear how to deduce this from the
functoriality under cobordisms, which only gives correspondences

SH~� .W /

xx &&

SH~� .@�W / SH~� .@CW /

Instead, we will consider the following property (using coefficients in a field K):

Definition A.1 A Liouville cobordism W is called SAWC if 1W is mapped to zero
under the map H 0.W /Š SHD0n .W /! SH�0n .W /, where 1W is the unit in H 0.W /.

For a connected Liouville domain W , this agrees with the “strong algebraic Weinstein
conjecture” property of Viterbo [68]. As usual, we define the SAWC property for @˙W
via the trivial cobordism Œ0; 1�� @˙W , where SH�.@CW / is defined with respect to
the partial filling W . Then this property is inherited under cobordisms:

Proposition A.2 Let W be a Liouville cobordism with vanishing first Chern class
whose negative end @�W is hypertight, index-positive or Liouville fillable. If @CW is
SAWC, then so are W and @�W .
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Proof If the first Chern class of W vanishes the symplectic homology groups SH~�
are canonically graded in the component of constant loops. Consider thus the diagram
with commutative squares and exact rows

SH>0nC1.@�W / // SHD0n .@�W /'H
0.@�W / // SH�0n .@�W / // SH>0n .@�W /

SH>0nC1.W / //

'

��

OO

SHD0n .W /'H 0.W / //

injective1W 7!1@CW

��

1W 7!1@�W

OO

SH�0n .W / //

D) injective
��

OO

SH>0n .W /

'

��

OO

SH>0nC1.@CW / // SHD0n .@CW /'H
0.@CW / // SH�0n .@CW / // SH>0n .@CW /

The lower vertical arrows at the extremities are isomorphisms since W and I � @CW
share the same positive boundary. The map H 0.W /! H 0.@CW / is injective be-
cause every component of W has a positive boundary component. Injectivity of the
vertical map SH�0n .W /! SH�0n .@CW / then follows from the five lemma as in [69,
Exercise 1.3.3].

Suppose now that 1@CW is sent to zero by the map H 0.@CW /! SH�0n .@CW /. Then
commutativity of the lower-middle square implies that 1W goes to zero under the map
H 0.W /! SH�0n .W /, and commutativity of the upper-middle square implies that
1@�W goes to zero under the map H 0.@�W /! SH�0n .@�W /.

Note that Proposition A.2 uses the product structure on singular cohomology but not on
symplectic homology. Using the latter, we will now reformulate the SAWC condition.
As observed by Uebele [67], the pair-of-pants product � in Section 10 makes SH�.W /,
SH�0� .W / and SHD0� .W / unital graded commutative rings for W as in Proposition A.2,
provided that in the index-positive case we require the following stronger condition
(called “product index-positivity” in [67]):

(i) c2.W /j�2.@�W / D 0 and �1.@�W /D 1, and

(66) CZ.
/ > 3 for every closed Reeb orbit 
 in @�W I

or

(ii) denoting by �� the contact distribution on @�W , there exists a trivialization
of the square of the canonical bundle ƒmax

C �˝2� such that, with respect to that
trivialization, all closed Reeb orbits 
 in @�W satisfy (66); in addition, we
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require that the trivialization of ƒmax
C TW j˝2

@�W
determined by the trivialization

of ƒmax
C �˝2� extends over W .

Remark Since the homotopy classes of trivializations of a line bundle are classified
by the first integral cohomology group, the extension property in (ii) above is automatic
if the map H 1.W IZ/!H 1.@�W IZ/ is surjective.

Remark Examples in which (i) is satisfied are unit cotangent bundles of spheres Sn

of dimension n� 5, and more generally Milnor fibres of Ak –singularities

fzk0 C z
2
1 C � � �C z

2
n D 0g

for n� 5; see [55, Appendix A] and also [67].

The proof of this observation is similar to that of Proposition 9.17. The new feature
is that a pair of pants with inputs x1 and x2 and output x� might break into a Floer
cylinder C1 connecting x1 and x� with a negative puncture asymptotic to a closed
Reeb orbit 
1 , a Floer plane C2 with input x2 and a negative puncture at a closed
Reeb orbit 
2 , and a holomorphic cylinder with two positive punctures asymptotic to

1 and 
2 . The first two components are regular, so their indices satisfy

ind.C1/D CZ.x1/�CZ.x�/� .CZ.
1/Cn� 3/� 0;

ind.C2/D CZ.x2/Cn� .CZ.
2/Cn� 3/� 0:

When showing well-definedness of the product (resp. commutativity with the boundary
operator) we consider orbits satisfying

CZ.x1/CCZ.x2/�CZ.x�/�nD 0 (resp. D 1/:

Adding the two inequalities and inserting this relation yields

.CZ.
1/� 3/C .CZ.
2/� 3/� 0 (resp. � 1/;

contradicting condition (66).

Let us fix a Liouville form � on W and consider for b 2 R the filtered symplectic
homology groups SH.�1;b/� .W / defined in Section 2 (which also exist under the above
assumptions on W ). We define the spectral value of a class ˛ 2 SH�.W / by

c.˛/ WD inf
˚
b 2R j ˛ 2 im.SH.�1;b/� .W /! SH�.W //

	
2 Œ�1;1/:
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Here c.˛/ <1 follows from the definition of SH�.W / D lim
��!b!1

SH.�1;b/� .W /.
The fundamental inequality satisfied by spectral values is

c.˛ �ˇ/� c.˛/C c.ˇ/;

as a consequence of the fact that the pair-of-pants product decreases action (see in-
equality (62) with A1 D 2 and B1 D B2 D 1).

The unit 1W 2 SHn.W / plays a particular role. Indeed, we have c.1W / � 0 since
SH�0� .W /! SH�.W / is a map of rings with unit, but also

c.1W /D c.1W � 1W /� 2c.1W /:

Thus, either c.1W /D 0 or c.1W /D�1 (note that these conditions are independent
of the Liouville form �). The condition c.1W /D �1 is equivalent to the fact that
the unit belongs to the image of the map SH<0n .W /! SHn.W /. In the latter case
we also obtain c.˛/D�1 for all ˛ 2 SH�.W / since c.˛/� c.1W /C c.˛/. This is
in particular the case if SH�.W /D 0, and the converse is also true. Indeed, assume
c.1W /D�1 and represent 1W as the image of an element ˛b 2 SH.�1;b/� .W / for
some b < 0. By definition of the inverse limit, such an element is the equivalence
class of a sequence ˛bn 2 SH.�n;b/� .W / for n > jbj. We claim that each such element
˛bn is zero, hence 1W D 0. Indeed, for any given n we can choose b0 < �n and
represent by assumption 1W by an element ˇb

0

2 SH.�1;b
0/

� .W /, given by a sequence
ˇb
0

n0 2 SH.�n
0;b0/

� .W / for n0 > jb0j. But then ˛bn must be the image of ˇb
0

n0 under the
map SH.�n

0;b0/
� .W /! SH.�n;b/� .W /, which is zero for b0 < �n.

We thus obtain:

Lemma A.3 Let W be a Liouville cobordism whose negative end @�W is hypertight,
Liouville fillable or index-positive with the stronger index condition (66). Then W is
SAWC if and only if SH�.W /D 0.

Proof Proposition 7.20 yields the commuting diagram with exact rows and columns

SH>0nC1.W /

f
��

SH>0nC1.W /

g
��

SH<0n .W /
h
// SH�0n .W /

i
//

j
��

SHD0n .W /

k
��

SH<0n .W /
l
// SHn.W /

m
// SH�0n .W /
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where i and j are maps of unital rings. We will denote all units by 1W . We prove that
W is SAWC if and only if c.1W /D�1, which by the discussion above is equivalent
to SH�.W /D0. Suppose first that c.1W /D�1, ie 1W D l˛ for some ˛2SH<0n .W /.
Then 1W � h˛ D fˇ for some ˇ 2 SH>0nC1.W /, hence 1W D i.1W � h˛/ D gˇ is
mapped to zero under k , which means that W is SAWC. The converse implication is
proved similarly.

Corollary A.4 There is no Liouville cobordism W with @�W hypertight and such that
SH�.@CW /D 0 (where SH�.@CW / is defined with respect to the partial filling W ).

Proof If @�W is hypertight then the map SHD0n .@�W /! SH�0n .@�W / is an iso-
morphism, so @�W is not SAWC. On the other hand, SH�.@CW / D 0 implies by
Lemma A.3 that @CW is SAWC. This is impossible by Proposition A.2.

Corollary A.5 There is no Liouville cobordism W of dimension 2n� 4 with vanish-
ing first Chern class such that @�W is hypertight, @CW is fillable by a subcritical Stein
manifold with vanishing first Chern class, and the map �1.@CW /! �1.W / induced
by inclusion is injective.

Proof Let F be such a subcritical Stein filling of @CW . Denote by F SH�.@CW / the
symplectic homology computed with respect to the filling F , and W SH�.@CW / the
symplectic homology computed with respect to the partial filling W . Since SH�.F /D0,
we also have F SH�.@CW /D 0 by Corollary 9.9. By Remark 9.16, one can choose
on @CW a contact form so that all Conley–Zehnder indices of closed Reeb orbits
which are contractible in @CW are > 3�n. The injectivity of the map �1.@CW /!
�1.W / implies that the same condition on the indices holds for all closed Reeb orbits
which are contractible in W . Hence, by Proposition 9.17, we have W SH�.@CW /D
F SH�.@CW /D 0, and the conclusion follows from Corollary A.4.

Corollary A.6 There is no Weinstein cobordism W of dimension 2n� 6 with vanish-
ing first Chern class such that @�W is hypertight and @CW is fillable by a subcritical
Stein manifold with vanishing first Chern class.

Proof Indeed, in this situation the skeleton of W has codimension � n � 3 and a
generic homotopy of paths will avoid it and can be subsequently pushed by the Liouville
flow to @CW . Thus any loop in @CW which is contractible in W is also contractible
in @CW , ie the map �1.@CW /! �1.W / induced by the inclusion is injective. We
then conclude via Corollary A.5.
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Examples (1) Many examples of contact manifolds M with SH�.M/D 0 arise as
boundaries of Liouville domains with vanishing symplectic homology, eg subcritical
or flexible Stein manifolds [25].

(2) Examples of hypertight contact manifolds are the unit cotangent bundles of Rie-
mannian manifolds of nonpositive curvature. Other examples are the 3–torus T 3 with a
Giroux contact structure �k D ker

�
cos.ks/ d�Csin.ks/ dt

�
and its higher-dimensional

generalizations .T 2 �N; �k/ by Massot, Niederkrüger and Wendl [56]. The latter are
not strongly symplectically fillable (so in particular not Liouville fillable) for k � 2.
Therefore, it appears that Corollary A.4 with @�W being one of these manifolds cannot
be obtained by more classical tools such as symplectic homology of Liouville domains.

(3) Let us mention in the same vein the fact that there is no Liouville cobordism
W with @�W hypertight and @CW overtwisted. This is proved in the same way as
nonfillability of overtwisted contact manifolds [10; 21], using filling by holomorphic
discs in the symplectic manifold .0; 1/ � @�W [ W . However, this seems to fall
outside the scope of our methods, while at the same time the case that we address in
Corollary A.4 seems to fall outside the scope of the method of filling by holomorphic
discs.

(4) A contact manifold .M; �/ fails to satisfy the Weinstein conjecture if there exists
a contact form whose Reeb vector field has no periodic orbit. In the simply connected
case this is equivalent to the fact that .M; �/ is cobordant via a trivial cobordism to
a hypertight contact manifold. Turning this around, .M; �/ satisfies the Weinstein
conjecture if and only if it is not cobordant by a trivial Liouville cobordism to a
hypertight manifold. From this perspective, obstructing the existence of Liouville
cobordisms with hypertight negative end can be seen as a geometric generalization of
the Weinstein conjecture.
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