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The concordance invariant tau in link grid homology

ALBERTO CAVALLO

We introduce a generalization of the Ozsváth–Szabó � –invariant to links by studying a
filtered version of link grid homology. We prove that this invariant remains unchanged
under strong concordance and we show that it produces a lower bound for the slice
genus of a link. We show that this bound is sharp for torus links and we also give an
application to Legendrian link invariants in the standard contact 3–sphere.

57M25, 57M27

1 Introduction

Link Floer homology is an invariant for knots and links in three-manifolds, discovered
in 2003 by Ozsváth and Szabó [8] and independently by Jacob Rasmussen [12], in his
PhD thesis. It is the homology of a chain complex whose generators are combinatorially
defined, and whose differential counts pseudoholomorphic disks. Grid diagrams are
simple combinatorial presentation of links in S3, dating back to the 19th century. A
grid diagram is an l � l grid of squares, l of which are marked with an O and l of
which are marked with an X. A projection of a link together with an orientation on
it can be associated to a grid diagram D. These grids can be used to give a simpler
reformulation of link Floer homology, called grid homology. Of course these two
homologies are isomorphic, nevertheless grid homology can be easier to study.

In this paper we use the same notation of Ozsváth, Stipsicz and Szabó [7]. In this book,
particular attention is given to two versions of the grid homology of a link L: the simply
blocked grid homology bGH.L/ and the collapsed unblocked grid homology cGH�.L/;
both these homology groups are invariant under link equivalence. We study a slightly
different version of bGH.L/. Let us denote by F the field with two elements; we start
constructing a filtered F –complex .bGC.D/; y@/ from a grid diagram D, equipped with
an increasing Z–filtration F, and we prove that F induces a filtration in homology,
leading to the filtered homology group bGH.L/. The latter is not completely unrelated
to bGH.L/, as we see in Section 2.
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We can extract a numerical invariant from the homology bGH.L/, the integer-valued
function TLW Z�Z! Z>0 , with the following properties.

Proposition 1.1 (i) The function TL is supported in f1 � n; : : : ; 0g � Z andP
d;s2Z TL.d; s/D 2

n�1, where n is the number of components of L.

(ii) If L� is the mirror of the n–component link L then

TL�.d; s/D TL.�d C 1�n;�s/ for any d; s 2 Z:

(iii) If L1 #L2 is a connected sum of L1 and L2 , then TL1#L2
is the convolution

product of TL1
and TL2

.

(iv) If L is a quasialternating link then TL is determined by the signature of L.

Moreover, in Section 4 we prove the following theorem, which is similar to what
Pardon [10] proved for Lee homology. We say that a strong cobordism is a cobordism †,
between two links L1 and L2 , such that every connected component of † is a knot
cobordism between a component of L1 and one of L2 ; in particular, L1 and L2 have
the same number of components. If g.†/D 0 then † is a strong concordance.

Theorem 1.2 The function T is a strong concordance invariant. In other words, if L1
and L2 are strongly concordant then TL1

.d; s/D TL2
.d; s/ for every d; s 2 Z.

In Section 3 we show that TL.0; s/ is nonzero only for one value of s . We call this
integer �.L/, and, as the name suggests, it coincides with the classical � for knots
defined in Ozsváth and Szabó [8]. More precisely, we prove the following statement:

Theorem 1.3 For an n–component link the � –set, defined in [7] as �1 times the
Alexander gradings of a homogeneous, free generating set of the torsion-free quotient
of cGH�.L/ as an F ŒU �–module, coincides with the 2n�1 (with multiplicity) values
of s where the function T is supported.

For a knot K , where the � –set is just �.K/, we have that TK.d; s/ is nonzero only
for .d; s/D .0; �.K//.

From Theorem 1.2 we know that �.L/ is a strong concordance invariant. Furthermore,
it gives a lower bound for the slice genus g4.L/, that is, the minimum genus of a
compact, oriented, smoothly and properly embedded surface in D4 with L as boundary.

Proposition 1.4 For every n–component link L we have

(1) j�.L/jC 1�n6 g4.L/:
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We use this lower bound to give another proof that, for the positive torus link Tq;p , we
have

(2) g4.Tq;p/D
1
2
..p� 1/.q� 1/C 1� gcd.q; p// for any q 6 p:

This was already proved by the author in [1] using the Rasmussen s–invariant.

Finally, we use �.L/ to prove a generalization of the Thurston–Bennequin number
upper bound, given by Olga Plamenevskaya [11], to n–component Legendrian links.
A brief introduction on Legendrian knots and links can be found in Geiges [2].

Proposition 1.5 Consider a Legendrian n–component link L of link type L in S3

equipped with the standard contact structure. Then

(3) tb.L/Cjrot.L/j6 2�.L/�n:

Equation (3) gives a lower bound for � and, using (1), also the following lower bound
for the slice genus of L:

(4) tb.L/Cjrot.L/j6 2g4.L/Cn� 2;

generalizing a result of Rudolph [13] for knots. In Section 6 we give an example
where this bound is sharp. Moreover, (3) can also give an upper bound for TB.L/, the
maximal Thurston–Bennequin number of a link L.

Proposition 1.6 For every n–component link L we have

TB.L/6 2�.L/�n:

In particular, for a quasialternating link, since from Proposition 1.1(iv) the invariant �
is determined by the signature, we have the following result, which Plamenevskaya
proved for alternating knots in [11].

Corollary 1.7 If L is a quasialternating link then we have that

TB.L/6 �1� �.L/:

As we show in Section 6, the upper bound in Corollary 1.7 gives the following proposi-
tion:

Proposition 1.8 The links Lk in Figure 1 are a family of two component links, whose
components Lki are unknots with linking number zero, such that TB.Lk/ is arbitrarily
small.
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�2k C2k

Figure 1: A diagram of Lk. For k D 0 we have the link L9a40 .

The paper is organized as follows. In Section 2 we define the filtered chain complex
bGC.D/ and the homology group bGH.L/. In Section 3 we introduce the function
TL and we prove Proposition 1.1. In Section 4 we construct maps in homology,
induced by a cobordism † between two links L1 and L2 , and we use them to prove
Theorem 1.2 and Proposition 1.4. In Section 5 we talk briefly about the filtered version
of cGH�.L/ and we explain the proof of Theorem 1.3. Finally, in Section 6 we give
some applications, including the proof of equations (2) and (3).
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2 Filtered simply blocked link grid homology

2.1 The complex

We always suppose that a link is oriented. We denote by D a toroidal grid diagram
that represents an n–component link L. The number grd.D/ is the number of rows
and columns in the grid. The orientation in the diagram is taken by going from the
X – to the O –markings in the columns and the opposite in the rows. Vertical lines
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are numbered from left to right and horizontal lines from bottom to top, as shown in
Figure 2. We identify the boundaries of the grid in order to make it a fundamental
domain of a torus; then the lines of the diagram are embedded circles in this torus.
Any grd.D/–tuple of points x in the grid, with the property that each horizontal and
vertical circle contains exactly one of the elements of x , is called a grid state of D.

X

X

X

X

X
.0; 0/

.0; 5/

.5; 0/

.5; 5/

Figure 2: A grid diagram of the positive trefoil knot

Consider the set of the O –markings O D fO1; : : : ; Ogrd.D/g. We call special O –
markings a nonempty subset sO � O that contains at most one O –marking from
each component of L, while we call the others normal O –markings. We represent the
special ones with a double circle in the grid diagram. In the paper we usually consider
only the case when #jsOj D n, which means there is exactly one special O –marking
on each component. We talk about the general case in Section 3.2. From now on there
are always n special O –markings in a grid diagram, unless it is explicitly written
differently.

We define the simply blocked complex bGC.D/ as the free F ŒV1; : : : ; Vgrd.D/�n�–
module, where F D Z=2Z, over the grid states S.D/D fx1; : : : ; xgrd.D/Šg.

We associate to every grid state x the integer M.x/, called the Maslov grading of x ,
defined as

(5) M.x/DMO.x/D J .x�O; x�O/C 1;

where

J .P;Q/D
X
a2P

#
˚
.a; b/ 2 .P;Q/ j b has both coordinates strictly bigger

than those of a
	

with coordinates taken in the interval Œ0; grd.D//.
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Then we have the Maslov F –splitting

bGC.D/D
M
d2Z

bGCd .D/;

where bGCd .D/ is the finite-dimensional F –vector space generated by the elements
V
l1
1 � � �V

lm
m x , with x 2 S.D/ and mD grd.D/�n, such that

M.V
l1
1 � � �V

lm
m x/DM.x/� 2

mX
iD1

li D d:

We define another integer-valued function on grid states, the Alexander grading A.x/,
with the formula

A.x/D 1
2
.M.x/�MX.x//�

1
2
.grd.D/�n/;

where MX.x/ is as defined in (5), replacing the set O by X. For the proof that A.x/
is really an integer we refer to Chapter 8 in [7].

Now we introduce an increasing filtration on bGC.D/ such that

FsbGC.D/D
M
d2Z

FsbGCd .D/

and where FsbGCd .D/ is generated over F by the elements V l11 � � �V
lm
m x with Maslov

grading d and Alexander grading

A.V
l1
1 � � �V

lm
m x/D A.x/�

mX
iD1

li 6 s:

2.2 The differential

First we take x; y 2 S.D/. The set Rect.x; y/ is defined in the following way: it is
always empty except when x and y differs only by a pair of points, say fa; bg in x
and fc; dg in y ; then Rect.x; y/ consists of the two rectangles in the torus represented
by D that have bottom-left and top-right vertices in fa; bg and bottom-right and top-left
vertices in fc; dg. We call Rectı.x; y/�Rect.x; y/ the subset of the rectangles which
do not contain a point of x (or y ) in their interior.

The differential y@ is defined by

y@x D
X

y2S.D/

X
r2Rectı.x;y/
r\sOD∅

V
O1.r/
1 � � �V Om.r/

m y for any x 2 S.D/;
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where

Oi .r/D

�
1 if Oi 2 r;
0 if Oi … r:

Here fO1; : : : ; Omg is the set of the mD grd.D/�n normal O –markings.

We extend y@ to bGCd .D/ linearly, and we call it y@d , then again to the whole bGC.D/
in the following way: y@.Vix/D Vi � y@x for every i D 1; : : : ; m and x 2 S.D/. Since
y@ keeps the filtration and drops the Maslov grading by 1 [7, Lemma 13.2.3], we have
maps

y@d;sW FsbGCd .D/! FsbGCd�1.D/;

where y@d;s is the restriction of y@d to the subspace FsbGCd .D/�bGCd .D/. Further-
more, y@ ı y@D 0 [7, Lemma 13.2.2].

2.3 The homology

We define the homology group bGHd .D/ as the quotient space Ker y@d=Im y@dC1 . More-
over, we introduce the subspaces FsbGHd .D/ as follows: Consider the projection
�d W Ker y@d !bGHd .D/. Since Ker y@d;s D Ker y@d \FsbGCd .D/, we say that

FsbGHd .D/D �d .Ker y@d;s/

for every s 2 Z. Ker y@d;s � Ker y@d;sC1 implies that the filtration F descends to
homology. We see immediately that each FsbGHd .D/ is a finite-dimensional F –vector
space.

We can extend the filtration F on the total homology

bGH.D/D
M
d2Z

bGHd .D/

by taking
FsbGH.D/D

M
d2Z

FsbGHd .D/:

From [7, Chapter 13] we know that the dimension of FsbGHd .D/ as an F –vector
space is a link invariant for every d; s 2 Z; in particular, they are independent of the
choice of the special O –markings and the ordering of the markings. Hence, we can
denote them by FsbGHd .L/. Furthermore, Lemma 13.2.5 of [7] says that ŒVip�D Œ0�
for every i D 1; : : : ; m and Œp� 2bGH.L/. This means that each homology class can
be represented by a combination of grid states and every level FsbGH.L/ is also a
finite-dimensional F –vector space.
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The homology group bGHd;s.L/ of [7] can be recovered from the complex bGC.D/ in
the following way. We consider the graded object associated to a filtered complex C ,
the bigraded chain complex .gr.C/; gr.@//, where

gr.C/d;s D
FsCd

Fs�1Cd
and gr.@/ is the map induced by @ on gr.C/. Then we have that

bGHd;s.L/ŠF Hd;s
�
gr.bGC.D//; gr.y@/

�
:

3 The invariant tau in the filtered theory

3.1 Definitions

Since Fs�1bGHd .L/� FsbGHd .L/ and they are finite-dimensional vector spaces, we
define the function

TL.d; s/D dimF
FsbGHd .L/

Fs�1bGHd .L/
;

which clearly is still a link invariant.

Our first goal is to see what happens to this function T when we stabilize the link L, in
other words when we add a disjoint unknot to L. Denote the unknot by the symbol 
.
We claim that

(6) TLt
.d; s/D TL.d; s/CTL.d C 1; s/ for any d; s 2 Z:

Before the proof of (6), it is time for some remarks on filtered chain maps.

Suppose f W .C; @/! .C0; @0/ is a chain map between two filtered chain complexes
over F. We say that f is filtered of degree t if f .FsC/� FsCtC0 for every s 2 Z.

A filtered chain map induces a map in homology that is filtered of the same degree.
This means that f induces a map f�W H�.C/! H�.C0/ such that f�.FsH�.C// �
FsCtH�.C0/ for any s 2 Z.

We say that a linear map F W H�.C/!H�.C0/ is a filtered isomorphism if F is bijective
and F.FsH�.C// D FsH�.C0/ for any s 2 Z. We denote by H�.C/ Š H�.C0/ two
filtered isomorphic homology groups such that the isomorphism preserves the grading;
more explicitly this means that FsHd .C/ŠF FsHd .C0/ for every d; s 2 Z.
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Moreover, we can associate to a filtered chain map f W C! C0 the quotient map

gr.f /W gr.C/! gr.C0/:

We call f a filtered quasi-isomorphism if the map gr.f / induces an isomorphism
between H�;�.gr.C// and H�;�.gr.C0// that preserves the gradings. We denote by
C Š C0 two filtered quasi-isomorphic complexes.

From Proposition A.6.1 in [7] we have that if there is a filtered quasi-isomorphism
between .C; @/ and .C0; @0/ then H�.C/ŠH�.C0/, while, from Proposition A.8.1 in [7]
we know that C Š C0 if and only if there is a filtered chain homotopy equivalence
between C and C0 provided C and C0 are also modules over F ŒV1; : : : ; Vm�. See [7,
Chapter 13 and Appendix A] for more details.

Finally, we define the shifted complex CŒŒa; b��D C0 as FsC0
d
D Fs�bCd�a . Now, in

order to prove (6), we need the following proposition:

Proposition 3.1 For any link L we have bGH.L t
/ ŠbGH.L/˝ V , where V is
the two-dimensional F –vector space with generators in grading and minimal level
.d; s/D .�1; 0/ and .d; s/D .0; 0/.

Proof Take a grid diagram D for L. Then the extended diagram D, obtained from D

by adding one column on the left and one row on the top with a doubly marked square
in the top left, represents the link Lt
. The circle in the doubly marked square is
forced to be a special O –marking and we can also suppose that there is another special
O –marking just below and right of it, as shown in Figure 3.

X z

Figure 3: We call the top-left special O –marking O0 .

Let I.D/ denote the set of those generators in S.D/ which have a component at the
lower-right corner of the doubly marked square, and let N.D/ be the complement of
I.D/ in S.D/. From the placement of the special O –markings, we see that N.D/
spans a subcomplex N in bGC.D/. Moreover, if y@1 is the differential in bGC.D/ and
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y@2 the one in bGC.D/, we can express the restriction of y@1 to the subspace I, spanned
by I.D/, with y@2Cy@N ; this is because there is a one-to-one correspondence between
elements of I.D/ and grid states in S.D/. This correspondence induces a filtered
quasi-isomorphism i W .I; y@2/!bGC.D/.

Define a map H W N ! I by the formula

H.x/D
X

y2I.D/

X
r2Rectı.x;y/

O02r

V
O1.r/
1 � � �V Om.r/

m y for any x 2N.D/:

We have that H is a filtered chain homotopy equivalence between .N ; y@1/ and .I ; y@2/,
which increases the Maslov grading by one, and H ıy@N D 0. To see the first claim, we
mark the square just on the right of O0 with z and we define an operator yHz W I!N,
which counts only rectangles that contain z . This operator is a homology inverse of H ;
this and the second claim can be proved in the same way as in Lemma 8.4.7 in [7].
Those two facts together tell us that the following diagram commutes:

I N

bGC.D/ bGC.D/ŒŒ�1; 0��

y@N

i iıH

0

Since H is a filtered chain homotopy equivalence, i ıH is a filtered quasi-isomorphism,
just like the map i . Therefore, we can use a filtered version of Lemma A.3.8 in [7]
and obtain that the map between the mapping cones

Cone.y@N /DbGC.D/! Cone.0/DbGC.D/˝V

is a filtered quasi-isomorphism and so the claim follows easily. See also the proof of
Lemma 8.4.7 in [7] for other details.

Equation (6) is obtained immediately from Proposition 3.1; in fact we have proved
that FsbGHd .Lt
/Š FsbGHd .L/˚FsbGHdC1.L/ for every d; s 2 Z and so it is
enough to apply the definition of T .

Now we are able to do some computations. The homology of the unknot can be easily
computed by taking the grid diagram of dimension 1, where the square is marked with
both X and O. The complex has one element of Maslov and Alexander grading 0;
then T
.d; s/D 1 if .d; s/D .0; 0/ and it is 0 otherwise.
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Using (6), we get the function T of the n–component unlink 
n :

T
n
.d; s/D

��n�1
k

�
if .d; s/D .�k; 0/ with 06 k 6 n� 1;

0 otherwise:

We can also see this directly from Proposition 3.1; in fact we have that bGH.
n/Š

V ˝.n�1/ .

Now let us consider a grid diagram D of a link L. The Maslov grading of the elements
of S.D/ and the differential y@ are independent of the position of the X ’s, once we
have fixed the special O –markings. Since we can always change the X –markings to
obtain 
n , this means that dimF bGHd .L/D dimF bGHd .
n/ for every d 2 Z and
the generators are the same. In particular,

bGH.L/ŠF bGH.
n/ŠF F2
n�1

and bGHd .L/ŠF F.
n�1
�d / when 1�n6d 60:

From this we have that bGH0.L/ has always dimension 1 and then we define �.L/ as
the only integer s such that TL.0; s/ > 0, as we previously said in the introduction.
We remark that, for a knot, this version of � coincides with that of Ozsváth and Szabó.
See the proof of Theorem 1.3 in Section 5. We also observe that (6) tells us that
�.Lt
/D �.L/.

3.2 Dropping the special O –markings

In this subsection we study what happens to the homology of the filtered chain complex
.bGC.D/; y@/ if the grid diagram D has fewer than n special O –markings.

Let us consider a grid diagram D for an n–component link L. The set sO�O contains
at most one O –marking from each component of L, but we have that #jsOj > 1.
Denote by mD grd.D/� #jsOj the number of normal O –markings in D. Then we
can define our chain complex exactly in the same way as in Section 2; on the other
hand, the homology bGH.D/ is no longer a link invariant, in fact it clearly depends of
the choice of the special O –markings.

Nonetheless, we can show that the F –vector space bGH.D/ is still finite-dimensional.
Note that this is not true if instead we consider the simply blocked homology group
bGH.D/.

Proposition 3.2 The homology group bGH.D/, defined as in Section 2.3, is F –
isomorphic to bGH.
#jsOj/, the homology of the unlink with #jsOj components
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each containing a special O –marking. In particular, we have that

bGH.D/ŠF F2
#jsOj�1 and bGHd .D/ŠF F.

#jsOj�1
�d /

when 1� #jsOj6 d 6 0.

Proof As we noted before, the group bGH.D/ does not depend on the position of the
X –marking. Since we can always change them in a way that D becomes a diagram
for an unlink with a special O –marking on every component, the claim follows from
the results in the previous subsection.

Even though in this case the homology is no longer a link invariant, we can still prove
the following theorem:

Theorem 3.3 Let us consider two grid diagrams D1 and D2 representing smoothly
isotopic links L1 and L2 such that all the isotopic components both contain or both do
not contain a special O –marking. Then we have that bGH.D1/ is filtered isomorphic to
bGH.D2/ and the isomorphism preserves the Maslov grading. Hence, we can denote
the homology group of an n–component link L by bGHO.L/ and it depends only on
which components of the link contain a special O –marking.

Proof Lemma 4.1 in [14] tells us that such two grid diagrams differ by a finite sequence
of grid moves: reordering of the O –markings, commutations and stabilizations. See
Section 3 in [14] for more details. Then it is enough to prove the theorem in the case
when D2 is obtained from D1 by one of these three moves.

Applying the results in [7, Chapters 5 and 13] we find filtered quasi-isomorphisms for
each move and this implies bGH.D1/ŠbGH.D2/.

We use the homology groups bGHO.L/ to define some cobordism maps in Section 4.

3.3 Symmetries

3.3.1 Reversing the orientation If �L is the link obtained from L by reversing the
orientation of all the components then

(7) T�L.d; s/D TL.d; s/ for any d; s 2 Z

and �.�L/D �.L/.

Algebraic & Geometric Topology, Volume 18 (2018)



The concordance invariant tau in link grid homology 1929

To see this, consider a grid diagram D of L, then it is easy to observe that, if
we reflect D along the diagonal going from the top-left to the bottom-right of the
grid, the diagram D0 obtained in this way represents �L. Hence, we take the map
ˆW S.D/ ! S.D0/ that sends a grid state x into its reflection x� and now, from
Proposition 4.3.1 in [7], we have that M.x�/DM.x/ and A.x�/DA.x/. This means
that ˆ is a filtered quasi-isomorphism between bGC.D/ and bGC.D0/, since clearly
the differentials commute with ˆ. This gives that bGH.�L/ŠbGH.L/ and then (7)
follows.

3.3.2 Mirror image For an n–component link L we have that the function T of
the mirror image L� is given by the equation

(8) TL�.d; s/D TL.�d C 1�n;�s/ for any d; s 2 Z:

The proof of this relation is similar to the proof of Proposition 7.1.2 in [7]. First, given
a complex C with a filtration F, we introduce the filtered dual complex C�, equipped
with a filtration F�, by taking

.F�/s.C�/d D Ann.F�s�1C�d /� .C�d /� D .C�/d for any d; s 2 Z;

where Ann.FhCk/ is the subspace of .Ck/� consisting of all the linear functionals that
are zero over FhCk .

Second, given a grid diagram D of L, we call .eGC.D/; z@/ the filtered fully blocked
chain complex .bGC.D/; y@/=.V1 D � � � D Vm D 0/ and we also denote by W the two-
dimensional F –vector space with generators in grading and minimal level .d; s/D .0; 0/
and .d; s/D .�1;�1/. We want to prove the following proposition:

Proposition 3.4 bGH.L�/ Š bGH�.L/ŒŒ1 � n; 0��, where the filtration on bGH�.L/
is F�.

Proof Let D� be the diagram obtained by reflecting D through a horizontal axis.
The diagram D� represents L�. Reflection induces a bijection x ! x� between
grid states for D and those for D�, inducing a bijection between empty rectangles in
Rectı.x; y/ and empty rectangles in Rectı.y�; x�/. Hence, the reflection induces a
filtered isomorphism

eGC.D�/ŠeGC�.D/ŒŒ1� grd.D/; n� grd.D/��;

where the shifts are given by the fact that M.x�/D�M.x/C1�grd.D/ and A.x�/D
�A.x/Cn� grd.D/.
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Now, from Lemma 14.1.11 in [7], we have the filtered quasi-isomorphism

(9) eGC.D/ŠbGC.D/˝W ˝.grd.D/�n/:

Combining these two relations and observing that

.W �/˝.grd.D/�n/
ŠW ˝.grd.D/�n/ŒŒgrd.D/�n; grd.D/�n��

leads to the filtered quasi-isomorphism

bGC.D�/ŠbGC�.D/ŒŒ1�n; 0��:

Proposition 3.4 says that FsbGHd .L
�/Š .F�/s.bGH�/d�1Cn.L/ for every d; s 2 Z.

Then we can prove (8):

TL�.d; s/D dim
.F�/s.cGH�/d�1Cn.L/
.F�/s�1.cGH�/d�1Cn.L/ D dim

Ann.F�s�1cGH�dC1�n.L//
Ann.F�scGH�dC1�n.L//

D dim
F�scGH�dC1�n.L/

F�s�1cGH�dC1�n.L/ D TL.�d C 1�n;�s/:
If we define ��.L/ as the unique integer such that TL.1�n; ��.L//D 1, then we have
proved that

(10) �.L�/D���.L/:

In particular, for a knot K , where ��.K/D �.K/, we have �.K�/D��.K/. Moreover,
we have the following corollary:

Corollary 3.5 Suppose that L is smoothly isotopic to L�. Then

TL�.d; s/D TL.d; s/ for any d; s 2 Z

and so (8) gives that the function TL has a central symmetry in the point
�
1
2
.1�n/; 0

�
.

In particular, ��.L/D��.L/ and, for knots, �.K/D 0.

3.3.3 Connected sum Given two links L1 and L2 , the function T of the connected
sum L1 #L2 is the convolution product of the T functions of L1 and L2 ; in other
words,

(11) TL1#L2
.d; s/D

X
dDd1Cd2
sDs1Cs2

TL1
.d1; s1/ �TL2

.d2; s2/ for any d; s 2 Z:
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This equation is very hard to prove in the grid diagram settings, but it has been proved
quite easily using the holomorphic definition of link Floer homology. In fact, Ozsváth
and Szabó proved that, if D is a Heegaard diagrams for L and bCFL.D/ denotes the
link Floer complex, there is a filtered chain homotopy equivalence

bCFL.D1/˝ bCFL.D2/! bCFL.D1 #D2/;

which gives that bGH.L1 #L2/ŠbGH.L1/˝bGH.L2/. See Section 7 in [8].

We see immediately that the homology and the T function of L1 #L2 are independent
from the choice of the components used to perform the connected sum; moreover, the
� –invariant is additive:

�.L1 #L2/D �.L1/C �.L2/:

3.3.4 Disjoint union The disjoint union of two links L1 and L2 is equivalent to
L1 # .L2 t
/. Thus, by (6) and (11) we have the relation

(12) TL1tL2
.d; s/D

X
dDd1Cd2
sDs1Cs2

TL1
.d1; s1/ � .TL2

.d2; s2/CTL2
.d2C 1; s2//

for any d; s 2 Z,

or, in other words, bGH.L1 tL2/ ŠbGH.L1/˝bGH.L2/˝ V , where V is the two-
dimensional F –vector space with generators in grading and minimal level .d; s/D
.�1; 0/ and .d; s/D .0; 0/. We have immediately that

�.L1 tL2/D �.L1 #L2/D �.L1/C �.L2/:

3.3.5 Quasialternating links We recall that quasialternating links are the smallest
set of links Q that satisfies the two properties:

(1) The unknot is in Q.

(2) L is in Q if it admits a diagram with a crossing whose two resolutions L0 and
L1 are both in Q, det.Li /¤ 0 and det.L0/C det.L1/D det.L/.

The above definition and Lemma 3.2 in [9] imply that every quasialternating link
is nonsplit and every nonsplit alternating link is quasialternating. Moreover, quasi-
alternating links are both Khovanov and link Floer homology thin, which means that
their homologies are supported in two and one lines, respectively, and the homology is
completely determined by the signature and the Jones (Alexander in the hat version of
link Floer homology) polynomial. The following proposition says that the same is true
in filtered grid homology.
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Theorem 3.6 If L is an n–component quasialternating link then the function TL is
supported in a line; more specifically, the following relation holds:

TL.d; s/¤ 0 if and only if s D d C 1
2
.n� 1� �.L// for 1�n6 d 6 0;

where �.L/ is the signature of L.

Proof We already know that if TL.d; s/¤ 0 then 1�n6 d 6 0, so we only have to
prove the alignment part of the statement.

Take a grid diagram D for L; then, from Theorem 10.3.3 in [7], the claim is true for
the bigraded homology H�;�

�
gr.bGC.D//

�
ŠbGH.L/. Since TL.d; s/ ¤ 0 implies

that Hd;s
�
gr.bGC.D//

�
is nonzero, the theorem follows.

From Theorem 3.6 we obtain immediately the following corollary:

Corollary 3.7 If L is an n–component quasialternating link then

�.L/D 1
2
.n� 1� �.L// and �.L�/D n� 1� �.L/:

4 Cobordisms

4.1 Induced maps and degree shift

In this section we study the behaviour of the function T under cobordisms. A genus-g
cobordism between two links L1 and L2 is a smooth embedding f W †g ! S3 � I,
where †g is a compact orientable surface of genus g (more precisely, †g has connected
components †g1

; : : : ; †gJ
with g D g1C � � �CgJ ) such that:

(1) f .@†g/D .�L1/� f0g tL2 � f1g.

(2) f .†g n @†g/� S
3 � .0; 1/.

(3) Every connected component of †g has boundary in both L1 and L2 .

In all the figures in this section, cobordisms are drawn as standard surfaces in S3, but
they can be knotted in S3 � I.

Some of the induced maps that appear in this subsection come from the work of Sucharit
Sarkar [14], though the grading shifts are different, because Sarkar used a different
definition of the Alexander grading, ignoring the number of component of the link.
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L1 L2

Figure 4: Identity cobordism

It is a standard result in Morse theory that a link cobordism can be decomposed into
five standard cobordisms. We find maps in homology for each case. From now on,
given a link Li , we denote by Di one of its grid diagrams.

(i) Identity cobordism This cobordism, with no critical points (Figure 4), represents
a sequence of Reidemeister moves; in other words, L1 and L2 are smoothly isotopic.
At the end of Section 2 we remarked that filtered homology is a link invariant; more
precisely, what we have is a filtered quasi-isomorphism between bGC.D1/ and bGC.D2/.
This, as we know, induces a filtered isomorphism in homology.

X

X

X

X

Figure 5: Band move in a grid diagram

(ii) Split cobordism This cobordism (Figure 6, right) represents a band move when
L2 has one more component than L1 . Take D1 with a 2� 2 square with two X –
markings, one at the top-left and one at the bottom-right; then we claim that D2 is
obtained from D1 by deleting these two X –markings and putting two new ones: at the
top-right and the bottom-left, as shown in Figure 5. In order to construct the complex
bGC.D2/ we need to create one more special O –marking on the new component of L2 .
To avoid this problem we first consider the identity map in the filtered eGC theory

IdWeGC.D1/!eGC.D2/;
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L1 L2 L1 L2

Figure 6: Merge and split cobordisms

which clearly is a chain map since now every O –marking is special; moreover, it
induces an isomorphism in homology that preserves the Maslov grading, and a direct
computation gives that it is filtered of degree 1.

Now we use (9) and we get an isomorphism

ˆSplitWbGH.L1/˝W !bGH.L2/
that is a degree-1 filtered map which still preserves the Maslov grading. The W
factor appears because in (9) we take into account the size of Di and the number of
components of Li ; while the first quantity is the same for both diagrams, the link L2
has one more component than L1 .

(iii) Merge cobordism This cobordism (Figure 6, left) represents a band move when
L1 has one more component than L2 . We have an isomorphism

ˆMergeWbGH.L1/!bGH.L2/˝W:
The map is obtained in the same way as ˆSplit in the previous case, but with the
difference that now it is filtered of degree 0.

Sometimes we are more interested in when a split and a merge cobordism appear
together, the second just after the first, in the shape of what we call a torus cobordism
(Figure 7). We have the following proposition:

Proposition 4.1 Let † be a torus cobordism between two links L1 and L2 . Then
† induces a Maslov grading-preserving isomorphism between bGH.L1/ and bGH.L2/,
which is filtered of degree 1.
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L1 L2

Figure 7: Torus cobordism

Proof We can choose D1 in a way that the split and the merge band moves can be
performed on two disjoint bands. Then we apply twice the move shown in Figure 5
and we take as map the identity. In this case the identity is a chain map because L2
has the same number of components of L1 ; this means that the special O –markings in
D1 and D2 are the same and then the two differentials coincide. In this way we obtain
an isomorphism in homology with Maslov grading shift and filtered degree equal to
the sum of the ones in (ii) and (iii).

(iv) Birth cobordism This is a cobordism (Figure 8) representing a birth move.

Since our cobordisms have boundary in both L1 and L2 , we can always assume that a
birth move is followed (possibly after some Reidemeister moves) by a merge move.
Thus it is enough to define a map for the composition of these three cobordisms and
this is what we do in the following proposition:

L2

L1

Figure 8: Birth cobordism
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Proposition 4.2 Let † be a cobordism between two links L1 and L2 like the one in
Figure 9. Then † induces an isomorphism ˆBirth between bGH.L1/ and bGH.L2/ that
preserves the Maslov grading and it is filtered of degree 0.

L2

L1

Figure 9: A more useful birth cobordism

Proof The first step is to construct a map s1 associated to the grid move shown in
Figure 10; note that we add a normal O –marking, since later we merge the new unknot
component with an already-existing one. Let us denote by D01 the stabilized diagram
and by cD˛\ˇ the point in the picture; then we have the inclusion i W S.D1/!S.D01/

that sends a grid state x in D1 to the grid state in D01 constructed from x by adding
the point c . Then s1WbGC.D1/!bGC.D01/ is defined by the formula

s1.x/D
X

y2S.D01/

X
H2SL.i.x/;y;c/
H\sOD∅

V
n1.H/
1 � � �V nm.H/

m y for any x 2 S.D1/;

where SL.x; z; p/ is the set of all the snail-like domains (the exact definition can
be found in [7, Chapter 13]) centred at p joining x to z , illustrated in Figure 11;
ni .H/ is the number of times H passes through Oi and m is the number of normal
O –markings of D1 . In [5] it is proved that s1 is a filtered quasi-isomorphism which
induces a filtered isomorphism between bGH.L1/!bGHO.L1t
/, where the special

D1
D1

X
˛

ˇ

c

Figure 10: Birth move in a grid diagram
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p p p p

Figure 11: Some of the snail-like domains SL.x; z; p/; the coordinates of x
and z are represented by the white and black circles.

O –markings on L1 t
 coincide with those on L1 (the new unknotted component
has a normal O –marking). Moreover, Sarkar [14] showed that the map s1 is filtered
of degree 0.

At this point we compose s1 with the map s2 given by the Reidemeister moves,
which is a filtered quasi-isomorphism for Theorem 3.3, and finally with s3 , the iden-
tity associated to the band move of Figure 5. The map s3 induces an isomorphism
bGHO.L1 t
/!bGH.L2/ that clearly preserves the Maslov grading and again we
easily compute that it is filtered of degree 0.

Hence, the composition of these three maps that we defined induces the isomorphism
in the claim.

(v) Death cobordism This cobordism (Figure 12) represents a death move. Since
this move can also be seen as a birth move between L�2 and L�1 , we take the dual map
of

ˆBirthWbGH.L�2/!bGH.L�1/;

which exists from Proposition 4.2; then ˆ�Birth DˆDeath , by Proposition 3.4, is a map
between bGH.L1/ and bGH.L2/. Furthermore, it is still an isomorphism that is filtered
of degree 0 and preserves the Maslov grading.

The results for birth and death cobordisms in this section immediately give the following
corollary:

Corollary 4.3 Suppose there is a birth or a death cobordism as in Figures 9 and 12
between two links L1 and L2 . Then we have that bGH.L1/ŠbGH.L2/.
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L2

L1

Figure 12: Death cobordism

4.2 Strong concordance invariance

We want to prove Theorem 1.2. We remark that a strong cobordism is a cobordism
† between two links with the same number of components such that every connected
component of † is a knot cobordism between a component of the first link and one of
the second link. Moreover, if the connected components of † are all annuli then we
call † a strong concordance. We start by observing that Proposition 4.1 leads to the
following corollary:

Corollary 4.4 Suppose there is a strong cobordism † between L1 and L2 such that
† is the composition of g.†/ torus cobordisms, not necessarily all of them belonging
to the same component of †. Then † induces an isomorphism between bGH.L1/
and bGH.L2/, which is filtered of degree g.†/ and preserves the Maslov grading.

Now, if we have an isomorphism

F WbGH.L1/!bGH.L2/
that preserves the Maslov grading and it is filtered of degree t — which means that
there are inclusions F.FsbGHd .L1// � FsCtbGHd .L2/ for every d; s 2 Z — then
�.L2/6 �.L1/C t . Hence, we can prove the following theorem, which immediately
implies the invariance statement.

Theorem 4.5 Suppose that † is a strong cobordism between two links L1 and L2 .
Then

j�.L1/� �.L2/j6 g.†/:

Furthermore, if L1 and L2 are strongly concordant, then bGH.L1/ŠbGH.L2/.
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Proof By Proposition B.5.1 in [7] we can suppose that, in †, 0–handles come before
1–handles while 2–handles come later; moreover, we can say that † is the composition
of birth, torus and death cobordisms (and obviously some identity cobordisms). Each
of these induces an isomorphism in homology that also respects the Maslov grading.

For the first part, we only need to check what is the filtered degree of the isomorphism
between bGH.L1/ and bGH.L2/, obtained by the composition of all the induced maps
on each piece of †. Birth, death and identity are filtered of degree 0, while, from
Corollary 4.4, the torus cobordisms are filtered of degree g.†/. Then we obtain

�.L2/6 �.L1/Cg.†/:

For the other inequality we consider the same cobordism, but this time from L2 to L1 .

Now, for the second part, we observe that now there are no torus cobordisms and then
the claim follows from Corollary 4.3.

4.3 A lower bound for the slice genus

Suppose † is a cobordism (not necessarily strong) between two links L1 and L2 .
Denote by †1; : : : ; †J the connected components of †. For i D 1; 2 we define the
integers lki .†/ as the number of components of Li that belong to †k minus 1; in
particular, lki .†/ > 0 for any k and i . Finally, we say that li .†/D

PJ
kD1 l

k
i .†/D

ni � J, where ni is the number of components of Li . For example, if † is the
cobordism in Figure 13 then J D 2, ordering †1 and †2 from top to bottom, we
have that l1.†/ D 3 and l2.†/ D 4, while l11 .†/ D 2, l21 .†/ D 1, l12 .†/ D 3 and
l22 .†/D 1. We have the following lemma:

Lemma 4.6 If † has no 0– or 2–handles then, up to rearranging 1–handles, we can
suppose that † is like in Figure 13: there are l1.†/ merge cobordisms between .0; t1/,
l2.†/ split cobordisms between .t2; 1/ and g.†/ torus cobordisms between .t1; t2/.
We have no other 1–handles, except for those we considered before.

Proof We consider a connected component †k , which is a cobordism between Lk1
and Lk2 , and we fix a Morse function f W S3� Œ0; 1�! Œ0; 1�. After some Reidemeister
moves, by [7, Proposition B.5.1] we can assume that all the band moves are performed
on disjoint bands; in particular, we can apply them in every possible order.

Since †k has boundary in both Lk1 and Lk2 by the definition of cobordism given at the
beginning of Section 4, if we take an ordering for the components of Lk1 , we can find
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t1 t2

L1

L2

0 1

Figure 13

a merge cobordism joining the first and the second components of Lk1 at some point Nt
in .0; 1/; we assume that the associated band move is the first we apply on Lk1 . Now we
just do the same thing on the other components, but taking the new component instead
of the first two. In this way we have that there is a t1 2 .0; 1/ such that †k\f �1Œ0; t1�
is composed of lk1 .†/ merge cobordisms and †k \f �1.t1/ is a knot.

In the same way we find that, for a certain t2 2 .0; 1/, the cobordism †k \f
�1Œt2; 1�

is composed of lk2 .†/ split cobordisms and †k \f �1.t2/ is a knot.

At this point †k \ f �1Œt1; t2� is a knot cobordism of genus g.†k/ and, from [7,
Lemma B.5.3] (see also [4]), we can rearrange the saddles to obtain a composition of
g.†k/ torus cobordisms like in Figure 13.

To see that there are no other 1–handles left, it is enough to compute the Euler
characteristic of †k :

2� 2g.†k/� l
k
1 .†/� 1� l

k
2 .†/� 1D �.†k/D�#j1–handlesj:

This means that the number of 1–handles in †k is precisely 2g.†k/C lk1 .†/C l
k
2 .†/.

From Figure 13 we realize that merge and split cobordisms can appear alone in † and
not always in pairs like in strong cobordisms. In cases (ii) and (iii) of Section 4.1 we
see that they do not induce isomorphisms in homology, but we find maps ˆSplit and
ˆMerge that are indeed isomorphisms if restricted to bGH0.L1/!bGH0.L2/; moreover,
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the filtered degree is 1 for split cobordisms and 0 for merge cobordisms. Since we are
looking for information on � , this is enough for our goal and then we can prove the
following inequality:

Proposition 4.7 Suppose † is a cobordism between two links L1 and L2 . Then

j�.L1/� �.L2/j6 g.†/Cmaxfl1.†/; l2.†/g:

Proof By Theorem 4.5, we can suppose that there are no 0– or 2–handles in †. We
can also assume that † is like in Lemma 4.6.

All of these cobordisms induce isomorphisms of the homology in Maslov grading 0.
The number of torus cobordisms is g.†/ while the number of split cobordisms (that
are not part of torus cobordisms) is l2.†/. This means that

�.L2/6 �.L1/Cg.†/C l2.†/:

Now we do the same, but considering the cobordism going from L2 to L1 , as we did
in the proof of Theorem 4.5. We obtain that

�.L1/6 �.L2/Cg.†/C l1.†/:

Putting the two inequalities together proves the relation in the statement of the theorem.

If L is an n–component link, from Proposition 4.7 we have immediately (1):

j�.L/jC 1�n6 g4.L/;

which, as we already said, is a lower bound for the slice genus of our link. Indeed, we
can say more by using (10) and observing that g4.L�/D g4.L/:

max
˚
j�.L/j; j��.L/j

	
C 1�n6 g4.L/:

5 The GH� version of filtered grid homology

5.1 A different point of view

The collapsed filtered complex
cGC�.D/

for a grid diagram D is the free F ŒV1; : : : ; Vgrd.D/�n; V �–module generated by the
set of grid states S.D/. This ring has one more variable, V , compared to the ring we
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considered for bGC.D/, associated to the special O –markings. The differential @� is
defined as

@�x D
X

y2S.D/

X
r2Rectı.x;y/

V
O1.r/
1 � � �V Om.r/

m �V O.r/y for any x 2 S.D/;

where mD grd.D/�n and O.r/ is the number of special O –markings in r .

It is clear from the definition that

.bGC.D/; y@/D
.cGC�.D/; @�/

V D 0
:

The collapsed filtered unblocked homology cGH�.L/ is the homology of our new
complex and it is a link invariant, but now each level FscGH�.L/ has also a structure
of an F ŒU �–module given by U Œp� D ŒVip� D ŒVp� for every i D 1; : : : ; m and
Œp� 2 cGH�.L/. The groups FscGH�

d
.L/ are still finite-dimensional over F and so

we can define the function N as

NL.d; s/D dimF
FscGH�

d
.L/

Fs�1cGH�
d
.L/

:

We expect the function N to be a strong concordance invariant, possibly better than T .

We can compute the function N of the unknot:

N
.d; s/D

�
1 if .d; s/D .2t; t/ with t 6 0;

0 otherwise;
and we know that

cGH�.L/ŠFŒU � cGH�.
n/ŠFŒU � F ŒU �2
n�1

as an F ŒU �–module, where n is the number of component of L.

Since dimF cGH�0 .L/ is still equal to 1, we can define an invariant � exactly like we
did in Section 3.1 for � . A version of the �–invariant has been introduced first by
Rasmussen [12] and he proved that it is a concordance invariant for knots. Hom and
Wu [3] found knots whose �–invariant gives a better lower bound for the slice genus
than � .

Since H�;�
�
gr.cGC�.D//

�
is isomorphic to the homology cGH�.L/ of [7] and

NL.0; �.L//D 1 for every diagram D of L, we have that cGH�0;�.L/.L/ is nontrivial.
Hence, if the homology group cGH�0 .L/ is nonzero only for one Alexander grading s ,
we can argue that �.L/D s . This method can be used to compute the �–invariant of
some links.
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We can also define the (uncollapsed) filtered unblocked homology as the homology of
the complex .GC�.D/; @�/, where GC�.D/ is the free F ŒV1; : : : ; Vgrd.D/�–module
over the grid states of D ; there are no special O –markings this time.

We see immediately that, for every n–component link L,

GH�.L/Š F ŒU1; : : : ; Un�

with generator in Maslov grading 0, but the filtration will of course depend on L.

5.2 Proof of Theorem 1.3

We use the complex cGC� to prove that, for every n–component link L, an integer s
gives Td;s.L/ ¤ 0 for some d if and only if s belongs to the � –set of L. To do
this, given a freely and finitely generated F ŒU �–complex C , we define two sets of
integers, �.C/ and t .C/. First we call B� .C/ a homogeneous, free generating set of the
torsion-free quotient of H�;�.gr.C// as an F ŒU �–module; then �.C/ is the set of s 2Z

such that there is a Œp� 2 B� .C/ with bigrading .d;�s/ for some d 2 Z. Similarly,
t .C/ is the set of the integers s such that the inclusion

isW Fs�1H�
�

C
U D 0

�
,! FsH�

�
C

U D 0

�
is not surjective. Note that the set B� .C/ is not unique, but �.C/ and t .C/ are well-
defined.

We say that s 2 �.C/ has multiplicity k if there are k distinct elements in B� .C/
with bigrading .�;�s/, while a number u 2 t .C/ has multiplicity k if Coker iu has
dimension k as an F –vector space.

Clearly, if D is a grid diagram of L, t .cGC�.D// is the set of the values of s where the
function TL is supported; moreover, we already remarked that H�;�

�
gr.cGC�.D//

�
is isomorphic to cGH�.L/ and then �.cGC�.D// is the � –set of L. Hence, our goal
is to prove that t .cGC�.D//D �.cGC�.D//, generalizing Proposition 14.1.2 in [7].

Consider the complex
C D

cGC�.D/
V1 D � � � D Vm D U

;

where mD grd.D/�n and U is the variable associated to the special O –markings.
Then we define C as the complex CŒŒ1�n�m;�m��.

We introduce a new complex C0D C˝FŒU �F ŒU; U
�1� and we define a Z˚Z–filtration

on C0 in the following way: Fx;�C0 D U�xC for every x 2 Z, F�;yC0 D FyC 0 D
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fp 2 C0 j A.p/yg for every y 2 Z and Fx;yC0 D Fx;�C0\F�;yC0 D U�xFy�xC for
every x; y 2 Z. The first step is to prove that �.C/D t .C/.

We have that
C

U D 0
ŠeGC.D/Š

F0;�C0

F�1;�C0
I

moreover, for every integer s we claim that

FseGC.D/Š
F0;sC0

F�1;sC0
:

Since, from Lemma 14.1.9 in [7], Fx;yC0 Š Fy;xC0 for every x; y 2 Z, we have that

(13) Fs
C

U D 0
Š FseGC.D/ŒŒ1�n�m;�m��Š

Fs;0C0

Fs;�1C0
:

Using this identification we obtain that t .C/ coincides with the set of s 2 Z such that
the map

(14) H�

�
Fs�1;0C0

Fs�1;�1C0

�
,!H�

�
Fs;0C0

Fs;�1C0

�
is not surjective.

Now we consider the complex gr.C/, which is equal to
L
t2Z F0;tC0=F0;t�1C0 . We

have that the map

U t W
F0;tC0

F0;t�1C0
!

F�t;0C0

F�t;�1C0

is an isomorphism and F�t;0C0=F�t;�1C0 is a subspace of F�;0C0=F�;�1C0 for every
integer t . From Lemma 14.1.12 in [7], the latter filtered complex is isomorphic to
gr.C/=.U D 1/, but it is also isomorphic to eGC.D/ŒŒ1�n�m;�m�� by (13). In this
way we can define a surjective map

‰W gr.C/!
gr.C/
U D 1

and it is easy to see that ‰.B� .C// is still a homogeneous, free generating set of the
homology; furthermore, if Œp� is a torsion element in H�;�.gr.C// then Œ‰.p/�D Œ0�.
This means that �.C/ is the set of �t 2 Z such that the map

(15) H�

�
F�t�1;0C0

F�t�1;�1C0

�
,!H�

�
F�t;0C0

F�t;�1C0

�
is not surjective.

If we change �t with s in (15) then we immediately see that it coincides with (14)
and so �.C/D t .C/. Moreover, we can say that an integer in �.C/ has multiplicity k if
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and only if it has multiplicity k in t .C/. Finally, since the map U t drops the Maslov
grading by 2t , we have that if there is a Œp� 2 B� .C/ with bigrading .d; s/ then there is
a generator of eGH.D/ŒŒ1�n�m;�m�� with grading and minimal level .d � 2s;�s/.

The second and final step is to show that the previous claim implies t .cGC�.D//D
�.cGC�.D//. From Lemma 14.1.11 in [7] we have the filtered quasi-isomorphisms CŠ
cGC�.D/˝W ˝m and C Š cGC�.D/˝ .W �/˝m , where W is the two-dimensional
F –vector space with generators in grading and minimal level .d; s/ D .0; 0/ and
.d; s/D .�1;�1/. Thus t .cGC�.D// and �.cGC�.D// completely determine �.C/
and t .C/, so this means that they coincide and the proof is complete. Obviously, the
conclusions about multiplicities and Maslov shifts are still true.

From [7, Chapter 8] we know that there is only one element Œp� 2 B� .cGC�.D// with
bigrading .�2�1;��1/ and only another one Œq� with bigrading .�2�2C 1�n;��2/.
Then the proof of Theorem 1.3 implies that there are two nonzero elements in bGH.L/
in grading and minimal level .0; �1/ and .1�n; �2/. Since, from the definition of �
and ��, we also know that there are only two generators of bGH.L/ in Maslov grading
0 and 1�n, we have the following corollary:

Corollary 5.1 Take a grid diagram D of an n–component link L and consider a
set B� .cGC�.D//. If Œp�; Œq� 2 B� .cGC�.D// are such that Œp� is in bigrading
.�2�1;��1/ and Œq� is in bigrading .�2�2 C 1 � n;��2/, then �.L/ D �1 and
��.L/D �2 .

6 Applications

6.1 Computation for some specific links

In general it is hard to say when a sum of grid states is a generator of the homology,
but the following lemma provides an example where we have useful information.

Lemma 6.1 Suppose L is an n–component link with grid diagram D and x2S.D/ as
in Figure 14. Then Œx� is always the generator of bGH0.L/ and cGH�0 .L/. Furthermore,
�.L/D �.L/D A.x/.

Proof We show that M.x/D 0, y@x D @�x D 0 and that M.y/ 6 0 for every other
grid state y of D .
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Figure 14: We denote by x the grid state in the picture.

(i) The fact that M.x/D 0 is trivial.

(ii) For every y 2 S.D/ there are always two rectangles in Rectı.x; y/ and they
contain no O, so they cancel when we compute the differential.

(iii) We prove by induction on grd.D/ that M.y/6 0 for every y 2 S.D/.

If grd.D/D 1 then x is the only grid state.

If grd.D/D 2 then there are only x and y and M.y/D�1.

Suppose the claim is true for the diagrams with dimension equal to or smaller than ˛
and let grd.D/ D ˛C 1. We denote by I.D/ � S.D/ the subset of grid states that
contain the point .0; ˛/ as in Figure 15. Every y 2 I.D/ is the extension of a grid
state y0 of the diagram D0 obtained by removing the first column and the last row
from D. By the inductive hypothesis we have M.y/D�1CM.y0/6 �1.

.0; ˛/

Figure 15: The state y 2 I.D/ is marked with the black circles.

Now it easy to see that every other z 2 S.D/ is obtained by a rectangle move from a
y 2 I.D/. Then, if r is the rectangle, we have

M.z/�M.y/D 1� 2 � #jr \OjC 2 � #jInt.r/\yj;

but #jInt.r/\ yj 6 minf�1.r/; �2.r/g D #jr \Oj, where �i .r/ is the length of the
edges of r . Hence, M.z/6 0.
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In Lemma 6.1 we used that the grid diagram D has all the O –markings aligned on a
diagonal. It is easy to see that if a link admits such a diagram then it is positive. On
the other hand, it seems difficult for the converse to be true.

6.2 Torus links

We compute the � –invariant of every torus link. Consider the grid diagram Dq;p

in Figure 16, representing the torus link Tq;p with q 6 p and all the components
oriented in the same direction. By Lemma 6.1 we know that Œx� is the only generator
of bGH0.Tq;p/. If we denote by n the number of components of Tq;p then a simple
computation gives

A.x/D 1
2
.M.x/�MX.x/� grd.Dq;p/Cn/D 1

2
.�MX.x/�p� qCn/

D
1

2

�
2

q�1X
iD1

i C q.p� qC 1/�p� qCn

�
D

1
2
Œq.q� 1/C q.p� qC 1/�p� qCn�

D
1
2
.pq�p� qCn/D 1

2
..p� 1/.q� 1/� 1Cn/:

Now we use Lemma 6.1 again and obtain that

�.Tq;p/D
1
2
..p� 1/.q� 1/� 1Cn/:

Using the lower bound of (1) gives a different way to compute the slice genus of a
torus link respect to what we did in [1]:

g4.Tq;p/> 1
2
..p� 1/.q� 1//� 1

2
.1�n/C 1�nD 1

2
..p� 1/.q� 1/C 1�n/:

X
X

X

X
X

X
X

q

p

Figure 16: x is the grid state in the picture.
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Since the Seifert algorithm applied to the standard diagram of Tq;p gives the opposite
inequality, we conclude that

g4.Tq;p/D
1
2
..p� 1/.q� 1/C 1�n/ for any q 6 p:

6.3 Applications to Legendrian invariants

We equip S3 with its unique tight contact structure �st , whose definition can be found
in [2, Chapter 2]. We want to prove that (3) holds in this case:

tb.L/Cjrot.L/j6 2�.L/�n:

We remark that, if DDD1[ � � � [Dn is a front projection of the Legendrian link L in
the standard contact 3–sphere, the Thurston–Bennequin and rotation number of L are
given by

tb.L/D
nX
iD1

tbi .L/ and rot.L/D
nX
iD1

roti .L/;

where
tbi .L/D w.Di /C lk.Di ;D nDi /� 1

2
#jcusps in Di j

and
roti .L/D 1

2

�
#jdownward cusps in Di j � #jupward cusps in Di j

�
I

here we denote by w the writhe of a link diagram. We could simply say that

tb.L/D w.D/� 1
2

#jcusps in Dj
and

rot.L/D 1
2

�
#jdownward cusps in Dj � #jupward cusps in Dj

�
;

but we need the previous definition in the following proof.

Proof of Proposition 1.5 If L is a Legendrian link then, from Chapter 12 in [7], we
know that L can be represented by a grid diagram D of the link L� (the mirror of L).
This diagram D is such that

1
2
.tbi .L/� roti .L/C 1/D Ai .xC/; 1

2
.tbi .L/C roti .L/C 1/D Ai .x�/;

tb.L/� rot.L/C 1DM.xC/; tb.L/C rot.L/C 1DM.x�/;

where x˙ are the grid states in D obtained by taking a point in the northeast (southwest
for x� ) corner of every square decorated with an X 2X. Moreover, Ai is defined as

Ai .x/D J
�
x� 1

2
.XCO/; .Xi �Oi /

�
�
1
2
.grd.D/i � 1/ for any x 2 S.D/
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with Oi �O and Xi �X the markings on the i th component of L� and grd.D/i the
number of elements in Oi .

From Lemma 8.4.7 and Theorems 12.3.2 and 12.7.5 in [7] we have that x˙ represent
nontorsion elements in the homology group cGH�.L�/; in fact, these classes are
the Legendrian grid invariants �˙.L/. Since A.x/ D

Pn
iD1Ai .x/ for every grid

state x , we have that M.x˙/ D 2A.x˙/C 1� n. Therefore, Corollary 5.1 implies
that A.x˙/6 ���.L�/. Combining the latter claim with Corollary 3.5, which gives
��.L�/D��.L/, we have

1
2
.tb.L/� rot.L/Cn/D A.x˙/6 �.L/;

which is precisely (3).

From (3), together with (1), we obtain the lower bound for the slice genus of (4),

tb.L/Cjrot.L/j6 2g4.L/Cn� 2:

This bound is sharp for positive torus links, but here we show that there are other links
for which this happens.

In Figure 17 we have a front projection D of a Legendrian two-component link L. The
link type of L is the link L9n19 . A simple computation gives tb.L/D 6 and rot.L/D 0;
therefore, (4) says that g4.L9n19/> 3. Since it is easy to see that the link represented
by D can be unlinked by changing the four crossings highlighted in the picture, we
have g4.L9n19/6 u.L9n19/� 16 3 and then we conclude that g4.L9n19/D 3.

Figure 17: A diagram of the link L9n19

From (3) we also have the upper bound for the maximal Thurston–Bennequin number
of Proposition 1.6,

TB.L/6 2�.L/�n;
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and its refinement for quasialternating links given by Corollary 1.7. Although this
bound is much less powerful than the Kauffmann or the HOMFLY polynomial, we can
still get some interesting conclusions.

Consider a Legendrian link L such that each component Li is algebraically unknotted.
Then tbi .L/D tb.Li / and so tb.L/ is precisely the sum of the Thurston–Bennequin
numbers of its components. For example this happens for the Borromean link B , whose
components Bi are three (algebraically unknotted) unknots. It was shown in [6] that
there is no Legendrian representation of B , where the Thurston–Bennequin number
of each component is �1; in fact, we have TB.B/ D �4, while TB.
/ D �1. In
particular, this means that the difference between TB.B/ and the sum of the TB.Bi /
is �1.

We prove Proposition 1.8, where we give a family of two components links Lk such
that the components of Lk are two unknots with lk.Lk1 ; L

k
2/D 0 and the difference

between TB.Lk/ and the sum of the TB.Lki / is actually arbitrarily small, improving
the latter result for B . The links Lk are shown in Figure 1.

Proof of Proposition 1.8 Since for every k> 0 the link Lk is nonsplit alternating, we
can easily compute that the signature is equal to 3C 2k . Now we apply Corollary 1.7
and we obtain that TB.Lk/6 �4� 2k .
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