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Homotopy decompositions of gauge groups
over real surfaces

MICHAEL WEST

We analyse the homotopy types of gauge groups of principal U (7)—-bundles associated
to pseudoreal vector bundles in the sense of Atiyah. We provide satisfactory homotopy
decompositions of these gauge groups into factors in which the homotopy groups are
well known. Therefore, we substantially build upon the low-dimensional homotopy
groups as provided by Biswas, Huisman and Hurtubise.

55P15, 55Q52; 30F50

1 Introduction

Recently, the topology of gauge groups over real surfaces has received widespread
interest due to their intimate ties with the moduli spaces of stable vector bundles; see
Biswas, Huisman and Hurtubise [3] and Schaffhauser [8]. Indeed, there have been
explicit calculations of some of the topological invariants of these gauge groups. For
instance, real vector bundles over real surfaces were originally classified in [3] but
more recently in Georgieva and Zinger [4]. Cohomology calculations of the classifying
spaces appeared in Liu and Schafthauser [6] and Baird [1; 2]. Furthermore, some
of the low-dimensional homotopy groups were presented in [3]. The purpose of this
paper is to extend the calculations of these homotopy groups by providing homotopy
decompositions of the gauge groups into products of known factors.

In the coming section, we define our objects of interest and state their classification
results. We go on to state the results of this paper, and then proofs are provided in
Section 2. In Section 3, we present tables of homotopy groups and compare them to
those provided in [3] in which we highlight a discrepancy.
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1.1 Definitions

The pair (X,0), where X is a compact connected Riemann surface and o is an
antiholomorphic involution, will be called a real surface.
To a real surface (X, o), we associate the triple (g(X), r(X),a(X)), where

e g(X) is the genus of X;

e r(X) is number of path components of the fixed set X7 ;

e a(X)=0if X/o is orientable and a(X) = 1 otherwise.

We note that the path components of X are each homeomorphic to S!. The following
classification of real surfaces was studied in Weichold [13].

Theorem 1.1 (Weichold) Let (X,0) and (X', 0’) be real surfaces. Then there is a
isomorphism X — X' (in the category of real surfaces) if and only if

(g(X),r(X),a(X)) = (g(X"),r(X"),a(X")).
Furthermore, if a triple (g, r, a) satisfies one of the following conditions:
(1) ifa=0,thenl <r<g+1landr=(g+1) mod?2;
2) ifa=1,then0<r <g;
then there is a real surface (X, o) such that (g,r,a) = (g(X),r(X),a(X)). a
Therefore, a real surface (X, o) is completely determined by its triple (g, r, @), which
we call the type of the real surface.

Let m: P — X be a principal U(n)-bundle over the underlying Riemann surface X
of the real surface (X, o). A lift of ¢ isamap 6: P — P satisfying

(1) om =n0;
(2) o(p-g)=a(p)-gforall pe P,geU(n);

where g represents the entrywise complex conjugate of g € U(n). We remark that,
due to property 2 of a lift, the fixed point set P° has the structure of a principal
O(n)-bundle over the real points X°.

Let ¢ be a lift. Then we say that (P,5) — (X, 0) is a real principal U(n)-bundle (or
real bundle) if & further satisfies

(3) &%(p)=pforall pe P;
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or if n is even, we say that (P,5) — (X, 0) is a quaternionic principal U(n)—bundle
(or quaternionic bundle) if & satisfies

(3") &%(p)=p-(=I,) forall p e P;

where [, represents the n x n identity matrix. Such bundles were classified in [3].
Proposition 1.2 (Biswas, Huisman, Hurtubise) Let (X, o) be a type-(g,r,a) real
surface, and denote its fixed components by X; for 1 <i < r. Then real principal

U(n)-bundles (P,6) — (X, 0) are classified by the first Stiefel-Whitney classes of
the restriction to bundles P; — X; over the fixed components

w1 (P)e H (X;,2/2)=17/2,
and by the first Chern classes of the bundle over X,
ci(P)e H*(X,Z) = Z,
subject to the relation
ci(P)=) wi(P;) mod (2).
Furthermore, given any such characteristic classes there is a real principal U(n)-bundle

that realises them. O

We write

(c,wy,wa, ..., wp) = (c1(P), w1 (Pr), w1 (P2),...,wi(Pr)),

and we will refer to the tuple (¢, wy, wy,...,w,) € Z X ]_[r Z.5 as the class of the real
principal U(n)-bundle (P, 7).

Proposition 1.3 (Biswas, Huisman, Hurtubise) Let (X, o) be a real surface of type
(g,r,a), and let n be even. Then quaternionic principal U(n)-bundles (P,c) — (X, 0)
are classified by their first Chern class which must be even. Furthermore, given any
such Chern class, there is a quaternionic principal U (n)—bundle that realises it. a

We recall that we only cater for quaternionic bundles of even rank. However, a similar
result for the case when # is odd is also handled in [3].
Writing ¢ = ¢1(P), we will therefore refer to ¢ € 27 as the class of the quaternionic

principal U(n)-bundle (P, 7).
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Let (P,0) — (X, 0) be areal or quaternionic principal U(n)-bundle. An automor-
phismof (P,o) is a U(n)—equivariant map ¢: P — P such that the following diagrams
commute:

p-2.,p p-2.p
¢
P-2,p

Let Map(P, P) denote the set of self maps of P endowed with the compact open
topology.

Definition 1.4 The (unpointed) gauge group 4 (P,G) is the subspace of Map(P, P)
whose elements are automorphisms of (P, 7).

It will be convenient to provide decompositions for certain subspaces of the gauge
group.

Definition 1.5 Choose a basepoint xy of (X, o) such that o (xy) = xy if r > 0.
Then the (single)-pointed gauge group 4*(P,d) consists of the elements of ¥(P,5)
that restrict to the identity above *x .

Another pointed gauge group of interest was considered in [3]. Let (X, 0) be a real
surface of type (g, r, a); then for each 1 <i <r, choose a designated point *; contained
in the fixed component X;. Further, if a = 1, choose another designated point s,
that is not fixed by the involution. By convention, we choose *; to be *xy as in
Definition 1.5.

Definition 1.6 The (r+a)—pointed gauge group 4* "+ (P, &) consists of the ele-
ments of ¥(P,d) that restrict to the identity above these (r + a) designated points
of (X,0).

1.2 Main results for real bundles

In this section, we aim to present the main results pertaining to homotopy decompo-
sitions of gauge groups of real principal U(n)-bundles. To ease notation, we will
sometimes use the following:

e 4((g,r,a);(c,wi,wy,...,w,)) to represent the unpointed gauge group of a
real bundle of class (¢, wy, ws,...,w,) over a real surface of type (g,r,a);
e 9*((g,r,a);(c,wy,wsy,...,w;,)) to represent the single-pointed gauge group

of the real bundle as above;

o @*ItD((g r a);(c,wy,wsy,...,wy)) to represent the (r+a)—pointed gauge
group of the real bundle as above.
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We first present the results relating to when gauge groups of different real bundles have
the same homotopy type. For (r+a)—pointed gauge groups this is always the case.

Proposition 1.7 Let (P,&) and (P’,0") be real principal U(n)—bundles over a real
surface (X, o) of arbitrary type (g, r,a), then there is a homotopy equivalence

Bg*(r—i-a) (P,(Ai) ~ Bg*(l‘-i-a) (P/,O'/).

However, this is not necessarily the case for the single-pointed and unpointed gauge
groups, although we do have the following results.

Proposition 1.8 For any ¢, c’, w;, w/, there is a homotopy equivalence
B%*((g,r.a); (c,wy, wa,...,wy)) >~ Bg*((g.r.a): (", wl, wa, ..., w)).

Proposition 1.9 Let the following be classifying spaces of rank-n gauge groups. Then
there are isomorphisms of gauge groups

g((g,r.a);(c,wy,wa, ..., wy)) =9((g.1.a); (c+2n,wy, wa, ..., w)).
Proposition 1.10 Let n be odd. Then there are isomorphisms of rank-n gauge groups
1) @(g,ra),(c,wy,wy,...,w)) =% ((g,r a);(c, Z;zl w;,0,...,0));
(2) 9*((g.r.a);(c,w,wy,...,wp)) =g*((g,r,a); (¢, Y i—y wi,0,...,0)).
It would be better to provide stronger statements of Propositions 1.7 and 1.8, such as
in the form of the isomorphisms of Propositions 1.9 and 1.10. Indeed, the proofs of the

latter invoke a conceptually simple argument and it may be the case that Propositions 1.7
and 1.8 can be given stronger statements using a similar approach.

We now state homotopy decompositions for (r4+a)—pointed gauge groups.

Theorem 1.11 Let (P,5) be of arbitrary class. Then there are integral homotopy
decompositions:

type decompositions for #*" (P &)
(g.0,1) for g even “*((0,0,1);0) x[[QQU(n)
g
(g,0,1) for g odd @*((1,0,1);0)x [ QU(n)
g—1
(g,r,0) Q*(U(n)/ O(n)) x [ QUn) x [1QO0(n)
(g—r+1D+(-1) r—1
g(§ el G*(1L,L1,1;0,00x [ QU@ x [[Q00)
(g—r)+(r—-1)+1 r—1
g(éj:’olgd @*((1,1,1): (0, 0)) x T QU x T[] Q00)
(g—r—1D)+(r-1)+2 r—1
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In the single-pointed case, we have to be a little more careful with regards to the class
of the underlying real bundle. For the cases where &* " T4 (P &) # @*(P,5), that is
when r 4+ a > 1, we have the following results.

Theorem 1.12 Let n be odd or let (P, &) be of class (¢, wq,0,...,0). Letr +a>1.
Then there are integral homotopy decompositions:

type decompositions for ¥*(P,5)
(g.7.0)  Q*Um/O0m)x [] QUMm) x []Q0m) x [1(UMn)/0M)
g—r+1 r—1 r—1

ﬁ;gjgn g (1,1, 1):(0,0))><g1j QU(n) x ]_[lSZO(n)x HIQ(U(n)/O(n))

g(éjrr’ogd GH(1L1.1):0.0)x I QU@ x [[Q00) x []2Uwm)/0M))
(g—r—1)+1 r—1 r—1

The remaining cases seem to integrally indecomposable; however, we will obtain the
following localised homotopy decompositions for odd-rank gauge groups.

Theorem 1.13 Let p # 2 be prime and let n be odd. Then there are the following
p—local homotopy equivalences

(1) 9*((0,0,1);¢) =, QXU )/ O(n)) x AU )/ O(n));

(2) @*((1,0,1);¢) = Q2 (U(n)/ O(n)) x U(n)/ O(n)) x QU(n);

3) @*((1,1,1);(c,wy)) ~p QZ(U(n)/O(n)) xQU(n)/0n)) x Q0(n).

This result relies upon a self map of U(n)/O(n) as studied in Harris [5], which is a
p—local homotopy equivalence if and only if # is odd. Hence it seems to be difficult
to provide such satisfactory decompositions in the even-rank case.

We move on to some integral homotopy decompositions for unpointed gauge groups.
The reader is invited to compare the tables of Theorems 1.14 and 1.12.

Theorem 1.14 Let (P,5) be of class (¢, wy, W, ..., w,). Then there are integral
homotopy decompositions:

type decompositions for ¢(P, o)
(g,r,0) 2((r—1,r,0);(c,wy,...,w))x [] QU(n)
g—r+l1
1
) g(§’/’6£gn G((r 1. 1) (cowy.....wp)) x [] QU
g—r
g(%:’olgd G((r+1,r,1);(c,wy,...,w))x [] QUn)
g—r—1
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2) 9(2. 1L D:(c,wp) =9((1, 1, D (e, w) x QU(n).

Further, for r > 1 and when (P, &) is of class (¢, w1,0,...,0) orn is odd, there are
integral homotopy decompositions:

type decompositions for ¢(P, o)
(r=1,r,00 9((0,1,0); (¢, Zw;)) x [ Q20(n)x [T QU(n)/O(n))
r—1 r—1
@ D 211 e Zw) x [120) x [T 2UMR)/0m)
r—1 r—1
(r+1r1) 9(2,1,1);( Zw))x [[QOMm) x [ U(n)/0n))
r—1 r—1

The remaining unfamiliar spaces in Theorem 1.14 seem to be integrally indecomposable;
however, localising at particular primes permits further decompositions.

Theorem 1.15 Let n be a positive integer and let p be a prime with p } n.

(1) Let the following be gauge groups of rank n. Then there are p—local homotopy
equivalences

@ %((g.1.0):(c.0)) =p O(n) x4*((g. 1. a): (c.0)):
further, if p # 2 and n is odd, then there are p—local homotopy equivalences

(b) %((0,0,1);¢) 2, SO(n) x Q2(U(n)/ SO(n));
(©) 9((1,0,1);¢) 2, SO(n) x Q2(U(n)/ SO(n)) x QU(n).

(2) Let the following be gauge groups of rank p. Then there are p—local homotopy
equivalences

@ ((g.1,a):(c,0)) =p O(p) x4*((g. 1. a): (¢, 0));
further, if p # 2, then there are p—local homotopy equivalences

(b) 9((0.0,1):¢) =, SO(p) x 2*(U(p)/ SO(p));
(© %((1,0,1):¢) =, SO(p) x Q*(U(p)/ SO(p)) x QU(p).

1.3 Main results for quaternionic bundles

To distinguish the notation of quaternionic gauge groups from the real case, we will
use a subscript Q, for example % (P, 7). Further, to ease notation we will sometimes
use the following:

* %o((g,r,a);c) to represent the unpointed gauge group of a quaternionic bundle
of class ¢ over a real surface of type (g,r,a);

. {45 ((g,r,a); c) to represent the single-pointed gauge group of the quaternionic
bundle as above;
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. %“" T@ ((g,r,a);c) to represent the (r+4a)—pointed gauge group of the quater-
nionic bundle as above.

We present results in the same order as we did in the real case. In the quaternionic case,
the homotopy types of the pointed and (r +a)—pointed gauge groups are independent
of the class of the bundle.

Proposition 1.16 Let (X,0) be a real surface of fixed type (g,r,a). Let (P,o)
and (P’,0’) be quaternionic principal U(2n)—bundles over (X,o). Then there are
homotopy equivalences

(1) B43(P.5)~B43(P.0');
(2) Bg3"*tV(P.5)~ By (P.0").

For the unpointed case, we have an analogue of Proposition 1.9.

Proposition 1.17 Let (X, 0) be a real surface of fixed type (g, r, a) and let the follow-
ing be gauge groups of quaternionic bundles of rank 2n. Then for any even integer c,
there is an isomorphism of topological groups

Go((g.r,a);c) =2 %((g,r.a);c +4n).

We now present homotopy decompositions for pointed gauge groups in the quaternionic
case. The reader is invited to compare the following results to their real analogues.

Theorem 1.18 Let (P,5) be a quaternionic principal U(2n)—bundle of class ¢. Then
there are integral homotopy decompositions:

type decompositions for ¢35 9 (P, &)
(g.,0,1) for g even %5((0,0,1); 0) x [[QU(2n)
(g,0,1) for g odd 45((1,0,1);0) x ]f[ QU(2n)
(g.7.0) @2 (U2 Sp(m) x TTRU ) x 12 Sp(n)
(g,r,1) for g—reven ¥5((1,1,1);0)x ];[SgZU(2n) X r]i_S; Sp(n)
(g,r,1) forg—rodd  ¢5((1,1,1);0) x ];[QU(2n) X r]:IISZ Sp(n)

For the cases where g&‘""“” (P,G) # 45 (P,5), that is when r +a > 1, we have:
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Theorem 1.19 For (P, ) of class ¢, there are integral homotopy decompositions:

type decompositions for 43 (P,5)

(g.7,0)  Q*(U(2n)/Sp(n)) - l:[+IQU(2n) rl'[ Q2 Sp(n) rl'IIQ(U(2n)/ Sp(n))
B W w0 T aUE@m x T2 5p0n x [T 2(UC)/ Spm)
g(g_,rr 01) 93 ((1,1,1);0) x g]:[rQU(Zn) X r]jlsz Sp(n) x r]:[ISZ(U(2n) / Sp(n))

Again, the remaining cases seem to be integrally indecomposable; however, we will
obtain the following localised decompositions.

Theorem 1.20 Let p # 2 be prime. Then there are p—local homotopy equivalences
(1) 45((0,0,1);0) =, Q*(U(2n)/ Sp(n)) x QU (2n)/ Sp(n));
(2) %5((1,0,1);0) =, Q*(UQ2n)/ Sp(n)) x QU (2n)/ Sp(n)) x QU(2n);
3) 43((1,1,1);0) =, Q*(U(2n)/ Sp(n)) x (U (2n)/ Sp(n)) x 2 Sp(n).

We now present homotopy decompositions for the unpointed case.

Theorem 1.21 For (P, o) of class ¢, there are integral homotopy decompositions:

type decompositions for %y (P, o)

& e %((0.0.1:0) x TIU()

(i,géé) %o((1,0,1);¢) x g]:[lﬂU(n)

(g.7.0) %((0,1,0);¢) x r]:[lsz Sp(n) x ,l:IIQ(U(zn)/ Sp(n)) x g_l:[HQU (n)
(g.r. 1) “o((1.1,1):¢) x r]jlsz Sp(n) x r]jlsz(U(Zn)/ Sp(n)) x gl:[rQU(")

The remaining unfamiliar spaces in Theorem 1.21 seem to be integrally fundamental;
however, localising at a particular prime permits further decompositions.

Theorem 1.22 Let n be a positive integer and let p be a prime such that p t 2n. Let

the following be gauge groups of a quaternionic bundle of rank 2n. Then there are
p—local homotopy equivalences

(1) “((g.1,a);¢) =p Sp(n) x B43((g, 1,a);¢);
2) %((0,0,1):¢) ~p Sp(n) x Q*(U(2n)/ Sp(n)) ;
(3) %((1,0,1);¢) =, Sp(n) x Q2(U(2n)/ Sp(n)) x QU(2n).
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2 Proofs of statements

For the sake of clarity, we focus on the proofs of statements in the real case, and then
we elaborate on some of the details in the quaternionic case in Section 2.5. We look to
decompose the gauge groups by studying an equivariant mapping space as provided
in [1].

Throughout our analysis, we think of real surfaces as Z,—spaces. For Z,—spaces Y
and Z, let Mapy, (Y, Z) denote the space of Z;-maps from Y to Z. We note that the
fixed points of ¥ must be mapped to the fixed points of Z. If Y and Z are pointed,
we denote a pointed version of this mapping space by Map%z(Y, 7). Further, recall
the “basepoints” *; of (X, o) from just before Definition 1.6. Let

r+1
A= ]_[ x; Ho(kpq1),

i=1
and let Map%’ T@(X,Z) denote the subspace of Mapy, (X, Z) whose elements
send 4 to *z.! Let X denote the cofibre of 4 < X, and notice that there is a
homeomorphism
Map?zr"'”) (X, Z) = Mapy, (X, 2).

A universal real principal U(n)-bundle is given by
(EU(n).S) — (BU(n),c),
where ¢ is induced by complex conjugation and hence BU(n)¢ = BO(n). Using this
Z,—structure, [1] provides the following theorem.
Theorem 2.1 (Baird) There are homotopy equivalences

(1) B¥(P,5) ~Mapg, (X, BU(n); P);

(2) B¥*(P.5)~Map}_(X.BU(n): P):

(3) B@*"*?(P,§) ~Mapy (X, BU(n): P) = Map%z(f, BU(n); P);
where on the right-hand side, we pick the path component of Mapyz, (X, BU(n)) that
induces (P,G). O
The following lemma can be shown by adapting the proof in the nonequivariant case.

We will frequently require this lemma throughout the paper.

10f course, it may be necessary to assume that *  is fixed by the Z,—action.
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Lemma 2.2 Let Y and Z be 7Z,—spaces with basepoints fixed by the action, and
with Y locally compact Hausdorff. Then there are equivalences

(1 « Map%2 (X,Y) ~ Mapz2 (ZX,Y);

(2) Mapz, (X,QY) =Mapy (ZX.Y). O

Throughout this section, there are a number of Z,—spaces that will often appear; here
we provide a dictionary:

e (X,id): any space X with the trivial involution;

e (X VX,sw): the wedge X Vv X equipped with the involution that swaps the
factors;

e (S”",—id): the sphere S” equipped with the antipodal involution;

e (8", he): the sphere S” equipped with the involution that reflects along the
equator.

2.1 Real surfaces as Z,—-complexes

In order to provide homotopy decompositions for the gauge groups, it will prove useful
to provide a Z, CW-complex structure for real surfaces. The following is essentially a
restatement of the structures provided in [3]. We let X, ;, denote a Riemann surface of
genus p with ¢ open discs removed.

Type (g,0,1) We first study the case where g is even. We can think of X as two
copies of X4/, 1 glued along their boundary components, each a copy of S 1. The
involution restricted to S! is the antipodal map and extends to swap the two copies
of 2g/2,1 .

We give a CW-structure of X as follows: Let X© be two O—cells, * and o (*). There
are 2g + 2 1-cells

oq,.. .,Otg/z,ﬂl, ces ,,Bg/z,)/,
0(0[1)’ ] G(ag/Z)» U(ﬂ])? ey U(ﬁg/Z)v U(V)

The boundaries of «;, 8; are glued to *, and the boundaries of o (¢;),o(8;) are glued
to o(*). One end of y is glued to * and the other to o (), whilst the same is done

for o(y) with the opposite orientation. There are two 2—cells glued on, one with
attaching map

aifroy By "'“g/Zﬂg/Zag/lzﬂ;/lzya(V)’

and the other with the same attaching map but with «;, 8; replaced with o (;), o (8;)
and yo(y) replaced with o(y)y .
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As the notation suggests, the involution swaps cells that differ by o . In particular, this
is a o —equivariant CW-structure and hence descends to a CW-structure of X /o .

Now assume that g is odd, and let g’ = (g — 1). We see that X can be thought of
as two copies of X475 5 glued along their boundaries; two copies of S Uin X. The
involution swaps these copies of S but reverses orientations, and it extends to X to
swap the two copies of Xgr/5 5.

There are two O—cells, * and o (%), and 2g 1—cells

o1,... ,Olg//z,ﬂl, .. 'v:Bg’/Z, )/,8,
O-(Oll)ﬁ R O(ag’/Z)’G(IBI)’ v ’G(IBg’/Z)v U(V)’U((S)’

where «;, Bi,0(a;),0(B;i), y,0(y) are glued as before, but the boundary of ¢ is glued
to x and () to o (*). Now there are two 2—cells, one with boundary map

arfroy By ogyaBeyatgn By ySro @)y
and the other glued equivariantly. The cells § and o (§) correspond to the copies of S

above, and here y is a cell joining these copies of ST.

Type (g,r,0) Let the involution fix r circles and let g’ = %(g —7r+1). Then X/o
isa Xg/ ,,and X can be thought of as two copies of X, glued along the r boundary
components.

In this case, the basepoint is preserved under o ; however, X 0 is given r O—cells, one
for each fixed component. The 1—cells are then

O(l,...,O(g/,lBl,...,,Bg/,]/z,...,)/7,51,...,8,«,
G(O‘I)v~--vg(ag’)vg(ﬂl)v-~-vU(,Bg’)7U(V2)~--vU(Vr),

where o;, B; are as before and y; joins the basepoint to the i fixed component which
is represented by §;. One of the two 2—cells has attaching map

arfray BT ag Berag! B S1vabayy by
and we again define the other one equivariantly.
Type (g,r,1) for r > 0 Let the involution fix r circles. We first consider the case
where g =r mod 2. Let g/ = %(g —r). Then X can be thought of as two copies

of Xg/ r41 glued along the boundary components. The involution fixes the first r of
these components whilst restricting to the antipodal map on the extra copy of S'.
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Now X© is given r+2 0—cells *;, one for each fixed component and two for the
extra S1. The 1—cells are then
al,---»ag/’ﬂl,---,ﬂg’,)/Z’---’Vr+1’81,---,8r,8’
a(al)v"'vg(ag/)va(lgl)v"'vO(IBg/)’G(VZ)v"'vg(yr+1)70(5)v

where «;, B; are as before and ; joins the basepoint to the i boundary circle. Each
fixed component is represented by §;, and § joins *,41 to *,4;; therefore, §o(5)
represents the extra copy of S'. One of the two 2—cells has attaching map

arfray B ag Berag! B S1vabavy vy, e k180 (8)y,
and we again define the other one equivariantly.

For the case where g = r + 1 mod 2, we let g/ = %(g —r —1). Now X can be
thought of as two copies of Xg/, 1, glued along the boundary components. Again, the
involution fixes r of these components, whilst swapping the final two copies of S,
but reversing orientation.

Again X© is given r+2 0—cells, one for each fixed component and one for each of
the extra two copies of S!. The 1—cells are then

OCI’--~705g’a,81,--~,ﬂg/a)/Z,---,Vr+2751a-~-a5r+1,
G(al)? R »U(ag’)’o(ﬁl)’ R ’U(ﬂg/)aU(VZ)» FR »U(Vr—{—Z)aU(Sr—H)’

where «;, B; are as before and y; joins the basepoint to the i boundary circle. Each
fixed component is represented by §; for i <r, and 8§, and 6(8,+1) represent the
extra copies of S'. One of the two 2—cells has attaching map

arfroy BT g Berag! By 81728275 Ve 1 1Y Ve 20 Br 1)V

and we again define the other one equivariantly.

2.2 Equivalent components of mapping spaces

In this section, we aim to prove Propositions 1.7-1.10. The proofs are motivated from
the analysis of nonequivariant mapping spaces found in [10].

Proof of Proposition 1.7 We study the actions of 7, (BU(n)) and 7{(BO(n)) on
the components of Map}2 (X, BU(n)). In [10], an action of 7,(BU(n)) on the space
Map(X, BU(n)) was defined via

inch fol
(1 x 2N vy 52 Y% Bumy v BUM) 2 Bum)

with « € m,(BU(n)) and f € Map* (X, BU(n)).
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We now consider the equivariant case for » = 0. Let S! be the loop that is pinched
under X — X v S2, similar to the first map in (1). Due to equivariance, we are also
forced to pinch the loop o(S!) producing an extra factor of S2, and the action becomes

o _ fol
70 Ty s2ya(s?) Svave BU(n) v BU(n) v BU(n) = BU(n),

where & = ¢o. Since o and ¢ are both orientation-reversing, the action of
aeny(BUMn) =7

alters the class [f] by 2. Hence for 2¢ € [X, BU(n)]z, = 27, this action gives
homotopy equivalences

Mapz (X, BU(n); 2¢) ~ Mapz, (X, BU(n); 2¢ + 2a).
In particular, this gives the required homotopy equivalences for the case when r = 0.

When r > 0, the path components of Mapz2 (X, BU(n)) are classified by the tuple
(c,wy,wy,...,wy) GZXHZz
r

subject to ¢ = Y /_, w; mod 2. We wish to construct an action of 71 (BO(n)) to alter
each w;. For § € w1 (BO(n)), we note that the inclusion of the image of § into BU(n)
is nullhomotopic, so there is an extension B’: D> — BU(n) of B. Now, consider
(S2 he) and denote the fixed equator by E, the upper hemisphere by U and the lower
hemisphere by L. We can extend 8 to a map E : (S% he) — BU(n), where

Blu=p and Blr=cp
and therefore,~,§ |E = B. Due to the discussion preceding Proposition 4.1% in [3],

the extension f can be chosen so that the class [8] € Z x Z, is (0, 0) if 8 is trivial or
(£1,1) otherwise.

Let (S he) < X be an inclusion such that the fixed points of (S I he) are mapped to
the i fixed _component X; of X. Asin (1), we apply the pinch map to this copy of
(S', he) in X and hence produce a factor of (S?2 he). Now the action becomes

_ pinch — B fold
72N 7y (52 he) 2 BUM) v BUG) 2 BUM).

For ,g of class (%1, 1), we conclude that this action gives a homotopy equivalence

between the components (¢, wi, ws,...,w,) and (c £ 1, wy,...,w; +1,...,w;).
Combining the actions of 7, (BU (n)) and 7y (BO(n)) gives homotopy equivalences
between all the components of Map}2 (X, BU(n)). a

2We note that Proposition 4.1 in [3] is stated as Proposition 1.2 in this paper.
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Proof of Proposition 1.8 Recall from the preamble to Definition 1.6 that we chose 1
as the basepoint of (X,0). We define actions of m,(BU(n)) and w1 (BO(n)) on
Map%2 (X, BU(n)) in a similar fashion to the proof of Proposition 1.7, and this obtains
the result. We cannot extend this result as in the (r+a)—pointed case due to the
“unpointed” fixed circles. a

We cannot hope to use the actions of w; and 7, on the unpointed mapping space due
to the lack of basepoint. But, by tensoring the bundle (P, &) with a real U(1)-bundle,
we can provide some equivalences between components.

Proof of Proposition 1.9 Let 7: (P,5) — (X, 0) be a real principal U(n)-bundle
of class (¢, wy, wy, ..., w,) over a real surface of type (g, r,a). The idea will be to
tensor P with areal U(1)-bundle wg: (Q,1) — (X,0) of class (2,0,...,0).

Using the inclusion of the centre U(1) < U(n), there is a U(1)-action on (P,5). In
the principal bundle setting, the tensor of (P,a) and (Q, 1) is the pullback

(A*(P Xy Q), A*(G x r)) — (Pxya) Q.6 x1)

l I

A

(X,0) (X,0)x(X,0)
where A is the diagonal map and 7 = 7 x . In a similar fashion to the discussion
preceding Proposition 4.1 in [3], we calculate that (¢ + 2n, wq, wy, ..., w,) is the
class of the pullback (A*(P xy1) Q), A*(G x 1)).
We then define

®: 9(P,5) > 9(A* (P xyay 0), A*(G x 1))

to be the map that sends ¢: P — P to A*(¢ xid). Then an inverse to © is defined
in the same way as ®, except that we replace the inclusion U(1) < U(n) with the
conjugate inclusion defined via

0Oa---0
a—> . o

Proof of Proposition 1.10 Let : (P,5) — (X, o) be a real principal U(n)-bundle
of class (¢, wy, wy,...,w,) over a real surface of type (g,r, a). The statement is
proven using the same method as Proposition 1.9, except that we tensor with a real
U(1)-bundle (Q, 7) 0f~class (0, Z;zz w;, Wa, ..., w,). If n is odd, the class of the
pullback (A*(P xy(1) Q), A*(G x T)) is then (¢, > j_;w;.0,...,0).
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An isomorphism ©: ¢(P,5) — 4(A* (P xy(1) 0), A*(5 x 7)) is then defined in the
same way as for Proposition 1.9. a

2.3 Pointed gauge groups

In our analysis, it will be necessary to distinguish the following types of real surfaces:

©0) r=0(= a=1);
() »>0and a=0;
2) r>0anda=1.

Generally, we will analyse the gauge groups in order of ease; we first analyse the
(r+a)—pointed gauge group, and then the single-pointed gauge group. Our results for
the single-pointed gauge groups will then be used to analyse the unpointed case.

2.3.1 Integral decompositions For the underlying Riemann surface X of a real
surface (X, o), the attaching map f: S' — \/2g S1 of the top cell is a sum of
Whitehead products, and hence the suspension Xf is nullhomotopic. In the real
surface case, we see Whitehead products appearing in the attaching maps of Section 2.1.
Therefore, we still see trivialities appearing in the suspension of these attaching maps,
and these trivialities will provide a large class of homotopy decompositions.

We will use the notation as defined in Section 2.1, and furthermore, we require the
following notation in this section. Let g’ denote the number of 1—cells of X which
are of the form «;, B; in X . Explicitly,

g—r+1 whena=0,

gd=3g-r whena =1 and g —r is even,

g—r—1 whena=1and g—r is odd.

Proposition 2.3 Let X,5 =/ S be the 1—cells a;, 0 (e;), Bi, o(Bi) in the decom-
position of (X, o). Then the map ( in the Z, —cofibration sequence

Xop > X > X' 5 S(Xpp)

is Z,—nullhomotopic.

Proof We recall that the attaching map of one of the 2—cells in a real surface of type
(g,r,0) is

a1 Broy BT g Berag B S1vabayy e viedr
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Figure 1: For a type-(5, 2, 0) real surface, the map s collapses the 1—cells
81, 82, y2 and o (y2).

The attaching map involving the cells «; and B; is a sum of Whitehead products. The
idea is to collapse the rest of the cells.

Now in the general case, let X be a type-(g,r, a) real surface, let X4/, be a Riemann
surface of genus % ¢’ and denote by

s: X — (Eg’/Z Vv Eg//z, SW)
the map that collapses the 1-skeleton of X other than the cells «;, o («;), B; and o (8;).

An example for the map s is illustrated in Figure 1. Note that four of the “holes” are
undisturbed by s; these correspond to the 1—cells of the form «;, o («;), B; and o (B;).

There is a commutative diagram

“w

Xap bt X’ 5 (Xop)

| | |
TfVEf
Xop ——— (ZgyaV Zgy2, W) ——— (S?2 Vv S§2sw) M 2(Xep)

where the rows are Z,—cofibration sequences, s’ is an induced map on cofibers and |’
is the attaching map of the Riemann surface X4//5. The Z,—triviality of u therefore
follows from the triviality of X1 . a

We deduce the following theorem which greatly contributes to Theorems 1.11 and 1.12.

Theorem 2.4 With notation as above, there are homotopy equivalences
() 9*(P.&) ~9*((g— &', r.a): (c.wy.....w) x [1g QUm);
Q) g"TOH(P,G) =gt (g - g ra)i (¢, wy, ..., wp) X[y QU0).
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Proof We use the notation of Proposition 2.3 and run through details for part (1). By
Theorem 2.1, there is a homotopy fibration sequence

9(P.5) — Q@ Map}, (Xop. BU(n)) > Map}_ (X', BU®): (c, . ..., wy)),

and by Lemma 2.2, we can see that u* is induced from p in Proposition 2.3. But
Proposition 2.3 showed that p is nullhomotopic, and the result follows. The proof for
part (2) is similar. a

We note that for real surfaces of type (g, 0, 1), Theorem 2.4 leaves only types (0,0, 1)
and (1,0,1) to consider. The gauge groups of these types seem to be integrally
indecomposable and so we leave their analysis until later.

2.3.2 Thecase r > 0,a =0 Although we restrict to the case a = 0, we will see
that many of the methods in this section will also transfer to the case when a = 1.

Due to Theorem 2.4, we restrict to the case when (X, o) is of type (r —1,r,0). For
(P,o) of class (0,0,...,0), we utilise Theorem 2.1 and Lemma 2.2, and obtain the

equivalences 3
¥*" (P,§) ~ Map}, (S(X). BU(n)):

@¢*(P,5) ~ Map%2 (2(X), BU(n)).

The aim of this section is to prove Theorems 1.11 and 1.12 for types (g, r, 0), which is
restated below.

Theorem 2.5 Let (P,5) be a real bundle of class (¢, w1, ..., w,) over a real surface
(X,0) of type (r —1,r,0). Then

(1) there is a homotopy equivalence

@*"(P,5) ~ Q*(U(n)/0(n)) x ]‘[ QO(n) x ]‘[ QU(n);

r—1 r—1

(2) if w; =0 foralli > 1 orif n is odd, then there is a homotopy equivalence

@*(P.5) ~ Q*(U(n)/0m) x [ [ Q0m) x [ | QUm)/0(n)).

r—1 r—1

Recall the Z,—structure of a type-(g, 7, 0) surface in Section 2.1. In the following, X,
will be the subcomplex of the 1—cells of X that are denoted by either y; or o (y;).

Proposition 2.6 Let (X, 0) be as above. Then in the 7, —cofibration sequence
X, 5> x> X5 3w,

there is a left Z,—homotopy inverse to t. In particular, i’ is Z,—nullhomotopic.
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Y1
collapse 7
— he
()
X2 /81

Figure 2: The map j, projects to the factor (S he) and j, factors through X, /6.

Yo,
(=0 = ‘. O
X2/8

Figure 3: Collapse a copy of (S' Vv S, sw) to obtain the wedge X>/8; Vv X;.

Proof We will use induction on 7, the number of fixed circles of X'. Let X, denote a
real surface of type (r —1,7,0), and let (X;), be the subcomplex of X, with 1—cells
denoted by either y; or o (y;). We aim to define left homotopy inverses j,: X, — (X;),
of « for each r.

Note that the space (X), is the wedge \/,_;(S I he), and hence the first nontrivial
case is when r = 2. In this case, one can see that X, is the product

(S id) x (S, he).
We define j, to be the projection onto the second factor; Figure 2 illustrates this map.
For r = [, we assume that j; exists. For r =/ + 1, we first use a map j/, that
collapses a copy of (S' Vv S1,sw) in X;4; such that the image is homeomorphic to

X;VvX,/81,where X,/8; is a copy of X, with the 1—cell §; collapsed. The map jl’Jrl
is illustrated in Figure 3.
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Figure 2 also shows that j, factors through the space X;/8;. We therefore define j;
to be the composition

Jit1 Jvii
Xy — X2/81 VX —— (Xi41)y.

where ; is defined in Figure 2. a

As an easy consequence of Proposition 2.6, we obtain the homotopy equivalences
TX~ZXVvZX, and TX~IXVIX,.

We shall see that the factors XX, and Efy give the factors ]_H_l QU(n) and

1—[;—1 Q(U(n)/O(n)), respectively, in Theorem 2.5, and that the factor X produces

the factors Q2(U(n)/O(n)) x ]_H_l QO(n). However, the map j, automatically
induces a map

MapZ2 (Xy, BU(n)) — Map%2 (X, BU(n); (0,0,...,0)).
Hence we only obtain a splitting on the level of mapping spaces in this trivial case.

We now restrict to this trivial case for the rest of this section. For the other cases,
Proposition 1.7 will then give results for Theorem 2.5(1) and Propositions 1.8 and 1.10
will give results for Theorem 2.5(2). We provide further decompositions at the level of
the real surface to continue the proof of Theorem 2.5.

Proposition 2.7 Let X5 be the 1—cells in X denoted by 65,...,6,. Then in the
7., —cofibration

X5 5 X — (5% he) 25 2(X;),

the map " is 7, —nullhomotopic.

Proof The space X is the quotient of a type-(r — 1, r, 0) real surface with the 1—cells
denoted by Y5, ...,y collapsed to a point. Recall that the attaching map of X is

) 81v282v7 ' vabsys o vebryy !
and the induced attached map in X becomes
8182 ++-8r.
We conclude that X is a sphere (S2 he) with r of its fixed points identified.

Let U denote the upper “hemisphere” of X;itis homeomorphic to a disc with r of its
boundary points identified, and notice that X = U Uo (U). Now there is a deformation
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retract H: U x I — U of U onto the wedge \//_, §;. Therefore, we define a left
inverse to the map ¢’ via

{H(x,l) for x € U,
H(og(x),1) forxeog(U),

and the result follows. O
We deduce that
TX ~ SX5 Vv I(S? he).

The factor X X5 = q_l (S1,id) provides the factor ]_[;_1 QO(n) for both cases in
Theorem 2.5. We now show that the spaces X (S? he) and X, y provide the other
factors.

Lemma 2.8 There are homotopy equivalences

(1) Mapz, (2Xy, BUn) =[],_; QU1)/0®));
(2) Mapy, (2X,, BU(n)) ~[],_, QU(®).
Proof The space X (X, ) is the same as the wedge \/,_; (S ! he). Looking at the

r—pointed case, the O—skeleton of (X)) is collapsed, and the space X(X;) becomes
the wedge = \/,_; (S Vv S sw). This shows part (2) of the lemma.

For part (1), we introduce a pullback similar to the pullbacks used in [1]. The space
Map%z((S 1 he), BU(n)) fits into the following pullback diagram:

Map}_((S'.he), BU(n)) —— Map* (D', BU(n))

y r

Mapy_((S°id), BU(n)) —— Map*(S°, BU(n))

Here 7 restricts to the fixed points of (S, he), and & restricts to the upper hemisphere
of (S, he) and then forgets about equivariance. Since

Mapy, ((S°.id). BU(n)) ~ BO(n),

the map u is just the inclusion BO(n) — BU(n), and hence the homotopy fibre of u
is U(n)/O(n). Since r is a fibration, the square is also a homotopy pullback. We note
that the space Map* (D, BU(n)) is contractible, and so the result follows. a
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Lemma 2.9 There is a homotopy equivalence
Mapz, (% he), BU(n): (0. 0)) = Q(U(n)/ O())o,
where Q(U(n)/O(n))q denotes the connected component of Q(U(n)/O(n)) contain-

ing the basepoint.

Proof There is a similar pullback as in Lemma 2.8:

Map}_ (S he). BU(n)) —— Map*(D2 BU(n))

I |

Mapy ((S',id), BU(n)) —— Map*(S', BU(n))

This time the map # is homotopic to the inclusion O(n) < U(n), and so the homotopy
fibre of u is Q(U(n)/O(n)). The space Map*(D? BU(n)) is contractible, and so
there is an equivalence

Mapy, ((S? he), BU(n)) ~ Q(U(n)/ O(n)),
and the result follows. O

Proof of Theorem 2.5 For (1), it is enough to deal with the trivial component
of Map%(X , BU(n)) by Proposition 1.7. Using a similar method to the proof of
Theorem 2.4, we have that Proposition 2.6 and Lemma 2.8 contribute the factor
[1,-1 QU(n), Proposition 2.7 contributes the factor [[,_, 20(n) and Lemma 2.9
contributes the factor Q2(U(n)/O(n)).

For (2), the proof is similar, but one has to be careful with the nontrivial components. O

2.3.3 Thecase r >0, a =1 We use the techniques and notation of the previous
section. In particular, let (P, 5) be a bundle of class (0,0, ...,0) over a real surface
(X,0) of type (g,r,1). We first note that by Proposition 2.3, we can restrict to the
cases

3) g=r or g=r+1.
With these cases in mind, the main aim will be to prove the following theorem which

is a restatement of Theorems 1.11 and 1.12 for real surfaces of type (g,7, 1).

Theorem 2.10 For notation as above and g as in (3), there are homotopy equivalences
() 9*(P.0)~9*((g—r+1,1,1):(0,0)) x [] Q0(n) x [ QU(n)/On));

r—1 r—1

) gt (P,5)~g**((g—r+1,1,1);(0,0) x [ QO®) x [] QUx).

r—1 r—1
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We note that after we have proven the above theorem, the only cases we have left to
analyse will be gauge groups over real surfaces of type (2,1, 1) and type (1,1, 1).

For the proof of the theorem, we will essentially follow the methods of the previous
section. Let X, denote the subcomplex of X consisting of the 1—cells denoted by
either y; or o(y;) for2 <i <r.

Proposition 2.11 Let (X, o) be as above. Then in the Z, —cofibration sequence
X, 5 x> X5 5x,),

the map v is Z,—nullhomotopic.

Proof We define a left inverse to «. First, in X, collapse the cells

Yr+10(Vr41):8r 41,08, 41)

and the cells y, 42, 0(yr+2) if they exist. We are left with a space Z,-homeomorphic
to a real surface of type (r — 1, r, 0); we now use the map j, as defined in the proof of
Proposition 2.6. a

The proof of the next proposition is identical to that of Proposition 2.7 except we
exchange (S2 he) for a real surface X' of type either (2,1,1) or (1,1, 1).

Proposition 2.12 Let X5 be the 1—cells in X denoted by 8,,...,8,. Then in the
7., —cofibration

X5 5 X - X' 5 2(Xp),
the map v’ is Z,—nullhomotopic. |
Proof of Theorem 2.10 This follows from Lemma 2.8 together with Propositions
2.12 and 2.11. a
From Theorem 2.10, we reduce our study to the gauge groups
©*((1,1,1);(0,0)) and %*((2,1,1);(0,0));
9*((1.1,1):(0,0)) and  ¢*2((2,1,1):(0,0)).

The following theorem provides the remaining integral homotopy decompositions that
we can obtain for these gauge groups. The theorem contributes to results in the last
two rows of Theorem 1.11 and the last row in Theorem 1.12.
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Theorem 2.13 There are integral homotopy equivalences
(1) *2((1,1,1);(0,0)) ~ ¢*((1,1,1); (0,0)) x U(n);
(2) 9*3((2,1.1):(0,0) = &*((1.1,1):(0,0)) x U(n) x U(n):
3) 9*((2,1,1);(0,0)) ~¢*((1,1,1);(0,0)) x U(n).

We analyse the structure of a type-(2, 1, 1) real surface X”.

Proposition 2.14 Let X' be a type-(2, 1, 1) real surface, and let XJ/, be the 1—cells
¥2.¥3,0(y2),0(y3) of X'. Then in the Z, —cofibration
, K7 / ’ ;v /
X, — X - X /Xy — E(X),),

the map v" is Z,—nullhomotopic.

Proof We define a left inverse to «”. In X, collapse the cell &1, and then collapse
a copy of (S!v S sw) sothat X'/~ is the wedge ((Z1/~)V (21/~),sw), where
(21/~) is a torus with §; collapsed. We now project to (S' Vv S, sw) as we did in
the proof of Proposition 2.6; in fact, the left inverse is similar to the map j3 from this
proposition. |

In the following, we show that the space X'/X. )’, is Z,-homotopy equivalent to a
(1,1, 1) real surface (X,0). We first recall the Z,—decomposition of (X,c). The
0—skeleton X© is given three O—cells *; for 1 <i < 3. The 1—cells are then

81,8,0(3),y2.0(y2),

where the fixed circle is represented by §;, and § joins *;, to *3; therefore, §a(§)
represents the copy of (S, —id). The 1-cell ¥, joins *; to *,, and o(y,) joins *;
to *3. One of the two 2—cells has attaching map

81y280(8)y; ',
and we define the other one equivariantly.

On the other hand, the space X’/ X J/, has an induced Z,—complex structure as follows.
There is one 0—cell *, to which we attach the 1—cells

81,8 and o(8).
There are two 2—cells, one of which is attached to the above 1-—skeleton via

518 (8),
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and the other is glued equivariantly. However, the subcomplex given by y, U o (y2)
of (X, o) is Z,—contractible, and therefore, (X, o) is homotopy equivalent to the
Zy—complex structure of X'/X),.

Proof of Theorem 2.13(2) and (3) By Proposition 2.14, we obtain the homotopy
equivalences

X~ EX)’,VZX’/X’;

X' ~SX, vEX'/X].
In the first case, the factor XX ;, is the same as the suspension of (S1 v S sw). We see
that collapsing the 0—skeleton of ¥ X. )’, provides the suspension of \/,(S v St sw),

and hence this corresponds to the factor XX )’, in the second equivalence. The result
follows. a

Proof of Theorem 2.13(1) We use the Z,—structure provided after Proposit_ion 2.14.
In this 2—pointed case, we identify the three O—cells *1, %5, *3 to produce X . Let

Xy =r2Ua(y2),
and let X, y be the image in the quotient X . There is a left inverse to the inclusion
¥, X
using a similar map to j, in the proof of Proposition 2.6. Therefore, there is a homotopy

equivalence
X ~3X,vE(X/X,),

but by the comments after Proposition 2.14, the factor X (X / fy) is Zy—-homotopy
equivalent to the suspension of a real surface of type (1, 1, 1). This finishes the proof. O

2.3.4 Nonintegral decompositions By the previous sections, we have reduced our
study of the pointed gauge groups to those over real surfaces of the types

(0,0,1), (1,0,1) and (1,1,1).

These spaces seem fundamental in some way, and for the single-pointed case we do
not obtain any further integral decompositions.

However, one may expect these spaces to become easier to examine when we choose
to invert 2 since the involution has order 2 and the 2—torsion in O(n) vanishes. This
turns out to be the case, and we will find that localising at a prime p # 2 will prove
particularly fruitful.
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In the coming sections, we aim to prove Theorem 1.13, dealing with each part in turn.
The proof of each part is quite laborious, but we only provide full details for part (1).
We outline the main parts of the proof of Theorem 1.13(1):

e The existence of the pullback (4) gives the existence of the map (6).

e We use an argument of [5] to prove that (6) is a p—local homotopy equivalence
for primes p # 2.

e We calculate the homotopy fibre of gr in (6).
The proofs of Theorem 1.13(2) and (3) will then invoke similar methods.
The case (0,0,1) Let (S?% —id) be areal surface of type (0, 0, 1). By Proposition 1.8,
all of the pointed gauge groups over (S2, —id) are homotopy equivalent, so we assume

that (P, a) is of class 0. In this section, we aim to prove the following theorem which
is a restatement of Theorem 1.13(1).

Theorem 2.15 For a prime p # 2 and odd n, there is a p—local homotopy equivalence
@* (P,5) =p QU(1n)/0m) x 2> (U(n)/ O(n)).
Let u: B4*(P,5) — Map*?(D? BU(n)) be the map that restricts to the upper hemi-
sphere of (S?2 —id) and forgets about equivariance. Let
r: Bg*(P,5) — Mapy, ((S' v S, sw), BU(n))

be the map restricting to the 1-skeleton of (S2 —id). These maps fit into the pullback

u

B@*(P,5) Map*?(D?, BU(n))

@) l l

Map}_((S' v S, sw), BU(n)) —“— Map*(S' v S', BU(n))

where r/ restricts to the 1-skeleton and u’ forgets about equivariance.

Let ¢: U(n) — U(n) denote complex conjugation and note that " is homotopic to the
map A: U(n) — U(n) x U(n), where A(a) = (o, ). Also note that the map r’ is
homotopic to the map A~!: U(n) — U(n) x U(n), where A~ (a) = (o, !). Let Q
be the strict pullback of A and A~! as in the following diagram:

00— U

"

Un) —2- Un) x U(n)
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We will see that Q retracts off B%*(P,5) after inverting the prime 2.

The map r’ in diagram (4) is a fibration, and hence this diagram is a homotopy pullback.
Therefore, there is an induced homotopy commuting diagram

0 —

B%*(P,5) —~— U(n)

e

Un) —2 s Un) x Un)

)

where we have replaced the pullback square (4) with a homotopy equivalent square.
Lemma 2.16 The pullback Q is homeomorphic to U(n)/O(n).

Proof The pullback Q is the space
{AeUm) | A7 =g(A)}.

Let f: U(n) — Q be defined by f(4) = AC(A)~'. For matrices 4 € U(n) and
W e U(n)s = O(n), we have

(AW)SAW) ™ =AW (W™ Hg(A™") = A4S (4)~!
since ¢ is a homomorphism. Hence f induces a map f’: U(n)/O(n) — Q.

We show that f” is a bijection. For injectivity, let A, B € U(n), and suppose that
AC(A)~! = B&(B)~!. Then

Iy = B~'AS(4)7'¢(B) = (BT )¢ (B~ A)~!
for I, € U(n) the identity matrix. Hence B~1A4 € U(n)e, and so AU(n)f = BU(V!)E.

For surjectivity, let A € Q. Then A is symmetric, and due to the Autonne—Takagi
factorisation (see [14]), there is a unitary matrix P such that A = PDP’, where D is
a diagonal matrix with real entries. Let /D be a diagonal matrix (hence an element
of Q) in U(n) such that /D? = D. We have

A= PDNDP' = PVDE(PVD) !,
and therefore, f/((P~/D)O(n)) = A.

The map f” is therefore a continuous bijection, and since U(n)/O(n) is compact and
Q is Hausdorff, it is a homeomorphism. a
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The above diagram and Lemma 2.16 give the following composition

©6) o Um)/0m) 1> 05 Ba*(P.5) 5> Uy S Uty O

for g the quotient map. From the properties of 7, we see that ¢ is homotopic to
a map that sends an element 40 (n) to AA’O(n). For odd n, [5] showed that the
related map

@) SU(n)/ SO(n) — SU(n)/ SO(n), ASO(n)+— AA" SO(n),

is a homotopy equivalence when localised at a prime p 7 2. Our aim is to show that
the same is true for ¢.

Lemma 2.17 For a prime p # 2, there is an p—local homotopy equivalence
Un)/O(n) ~p U(n)/ SO(n).

Proof Consider the following pullback diagram where the downward arrows represent
taking universal covers:

U(n)/ SO(n) —— B SO(n) —— BU(n)

l | ||

U(n)/O(n) —— BO(n) —— BU(n)

| |

K(Z2’l) K(ZZ’I)

The result immediately follows. |

We now show that U(n)/ SO(n) further decomposes into the product
SU(n)/ SO(n) x S*.

The map B SO(n) — BU(n) factors through B SU(#). Hence we obtain the following
commutative diagram which defines the maps i and j:

Un) ———=Um)
]

SU(n)/ SO(n) —— U(n)/ SO(n) —— S!
@®) |
SU(n)/ SO(n) ——— B SO(n) ——— B SU(n)

|

BU(n) =———= BU(n)
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It is not too much more work to show the following lemma.

Lemma 2.18 There is a homotopy equivalence

n: SU(n)/ SO®n) x S' = U(n)/ SO(n).

Proof There is a right inverse / to the map f and there is an action of U(n) on
U(n)/ SO(n); hence the composition

“action”

n: S x SUm)/ SO(n) ——> U(n) x U(n)/ SO(n) ——— U(n)/ SO(n)

is the required homotopy equivalence. a

Let ¢ be the composition in (6), and then define
s: U(n)/ SO(n) — U(n)/ SO(n)
to be the composition
U(n)/ SO(n) = U(n)/O(n) % U(n)/ 0(n) = Un)/ SO(n).

Our aim is to show that s restricts to the factors SU(n)/ SO(n) and S! in a nice
enough way.

Lemma 2.19 There exist maps
s": SU(n)/ SO(n) — SU(n)/ SO(n) and s": S'— S!

such that the following is a homotopy commuting square:

SU(®n)/ SO(n) x S' 5254 SUn)/ SO(n) x S
I I
U(n)/ SO(n) ———— U(n)/ SO(n)
Furthermore, these maps can be chosen such that s” is homotopic to the map

ASO(n) — AA" SO(n),

and s’ is homotopic to the map x > x2.

Proof Let5: SU(n)/SO(n) x S! — SU(n)/ SO(n) x S! be the composition

SU(n)/ SO(n) x S 2 U(n)/SO(n) 2 U(n)/ SO(n) 77__1> SU(n)/ SO(n) x S!
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for a homotopy inverse n~! of 5. Let 1: SU(n)/ SO(n) — SU(n)/ SO(n) x S and
k: ST — SU(n)/SO(n) x S! be the inclusions. We note that ¢ is homotopic to

SU(n)/ SO(n) > U(n)/ SO(m) "— SU(n)/ SO() x S

where 7 is as in diagram (8). By the way the homotopy equivalences are defined in
Lemmas 2.17 and 2.18, we see that the composition si is homotopic to

BSO(n) — BB'SO(n) for B € SU(n),

and hence the image of this map lands in the image of i. We deduce that 51 has image
in SU(n)/ SO(n), and we define

s" =31,

Similarly, 5k has image in S! and we define s’ = 5k. We see that s” is homotopic

to a map defined via A SO(n) = A A’ SO(n), and that s’ is homotopic to the map

X > x2. u

We immediately obtain the following homotopy commuting diagram where the rows
are homotopy fibrations:

SU(n)/ SO(n) —— U(n)/ SO(n) —— S
© l l J
SU(n)/ SO(n) —— U(n)/ SO(n) — S

By Lemma 2.19, the map s” is homotopic to the map in (7), and hence it is a p—local
equivalence when 7 is odd and p # 2 is a prime. We note that s is also a p—local
equivalence. Finally, the spaces in (9) are connected; hence s is also a p-local
equivalence. We are now able to deduce the following.

Proposition 2.20 With the notation as in (6), we let F be the homotopy fibre of
qr: B4*(P,5) — U(n)/O(n). Then for n odd and for any prime p # 2, there is a
p —local homotopy equivalence

4" (P,5) ~p QU(n)/O(n)) x QF.

Proof Recall the maps f” and 7 from (6). Then the above discussion has shown that
7 f' provides a p—local homotopy section to the homotopy fibration

F— Bg*(P,5) 25 Um)/ o),
and the result follows. O

Therefore, to prove Theorem 2.15 it only remains to identify the fibre F.
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Proposition 2.21 For any prime p # 2, there is a p—local homotopy equivalence
F ~, QU(n)/O(n)).

Proof The map gr from (6) is defined as a composition; hence there is a homotopy
commutative diagram

F— Bg*(P,5) - Umn)/ On)

| | |

O(n) U(n) U(n)/O(n)

where the left square is a homotopy pullback square. The map r is a fibration since it is
induced by i: (S, —id) < (52 —id), the inclusion of the meridian copy of (S, —id)
into (S2 —id). Therefore, the space F is homotopy equivalent to the strict pullback
of O(n) — U(n) <~ B«%*(P,5), which is the relative mapping space

Mapy,_(((S* —id).(S'.—id)). (BU(n). BO(n)):0).

We will associate another pullback square with this description of F. There is a map
T: F — Mapy, ((S% —id), (BU(n),id); 0) given by

f(x) for x in the upper hemisphere including the equator,

T(f)(X)={

f(—=id(x)) for x in the lower hemisphere excluding the equator.

Let i: (S!,—id) < (§2% —id) be defined as above. Then i induces the following
homotopy pullback diagram:

F JL> Map}, ((S2 —id). (BU(n).id): 0)

| ]

O(n)" U(n)

There is a homeomorphism
Mapy, ((S? —id), (BU(n).id): 0) = Map* (R P?, BU(n): 0),

but for a prime p # 2, the space RP? is p—locally contractible. Therefore, p—locally,
we have identified the space F as the fibre of the inclusion O(n) — U(n), and the
result follows. a

Proof of Theorem 2.15 Use Propositions 2.20 and 2.21. a

The case (1,0,1) Let (7, 1) be areal surface of type (1,0, 1), and since all pointed
gauge groups over (7, t) are homotopy equivalent, we restrict to the case where (P, &)
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is a bundle of class 0 over (7, t). We will use similar techniques to the even genus
case to obtain the following theorem, which is a restatement of Theorem 1.13(2).

Theorem 2.22 For a prime p # 2 and n odd, there is a p—local homotopy equivalence
G*(P,5) ~p QU(n)/0(n) x Q*(U(n)/ 0(n)) x QU(n).
Proof Let u: B%*(P,5)— Map*(C, BU(n)) be the map that forgets about equivari-

ance and restricts to the upper half of (7', 7), which is homeomorphic to a cylinder C'.
Let i be the inclusion of the boundary circles of C. Then i induces a pullback

u

B%*(P,5) Map*(C, BU(n))
(10) lr J,,
Map}_((S'V S, sw), BU(n)) —“— Map*(S' U S, BU(n))

where r/ = i* and r is the restriction to the 1-skeleton of (X, o).

In a similar fashion to the way we obtained diagram (5), we replace (10) with a
homotopy equivalent square and obtain the diagram:

By (P.5) — 2 Um)
| |-
U(n) L U(n) x LBU(n)
Here LBU (n) is the free loop space of U(n), and Q is the strict pullback of the diagram

U S Uy x LBUM) & U,

Hence Q is again the symmetric matrices in U(n). We deduce that U(n)/O(n) also
p-locally retracts off B%*(P,5).

It is clear that, as in the even case, there is a similar description for the fibre F of the
map B¥%*(P,5)— U(n)/O(n). The space F fits into the following pullback diagram:

F —— Mapy_((T, 1), (BU(n),id); 0)

; :

O(n) U(n)
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We note that if we let K be a Klein bottle, then there is an homeomorphism
Mapy, (T’ 7), (BU(n),id); 0) = Map* (K, BU(n); 0).

The map 7 is induced by the inclusion S! <> K which on fundamental groups induces
the quotient
Z—>7ZxZy, ar>(0,]al),

onto the right factor. We see that for a prime p # 2, the map 7 is p-locally nullho-
motopic, and we obtain

QF ~, Q*(U(n)/0(n)) x Q Map* (K, BU(n); 0).

Now for p # 2 prime, we have a p—local homotopy equivalence K ~, S ! because K
isa K(Z xZ,1). Therefore, the space 2 Map™ (K, BU(n);0) is homotopy equivalent
to QU (n) when localised away from 2, and Theorem 2.22 follows. a

The case (1,1,1) Let (X, o) be a real surface of type (1,1, 1). For convenience,
we choose (P,d) to be a bundle of class (0,0) over (X,0). We use a very similar
method to the previous sections to prove the following theorem. This theorem is a
more general statement than Theorem 1.13(3), whose statement claims to only be valid
for odd n.

Theorem 2.23 For any prime p # 2, there is a p—local homotopy equivalence
G*(P,5) ~p 9*((S? —id); 0) x QO(n).

Proof We first recall the Z,—decomposition of (X, o). The 0O—skeleton X© is given
three O—cells *; for 1 <i < 3. The 1—cells are then

81, 8, 0(9), y2, o(v2),

where the fixed circle is represented by §;, and § joins *;, to *3; therefore, o (§)
represents the copy of (S, —id). The 1—cell y;, joins *; to *,, and o (y;) joins *;
to *3. One of the two 2—cells has attaching map

811280 (8)y; .
and we define the other one equivariantly.

Since the subspace y, Uo (y») is Z,—contractible, we amend the above decomposition
to have only three 1—cells 81,8, 0(8) and amend the attaching map to

8180 (8).

Algebraic & Geometric Topology, Volume 17 (2017)



2462 Michael West

We obtain a pullback similar to that of the previous section:

B%*(P,5) “ Map*3 (D2 BU(n))

y :

Map}_((SLid) v (S' v S sw). BU(n):w;) —“— Map*(S' v S' v S, BU(n))

where r is the restriction to the 1-skeleton of (X,0), and u restricts to one of the
2—cells and forgets about equivariance.

In a similar fashion to the way we obtained diagram (5), we obtain the diagram

O(n) :

Eg*(l), §) ——— Un) xU(n)

SO(n) x U(n) —“— U(n) x U(n) x U(n)

1D

where fi, f> and f3 are to be defined momentarily.
The map r": U(n) x U(n) — U(n) x U(n) x U(n) is the map
r'(A,B)= (B~ 'A7' A, B),

and the map u’: SO(n) x U(n) — U(n) x U(n) x U(n) is the map

u'(C, D)= (C, D, D).
We can hence define maps f1: O(n) — SO(n)xU(n) and f5: O(n) — U(n)xU(n) by

[ilX)=(X"%X) and fo(Y)=(Y.Y)

such that u’ f1 = r’ f,. Since (11) is a homotopy pullback, there exists a map

f3: O(n) > Bg*(P,5)

such that the composition

£ 0m) Lo Ba*(P.5) 5> 0(m) x Um) 2> 0(n)

sends an element X to X 2. Then observe that x has image lying in SO(n), and
therefore, when ¥ is restricted to SO(#n), it is the inverse of the H —space squaring map.
We conclude that the restriction of x to SO(n) is a p—local homotopy equivalence for
p # 2, and therefore, SO(n) retracts off B4 (P,o).
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The map p;r is just the restriction to the fixed points of the involution. Hence the fibre
of this map is the space B %*((0,0, 1);0), which we have already studied. We finish
by noting that 2 SO(n) and 20(n) are homeomorphic. O

2.4 Unpointed gauge groups

In the last section, we showed that certain trivialities of the attaching map of the top
cells of X led to homotopy decompositions in the pointed case. We will see that these
decompositions somewhat extend to the unpointed case.

2.4.1 Integral decompositions Let (X, o) be a real surface of type (g, r,@). In the
following proposition, g’ will denote the number of «; and B; cells in the description
of (X, o) in Section 2.1. Explicitly,

g—r+1 whena=0,
g=3g-r when ¢ = 1 and g —r is even,
g—r—1 whena=1and g—r is odd.

We now present Proposition 2.24 which is a restatement of Theorem 1.14(1).

Proposition 2.24 There are homotopy equivalences
@g((g,r,a); (c,wy,...,wy)) ~9((g—g',ra);(c,wy,...,w)) X l_[ QU(n).
g/

Proof In essence, we follow the proof of [11, Proposition 2.1]. For convenience, we
write
(c,w):=(c,wy,..., w).

Let Xop = \/g,(S1 v S sw) be subcomplex of X represented by «;, o (a;), Bi. o (Bi).
Recall the Z,—cofibration sequence of Proposition 2.3:

Xop > X 5 X' 5 S(Xyp).
Then the map ¢ induces the diagram

(c.w)

QB e, Mapy , (X', BU(n); (¢, )) —— Mapz, (X', BU(); (¢, ®)) —— B
lq* lq*
2B = Map}, (X, BU(): (¢, W) —— Mapz, (X, BU(n); (¢, @) —— B
where

__[BU(m) ifr=0,
~ | BO(n) otherwise.
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The equation ¢ i) = ¢*0(c,) results in the diagram
Map™*(2(X), BU(n); (¢, w)) == Mapz, (£X, BU(n); (¢, ))
"

9(g - g) —— 9((g.r.a): (c. @) ———— Map},_(£(Xop). BUM))

H o
d c,w —
9(g—g') QB “ s Map}, (X', BU(n): (c. )
P(c.w) q*

Map},, (X, BU(n); (¢, ) == Map}, (X, BU(n); (¢, )

which defines the maps / and /', and in which (g —g’) :=9((g — g’,r,a); (c,)).

By Proposition 2.3, the map p* is trivial. Hence there is a section to the map (Xi)*,

so there is also a section to /1, and the result follows. O

The quotient map ¢ in Proposition 2.24 induced an isomorphism on my between
Mapz (X, BU(n); (c,w)) and Mapz, (X', BU(n); (c, ).

However, for a fixed cell 6; of (X, o), the quotient map ¢: X — X/§; automatically
induces the map

q*
Mapyz, (X/di, BU(n)) — Mapgz, (X, BU(n);0),
hence the requirement for w; = 0 in Theorem 1.14(3). Whilst there is an equivalence
Mapz, (X, BU(n); (¢, 0)) = Mapz, (X, BU(n); (c, 1)),

there is not necessarily an equivalence in the unpointed case in general. Hence there
is not enough information to guarantee the commutativity of the diagram needed to
induce a homotopy decomposition.

Omitting such nontrivialities allows further splittings; let X; be a subset of the 1—cells
of X such that

(1) if there is a fixed cell §; C X7, then w; = 0;
(2) for appropriate components, the induced map
g*: Mapy_(ZX,, BU(n); (0)) — Mapz,, (X/ Xy, BU(n); (c, D))
is Z,—nullhomotopic.

Under these assumptions, it is clear that the methods in the previous proposition would
yield further homotopy decompositions.
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Proof of Theorem 1.14(2) and (3) The above conditions apply to the 1—cells con-
sidered in Propositions 2.6, 2.11 and 2.14 for bundles of arbitrary type.

Additionally, the conditions are satisfied by the 1—cells considered in Propositions 2.7
and 2.12 for bundles of type (¢, w1,0,...,0). When #n is odd, we can take advantage
of Proposition 1.10 to obtain the table in Theorem 1.14(3). We have now finished the
proof of Theorem 1.14. a

2.4.2 Analysing the boundary map Let (P,5) — (X, 0) be a real bundle of class
(c,wq,...,w,) over areal surface (X, o) of type (g,r,a). Let

BOm) ifr>0,

BU(n) otherwise,

and consider the homotopy fibration sequence induced from the map that evaluates at
the basepoint of X :

0
(12) @(P.5) > QB —> Map},_(X. BU(n): P) > Mapg, (X, BU(n): P) —> B.

Since ¥ (P, &) appears as the homotopy fibre of the boundary map dp, we aim to gather
information about (P, &) by studying dp. Our method will involve comparing dp to
a map arising from a similar homotopy fibration sequence found in [12]. This approach
is particularly fruitful when X is nonempty, that is, when r > 0. We reserve analysis
of the r = 0 cases not handled by Section 2.4.1 to later sections, however, we will
require discussion from this section and Section 2.3.4.

Note that
mo(Map(S?% BU(n))) = Z,

and for d € Z, we obtain a fibration sequence
ad
(13)  Un) -5 Map*(S2 BU(n): d) — Map(S2 BU(n): d) — BU(n).

The trivialities of the map d; were extensively studied in [12]. We state the relevant
results from this paper.

Theorem 2.25 (Theriault) Let p be a prime, and let
d4: U(n) — Map*(S% BU(n); d)
be as in (13). Then

(1) if p 4 n, then d4 is p—locally trivial;
(2) ifn= p with p|d, then d4 is p-locally trivial.
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The case n = p } d was also studied in [12]; the map 94 is not p—locally trivial, but
the homotopy fibre was identified. The following two propositions adapt some of the
trivialities of d; to our setting.

Proposition 2.26 Fix d € 7, and let d; be the boundary map in (13). Let (P,7)
be a real principal U(n)-bundle of class (2d,0,...,0) over a real surface of type
(g,r,a). Let

dp: QB — B¥%*((g,r,a);(2d,0,...,0))

be the boundary map of the evaluation fibration in (12). For a prime ¢, if 0, is
(q—locally) trivial, then
(1) ifr >0, then dp is (q-locally) trivial;

(2) if r =0, then the composition

O(n) = Un) 22> Ba*((g.r.a): (2d.0. ... 0))

is (g —locally) trivial.

Proof The key will be to compare both maps to another evaluation boundary map in-
volving the Z,—space ¥ = (S2V S? sw). Note that components of Map}2 (Y, BU(n))
are classified by even integers.

Let S2 N S2v S2 =Y be the inclusion onto the left factor, and note that this is not
a Z,-map. The following diagram commutes:

O(n) 2% Map}, (Y, BU(n); 2d) — Mapg, (Y, BU(n); 2d) — BO(n)

o T |

Un) —s Map*(S2 BU(n): d) —— Map(S2 BU(n): d) —— BU(n)

Now there is an inverse to i which sends a map f in Map™ (S 2 BU(n);d) to the
composition

idv n fold
s2v 52 2 Bumy v BUG) 2229, BUumy v BUMm) 2% BU®),
which is Z,—equivariant because the involution on S? v S? swaps the factors. Note
that the map induced on the unpointed mapping spaces does not have an inverse because
the basepoint of ¥ must land in BO(n). We conclude that if d4 is g-locally trivial,
then so is d,4.
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Let g: X — Y be the map that collapses the 1-skeleton of the real surface (X, 0).
We obtain the following commutative diagram:

O(n) 2% Map, (Y, BU(n): 2d) —— Mapz, (Y, BU(n): 2d) —— BO(n)
| |7 | |
QB — % Map} (X, BU(n); P) —— Mapg, (X, BU(n); P) —— B

The map f is an equivalence if r > 0 and is the inclusion O(n) < U(n) otherwise.
Since d,4 is (¢—locally) trivial, the result follows. i

Proposition 2.27 Let p be a prime such that p { d, and let (P, o) be a real principal
U(p)-bundle of class (2d,0, ..., 0) over a real surface of type (g,r,a). Let

dp: QB — B¥*((g.r.a);(2d,0,...,0))

be the boundary map of the evaluation fibration. Then
(1) ifr >0, then dp is p-locally trivial;
(2) if r =0, then the composition

bl
O(p) = U(p) —=> B4*((g,r,a); (2d,0,...,0))
is p—locally trivial.

Proof We assume that p t d is a prime and that all spaces and maps are localised at p.
Let Y = (S? Vv S2 sw) be as above. Then there is a homotopy commuting diagram

52d

O(p) Mapz (Y, BU(n); 2d)
U(p) i QU(p)o
15
(15) H . d
U(p) QU(p)o
le (Qe)o

Hp—olsziﬂ proj §2p—1 % g3 inc 1—[17—}9521'+1
i= —— j=

where the top square is from diagram (14) and the bottom two squares are found in [12],
specifically in Proposition 4.1 and the proof of Theorem 1.1(b) and (c).

The d™ power map d: QU(p)o — QU(p)y is a homotopy equivalence because p 4 d .
Furthermore, the maps e and (2¢)o are homotopy equivalences provided in [9]. Now
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for p # 2 prime, there is a p-local homotopy equivalence

(r—D/2
SO(p)~, [ s*7.
i=1
and furthermore, the inclusion O(p) < U(p) is in fact the inclusion of these factors
into 1—15;—01 S2i+1 We conclude that the composition

p—1 .
(16) x©: 0(p) > U(p) — [ s¥+1 22 527~
i=0

is nullhomotopic, and therefore, so is 52d-

For p = 2, the space O(2) is homeomorphic to S! II S'. Since x in (16) has
target space S3, we conclude that y and hence 0,4 are nullhomotopic in this case,
too. The result then follows in a similar way to the last paragraph in the proof of
Proposition 2.26. O

Proof of Theorem 1.15(1a) and (2a) Theorem 2.25 and Proposition 2.26 immedi-
ately obtain (1a). Similarly, Theorem 2.25 and Proposition 2.26 obtain (2a) when p | d,
and Proposition 2.27 then gives the remaining case when p { d. a

2.4.3 The case (0,0,1) We restrict to analysing gauge groups above real surfaces
of type (0,0, 1). Fix an even integer ¢. Then we wish to analyse the boundary map 9.
of the evaluation fibration.

For a Z,—space A4, let A: A — A x A be the composition
A id X0 4
17) A—> AXxA— AxA.
Let u be the composition
B%*((0.0.1);¢) = Map}_(S% BU(n): ¢) > Map*(D% BU(n)) = U(n),

where # restricts to the upper hemisphere of (S?2 —id) and forgets about equivariance
except at * and o (x). The last equivalence follows since D? with two points identified
is homotopy equivalent to S'. The maps u and A are the same as in (5), and they fit
into the commutative diagram

U(n) —2—5 B4*((0,0, 1); ¢) —— B%((0,0, 1);¢) —— BU(n)

. | |

Un) x Un) U(n) Map(D2 BU(n)) —2 BU(n) x BU(n)
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where ev, evaluates at two antipodal points on the boundary of D?, and ¢ is defined
via this diagram.

Since D? is contractible, the map ev, is homotopic to the diagonal map
A: BU(n) — BU(n) x BU(n).

Therefore, the map ¢ is homotopic to the map defined by (A4, B) — AB~'. Let
f: U(n) — U(n) be defined as f(A) = AA" and we conclude that ud, >~ f.

After localising the map f at a prime p # 2, we have the composition

(18) SO(n) x U(n)/ SO(n) i) SO(n) x U(n)/ SO(n) 22, U(n)/ SO(n),

where p, is the projection map. Recall the map ¢ from (6) and compare with f.
For p # 2, we showed that ¢ is a p-local homotopy equivalence, and we conclude
that restricting the composition (18) to the factor U(n)/ SO(n) also obtains a p-local
homotopy equivalence. We have shown the following proposition.

Proposition 2.28 Let n be odd. Then localised at a prime p # 2, the following
composition is a homotopy equivalence:

e
U(n)/ SO(n) — U(n) — B%*((0,0,1);¢) 5 Un) — U(n)/ SO(n). ad
With this proposition, we have enough ammunition to prove Theorem 1.15(1b) and (2b).

Proof of Theorem 1.15(1b) and (2b) We first prove part (1b). Localise at a prime
p # 2 such that p } n, and reconsider the fibration sequence

%((0,0. 1): ¢) — SO(n) x U(n)/ SO() <> B4*((0.0.1): c).

By Proposition 2.28, the factor U(n)/ SO(n) retracts off B%*((0,0,1);c¢), and by
Proposition 2.26(2) the factor SO(n) retracts off ¢((0,0, 1); ¢) under a lift

[: SO(n) — %((0,0,1);¢)

of the inclusion SO(n) — U(n). Then the composition

SO(n) x Q2(U(n)/ SO(n)) i, 2((0,0,1); ¢) x Q2(U(n)/ SO(n))
“action”

%((0.0.1):¢)

is a homotopy equivalence, and the result follows. The proof of part (2b) is similar. O
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2.4.4 The case (1,0,1) We now analyse unpointed gauge groups above a real
surface (7, t) of type (1,0, 1). We use a similar method to the (0, 0, 1) case and adopt
some of its notation.

As in the proof of Theorem 2.22, let u’: B%™*((1,0, 1); ¢) — Map™*(C, BU(n)) be the
map that forgets about equivariance and restricts to the upper half of (7, t), which is
homeomorphic to a cylinder C. Let A be as in (17). Then we obtain the diagram

U(n) LN B%*((1,0,1);¢) —— B%((1,0,1);¢c) ——— BU(n)

| I+ l |
U(n) xU(n) L> Map*?(C, BU(n)) — Map(C, BU(n)) =2, BU(n) x BU(n)
where ev, is another double evaluation map; viewing C as a subcomplex of (7, ),

the map ev, evaluates at the basepoint *; and its image under the involution t(%1).
Again, the map ¢’ is defined via this diagram.

As in the previous case, we aim to study the homotopy type of the map ¢’A. However,
it is not immediately clear on the homotopy type of the “boundary” map ¢{’. We note
that C ~ S'! under a deformation retract fixing *; and taking t(%;) to ;. Therefore,
if we let LBU(n) be the free loop space of BU(n), we deduce that there is a homotopy
commutative diagram

Map(C, BU(n)) —2-+ BU(n) x BU(n)
|- o[
LBU(n) ——=— BU(n)

where ev evaluates at the basepoint *; and A is the diagonal map. Given that A ev is
a composition, we obtain the homotopy commutative diagram

Un)xUm) =——=Um)xU(n)
¢ ¢
Un) — Map*2(C, BU®)) —"—— U(n)
U(n) —— LBU(n) ———~— BU(n)
Aev A

BU(n) x BU(n) BU(n) x BU(n)
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where the map * is the inclusion of the homotopy fibre, which is nullhomotopic. The
middle square is a homotopy pullback, and hence the maps / and /4’ are defined using
this diagram.

By the triviality of the middle right vertical, there is a right homotopy inverse i to / and
a left inverse ¢ to /’. Therefore, the space Map*?(C, BU(n)) is homotopy equivalent
to the product U(n) x U(n).* Therefore, the homotopy type of

¢ Un) x U(n) — Map*2(C, BU(n))

can be determined by studying ¢¢" and A{’. Tt is clear that g¢’ ~ x and h{’ ~ z.
However, ¢ is the same as the map {: U(n) x U(n) — U(n) in case (0,0, 1), and
therefore, it is homotopic to the map (4, B) — AB™!.

We conclude that ¢’ is homotopic to a map
Un)xUm) — Um)xUm), (A, B)+— (I,,AB™").
Proof of Theorem 1.15(1c) and (2¢) We first prove part (1c). Let p # 2 be a prime

with p } n. Then localised at p, in the same way as Proposition 2.28, we see that the
factor U(n)/ SO(n) in

U(n) =p U(n)/ SO(n) x SO(n)
retracts off B%*((1,0, 1);c¢) via

Un)/ SO(n) < Un) 25 B4*((1,0,1): ¢) > Un) — U(n)/ SO().

Additionally, by Proposition 2.26(2), the factor SO(n) retracts off the gauge group
%((1,0,1);c). We then find the required homotopy equivalence as in the proof of
Theorem 1.15(1b). The proof of (2c¢) is similar. a

2.5 The quaternionic case

From here on, we restrict to the quaternionic case. Again, our method of attack will be to
study some mapping spaces related to these gauge groups. In fact, these mapping spaces
are the same as in the real case, except BU(2n) is endowed with an involution so that

(EU(2n),Gq) — (BU(2n),6q)

is a universal quaternionic bundle. Recall that in the real case, the involution ¢ was
induced by complex conjugation ¢: U(n) — U(n). In this case, the involution ¢q is

30f course, this can be seen directly by studying the homotopy type of C.
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induced from the homomorphism

Co: Un) - Um), AwJ'A4J,

where
010 0--- 00
-10 0 0--- 00
00O0T1--- 00
J=100-10-- 00
000 O0-- 01
000 O0---10

Most of the results in the real case come from geometric properties of (X, o); hence
we will see that these results transfer to the quaternionic setting without too much
hassle. Furthermore, since (BG)S? = B Sp(n), we will see that a number of results
will be easier to prove due to the high connectivity of B Sp(n).

For the Z,—space (BU(2n),Gq) as above, we write
Mapq (X, BU(2n)) := Mapg, (X, BU(2n))

to distinguish from the real case, and use similar notation for the pointed cases. Now
let X be as in the preamble to Theorem 2.1, and we state the quaternionic analogue of
Theorem 2.1.

Theorem 2.29 Let (P,G) be a quaternionic principal U(2n)—bundle of class ¢ over
a real surtace (X, o) of type (g, r,a). Then there are homotopy equivalences

(1) B%q(P,0) =~ Mapg(X, BU(2n); P);

(2) B%4(P.&) = Map}(X, BUQ2n); P);

(3) By3"tV(P.5) ~ Mapa(”La) (X, BU(2n); ¢) ~ Map§(X, BUQ2n): P);
where on the right-hand side, we pick the path component of Mapg (X, BU(n)) that
induces (P, 7).

We now sketch the proofs for the results in Section 1.3.

Proof of 1.16 We use the action of m,(BU(2n)) on [(X,0),(BU(2n),Gq)]z, as
presented in the proof of Proposition 1.7. |

As in the real case, the lack of a 7, (BU(2n)) action means that we cannot provide an
analogue for B %g(P,0).
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Proof of 1.17 The idea is to tensor the quaternionic bundle (P, o) with a real U(1)-
bundle 7g: (Q,7) — (X,0) of class (2,0,...,0). The required isomorphism of
gauge groups is then defined as in the proof of Proposition 1.9. a

We sketch the proofs for the results related to homotopy decompositions of the gauge
groups.

Proof of 1.18 and 1.19 The proof is similar to those in Sections 2.3.1-2.3.3, except
that in this case, BU(2n)5Q = B Sp(n). We recall that decompositions involving fixed
circles in the real case needed to be handled delicately, but this does not occur in the
quaternionic case due to the high connectivity of B Sp(n). a

Our aim is to now prove Theorem 1.20 using a similar method to that of Theorem 2.15.
Localised at a prime p # 2 and for n odd, we obtained a p-local decomposition in
the real case due to the fact that the p—local homotopy equivalence

U(n)/On) — Um)/0n), AOmn)— AA'O(n),

factored through the space B ¢*((0,0, 1);0). We shall see that a similar map involving
U(2n)/ Sp(n) also factors through the quaternionic analogue of this gauge group. Let

u: B45((0,0,1);0) > Map**(D? BU(2n))

be the map that restricts to the upper hemisphere of (S2 —id) and forgets about
equivariance, considering the image as landing in Map*?(D?2 BU(2n)). Let

r: B45((0,0,1);0) > Mapy ((S' v S',sw), BU(2n))

be the map restricting to the 1—skeleton of (S2 —id). We obtain a homotopy commut-
ing diagram similar to diagram (5):

0 -

)

B %‘((o, 0,1);0) —=—= U(2n)

| lp

Un) —22 U@y x U@2n)

where AQ is the map A > (4,CqA). Here Q is the strict pullback of the diagram

ven 25 ven < uen 2= uen),

and B %5‘ ((0,0, 1); 0) is the homotopy pullback of the same diagram. Once again, we
aim to show that Q retracts off B 545 (0,0, 1);0).
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Lemma 2.30 The pullback Q is homeomorphic to U(2n)/ Sp(n).

Proof This is essentially the same proof as Lemma 2.16, but we must elaborate on
the details for surjectivity of the map

f:U@n)/Sp(n) - Q.  ASp(n) > ASo(A)~".

It can be shown that a matrix A is in Q if and only if AJ is skew-symmetric, and
hence due to the Youla lemma [14], there is a unitary matrix P such that AJ = PJP?.
Therefore,

A=PJIP'J ' =P P = f/(PSp(n)),

and the result follows. |
Similar to the map in (6), we obtain the composition
19)  ¢@: U(2n)/ Sp(n) L 0 — B%S((O, 0,1);0) N U(2n) 4 U(2n)/ Sp(n),

where ¢ is the quotient map. The map ¢ sends an element A Sp(n) to the element
ACo(A)~! Sp(n). It was shown in [5] that the related map

(20) s’: SU(2n)/ Sp(n) — SU(2n)/ Sp(n), A Sp(n) — AéQ(A)_1 Sp(n),
is a homotopy equivalence when localised at a prime p # 2.

Clearly, there are analogue statements to Lemmas 2.18 and 2.19 and Proposition 2.21.
Lemma 2.31 There is a homotopy equivalence
n: U(2n)/ Sp(n) x S'! = U(2n)/ Sp(n). |
Lemma 2.32 There exist maps
s": SU(n)/ SO(n) — SU(n)/ SO(n) and s: S' — S!
such that the following is a homotopy commuting square:

s xs’

SU2n)/ Sp(n) x ST === SU(2n)/ Sp(n) x S'!

I I

U(2n)/ Sp(n) ———— U(2n)/ Sp(n)
Furthermore, s” and s’ are p—local equivalences. O
Proposition 2.33 Let F' be the homotopy fibre of the composition

B%3((0,0,1);:00 > U@n) & U@n)/ Sp(n).
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Then for any prime p # 2, there is a p—local homotopy equivalence
F ~, Q(U((2n)/ Sp(n)). |

Proof of Theorem 1.20(1) For a prime p # 2, we have shown that there is a p—local
section to the principal homotopy fibration

Q2(U(2n)/ Sp(n) — 42((0.0.1):0) 224 @(U(2m)/ Sp(n)).

and the result follows. O

Proof of Theorem 1.20(2) and (3) These follow using the same proofs as Theorems
2.22 and 2.23. a

In the unpointed case, the theorems involving integral decompositions follow immedi-
ately from the real case.

Proof of Theorem 1.21 The results presented in Section 2.3.1 do not depend on
the fixed point set of the involution on BU(n), and hence Theorem 1.21 follows
immediately. o

We proceed to prove the quaternionic analogues of Section 2.4.2. Let
_ {B Sp(n) ifr >0,

BU(2n) otherwise,
and recall the evaluation fibration
21) QBa—P>Map(’S(X, BU(n); P) > Mapq(X, BU(n); P) — B.
The following proposition can be proven using the same method as Proposition 2.26.
Proposition 2.34 Fix d € 7 and let d; be the boundary map in (13). Denote by

dp: QB — B45((g,r,a);2d)

the boundary map of the evaluation fibration as in (21). If d; is (g —locally) trivial, then

(1) ifr >0, then dp is (g-locally) trivial;
(2) if r =0, then the following composition is (g —locally) trivial:

Sp(n) = UQn) 2 B4 (2.7, a):2d), O

Proof of Theorem 1.22(1) Let p be a prime such that p 4 2n. Then by Theorem 2.25,
the map 0,, is p-locally trivial. The result then follows from Proposition 2.34. O
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real |7o(¢*" TP (P,5)) mo(4(P.5)) m(4*"T9(P.5)) ni(4(P.5))
n>2 LZETOX (Ly)" LB x(Zy)"t! Z Z x (Z3)"
n=2 78 tatr 781" x 7, Z VARR
n=1 VAR 78 X7, 0 0
quat. +
rank 2n i L8 x(Z2)" Z Z

Table 1: Results of [3]: the low-dimensional homotopy groups of rank »
gauge groups above a real surface of type (g, r,a). The underlined entries
disagree with the author’s results.

Proof of Theorem 1.22(2) and (3) This is similar to the proofs of Theorem 1.15(1b)
and (1c). We do require that p # 2, but this is automatic with the assumption that
pt2n. a

3 Tables of homotopy groups

We present homotopy groups of the (r4+a)—pointed and unpointed gauge groups. We
only present these for the trivial components, that is,

e (c,wq,...,wy)=1(0,0,...,0) for real bundles;

e ¢ =0 for quaternionic bundles;

with the understanding that results can be obtained for different components using the
results in Section 1. Specifically, in the (r+a)—pointed case, we can obtain results for
all of the components using Propositions 1.7 and 1.16, and in the unpointed case, we can
obtain results for some of the different components using Propositions 1.9, 1.10 and 1.17.

We first recall the status of the calculation of the homotopy groups before this paper;
that is, we present the low-dimensional homotopy groups from [3] in Table 1.

From the results in Sections 1.2 and 1.3, we can see that our homotopy decompositions
usually contain factors involving U(n), O(n) and Sp(n). Due to Bott periodicity, it is
easy to calculate some of the higher homotopy groups for high-rank gauge groups. We
present such results in Tables 2 and 3 where 7 is defined via

1 ifr>0anda=1,

=n(g,r,a) = .
n=nlg ) {O otherwise.

Some of the results in Table 2 are a consequence of localised homotopy equivalences
and hence may provide incomplete information. To highlight these localised results we
use the following notation:
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g*(’+“)(P,5) 4(P,0)
s | 28V X 257 % (21+9), (Z;JF")p ZE VX LT X (Z)p % (Z;H)p

_ 2

T8 j+1 (Zy")p 2y x (23"

TT8j+2 ZETT=2 5 (ZMM), x (Z9), ZEI XL X (2)p X (Z3)p

TT8j+3 (Z)P (Zz)p

T8 j+4 AR VAP ZEI < (Z)p

TT8j+5 0 0

T8j+6 VARRES VAR ZEI X (217,

8 +7 257 < (Z)p x (Z3)p 2571 X (Z2)p x (Z3)p

Table 2: Homotopy groups for high-rank gauge groups of real bundles, that
is, the homotopy groups 7; when the rank n > i 4 2. The results in the first
two rows correspond to the top row in Table 1.

e groups surrounded by (—), are understood to have come from p-local homotopy
equivalences where p and the rank 7 of the gauge groups satisty the requirements
of Theorems 1.13 and 1.15.

Similarly, some of the results in Table 3 are a consequence of localised homotopy
equivalences and hence may provide incomplete information. To highlight these
localised results we use the following notation:

e groups surrounded by (—), are understood to have come from p—local homotopy
equivalences where p is prime and the rank 27 of the gauge groups satisfy the
requirements of Theorems 1.20 and 1.22.

Due to the properties of Bott periodicity, Table 3 is a translation of Table 2. We note
that additional calculations can be made for the lower-rank cases. We point the reader
to [7, Section 3.2] where explicit homotopy groups of some of the relevant factors can
be found.

We note that the author’s results disagree with the Z—summands underlined in Table 1.
In the pointed case, this Z—summand arises in [3] by studying a fibration arising from
restricting the gauge group to the 1—skeleton of the real surface.

For example, the corresponding fibration for a type-(g, r, 0) real surface is

g r
Q*U(n) > g*(P.5) —> [ [QUMm) x [ [Q0Mm).
1 1
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GO (P,5) Go(P,5)

s 7287 x (211, ZE8 VX (Z)p
T8j+1 0 0
842 ZEFT=2 5 (Z1FM), 781 x (Z17"),
T8 +3 25 VX (Z)p X (Z3)) 25V (%) x (Z)))
wgja | 8T X LTV X (B, x (231, 28TV X 25T < (2) x (23T,
T8j 4 (25, 2571 < (25,
T8j+6 ZETT 72X (L), x (Z9), ZE VX LTV X (Z)p x (2,
TR 47 (Z)p (Z*)p

Table 3: Homotopy groups for high-rank gauge groups of quaternionic bun-
dles, that is, the homotopy groups m; when the rank 2n > %(i +1). The
results in the first two rows correspond to the bottom row in Table 1.

and we obtain the exact sequence
0= m(@*(P.5) > 281" > 7. 5 7y(9*(P.5)) - 0.

The claim in [3] is that the map p can be thought in terms of the classification of bundles
over S2 A X . Further, since p is induced by a map that collapses the 1—skeleton of X,
the map p is essentially providing an identification of the second Chern class, and
hence is an isomorphism.

The author agrees that this argument holds in the nonequivariant case. Indeed, if we
consider X as a Riemann surface, we obtain that S A X is a wedge of spheres, and
then p is induced by a map that collapses all but the top copy of S*.

However, we now demonstrate that 7;(¢*(P,d)) cannot contain a Z—-summand, at
least for the type- (0, 1, 0) case. We assume that 771 (¢*(P,5)) contains a Z—summand,
and that subsequently the map p is an isomorphism. Therefore, v is an isomorphism,
and we recall that it is induced by the map r’ which restricts to the 1—skeleton of X .
The map r’ fits into the commutative diagram

g*(P,5) —— " QMap*(D2 BU(n))

|- |

QMap},_((S',id), BU(n);0) —— QMap*(S', BU(n))

where u’ is the map that forgets about equivariance and restricts to the upper hemisphere
of X.
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Now u is homotopic to the inclusion QO(n) — QU (n), and hence, by assumption,
the induced map

usv = (ur')y: Z = ny(9*(P,5)) - m,(QU(n)) = Z

is multiplication by 2. But ru’ is nullhomotopic because it factors through the con-
tractible space Q Map* (D2 BU(n)), and we obtain a contradiction. We conclude
that p cannot be an isomorphism.

It remains to show that the other underlined entries in Table 1 cannot contain Z—
summands. However, these entries were obtained from the calculation in the pointed
case, and therefore, we argue that these cannot contain Z—summands either.
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