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A Khovanov stable homotopy type for colored links
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We extend Lipshitz and Sarkar’s definition of a stable homotopy type associated
to a link L whose cohomology recovers the Khovanov cohomology of L . Given
an assignment c (called a coloring) of a positive integer to each component of a
link L , we define a stable homotopy type Xcol.Lc/ whose cohomology recovers the
c–colored Khovanov cohomology of L . This goes via Rozansky’s definition of a
categorified Jones–Wenzl projector Pn as an infinite torus braid on n strands.

We then observe that Cooper and Krushkal’s explicit definition of P2 also gives rise
to stable homotopy types of colored links (using the restricted palette f1; 2g), and we
show that these coincide with Xcol . We use this equivalence to compute the stable
homotopy type of the .2; 1/–colored Hopf link and the 2–colored trefoil. Finally, we
discuss the Cooper–Krushkal projector P3 and make a conjecture of Xcol.U3/ for U

the unknot.

57M27

1 Introduction

1.1 Categorification

Given a semisimple Lie algebra g and a link L� S3 in which each component of L

is decorated by an irreducible representation of g, the Reshetikhin–Turaev construction
returns an invariant of that link that can, in principle, be computed combinatorially
from any diagram of L. The standard example is the Jones polynomial, which arises
from decorating all components with the fundamental representation V D V 1 of sl2
(here the superscript 1 on the representation refers to the highest weight of V being 1).
There are then two obvious first directions in which one can generalize.

On the one hand, one might vary the Lie algebra and consider instead sln , but still with
the fundamental representation of sln . Each invariant obtained this way is a 1–variable
specialization of the 2–variable HOMFLYPT polynomial, and satisfies an oriented
skein relation, which yields the benefit of easy computability.
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On the other hand, one might stick with sl2 , but vary the irreducible representation.
There is one irreducible .nC1/–dimensional representation V n (of highest weight n)
for each n � 1. Decorating with V n gives rise to the so-called n–colored Jones
polynomial. The colored Jones polynomials no longer satisfy such pleasant skein
relations, but they are powerful — for example giving rise to 3–manifold invariants
(also called Reshetikhin–Turaev invariants or, in another form, Turaev–Viro invariants).

Both the sln polynomials and the colored Jones polynomials admit categorifications —
that is, they can be exhibited as the graded Euler characteristic of bigraded cohomology
theories. In the case of sln , this is Khovanov–Rozansky cohomology [6]. In the
case of the colored Jones polynomial there are constructions due to many authors,
some inequivalent, although the two we shall be considering in fact give isomorphic
cohomologies. The first is due to Rozansky [10] and the second due to Cooper and
Krushkal [3]. In both cases, the fundamental representation of sl2 gives Khovanov
cohomology [5].

1.2 Spacification

Recently it has been shown that Khovanov cohomology admits a spacification, that is,
for any link there is a stable homotopy type X .L/ whose cohomology gives Khovanov
cohomology (the bigrading of Khovanov cohomology is recovered from a splitting
of X .L/ into wedge of spaces indexed by the integers). This is work due to Lipshitz
and Sarkar [8]. We note that the term “spacification” is not yet well-defined, since
it is unclear exactly what properties one should require of it. (For example: should
just taking a wedge of the Moore spaces determined by the cohomology count as a
spacification?) Nevertheless, we find it a convenient shorthand for now.

It is a natural question if other Reshetikhin–Turaev invariants admitting categorifications
can further be spacified. In the sln case, work by two of the authors with Dan Jones [4]
has constructed an sln stable homotopy type given the input of a matched knot diagram.
There is good evidence that this stable homotopy type should be diagram-independent.
For nD 2 it agrees with the stable homotopy type due to Lipshitz and Sarkar.

The case of the colored Jones invariants is, in a sense, a little easier. In particular,
Rozansky’s categorification admits spacification. In the case of the c–colored unknot
whose categorification is, in Rozansky’s construction, the stable limit of the Khovanov
cohomology of c–stranded torus links as the number of twists goes to infinity, this
has been observed by Willis [12], whose paper appeared on the arXiv while this one
was being written. The case of a c–colored link in general is no harder, and in fact
Rozansky has already taken care of the difficult work.
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Since the Cooper–Krushkal and the Rozansky categorifications are equivalent, the
natural expectation is that one can lift the Cooper–Krushkal categorification to a spaci-
fication equivalent to the Rozansky spacification. This turns out to be straightforward
in the 2–colored case, but at least the more obvious attempt fails in the 3–colored case,
as we discuss later.

1.3 Computational results

We shall define a stable homotopy type Xcol.Lc/, where Lc is a framed link with a
coloring c of its components by positive integers. Picking the coloring 1 for each
component returns the stable homotopy type Xcol.L1/, a grading-shifted version of
Lipshitz and Sarkar’s stable homotopy type X .L/.

We make some computations for certain links and colorings in Section 4. Already in the
simplest case these show interesting behavior: the link with the lowest positive crossing
number is the Hopf link and the first coloring which has not yet been considered by
Lipshitz and Sarkar is where one component is colored with 2 and the other with 1.
The tail of the colored Khovanov cohomology of the .2; 1/–colored Hopf link agrees
with the tail of the colored Khovanov cohomology of the .2; 1/–colored 2–component
unlink. Nevertheless, we observe that even these tails can be distinguished by the stable
homotopy type.

Although we are not yet able to compute fully the stable homotopy type of the 3–colored
unknot, we make a conjecture based on some partial computations. This conjecture is
interesting because its truth would imply that the periodicity of the tail of the stable
homotopy type of a colored link (even in the case of the 3–colored unknot) can be
longer than the periodicity of the tail of its cohomology.

1.4 Plan of the paper

In Section 2 we first observe that we can combine Rozansky’s insight with the work of
Lipshitz and Sarkar. This combination is straightforward and yields a stable homotopy
type of a framed colored link whose cohomology recovers colored Khovanov cohomol-
ogy. Secondly, we give ourselves a framework in which to make computations. For
this it makes more sense to use the Cooper–Krushkal categorification, which, at least
in the case of colors 2 and 3, is entirely explicit. We define what we mean by a lift
of the Cooper–Krushkal categorification to a spacification and show that any such lift
gives the same stable homotopy type as that arising from Rozansky’s construction.

In Section 3, we construct such a lift of the Cooper–Krushkal categorification for
colorings taken from the restricted palette f1; 2g. The case of 3–colored cannot be
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made to work in the way that one might expect (there is an explicit obstruction to this).
Finally, in Section 4 we make computations as already discussed in Section 1.3. At the
end of this section we give a discussion of the Cooper–Krushkal 3–colored case.

Acknowledgements We thank the anonymous referee, whose comments much im-
proved our exposition. The authors were partially supported by the EPSRC Grant
EP/M000389/1.

2 Two approaches to a colored stable homotopy type

The colored Jones polynomial is an invariant of framed links L in which each compo-
nent of L has been assigned a color, or in other words a positive integer weight. We
write the color of a component k of L as c.k/, and often keep track of the coloring as
a subscript Lc .

To compute the polynomial one takes a diagram of Lc in which the self-writhe of
each component is equal to its framing. Then one replaces each component k by
c.k/ parallel copies following the blackboard framing. Finally, one places on each
component a Jones–Wenzl projector. This projector is an element of the relevant
Temperley–Lieb algebra, with coefficients in rational functions of q . Finally, one
applies the Kauffman bracket, and obtains an element of ZŒŒq; q�1� by expanding in
powers of q (or an element of ZŒq; q�1�� by expanding in powers of q�1 ).

The Jones–Wenzl projector is idempotent and satisfies turnback-triviality. It turns
out that these two universal properties are enough to determine it completely. The
Jones–Wenzl projector should in principle lift, in a categorification of the colored
Jones polynomial, to a complex in Bar-Natan’s tangles-and-cobordisms category [1],
satisfying idempotence and turnback-triviality up to chain homotopy equivalence.
Cooper and Krushkal [3] and Rozansky [10] give ways of achieving such a lift. Cooper
and Krushkal proceed explicitly and give a categorified projector that they define induc-
tively, while Rozansky realizes the categorified projector as a limit of the complexes
associated to torus braids. It is surprising that the latter approach had apparently not
been considered even at the decategorified level until Rozansky’s insight! As observed
by Cooper and Krushkal, categorified universal properties imply that the two competing
categorifications give identical cohomological groups.

2.1 Grading and other conventions

We note that there is a discrepancy in the grading conventions between the original
paper of Khovanov’s [5], Rozansky’s torus braids paper [10] and Cooper and Krushkal’s
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� 1=2

q1=2

1=2

ih D q�1=2

Figure 1: We follow the grading conventions as depicted in the complex that
we associate to a single crossing. The complex is supported in cohomolog-
ical degrees ˙1

2
, and a quantum grading shift is applied. The differential

increases the cohomological degree by 1 and preserves the quantum grading.
A crossingless circle has complex supported in cohomological degree 0 and
quantum degrees C1 and �1 .

paper [3]. We apologize for possibly adding to the confusion. We shall essentially
work with the bigrading conventions used by Bar-Natan [1] up to an overall shift. The
overall shift makes it easier to treat the colored Khovanov cohomology as an invariant
of a colored framed link, with no choice of orientation. The convention is depicted in
Figure 1.

With these conventions, the Khovanov complex hDi of a diagram D is invariant up to
bigraded homotopy equivalence under the second and third Reidemeister moves, but
it is only invariant up to an overall shift under the first Reidemeister move. Hence it
becomes a chain homotopy invariant of framed links (where the framing is given by
the blackboard-framing of a diagram). If, on the other hand, D and D0 differ by the
first Reidemeister move with the writhes satisfying w.D/D w.D0/C 1, then there is
a bigraded homotopy equivalence between

hDi and h�1=2q�3=2
hD0i;

where the powers of h and q represent cohomological and quantum degree shifts in
the usual way.

2.2 Rozansky spacification

Rozansky [10] has given an approach to colored Khovanov cohomology that expresses
the c–colored cohomology of a link L as the limit of the Khovanov cohomologies
of a c–strand cable of L in which one puts an increasing number of twists. The
stabilization of the cohomology was observed earlier by Stošić in the case of L being
the unknot, which amounts to the stabilization of the cohomology of the .p; c/–torus
link as p!1.

We now summarize the construction. We shall be sticking with the convention of
right-handed full twists, although there is an analogous story for left-handed twists. In
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Figure 2: This shows inductively what is meant by twisting r times positively
on an n–stranded braid.

Figure 2, we describe what is meant by twisting r times on an n–stranded braid. We
write this braid as Br;n . To each such braid, Bar-Natan’s construction [1] associates
a complex, which we shall denote by hBr;ni. In this complex, each cochain group is
a vector of tangle smoothings, each such smoothing coming with a quantum degree.
We shall apply a bigrading shift to this complex so that the resolution which is the
identity braid group element is in cohomological degree 0 and comes with quantum
degree shift 0. We write the shifted complex as hr.n�1/=2qr.n�1/=2hBr;ni, where the
exponents of h and q denote cohomological and quantum degree shifts, respectively.
Note that all other resolutions of the braid now lie in positive cohomological degrees.

For each r � 1 there is a map of complexes

Fr W .hq/rn.n�1/=2
hBrn;ni ! .hq/.r�1/n.n�1/=2

hB.r�1/n;ni;

given by taking F1 to be the identity in cohomological degree 0, and then defining Fr

to be the tensor product of F1 with the identity on .hq/.r�1/n.n�1/=2hB.r�1/n;ni.

Rozansky shows that for large r the cone complex Cone.Fr / is homotopy equivalent to
a complex in which each smoothing that appears has high cohomological and quantum
degrees. For our purposes, we are mainly interested in the quantum degree; we have:

Proposition 2.1 [10, Theorem 4.4] The cone Cone.Fr / is homotopy equivalent to a
complex made up of circleless smoothings, where each such smoothing is shifted in
quantum degree by at least 2n.r � 1/C 1.
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The precise form of the quantum degree shift is unimportant for us; rather we note that
it increases at least linearly with r .

Definition 2.2 Let Dc be an unoriented link diagram in which each component is
colored by a positive integer weight (we write the coloring by weights as c ), and each
component k carries a basepoint. Let the diagram Dr

c be given by the blackboard-
framed c–stranded cable of Dc in which each component k receives c.k/r positive
twists at the basepoint. In other words, the diagram is cut open at each basepoint and
Brc.k/;c.k/ is inserted.

Definition 2.3 Let

Gr W .hq/
P

k rc.k/.c.k/�1/=2
hDr

c i ! .hq/
P

k.r�1/c.k/.c.k/�1/=2
hDr�1

c i

be induced by the tensor product of the maps Fr at each basepoint.

Lemma 2.4 It follows from Proposition 2.1 that, for fixed j and for all large enough r ,
the map of cohomologies

H i;j
�
.hq/

P
k rc.k/.c.k/�1/=2

hDr
c i
�
!H i;j

�
.hq/

P
k.r�1/c.k/.c.k/�1/=2

hDr�1
c i

�
induced by Gr is an isomorphism.

Proof There is more than one way to see this. For example, label the components
k1; : : : ; ks and write

e˛ D

ˇD˛�1X
ˇD1

1
2
.r � 1/c.kˇ/.c.kˇ/� 1/C

ˇDsX
ˇD˛

1
2
rc.kˇ/.c.kˇ/� 1/;

and denote by D
k˛
c the result of taking the c–cable of D and adding rc twists at the

basepoints of k˛; : : : ; ks and .r � 1/c twists at the basepoints of k1; : : : ; k˛�1 . Then
we can write

Gr D F
ks
r ı � � � ıF

k1
r ;

where
F

k˛
r W .hq/e˛hDk˛

c i ! .hq/e˛C1hD
k˛C1
c i

is induced by Fr at a chosen basepoint. The cone Cone.Fk˛
r / is homotopy equivalent

to a complex made up of the tensor product of three Bar-Natan complexes of tangles.
Namely:

� A complex of circleless smoothings at the chosen basepoint whose quantum
degree increases linearly with r .
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� At the other basepoints, the complexes .hq/rn.n�1/=2hBrn;ni. After circle re-
moval, these consist of circleless smoothings each in a nonnegative quantum
degree. This can be seen by observing that the identity braid is in cohomological
and quantum degree 0. Smoothings in cohomological degree d differ from the
identity braid by exactly d surgeries and so contain at most d � 1 circles.

� A complex independent of r arising from the Bar-Natan complex of the diagram
away from the basepoints.

Finally we recall the homological algebra fact that

Cone.k ı l/D Cone.†�1 Cone.k/! Cone.l//

for maps of complexes kW C ! C 0 and l W C 00! C . This implies that Cone.Gr / can
be represented by circleless smoothings such that the minimal quantum degree among
them increases at least linearly with r . Since j was fixed, we can choose r large
enough that cohomology of Cone.Gr / is 0 in quantum degree j , which means Gr

induces an isomorphism in quantum degree j .

Hence we can make the following definition:

Definition 2.5 For fixed j , the c–colored Khovanov cohomology of the diagram D

framed by the componentwise writhe is defined to be the group

Khi;j
col.Dc/DH i;j

�
.hq/

P
k rc.k/.c.k/�1/=2

hDr
c i
�

for sufficiently large r .

Independence of the cohomology under Reidemeister moves II and III and under
choice of basepoints follows immediately from the independence under Reidemeister
moves II and III of standard Khovanov cohomology. The fact that a suitable Euler
characteristic of the cohomology agrees with the c–colored Jones polynomial of D is
due to Rozansky.

Since H i;j
�
.hq/

P
k rc.k/.c.k/�1/=2hDr

c i
�

is simply a grading-shifted version of the
usual Khovanov cohomology of Dr

c , the construction of Lipshitz and Sarkar gives rise
to a stable homotopy type X j .Dr

c / which recovers the Khovanov cohomology as its
(suitably shifted) singular cohomology groups.

Furthermore, observe that the map Gr is induced by quotienting out a subcomplex
generated by standard generators of the Khovanov complex. This subcomplex corre-
sponds to an upward-closed subcategory of the framed flow category associated by
Lipshitz and Sarkar to Dr

c . It follows that Gr is induced by a map

gr W X j .Dr�1
c /! X j .Dr

c /:
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Since gr gives an isomorphism on cohomology for all sufficiently large r , Whitehead’s
theorem implies that gr is a stable homotopy equivalence for sufficiently large r .

Definition 2.6 We can now define the colored stable homotopy type for fixed j to be

X j
col.Dc/D X j .Dr

c /

for sufficiently large r . In other words, this is the homotopy colimit of the directed
system of maps gr .

The invariance of this stable homotopy type under choice of basepoints and under
Reidemeister moves II and III follows from the invariance of the Lipshitz–Sarkar
homotopy type under Reidemeister moves II and III.

Remark 2.7 Willis [12] gave Definition 2.6 in the case that D is the unknot and
gave an independent argument that the limit of the system gr exists. Using his own
estimates of quantum degree rather than Rozansky’s, Willis has independently defined
the Rozansky spacification, in a paper appearing on the arXiv shortly after ours [13]. He
further showed a stabilization of the spacification of the c–colored unknot as c!1.

Remark 2.8 Definition 2.6 implies that the framing of the link components only
affects the colored stable homotopy type up to an overall shift in bigrading, as is the
case for the colored Khovanov cohomology. This is because the blackboard-framed
c–cable of a 1–crossing Reidemeister 1–tangle is equivalent to a full twist in a c–
stranded braid by a sequence of Reidemeister moves involving c Reidemeister I moves.
Reidemeister moves preserve the stable homotopy type according to Lipshitz and
Sarkar, but Reidemeister I moves introduce a shift (with our grading conventions).

2.3 Cooper–Krushkal spacification

In this subsection we give the properties that one might expect of a spacification based
on the Cooper–Krushkal categorification. These properties are enough to imply that
any such spacification is stably homotopy equivalent to the Rozansky spacification,
as is verified in Section 2.4. The construction of such spacifications is, however, not
straightforward, and we leave discussion of these to Section 3.

Suppose for each n� 1 that Pn is a complex of .n; n/–tangle smoothings in the sense
of Bar-Natan [1], so that each Pn is a universal projector by [3, Definition 3.1]. Cooper
and Krushkal have given a way of constructing such universal projectors. We note that
a part of their definition of Pn is that the identity n–braid smoothing appears only
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once and in degree .0; 0/, and that the quantum and cohomological degrees of every
smoothing in the complex are nonnegative.

Suppose that T is a tangle diagram in the plane punctured by k discs with 2ni ordered
boundary points on the i th disc. Then we may define the Khovanov cochain complex (of
free abelian groups) hTP i by taking the tensor product of the Bar-Natan complex hT i
and Pni

for i D 1; : : : ; k in the obvious way.

Definition 2.9 A Cooper–Krushkal framed flow category (CKffc) is a choice of finite-
object framed flow category (see [8] for the definition and references) C.TP / refining
the Khovanov cochain complex hTP i for each such T . Choosing a particular crossing
of the tangle T we write T 0 and T 1 for the 0– and 1–resolutions of that crossing. We
require that the standard generators corresponding to the subcomplex hT 1

P
i (resp. the

quotient complex hT 0
P
i) correspond to upward-closed (resp. downward-closed) framed

flow subcategories of C.TP / such that the associated CW–complex is stably homotopy
equivalent to jC.T 1

P
/j (resp. jC.T 0

P
/j).

Furthermore, if we denote by T id the tangle diagram produced by filling the k th

boundary disc of T with the identity nk –braid, then hT id
P
i is naturally a quotient

complex of hTP i generated by standard generators of hTP i. We require this quotient
complex to correspond to a downward-closed subcategory of C.TP / with associated
CW–complex stably homotopy equivalent to jC.T id

P
/j.

Remark 2.10 We can restrict this definition, if we like, to certain values of n. In
particular in this paper we give a genuine CKffc only for the color n D 2. For the
color nD 3 we may slightly alter the definition of a CKffc, to arrive at a framed flow
category spacifying a cohomology theory that has its graded Euler characteristic a
nonstandard normalization of the 3–colored Jones polynomial. If we insist on the
standard normalization we run into difficulties. We discuss this in Section 3.

Remark 2.11 The condition that a CKffc assigns a finite-object framed flow category is
equivalent to the condition that the minimal quantum degree of the circleless smoothings
in the i th cochain group of Pn tends to infinity as i !1. Although this is true for
the explicit examples of universal projectors constructed by Cooper and Krushkal, it is
not required by them axiomatically.

2.4 The equivalence

CKffcs are nice since, if they exist, they give an honest framed flow category whose
associated stable homotopy type recovers colored Khovanov cohomology as its singular
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c.k/rPc.k/

:::
:::

Figure 3: We describe how to form the complex C
i;j
P;r
.D/ from a based c–

colored diagram D . We take the blackboard-framed c–cable of D and at
the basepoint of each component k of D we tensor in Pc.k/ and add c.k/r

twists as shown in the diagram. We then take the corresponding cochain
complex and shift by hq

P
k rc.k/.c.k/�1/=2 .

cohomology. Going via Rozansky’s construction we are producing instead a stable
homotopy type as a homotopy colimit of spaces arising from framed flow categories.

Nevertheless, we shall next see that CKffcs, if they exist, would give rise to the same
stable homotopy types as does X j

col . More precisely, let D be a link diagram framed
by the componentwise writhe with each component k having a basepoint, and each
being colored by a positive integer weight c.k/. We write Dcab for the tangle formed
by cutting D open at each basepoint and then taking the blackboard-framed c–cable.
Then we can consider the Bar-Natan cochain complex of free abelian groups formed
by tensoring in each Pc.k/ corresponding to component k in the obvious way. This
cochain complex is the Cooper–Krushkal complex that categorifies the colored Jones
polynomial of D , and it is refined by the framed flow category C.Dcab

P
/ provided by

the CKffc. Writing Cj .Dcab
P
/ for the part of this framed flow category in quantum

degree j , we have the following result:

Proposition 2.12 With the diagram D as above we have

X j
col.Dc/' jCj .Dcab

P /j:

Proof We fix j. We write C
i;j
P;r
.D/ to be the cochain complex of free abelian groups

formed by following the procedure as outlined in Figure 3. By the definition of a CKffc,
there is a framed flow category Aj

P;r
.D/ that refines C

i;j
P;r
.D/.

Consider the quotient complex C1 of C
i;j
P;r
.D/ consisting of all generators correspond-

ing to taking the 0–resolution at each of the crossings of the twist regions at the
basepoints. This corresponds to a downward-closed subcategory A1 of Aj

P;r
.D/. We

observe firstly that jA1j is stably homotopy equivalent to jAj
P;0
.D/j, which is exactly

jCj .Dcab
P
/j, and secondly that the corresponding upward-closed subcategory has trivial

Algebraic & Geometric Topology, Volume 17 (2017)



1272 Andrew Lobb, Patrick Orson and Dirk Schütz

cohomology by the turnback-triviality condition on the projectors Pc.k/ . Hence we
have that

jAj
P;r
.D/j ' jA1j ' jCj .Dcab

P /j:

On the other hand, for any value of r , the complex C
i;j
P;r
.D/ can be written as the total

complex
.hq/

P
k rc.k/.c.k/�1/=2

hDr
c i ! �r

1 ! � � � ! �r
s ! � � � ;

where each �r
s carries an internal differential arising from all crossings of Dr

c , while
the part of the differential from �r

s to �r
sC1

is induced by the differentials of the Pc.k/ .
This is because the identity braid smoothing is the only smoothing appearing in co-
homological degree zero of each complex Pc.k/ .

Now the minimal quantum degree of a generator in
L

r �
r
s tends to C1 as s tends

to C1 (see Remark 2.11). On the other hand, each �r
s is chain-homotopy equivalent

by Gauss-elimination to a complex in which the minimal quantum degree is bounded
below by b.r/, a function independent of s and tending to C1 as r tends to C1. This
follows from [10, Formula (4.9)] (taking into account our different grading conventions)
and the observation that the cohomological Reidemeister I and II relations can be
proved by Gauss-elimination.

Hence the lowest quantum degree of the support of the cohomology of the subcomplex

�r
1 ! � � � ! �r

s ! � � �

tends to C1 as r tends to C1. The quotient complex .hq/
P

k rc.k/.c.k/�1/=2hDr
c i

corresponds to a downward-closed subcategory of Aj
P;r
.D/ with associated stable

homotopy type X j .Dr
c /. So for large enough r we have

X j
col.Dc/' X j .Dr

c /' jA
j
P;r
.D/j ' jA1j ' jCj .Dcab

P /j:

Remark 2.13 We have worked here with colored links, but all of what we have done
applies, mutatis mutandis, to more general (in other words, not just diagrams obtained
by cabling) closed diagrams containing Jones–Wenzl projectors.

3 Lifting the Cooper–Krushkal projectors

In this section we give a CKffc associated to link diagrams colored with colors drawn
from the palette f1; 2g. It would seem a priori very likely that the methods used in this
construction should extend to the color 3, since for this color we have (due to Cooper
and Krushkal [3]) an explicit and fairly simple cohomological projector. However,
it turns out that there is an unexpected nontrivial obstruction to this extension. The
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C
: : :

˙
: : :

�

Figure 4: We show here the Cooper–Krushkal projector. We suppress the
degree shifts for ease of visualization. The degree shifts can be determined
by noting that the identity-braid or horizontal smoothing on the far left is in
cohomological degree 0 and quantum degree 0 , and all differentials raise the
cohomological degree by 1 and preserve the quantum degree.

obstruction can be obviated by renormalizing the 3–colored Jones invariant of the
0–framed unknot to be

.q�2
C 1C q2/.1� q2

C q4
� q6
C � � � / rather than q�2

C 1C q2:

We briefly discuss the obstruction and renormalization at the end of Section 4, but we
do not give in this paper the full construction of the renormalized spacification.

3.1 A 2–colored Cooper–Krushkal projector

Two of the authors and Dan Jones [4] considered the 2–stranded braid of k crossings,
each of the same sign. The Bar-Natan complex of this tangle has a particularly simple
form: it is homotopy equivalent to a complex which has one circleless smoothing in
each cohomological degree from �1

2
k to 1

2
k (with the grading conventions used in this

paper). Indeed, in Figure 4, we give the Cooper–Krushkal projector for the color 2; the
Bar-Natan complex for the positively twisted k –crossing 2–braid is, up to an overall
shift, the quotient complex of this projector consisting of all tangles of cohomological
degree less than kC 1.

Decomposing a closed link diagram D into a tensor product of such tangles, one can
consider the tensor product of their simplified chain homotopy class representatives.
This gives a cochain complex hDisimp (depending on the decomposition of D ) of
free abelian groups, and hDisimp is refined by a framed flow category given in [4].
The associated stable homotopy type was shown to be independent of the choice of
decomposition, and it was observed that the decomposition in which each tangle has a
single crossing returns the Lipshitz–Sarkar framed flow category.

Taking a suitably normalized version of this construction for kD1 gives a construction
of a CKffc. In particular, this construction enables us to make nontrivial calculations
of the colored stable homotopy types of the .2; 1/–colored Hopf link as well as of the
2–colored trefoil.
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Suppose that T is a tangle diagram in the plane punctured by k discs each with 4

ordered boundary points. Let the closed diagram T r be given by filling in each disc
with r positive full twists.

We consider a particular decomposition of T r into a tensor product of tangles —
specifically, we take one tangle (of 2r crossings) at each filled disc, one tangle for
every other crossing of T r , and finally the rest of the diagram which is crossingless.

Such a decomposition into tangles is exactly the input into the construction of [4]. So,
incorporating now an overall shift and fixing a quantum degree j , there is a framed
flow category Aj .T r / refining the quantum degree j part of the simplified cochain
complex .hq/kr hT r isimp .

Finally we note that for fixed j and large enough r , the quantum degree j part
of .hq/kr hT r isimp agrees with the quantum degree j part of the Cooper–Krushkal
complex hTP i. This is because, in the sl2 case, the construction of [4] gives a framed
flow category refining the simplified Bar-Natan complex of link diagrams decomposed
into tangles, each of which is a 2–braid. So, taking r to be large, the framed flow
category Aj .T r / provides our candidate for a CKffc. The remaining properties required
of a CKffc are now straightforward to verify.

4 Examples

4.1 The 2–colored unknot

Consider a diagram of the blackboard framed 2–cable of the 0–crossing unknot contain-
ing a Cooper–Krushkal projector P2 . The generators in the resulting cochain complex
come from smoothings with two circles in homological degree 0, and one circle in
homological degree bigger than 0; compare Figure 4. The minimal quantum degree
in which we get a generator is therefore q D�2 with one generator in homological
degree 0. For q D 0 we get two generators in homological degree 0 and one in
homological degree 1. For q D 2 there is one generator in homological degrees 0, 1

and 2 each.

For q D 2j with j � 2 we get two generators, one in homological degree j � 1 and
one in degree j . The coboundary map alternates between multiplication by 0 and 2.
The cohomology is therefore easily calculated, and determines the stable homotopy
types because of thinness. We thus get

X�2
col .U2/D S0; X 0

col.U2/D S0; X 2
col.U2/D S2;

X 4j
col .U2/DM.Z=2; 2j / for j � 1;

X 4jC2
col .U2/D S2jC1

_S2jC2 for j � 1:
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P2

Figure 5: The 0–framed 2–cable of the right-handed trefoil with a Cooper–
Krushkal projector placed on it

Note that the notation M.G; n/ stands for a Moore space, a space whose only nontrivial
integral homology group is G in degree n.

4.2 The 2–colored trefoil

In Figure 5 we give a diagram of a 2–cable of the right-handed trefoil T containing
a Cooper–Krushkal projector P2 . The extra loops ensure that we get the 0–framed
2–cable, and we denote it by T 0

2
. For each quantum degree j this diagram gives rise

to a framed flow category A as described in Section 3.1.

For calculational purposes, we want to remove the three double loops. Performing
two Reidemeister I moves and one Reidemeister III move turns each double loop
into B�2;2 , which can be absorbed by the projector P2 . However, because of the
Reidemeister I moves, we get a shift in homological and quantum degrees. More
precisely, we get hDr

2
i D h3q9hD0

2
r�3i, where D0 is the standard 3–crossing diagram

of the right-handed trefoil. Denoting the 2–colored right-hand trefoil with framing 3

by T 3
2

, we get Khi;j
col.T

0
2
/D Khi�6;j�12

col .T 3
2
/.

Taking these shifts into account and working with the diagram for T 3
2

, we see that
the least quantum degree in ADA0 which admits an object is given by q D 2 with
homological degree hD 0, coming from a smoothened diagram with 4 circles. This is
indeed the only object in this quantum degree.

The projector P2 gives rise to upward-closed subcategories Ak for k � 0 generated
by objects that arise from a tangle in P2 of cohomological degree at least k . The
highest quantum degree of an object in A0�A1 is q D 24 coming from 6 circles in
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the smoothened diagram. It follows that for quantum degree q � 26 the relevant flow
category Aq is a full subcategory of A1 .

The quotient category Ak=AkC1 for k � 1 is, up to degree shifts, the Lipshitz–Sarkar
flow category of a diagram of the unknot with 12 crossings. Furthermore, this diagram
can be transformed into the standard unknot diagram by performing six Reidemeister II
moves. The category Ak=AkC1 for k � 1 is therefore stably equivalent to a flow
category containing two objects of homological degree kC 6, one of quantum degree
2kC 12, the other of quantum degree 2kC 10.

Also notice that the associated cochain complexes to the flow categories Aq and
AqC4 for q � 26 only differ in a cohomological shift by 2. If the tail turns out to
be cohomologically thin (as it does), it follows that the stable homotopy types for
q up to 28 determine all the stable homotopy types. The stable homotopy types for
q up to 28 may be determined using the diagram D0

2
r for large r . It turns out that

r D 8 is sufficient, and the following calculations have been done using the program
KnotJob [11].

We can identify all stable homotopy types from cohomology and Steenrod square
calculations using the classification result of Baues and Hennes [2] with the exception
of q D 10, where X 10

col.2/.T / is either S3 _ S4 _ S6 or X."; 3/ _ S4 . Recall that
X."; n/ is the space obtained by attaching an .nC3/–cell to Sn using the nontrivial
element of �st

2
Š Z=2. Excluding this, we get

X 2
col.T

0
2 /D S0; X 4

col.T
0
2 /D S0;

X 6
col.T

0
2 /D S2; X 8

col.T
0
2 /DX.2�; 2/;

X 12
col .T

0
2 /DX.�2; 5/_S6; X 14

col .T
0
2 /DX.�2; 5/_S7

_S8
_S8;

X 16
col .T

0
2 /D S7

_M.Z=4; 8/_M.Z=2; 8/; X 18
col .T

0
2 /D S9

_S9
_M.Z=2; 9/_S10;

X 20
col .T

0
2 /DM.Z=2; 9/_M.Z=2; 10/_S11; X 22

col .T
0
2 /D S11

_M.Z=2; 11/_S12;

X 24
col .T

0
2 /D S12

_M.Z=2; 12/

The tail is given by

X 4jC2
col .T 0

2 /D S2jC1
_S2jC2 for j � 6;

X 4j
col .T

0
2 /DM.Z=2; 2j / for j � 7:

Notice that for j � 26 we have X j
col.T

0
2
/D X j

col.U2/.

The notation X.�2; n/ is taken from [2], and stands for an elementary Chang complex.
It is an appropriate suspension of RP4=RP1 such that the first nontrivial homology
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P2

Figure 6: This is the 0–framed .2; 1/–cable of the Hopf link, in which the
2–cabled component receives a Cooper–Krushkal projector.

group is in degree n. Similarly, X.2�;m/ is a suspension of RP5=RP2 such that the
first nontrivial homology group is in degree m. Both spaces have nontrivial Sq2 and
are therefore not wedges of Moore spaces.

4.3 The .2 ; 1/–colored Hopf link

We denote the .2; 1/–colored 0–framed Hopf link by H2;1 . In Figure 6 we give a
diagram of the Hopf link, in which one of the components has been replaced by a
0–framed 2–cable containing a Cooper–Krushkal projector P2 . For each quantum
degree j this diagram gives rise to a framed flow category, as described in Section 3.1.
The associated stable homotopy type is Xcol.H2;1/.

Note that the diagram consists of the tensor product of three parts: the projector P2

and then two tangles, each of which is a 2–crossing 2–braid. As before, we can filter
the flow category via the projector, leading to categories Aj for j � 0.

For actual calculations, we replace the projector with a .2r/–tangle, so the resulting
diagram is that of the P .�2; 2; 2r/ pretzel link. For a given quantum degree we can
then use the method of [4] to get a flow category built from three tangles. The lowest
quantum degree for which we can get an object is q D�5, for which there is exactly
one object of homological degree �2.

For q � 7, all objects are contained in A1 , and the categories A2j�1 and A2jC3

for j � 4 have the following similarity. If ˛ is an object of A2j�1 which also sits
in Ak for k � 1, there is a corresponding object x̨ in A2jC3 also in AkC2 with
jx̨j D j˛jC2. It is clear from the framing formulas in [4] that M.˛; ˇ/ŠM.x̨; x̌/ as
framed manifolds, provided these are at most 1–dimensional.

Therefore the colored Khovanov cohomology of the tail is periodic, and since we only
get nontrivial cohomology groups in three adjacent degrees, we also get periodicity of
the stable homotopy type in the tail. This uses that the 1–dimensional moduli spaces
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agree with framing for A2j�1 and A2jC3 . Calculation of Khovanov cohomology and
the second Steenrod Square shows that

X�5
col .H2;1/D S�2; X�3

col .H2;1/D S�2;

X�1
col .H2;1/D S0; X 1

col.H2;1/DX.2�; 0/;

X 3
col.H2;1/D S1

_S2
_S2; X 5

col.H2;1/DX.2�; 2/:

The tail is given by

X 4j�1
col .H2;1/DX.�2; 2j � 1/_S2j for j � 2;

X 4jC1
col .H2;1/DX.2�; 2j /_S2jC1 for j � 2:

The .2; 1/–colored unlink U2;1 is the disjoint union of the 1–colored 0–framed
unknot U1 and the 2–colored 0–framed unknot U2 . The stable homotopy type can
therefore be derived using [7, Theorem 1]. More precisely, we get

X j
col.U2;1/D .X 1.U /^X j�1

col .U2//_ .X�1.U /^X jC1
col .U2//:

Since both X 1.U /D S0 D X�1.U /, we have that X j
col.U2;1/ is a wedge of Moore

spaces for all j . In the tail we have

X 4j�1
col .U2;1/D S2j�1

_S2j
_M.Z=2; 2j / for j � 2;

X 4jC1
col .U2;1/DM.Z=2; 2j /_S2jC1

_S2jC2 for j � 2:

In particular, we have
Khi;j

col.U2;1/D Khi;j
col.H2;1/

for all j � 7 (a result that for high enough j is not unexpected, and that can be derived
in ways other than brute calculation), but

X j
col.U2;1/ 6' X j

col.H2;1/:

4.4 A conjecture on the 3–colored unknot

The stable homotopy type of the 0–framed 3–colored unknot X j
col.U3/ was partially

computed by Willis [12], who showed that it was not a wedge of Moore spaces and so,
in some sense, more interesting than just the colored Khovanov cohomology.

The 3–colored Khovanov cohomology can easily be calculated from [3, Section 4.4].
We summarize this in Table 1.

We observe that the tail is 3–periodic in quantum degrees q D 2j C 1 starting from
j � 2 with a homological shift by 4. Also, by simply looking at these groups we see
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i

1 2 3 4

Khi�4;�3
col .U3/ Z

Khi�4;�1
col .U3/ Z

Khi;1
col.U3/ Z

Khi;3
col.U3/ Z=2 Z

KhiC4j ;6jC5
col .U3/; j � 0 Z Z

KhiC4j ;6jC1
col .U3/; j � 1 Z Z

KhiC4j ;6jC3
col .U3/; j � 1 Z Z=2 Z

Table 1: The 3–colored Khovanov cohomology of the unknot

that except for quantum degrees q D 6j C 3 with j � 0 the stable homotopy types
are wedges of spheres. In quantum degree q D 3 we have the nontrivial Steenrod
Square coming from the torus knot T4;3 first observed in [9], and which stably survives
by [12].

The quantum degree q D 9 can be realized by the torus knot T7;3 , and computer
calculations show a nontrivial Sq2 in degree 5, with Sq2 trivial in degree 6. The
triviality in degree 6 indicates that the tail of the stable homotopy types is not 3–
periodic, as the difference in 3–colored Khovanov cohomology in quantum degrees
q D 3 and q D 9 comes from an extra generator in homological degree 0 killing the
cocycle in degree 1, which survives in degree 5 for q D 9.

Computer calculations on T8;3 show a trivial Sq2 in degree 9, although this is not yet
in the stable range for q D 15. Using a suitable diagram with a low number of tangles
we have made computer calculations for T13;3 which give evidence for the conjecture
below:

Conjecture 4.1 For j � 1 we have

X 12j�3
col .U3/DX.�2; 8j � 3/_S8j ;

X 12jC3
col .U3/D S8jC1

_X.2�; 8j C 2/:

Note that these two spaces are not stably homotopy equivalent, although they are
Spanier–Whitehead dual when appropriately shifted. Following consideration of the
Cooper–Krushkal projector P3 explicitly described in [3] this conjecture is somewhat
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surprising. From P3 the 3–periodicity follows immediately, so one may expect the
same periodicity in the tail of the stable homotopy type.

Indeed, if one attempts a spacification based on lifting the Cooper–Krushkal projector
P3 to a framed flow category, one finds that the natural first attempt gives rise to 1–
dimensional moduli spaces the framings of which also follow 3–periodicity. However, if
one then pushes a little further to determine if one can genuinely lift P3 to a CKffc, one
runs into “ladybug matching” type problems which cannot all be solved simultaneously
in a natural way, at least to the authors’ eyes.

On the other hand, suppose that D is a tangle diagram in a disc with 6 ordered boundary
points. This gives a cochain complex of free abelian groups hDP i. Now consider the
“reduced” subcomplex hDP i

red of hDP i obtained by restricting to half the generators
of hDP i. Specifically, restrict to only those generators arising from a decoration by v�
of a chosen boundary point of D . In such a situation one can lift the cochain complex
hDP i

red to a framed flow category refining it. The ladybug matching problems no
longer occur since we have thrown out enough objects of the flow category to kill them.

Unfortunately, this subcomplex is not really a very natural object to consider. The
graded Euler characteristic is a renormalized version of the 3–colored Reshetikhin–
Turaev invariant as discussed at the start of Section 3, but it is hard to motivate why
one should consider this renormalization. Therefore we do not pursue this further here.
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