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Solvable Lie flows of codimension 3

NAOKI KATO

In Appendix E of Riemannian foliations [Progress in Mathematics 73, Birkhäuser,
Boston (1988)], É Ghys proved that any Lie g–flow is homogeneous if g is a nilpotent
Lie algebra. In the case where g is solvable, we expect any Lie g–flow to be homoge-
neous. In this paper, we study this problem in the case where g is a 3–dimensional
solvable Lie algebra.

57R30; 53C12, 22E25

1 Introduction

Throughout this paper, we suppose that all manifolds are connected, smooth and
orientable and all foliations are smooth and transversely orientable. In this paper, flows
mean orientable 1–dimensional foliations.

Lie foliations were first defined by E Fedida [4]. A classical example of a Lie foliation
is a homogeneous one. Through the results of several authors, it is recognized that the
class of homogeneous Lie foliations is a large class in the class of Lie foliations, though
of course these classes do not coincide. Therefore deciding which Lie foliations belong
to the class of homogeneous Lie foliations is an important problem in Lie foliation
theory.

P Caron and Y Carrière [2] proved that any Lie Rq–flow without closed orbits is
diffeomorphic to a linear flow on the .qC1/–dimensional torus, which is homoge-
neous. Carrière [3] proved that any Lie a.2/–flow is homogeneous. S Matsumoto and
N Tsuchiya [13] proved that any Lie a.2/–foliation of a 4–dimensional manifold or
its double covering is homogeneous.

In the case where g is semisimple, M Llabrés and A Reventós constructed an example
of Lie sl2.R/–flow which is not homogeneous [12, Example 5.3].

In the case where g is nilpotent, É Ghys [7] proved that any Lie g–flow is homogeneous.
In the case where g is solvable, we conjecture that any Lie g–flow is homogeneous.

In this paper, we study this problem in the case where g is a 3–dimensional solvable
Lie algebra.
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If a Lie g–flow F on M has a closed orbit, then any orbit is closed and M is an oriented
S1–bundle. In this case, the base space is diffeomorphic to a homogeneous space �nG
and hence g is unimodular. The total space M is, in general, not diffeomorphic to a
homogeneous space. However, in the case where g is of type (R) or g is 3–dimensional,
we can prove that the total space is a homogeneous space. More precisely, we obtain
the following theorem.

Theorem A Let g be a solvable Lie algebra and F be a Lie g–flow on a closed
manifold M . Suppose that F has a closed orbit.

(i) If g is of type (R) and unimodular, then F is diffeomorphic to the flow in
Example 3.1.

(ii) If the dimension of g is three and g is isomorphic to g0
3

, then F is diffeomorphic
to the flow in Example 3.1.

In particular, if g is a 3–dimensional solvable Lie algebra and F has a closed orbit,
then F is diffeomorphic to the flow in Example 3.1.

In the case where F has no closed orbits, we obtain the following theorem.

Theorem B Let g be a 3–dimensional solvable Lie algebra and F be a Lie g–flow
on a closed manifold. Suppose that F has no closed orbits.

(i) If g is isomorphic to either R3 or n.3/, then F is diffeomorphic to the flow in
Example 3.1.

(ii) If g is isomorphic to a.3/, then F is isomorphic to the flow in Example 3.3.

(iii) If g is isomorphic to gk
2

, then F is isomorphic to the flow in Example 3.4.

(iv) If g is isomorphic to gh
3

and h 6D 0, then F is isomorphic to the flow in
Example 3.5.

(v) If g is isomorphic to g0
3

, then F is isomorphic to the flow in Example 3.6.

Since (see Llabrés and Reventós [12]) there does not exist a Lie g1–flow on a closed
manifold, we have the following corollary.

Corollary 1.1 For any 3–dimensional solvable Lie algebra g, any Lie g–flow on a
closed manifold is homogeneous.
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The contents of this paper are the following: Section 2 is devoted to recalling some
basic definitions and properties of Lie foliations and Lie algebras. In Section 2A, we
recall some basic definitions of Lie algebras. In Section 2B, we recall the classification
of 3–dimensional solvable Lie algebras. In Section 2C, we recall the definition and
some properties of Lie foliations. In Section 3, we construct some important examples
of Lie g–flows, which are models of codimension-3 solvable Lie g–flows. In Section 4,
we prove Theorem A. In Section 5, we construct a diffeomorphism between Lie flows
without closed orbits according to the construction of Ghys [7]. In Section 6, by using
the diffeomorphism constructed in Section 5, we prove Theorem B.

2 Preliminaries

2A Solvable Lie groups and solvable Lie algebras

Let g be a q–dimensional real Lie algebra. The descending central series of g is
defined inductively by

C 0gD g and C kgD Œg;C k�1g�:

Similarly the derived series of g is defined inductively by

D0gD g and DkgD ŒDk�1g;Dk�1g�:

A Lie algebra g is nilpotent if there exists an integer k such that C kgD f0g, and a
connected Lie group G is nilpotent if the Lie algebra of G is nilpotent. Similarly a Lie
algebra g is solvable if there exists an integer k such that DkgD f0g, and a connected
Lie group G is solvable if the Lie algebra of G is solvable.

Let H and G be Lie groups, and let ˆW H ! Aut.G/ be a homomorphism. Then
we can construct a new Lie group H Ëˆ G , which is called the semidirect product of
H and G with respect to ˆ, as follows. The semidirect product H Ëˆ G is the direct
product of the sets H and G endowed with the group structure via

.h1;g1/ � .h2;g2/D .h1 � h2; g1 �ˆ.h1/.g2//:

The Lie group H is naturally a subgroup of H Ëˆ G , and G is naturally a normal
subgroup of H Ëˆ G .

Let g be a Lie algebra and adW g! gl.g/ be the adjoint representation of g.

Definition 2.1 A solvable Lie algebra g is said to be of type (R) if all the eigenvalues
of ad.X / 2 gl.g/ are real for any X 2 g. A simply connected solvable Lie group is
said to be of type (R) if the Lie algebra of G is of type (R).

Algebraic & Geometric Topology, Volume 16 (2016)



2754 Naoki Kato

It is well known that simply connected solvable Lie groups of type (R) have similar
properties of simply connected nilpotent Lie groups; see [9].

2B Classification of 3–dimensional solvable Lie algebras

It is well known that 1–dimensional Lie algebras are isomorphic to R and that
2–dimensional Lie algebras are isomorphic to either R2 or a.2/, where

a.2/D

��
t x

0 0

� ˇ̌̌
t;x 2R

�
is the Lie algebra of A.2/, which is the affine transformation group of the real line.

Let V D hT;X;Y iR be a 3–dimensional vector space and consider the following Lie
brackets on V :

� R3 (abelian): ŒT;X �D ŒT;Y �D ŒX;Y �D 0;

� n.3/ (Heisenberg): ŒT;Y �DX and ŒT;X �D ŒX;Y �D 0;

� a.3/ (affine): ŒT;X �DX and ŒT;Y �D ŒX;Y �D 0;

� g1 : ŒT;X �DX CY; ŒT;Y �D Y and ŒX;Y �D 0;

� gk
2

: ŒT;X �DX; ŒT;Y �D kY and ŒX;Y �D 0 where k 6D 0;

� gh
3

: ŒT;X �D Y; ŒT;Y �D�X C hY and ŒX;Y �D 0 where h2 < 4.

Then any 3–dimensional solvable Lie algebra is isomorphic to one of the above Lie
algebras.

It is well known that n.3/ is the Lie algebra of the 3–dimensional Heisenberg group

N.3/D

8<:
0@1 t x

0 1 y

0 0 1

1A9=; :
We will need an explicit description of simply connected Lie groups corresponding to
the Lie algebras a.3/, gk

2
and gh

3
. These Lie groups are given by

A.3/D

8<:
0@et 0 x

0 1 y

0 0 1

1A ˇ̌̌̌ˇ t;x;y 2R

9=; ;
Gk

2 D

8<:
0@et 0 x

0 ekt y

0 0 1

1A ˇ̌̌̌ˇ t;x;y 2R

9=; ;
GhD0

3 DESO.2/Ë R2;
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and

G
h¤0
3
D

8<:
0@c.t/ cos.�C t/ �c.t/ sin t x

c.t/ sin t c.t/ cos.� � t/ y

0 0 1

1A ˇ̌̌̌ˇ t;x;y 2R

9=; ;
where ESO.2/Ë R2 is the universal covering of the group of rigid motions SO.2/ËR2 ,
c.t/D .2=˛/eˇt , ˇ D tan� D h=˛ , and ˛ D

p
4� h2 ; see [5].

Note that G0
3

is isomorphic to the semidirect product RË�R2 , where �W R!Aut.R2/

is given by

�.t/D

�
cos t � sin t

sin t cos t

�
:

Note also that the Lie group G
h 6D0
3

has another description

G
h 6D0
3
D

8<:
0@eˇt cos t �eˇt sin t x

eˇt sin t eˇt cos t y

0 0 1

1A ˇ̌̌̌ˇ t;x;y 2R

9=; ;
where ˇ D tan� D h=˛ and ˛ D

p
4� h2 . In this paper, we will use this description.

Lie algebras gk
2

and gk0

2
are isomorphic if and only if k D k 0 or k D 1=k 0 and

the Lie algebras gh
3

and gh0

3
are isomorphic if and only if hD h0 or hD�h0 . The Lie

algebra gk
2

is unimodular if and only if k D �1. The Lie algebra gh
3

is unimodular
if and only if hD�1. The Lie algebra gh

3
is not of type (R) for any h and the other

3–dimensional solvable Lie algebras are of type (R).

2C Lie foliations

Let F be a codimension-q foliation of a closed manifold M and g be a q–dimensional
real Lie algebra. A g–valued 1–form ! on M is said to be a Maurer–Cartan form
if ! satisfies the equation d! C 1

2
Œ!; !� D 0 and nonsingular if !x W TxM ! g is

surjective for each x 2M .

Definition 2.2 A codimension-q foliation F is a Lie g–foliation if there exists a
nonsingular g–valued Maurer–Cartan form ! such that Ker.!/D TF .

Let F1 and F2 be foliations of M1 and M2 , respectively. A smooth map f W M1!M2

preserves foliations if f .L/ 2 F2 for every leaf L 2 F1 . We denote such a map
by f W .M1;F1/ ! .M2;F2/. We call two foliations F1 of M1 and F2 of M2

diffeomorphic if there exists a foliation preserving map f W .M1;F1/! .M2;F2/ such
that f W M1!M2 is a diffeomorphism.
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In this paper, we call two Lie g–foliations F1 and F2 diffeomorphic if F1 is diffeo-
morphic to F2 as a foliation.

Fedida [4] proved that Lie g–foliations have a special property.

Theorem 2.3 [4] Let F be a codimension-q Lie g–foliation of a closed manifold M

and G be the simply connected Lie group of g. Let pW �M ! M be the universal
covering of M . Fix a Maurer–Cartan form ! 2A1.M I g/ of F . Then there exists a
locally trivial fibration DW �M !G and a homomorphism hW �1.M /!G such that

(1) D.˛ � x̃/D h.˛/ �D.x̃/ for any ˛ 2 �1.M / and any x̃ 2 �M, and
(2) the lifted foliation �F D ��F coincides with the fibers of the fibration D .

The fibration D is called the developing map, the homomorphism h is called the
holonomy homomorphism and the image of h is called the holonomy group of the Lie
g–foliation F with respect to the Maurer–Cartan form ! .

Conversely, if there exist D and h which satisfy condition (1) above, then the set of
fibers of D defines a Lie g–foliation F of M such that the developing map is D and
the holonomy homomorphism is h.

Example 2.4 Let G be a simply connected Lie group and �G a simply connected Lie
group with a uniform lattice �. Suppose that there exists a short exact sequence

0!K! �G D0
�!G! 0:

Then the map D0 defines a Lie g–foliation F0 of the homogeneous space �n�G .

We call Lie g–foliations constructed as in Example 2.4 homogeneous Lie g–foliations.

Definition 2.5 A Lie g–foliation F of a closed manifold M is homogeneous if F is
diffeomorphic to a homogeneous Lie g–foliation.

Let DW �M !G be the developing map and hW �1.M /!G be the holonomy homo-
morphism of a Lie g–foliation F . Let � D h.�1.M // be the holonomy group of F .
Since the developing map D is h–equivariant, the map D induces a fibration

DW M ! �nG;

where � is the closure of � . This fibration D is called the basic fibration, the
homogeneous space �nG the basic manifold, and the dimension of �nG the basic
dimension of F .

Let F be the foliation of M defined by the fibers of the fibration D . By the definition
of D , we can see that any leaf F of F is saturated by F and the foliation F jF is
a minimal foliation of F . Moreover the basic fibration DW M ! �nG induces a
diffeomorphism from the leaf space M=F to �nG .
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3 Models of Lie flows

In this section, we construct some examples of homogeneous Lie flows which are
important examples in this paper.

Example 3.1 Let
1!R! �G D0

�!G! 1

be a central exact sequence of Lie groups and � be a uniform lattice of �G . Then the
surjective homomorphism D0W

�G!G defines a Lie g–flow F0 on �n�G .

The Lie g–flow construction in Example 3.1 is a special case of the construction of
homogeneous Lie g–flows.

In the case in which the dimension of g is three, by using the classification of
4–dimensional solvable Lie algebras (see [1]), we have more explicit descriptions
of �G and D0 .

Example 3.2 Let g be a unimodular 3–dimensional solvable Lie algebra and G be
the simply connected Lie group with the Lie algebra g. Then any central extension

1!R! �G D0
�!G! 1

of G by R is given as follows:

(1) If g is abelian, then �G is isomorphic to either R4 DR�R3 or R�N.3/. If �G
is isomorphic to R4 , then D0W R

4 DR�R3!R3 is given by the natural projection

D0W .t;x;y; z/ 7! .x;y; z/:

If �G is isomorphic to R�N.3/, then D0W R�N.3/!R3 is given by

D0W

 
s;

0@1 t x

0 1 y

0 0 1

1A! 7!A

0@s

t

y

1A ;
where A 2 GL.3IR/.

(2) If g is isomorphic to n.3/, then �G is isomorphic to R�N.3/ or to

N.4/D

8̂̂̂<̂
ˆ̂:
0BBB@

1 t 1
2
t2 x

0 1 t y

0 0 1 z

0 0 0 1

1CCCA
ˇ̌̌̌
ˇt;x;y; z 2R

9>>>=>>>; :
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If �G is isomorphic to R�N.3/, then D0W R�N.3/!N.3/ is given by the natural
projection. If �G is isomorphic to N.4/, then D0W N.4/!N.3/ is given by0BB@

1 t 1
2
t2 x

0 1 t y

0 0 1 z

0 0 0 1

1CCA 7!
0@1 at C cz 1

2
.abt2C cdz2/C .ad � 1/tzCy

0 1 bt C dz

0 0 1

1A ;
where either�

a b

c d

�
D

�
0 �1

1 0

�
or

�
a b

c d

�
D

�
1 0

k 1

�
for k 2R:

(3) If g is isomorphic to g�1
2

, then �G is isomorphic to R�G�1
2

or the semidirect
product R Ëˆ N.3/ with respect to the homomorphism ˆW R! Aut.N.3// defined
by

ˆ.s/W

0@1 t x

0 1 y

0 0 1

1A 7!
0@1 est x

0 1 e�sy

0 0 1

1A :
If �G is isomorphic to R�G�1

2
, then D0W R�G�1

2
! G�1

2
is given by the natural

projection. If �G is isomorphic to R Ëˆ N.3/, then the homomorphism

D0W R Ë� N.3/!G�1
2

is given by

D0W

 
s;

0@1 t x

0 1 y

0 0 1

1A! 7!0@es 0 t

0 e�s y

0 0 1

1A :
(4) If g is isomorphic to g0

3
, then �G is isomorphic to either R�G0

3
or the semidirect

product R Ë‰ N.3/ with respect to the homomorphism ‰W R! Aut.N.3// defined
by 0@1 t x

0 1 y

0 0 1

1A 7!
0@1 t cos s�y sin s x� ty sin2 sC 1

4
.t2�y2/ sin 2s

0 1 t sin sCy cos s

0 0 1

1A :
If �G is isomorphic to G0

3
�R, then D0W R�G0

3
!G0

3
is given by the natural projection.

If �G is isomorphic to R Ë‰ N.3/, then the homomorphism

D0W R Ë‰ N.3/!G0
3 DR Ë� R2

is given by

D0W

 
s;

0@1 t x

0 1 y

0 0 1

1A! 7! �
s;

�
t

y

��
:
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Define two classes of 4–dimensional solvable Lie groups �Gk
2

and �Gh
3

by

�Gk
2 D

8̂̂<̂
:̂
0BB@

et 0 0 x

0 ekt 0 y

0 0 e�.1Ck/t z

0 0 0 1

1CCA
ˇ̌̌̌
ˇ t;x;y; z 2R

9>>=>>;
and

�Gh
3 D

8̂̂<̂
:̂
0BB@

eˇt cos t �eˇt sin t 0 x

eˇt sin t Ceˇt cos t 0 y

0 0 d t z

0 0 0 1

1CCA
ˇ̌̌̌
ˇ t;x;y; z 2R

9>>=>>; ;
where k 2R, 0< h2< 4, and d D e�2ˇ 2R. We construct homogeneous Lie g–flows
on the homogeneous spaces �n�Gk

2
and �n�Gh

3
.

Example 3.3 Let � be a uniform lattice of �G0
2

. Define a homomorphism

D0W
�G!A.3/ by

0BB@
et 0 0 x

0 1 0 y

0 0 e�t z

0 0 0 1

1CCA 7!
0@et 0 x

0 1 y

0 0 1

1A :
Then D0 defines a homogeneous Lie a.2/–flow on �n�G .

Example 3.4 Assume that the Lie group �Gk
2

has a uniform lattice �. Define a
homomorphism D0W

�Gk
2
!Gk

2
by

D0W

0BB@
et 0 0 x

0 ekt 0 y

0 0 e�.1Ck/t z

0 0 0 1

1CCA 7!
0@et 0 x

0 ekt y

0 0 1

1A :
Then D0 defines a homogeneous Lie gk

2
–flow on �n�G .

Example 3.5 We assume that �Gh
3

has a uniform lattice �. Define a homomorphism
D0W

�Gh
3
!Gh

3
by

D0W

0BB@
eˇt cos t �eˇt sin t 0 x

eˇt sin t eˇt cos t 0 y

0 0 d t z

0 0 0 1

1CCA 7!
0@eˇt cos t �eˇt sin t x

eˇt sin t eˇt cos t y

0 0 1

1A :
Then D0 defines a homogeneous Lie g

h 6D0
3

–flow on �n�Gh
3

.
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Example 3.6 Let � be a uniform lattice of G0
3
�R. Let D0W G

0
3
�R!G0

3
be the

natural homomorphism. Then D0 defines a homogeneous Lie g0
3
–flow on �nG0

3
.

Remark We can extend the definition of �Gh
3

to the case when h D 0. Then �G0
3

coincides with SO.2/Ë R2 �R, which is not simply connected. The homomorphism
D0W G

0
3
�R!G0

3
defined in Example 3.6 coincides with the lifted homomorphism

D0W SO.2/Ë R2 �R! SO.2/Ë R2 defined in Example 3.5.

4 Proof of Theorem A

Let F be a Lie g–flow on a closed manifold M . Assume that F has a closed orbit.
Then any orbit of F is closed.

Let DW �M !G be the developing map and hW �1.M /!G be the holonomy homo-
morphism. Since any orbit of F is closed, the holonomy group � is discrete in G and
the basic fibration DW M ! �nG is an oriented S1–bundle over the homogeneous
space �nG .

Let g� be the dual of g, which is naturally identified with the set of left-invariant
1–forms on G . Consider the inclusion map

�W
V�g!A�.�nG/

and the induced map
�W H�.g/!H�dR.�nG/;

where H�.g/ is the cohomology of the Lie algebra g, A�.�nG/ is the de Rham
complex of �nG , and H�dR.�nG/ is the de Rham cohomology of �nG . We call
a k –form ! 2Ak.�nG/ algebraic if ! is in �.Ak.g//.

Let e.D/ 2 H 2
dR.�nG/ be the real Euler class of the S1–bundle D . We use the

following lemma, which is a special case of [12, Theorem 5.1].

Lemma 4.1 If e.D/ is represented by an algebraic 2–form, then F is homogeneous.

Suppose the Euler class e.D/ is represented by an algebraic 2–form �.ˇ/ 2A2.�nG/.
Then there exists a homogeneous Lie g–flow .�n�G;F0/ which is diffeomorphic
to .M;F/. By the proof of [12, Theorem 5.1], the Lie algebra zg of �G coincides with
the central extension

0!R!zg! g! 0

of g by R with the Euler class �2Œˇ� 2H 2.g/. Hence �G is a central extension of G

by R. Therefore we have the following proposition.
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Proposition 4.2 If e.D/ is represented by an algebraic 2–form, then F is diffeomor-
phic to the Lie g–flow in Example 3.1.

Proof of Theorem A First, we assume that g is a solvable Lie algebra of type (R).
Let e.D/ 2H 2

dR.�nG/ be the real Euler class of the oriented S1–bundle.

Since g is of type (R), by Hattori [9, Theorem 4.1], the homomorphism

�W H�.g/!H�dR.�nG/

is an isomorphism. Therefore e.D/ is represented by an algebraic 2–form. Hence, by
Proposition 4.2, F is diffeomorphic to the Lie g–flow in Example 3.1.

Next, we assume that g is isomorphic to g0
3

. By the classification of uniform lattices
of G0

3
, the homogeneous space �nG0

3
is isomorphic to the mapping torus

T 3
A D T 2

�R=.x; t C 1/� .Ax; t/;

where A 2 SL.2IZ/ such that Ap D I for some p 2 Z. If AD I , then the mapping
torus T 3

A
is the three-dimensional torus T 3 .

Define left-invariant 1–forms �T , �X and �Y on G0
3
DR Ë� R2 by

�T D dt; �X D cos t � dxC sin t � dy and �Y D� sin t � dxC cos t � dy:

Then the second cohomology H 2.g0
3
/ of the Lie algebra g0

3
is generated by the

cohomology class Œ�X ^ �Y �D Œdx ^ dy�.

On the other hand, we have

H 2
dR.T

3
A/D

�
RŒdt ^ dx�˚RŒdt ^ dy�˚RŒdx ^ dy� if AD I ,
RŒdx ^ dy� if A 6D I .

Therefore if A 6D I , then H 2
dR.T

3
A
/ is isomorphic to H 2.g0

3
/ and the Euler class e.D/

is represented by an algebraic 2–form. Hence F is diffeomorphic to the Lie g0
3
–flow

in Example 3.1.

In the case where A D I , by the following lemma, there exists a diffeomorphism
f W T 3! T 3 such that the pullback f �e.D/ is represented by an algebraic 2–form.
Then the S1–bundle M is diffeomorphic to the S1–bundle f �M , which is diffeo-
morphic to the Lie g–flow in Example 3.1.

Lemma 4.3 For any Œ!�DaŒdt ^ dx�C bŒdt ^ dy�C cŒdx ^ dy� 2H 2.T 3IZ/, there
exists an integer matrix A 2 SL.3IZ/� Diff.T 3/ such that A�Œ!� 2 ZŒdx ^ dy�.

Algebraic & Geometric Topology, Volume 16 (2016)



2762 Naoki Kato

Proof By the Smith normal form, we can show that there exist an integer d and an
invertible 3� 3 integer matrix B such that

B

0@a

b

c

1AD
0@d

0

0

1A :
Therefore there exists A 2 SL.3IZ/ and an integer n such that A�Œ!�D nŒdx ^ dy�

for some n 2 Z.

5 A construction of a diffeomorphism of flows

Let F1 and F2 be Lie g–flows on closed manifolds M1 and M2 and let �1 and �2

be the holonomy groups of F1 and F2 , respectively. Suppose that F1 and F2 have no
closed orbits and �1 is conjugate to �2 in G .

By replacing the developing map D1W
�M1! G and the holonomy homomorphism

h1W �1.M1/!G of F1 by

g �D1W
�M1!G and g�1

� h1 �gW �1.M1/!G

for some g2G , we may assume that F1 and F2 have the same holonomy group � . The
aim of this section is to construct a diffeomorphism between .M1;F1/ and .M2;F2/

according to Ghys’s method; see [7; 6; 14].

By results of Haefliger [8, Section 3], a Lie g–foliation of a closed manifold M is a clas-
sifying space for .G; �/ if every leaf of F is contractible. Thus .M1;F1/ and .M2;F2/

are classifying spaces for .G; �/. By the uniqueness of classifying spaces, there exists
a homotopy equivalence f W M1!M2 , which we may assume is smooth, such that
f �F2 D F1 . In general, this map f is not a diffeomorphism. However, by using the
averaging technique (see [7; 6]), we can modify f to a diffeomorphism from .M1;F1/

to .M2;F2/.

Parametrize F1 and F2 by �t
1

and �t
2

, respectively. Then we can define a smooth
function

uW M1 �R!R

by the equation
f .�t

1.x//D �
u.x;t/
2

.f .x//:

The function u satisfies the cocycle condition

u.x; sC t/D u.x; t/Cu.�t
1.x/; s/:

By this equation and by the compactness of M , we obtain the following lemma.
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Lemma 5.1 There exists a constant C > 0 such thatˇ̌̌̌
@

@t
u.x; t/

ˇ̌̌̌
< C

for any x 2M and t 2R.

Let �1 D D1W M1 ! Q1 D �nG be the basic fibration of F1 . Fix a fiber F1

of �1W M1!Q1 . Let f.Ui ;gi/g
k
iD1

be a local trivialization of �1 , where fUig
k
iD1

is an open covering of Q1 and gi W �
�1
1
.Ui/! Ui �F1 is a diffeomorphism as fiber

bundles. Let fV1; : : : ;Vkg be a refinement of fU1; : : : ;Ukg such that the closure V i

is contained in Ui for each i D 1; : : : ; k .

Since f is transverse to the flow F2 , by replacing V1; : : : ;Vk with smaller ones if
necessary, for each i there exists a codimension-one open ball Di � F1 such that

(1) Ni WD g�1
i .Vi �Di/ is transverse to F1 ,

(2) f .Ni/ is transverse to F2 , and

(3) the restriction f jNi
W Ni! f .Ni/ is a diffeomorphism.

Lemma 5.2 There exists T0> 0 such that, for any i D 1; : : : ; k and any x 2��1
1
.V i/,

the orbit O�1
.xI .0;T0// WD f�

t
1
.x/ j 0< t < T0g intersects Ni .

Proof Define a function ri W �
�1
1
.Ui/!R by

ri.x/D infft > 0 j �t
1.x/ 2Nig:

Since F1 is minimal on each fiber, the function ri is well-defined and upper semi-
continuous. Since ��1

1
.V i/ is compact, for each i 2 f1; : : : ; kg, there exists an upper

bound Ti . Then we should take T0 DmaxfT1; : : : ;TkgC 1.

For any x 2 Ni , we define si.x/ 2 Z to be the number of times that the orbit
O�2

�
f .x/I .�2C T0 � ı; 2C T0C ı/

�
intersects f .Ni/, where ı is a small positive

number and C and T0 are the constants in Lemmas 5.1 and 5.2, respectively. By the
choice of Ni , the function sW Ni! Z is bounded.

For any x 2Ni , we consider the set

Ti.x/D
˚
t 2R

ˇ̌
�t

1.x/ 2Ni and ju.x; t/j< 2C T C ı
	
:

If t and t 0 satisfy u.x; t/D u.x; t 0/ and �t
1
.x/ and �t 0

1
.x/ are in Ni , then we have

f .�t
1
.x// D f .�t 0

1
.x//. Since f jNi

is a diffeomorphism, we have �t
1
.x/ D �t 0

1
.x/.

Since F1 has no closed orbits, this implies that t D t 0 . Hence, if t and t 0 are distinct

Algebraic & Geometric Topology, Volume 16 (2016)



2764 Naoki Kato

points of Ti.x/, then u.x; t/ 6D u.x; t 0/. Therefore the number of elements of Ti.x/

is less than si.x/ and hence bounded.

For an arbitrary point x 2 Ni , we can take a sufficiently small connected neighbor-
hood Ax of x in Ni and a sufficiently large number tx > 0 such that tx is an upper
bound of Ti.y/ for any y 2Ax . Then we have

ju.y; t/j � 2C T0C ı > 2C T0

if t > tx , y 2Ax and �t
1
.y/ 2Ni . Since the basic manifold Q1 D �nG is compact,

we can choose connected open subsets Ai1
; : : : ;Aiki

of Ni and large numbers tij such
that

(1) f�1.Aij / j i D 1; : : : ; k; j D 1; : : : ; kig is a refinement of fV1; : : : ;Vkg, and

(2) tij is an upper bound of Ti.y/ for any y 2Aij .

Let t0 > maxftij j i D 1; : : : ; k; j D 1; : : : ; kig be an arbitrary number. Then, for
any x 2Aij , we have

ju.x; t/j> 2C T0

if t � t0 and �t
1
.x/ 2Ni .

Lemma 5.3 For any ij , one of the following holds:

(a) u.x; t/ > C T0 for any x 2Aij and any t � t0 .

(b) u.x; t/ < �C T0 for any x 2Aij and any t � t0 .

Proof Let x 2Aij be an arbitrary point. Let t0 D s0 < s1 < s2 < � � � be the maximal
sequence such that �sl

1
.x/ 2Ni for l � 1. By Lemma 5.2, we obtain slC1� sl < T0

for any l � 0. On the other hand, we have ju.x; sl/j> 2C T0 for any l � 1.

Lemma 5.1 implies that

ju.x; slC1/�u.x; sl/j< C.slC1� sl/ < C T0:

Hence we have either u.x; sl/ > 2C T0 for any l � 1 or u.x; sl/ < �2C T0 for
any l � 1.

For any t � t0 , there exists l � 0 such that sl � t � slC1 . By Lemma 5.1, we have

ju.x; slC1/�u.x; t/j � C.slC1� t/ < C.slC1� sl/ < C T0:

Therefore we have either u.x; t/>C T0 for any t � t0 or u.x; t/<�C T0 for any t � t0 .
By the continuity of u, we have either u.x; t/ > C T0 for any x 2Aij and any t � t0
or u.x; t/ < �C T0 for any x 2Aij and any t � t0 .
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Let Wij D �1.Aij / and Eij D �
�1
1
.Wij /.

Lemma 5.4 There exists �0 such that, for each Eij , one of the following holds:

(a) u.x; t/ > 0 for any x 2Eij and any t � �0 .

(b) u.x; t/ < 0 for any x 2Eij and any t � �0 .

Proof By Lemma 5.2, we have

Sij D sup
x2Eij

infft > 0 j �t
1.x/ 2Aij g<1

for any ij . Let
S DmaxfSij j 1� i � k; 1� j � kig;

˛C Dmaxfu.x; t/ j x 2M; 0� t � Sg;

˛� Dmaxf�u.x; t/ j x 2M; 0� t � Sg;

and
˛ Dmaxf˛C; ˛�g:

Take an integer n and a constant �0 satisfying

nC T0 > ˛ and �0> n.t0CS/:

Fix ij . By Lemma 5.3, we have either u.y; t/ > C T0 for any x 2Aij and any t � t0
or u.x; t/ < �C T0 for any x 2Aij and any t � t0 .

First, we suppose that u.x; t/ > C T0 for any x 2Aij and any t � t0 . Fix an arbitrary
point x 2Eij and any t � �0 . Define a sequence 0� v1 < v2 < � � �< vn inductively
as follows: Let v1 be the first arrival time of x to Aij . Thus we have �v1

1
.x/ 2 Aij

and 0 � v1 � S . For l � 1, let vlC1 be the first arrival time to Aij of x after the
time vl C t0 . Thus we have �vlC1

1
2Aij and vl C t0 � vlC1 � vl C t0CS .

Since v1 � S and vlC1� vl � t0CS , we have

vn � S C .n� 1/.t0CS/ < �0� t0 � t � t0:

Since vlC1� vl � t0 and t � vn > t0 , we have

u.x; t/D u

�
x; v1C

n�1P
lD1

.vlC1� vl/C t � vn

�

D u.x; v1/C
n�1P
lD1

u.�
vl

1
.x/; vlC1� vl/Cu.�

vn

1
.x/; t � vn/

> �˛�C .n� 1/C T0CC T0

> �˛C nC T0 > 0:
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In the case where u.x; t/ < �C T0 for any x 2 Aij and any t � t0 , by the same
argument, we have

u.x; t/D u

�
x; v1C

n�1P
lD1

.vlC1� vl/C t � vn

�
D u.x; v1/C

n�1P
lD1

u.�
vl

1
.x/; vlC1� vl/Cu.�

vn

1
.x/; t � vn/

< ˛C� .n� 1/C T0�C T0

< ˛� nC T0 < 0:

Finally, we prove the following lemma.

Lemma 5.5 One of the following holds:

(a) u.x; t/ > 0 for any x 2M1 and any t � �0 .

(b) u.x; t/ < 0 for any x 2M1 and any t � �0 .

Proof By the continuity of u and the connectedness of M , if there exists ij such
that u.x; t/ > 0 for any x 2Eij and any t � �0 , then u.x; t/ > 0 for any x 2M and
any t � �0 . Similarly, if there exists ij such that u.x; t/ < 0 for any x 2 Eij and
any t � �0 , then u.x; t/ < 0 for any x 2M and any t � �0 .

We construct a diffeomorphism from .M1;F1/ to .M2;F2/. Let T 2R be a positive
constant such that T � �0 . Define �T W M1!R and fT W M1!M2 by

�T .x/D
1

T

Z T

0

u.x; �/ d� and fT .x/D �
�.x/
2

.f .x//:

By the equation

�T .�
t
1.x//D

1

T

Z T

0

u.�t
1.x/; �/ d�

D
1

T

Z T

0

fu.x; t C �/�u.x; t/g d�;

we have

fT .�
t
1.x//D �

1
T

R T

0 u.x;tC�/d�

2
.f .x//:

Therefore, for any x 2M1 , we have

d

dt

�
1

T

Z T

0

u.x; t C �/ d�

�
D

1

T
.u.x; t CT /�u.x; t//

D
1

T
u.�t

1.x/;T /:
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By Lemma 5.5, u.x;T / 6D 0 for any x 2M1 . Therefore fT W M1!M2 is a local
diffeomorphism. Since M1 is closed, fT is a covering map. Since fT is homotopic
to f via

F W M1 � Œ0; 1�!M2 defined by F.x; t/D �
t�.x/
2

.f .x//

and f is a homotopy equivalence, the map fT is a diffeomorphism.

Therefore we obtain the following theorem.

Theorem 5.6 [7] Let F1 and F2 be Lie g–flows on closed manifolds M1 and M2 ,
respectively. Suppose F1 and F2 have no closed orbits and the holonomy group of F1

is conjugate to the holonomy group of F2 in G . Then F1 and F2 are diffeomorphic.

6 Proof of Theorem B

Let g be a 3–dimensional solvable Lie algebra and let F be a Lie g–flow on a closed
manifold M which has no closed orbits. Let � be the holonomy group of F . Since
F has no closed orbits, the holonomy homomorphism hW �1.M /! G is injective.
Hence the fundamental group �1.M / is isomorphic to the holonomy group � .

If the Lie algebra g is nilpotent, then the Lie algebra g is isomorphic to either R3

or n.3/. By the theorem of Ghys [7, Section 2], .M;F/ is diffeomorphic to a homo-
geneous Lie g–flow .�n�G;F0/, where �G is a simply connected nilpotent Lie group.
Since any 1–dimensional ideal of a nilpotent Lie algebra is contained in its center, the
kernel of the induced homomorphism

dD0W zg! g

is contained in the center of zg. Hence �G is a central extension of G by R and F is
diffeomorphic to the Lie g–flow in Example 3.1.

We suppose that g is not nilpotent. First, we consider the case where g is isomorphic
to a.3/.

6A a.3/ case

Let F be a Lie a.3/–flow on a closed manifold M without closed orbits, and fix a
nonsingular a.3/–valued Maurer–Cartan form ! of F . The Lie algebra a.3/ has the
explicit description

a.3/D

8<:
0@t 0 x

0 0 y

0 0 0

1A ˇ̌̌̌ˇ t;x;y 2R

9=; :
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Then there exist nonsingular 1–forms !T , !X and !Y on M such that

! D

0@!T 0 !X

0 0 !Y

0 0 0

1A :
Since ! is a Maurer–Cartan form, we have the following equations:

d!T D 0 and d!X D
1
2
!T ^!X and d!Y D 0:

Therefore !T and !Y are nonsingular closed 1–forms and

!0 D

�
!T !X

0 0

�
is a nonsingular a.2/–valued Maurer–Cartan form of M . The nonsingular closed
1–form !T and the nonsingular Maurer–Cartan form !0 define two foliations G and F 0

of M whose codimensions are one and two, respectively. Since !0 is a a.2/–valued
Maurer–Cartan form, the foliation F 0 is a Lie a.2/–foliation. By an observation of
Matsumoto and Tsuchiya [13, Section 7], we can see that the closed 1–form !T

is a rational form. Therefore each leaf of G is compact and the leaf space M=G is
diffeomorphic to S1 .

Let � W M ! S1 DM=G be the natural projection and fix a fiber N of � . Since the
tangent bundle TF coincides with Ker.!/ and Ker.!T / includes Ker.!/, each orbit
of the Lie a.3/–flow F is tangent to the fibers of � .

Let F jN be the foliation defined by the restriction of F to the fiber N .

Lemma 6.1 The fiber N is diffeomorphic to the 3–dimensional torus and the flow F jN
is diffeomorphic to a linear flow.

Proof The tangent bundle TN coincides with Ker.!T jN /. By the equation

d!X D
1
2
!T ^!X ;

the 1–form !X jN on N is a nonsingular closed 1–form. Since TF coincides with

Ker.!/D Ker.!T /\Ker.!X /\Ker.!Y /;

TF jN coincides with Ker.!X jN /\Ker.!Y jN /. Since the 1–forms !X jN and !Y jN

are closed, the nonsingular R2–valued 1–form

�N D

�
!X jN

!Y jN

�
is a Maurer–Cartan form. Hence the flow F jN is a Lie R2–flow on N . By the
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theorem of Caron and Carrière [2, Theorem 1], the manifold N is diffeomorphic to T 3

and the flow F jN is diffeomorphic to a linear flow.

By Lemma 6.1, the manifold M is a T 3–bundle over S1 . Let F 2 DiffC.T 3/ be
the monodromy map of the T 3–bundle � W M ! S1 . Fix generators ˛1 , ˛2 and ˛3

of �1.T
3/'Z3 and an element ˇ of �1.M / such that ��.ˇ/2�1.S

1/ is a generator.
Then the induced map F�W �1.T

3/! �1.T
3/ defines an integer matrix A 2 SL.3IZ/

and the fundamental group �1.M / is isomorphic to Z ËA Z3 .

Set AD .aij /. Then we have

ˇ j̨ˇ
�1
D ˛

a1j

1
˛

a2j

2
˛

a3j

3
for j D 1; 2; 3:

Since F has no closed orbits, the holonomy homomorphism hW �1.M /! � is an iso-
morphism. Let � 0 be the abelian subgroup of � generated by h.˛1/, h.˛2/ and h.˛3/.
Since �1.N / is a normal subgroup of �1.M /, � 0 is a normal subgroup of � .

Lemma 6.2 Let H be an abelian subgroup of A.3/. Then H is contained in either

R2
D

8<:
0@1 0 x

0 1 y

0 0 1

1A ˇ̌̌̌ˇ x;y 2R

9=; or H.t0;x0/ D

8̂<̂
:
0B@et 0 1�et

1�et0
x0

0 1 y

0 0 1

1CA ˇ̌̌̌ˇ t;y 2R

9>=>;
for some x0 2R and t0 6D 0.

Proof Suppose that H is not contained in R2 . Then there exists

g0 D

0@et0 0 x0

0 1 y0

0 0 1

1A 2H

such that t0 6D 0. Let

g D

0@et 0 x

0 1 y

0 0 1

1A 2H

be an arbitrary element. Since H is abelian, we have g0g D gg0 . Then we obtain the
equation

x D
1� et

1� et0
x0:

Lemma 6.3 The abelian subgroup � 0 of � is contained in R2 .
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Proof Suppose that � 0 is not contained in R2 . By Lemma 6.2, � 0 is contained
in H.t0;x0/ for some x0 2R and t0 6D 0. Since � 0 6�R2 , there exists

g D

0B@et 0 1�et

1�et0
x0

0 1 y

0 0 1

1CA 2 � 0
such that t 6D 0.

Set

h.ˇ/D

0@et 0

0 x0

0 1 y0

0 0 1

1A 2A.3/:

Since � 0 is normal in � , we have

h.ˇ/gh.ˇ/�1
2 � 0 �H.t0;x0/:

Then we obtain the equation

.1� et /
˚
.1� et0/x0� .1� et 0

/x0

	
D 0:

Since t 6D0, this equation implies that h.ˇ/2H.t0;x0/ . Thus � is contained in H.t0;x0/ .
However, this contradicts the fact that the holonomy group � is uniform in A.3/.
Therefore � 0 is contained in R2 .

Set

h.˛i/D

0@1 0 xi

0 1 yi

0 0 1

1A for i D 1; 2; 3 and h.ˇ/D

0@et0 0 x0

0 1 y0

0 0 1

1A :
Since � is uniform in A.3/, we have t0 6D 0. Moreover, by conjugating in A.3/, we
may assume that x0 D 0.

Lemma 6.4 A is conjugate to the matrix0@et0 0 0

0 e�t0 0

0 0 1

1A :
Proof By the equation

ˇ j̨ˇ
�1
D ˛

a1j

1
˛

a2j

2
˛

a3j
3
;

Algebraic & Geometric Topology, Volume 16 (2016)



Solvable Lie flows of codimension 3 2771

we have 0@1 0 et0xj

0 1 yj

0 0 1

1AD
0@1 0 a1j x1C a2j x2C a3j x3

0 1 a1j y1C a2j y2C a3j y3

0 0 1

1A :
Thus we have the equations

tA

0@x1

x2

x3

1AD et0

0@x1

x2

x3

1A and tA

0@y1

y2

y3

1AD
0@y1

y2

y3

1A :
Since � is uniform in A.3/, we can show that0@x1

x2

x3

1A 6D 0 and

0@y1

y2

y3

1A 6D 0:

Therefore et0, 1 and e�t0 are the eigenvalues of A.

Define elements y̨i and y̌ of �G�1
2

by

y̨i D

0BB@
1 0 0 xi

0 1 0 yi

0 0 1 zi

0 0 0 1

1CCA and y̌ D

0BB@
et0 0 0 0

0 1 0 y0

0 0 e�t0 0

0 0 0 1

1CCA ;
where 0@z1

z2

z3

1A
is an eigenvector of A corresponding to the eigenvalue et0 . Let � be the subgroup
of �G�1

2
generated by y̨1 , y̨2 , y̨3 and y̌. Since0@x1

x2

x3

1A ;
0@y1

y2

y3

1A and

0@z1

z2

z3

1A
are eigenvectors of A 2 SL.3IZ/ corresponding to the eigenvalues et0, 1 and e�t0 ,
respectively, the subgroup � is discrete in �G�1

2
. Therefore � is a uniform lattice

of �G�1
2

.
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Define an submersion homomorphism D0W
�G�1

2
!A.3/ by

D0W

0BB@
et 0 0 x

0 1 0 y

0 0 e�t z

0 0 0 1

1CCA 7!
0@et 0 x

0 1 y

0 0 1

1A :
Then D0 defines a Lie a.3/–flow F0 on �n�G�1

2
whose holonomy group coincides

with � . Therefore, by Theorem 5.6, the Lie a.3/–flow F is diffeomorphic to F0 .
Hence F is diffeomorphic to the flow in Example 3.3.

6B gk
2

case

We consider the case where g is isomorphic gk
2

. In this case, the basic dimension of F
is one; see [5; 11]. Hence the manifold M is diffeomorphic to a T 3–bundle over S1 .

Let ˛1 , ˛2 , ˛3 and ˇ be the same as defined in Section 6A. Then there exists an integer
matrix AD .aij / 2 SL.3IZ/ such that the fundamental group �1.M / is isomorphic
to Z ËA Z3 .

Let � 0 be the normal abelian subgroup of � generated by h.˛1/, h.˛2/ and h.˛3/.

Lemma 6.5 Let H be an abelian subgroup of Gk
2

. Then H is contained in either

R2
D

8<:
0@1 0 x

0 1 y

0 0 1

1A9=; or H.t0;x0;y0/ D

8̂̂̂<̂
ˆ̂:
0BBB@

et 0 1�et

1�et0
x0

0 ekt 1�ekt

1�ekt0
y0

0 0 1

1CCCA
ˇ̌̌̌
ˇ t 2R

9>>>=>>>;
for some x0;y0 2R and t0 6D 0.

Proof Suppose that H is not contained in R2 . Then there exists

g0 D

0@et0 0 x0

0 ekt0 y0

0 0 1

1A 2H

such that t0 6D 0. Let

g D

0@et 0 x

0 ekt y

0 0 1

1A 2H

be an arbitrary element. Then gg0 D g0g implies the equations

.1� et0/x D .1� et /x0 and .1� et0/x D .1� et /y0:

Since t0 6D 0, these equations imply that g 2H.t0;x0;y0/ .
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Lemma 6.6 The normal abelian subgroup � 0 of � is contained in R2 .

Proof Suppose that � 0 is not contained in R2 . By Lemma 6.5, there exist x0;y0 2R
and t0 6D 0 such that � 0 is contained in H.t0;x0;y0/ . Since � 0 6�R2 , there exists

g D

0@et 0 x

0 ekt y

0 0 1

1A 2 � 0
such that t 6D 0.

Set

h.ˇ/D

0@et 0

0 x0

0 ekt 0

y0

0 0 1

1A :
Since � 0 is a normal subgroup of � , we have

h.ˇ/gh.ˇ/�1
2 � 0 �H.t0;x0;y0/:

Thus we obtain the equations

.1�et /
˚
.1�et

0/x0�.1�et 0

/x0

	
D 0 and .1�ekt /

˚
.1�ekt /x0�.1�ekt 0

/x0

	
D 0:

Since t 6D 0, these equations imply that h.ˇ/ 2H.t0;x0;y0/ . This contradicts the fact
that � is uniform in Gk

2
. Therefore we have that � 0 is contained in R2 .

Set

h. j̨ /D

0@1 0 xj

0 1 yj

0 0 1

1A and h.ˇ/D

0@et0 0 x0

0 ekt0 y0

0 0 1

1A :
Since � is uniform in Gk

2
, we have t0 6D 0. Moreover, by conjugating in Gk

2
, we may

assume that x0 D 0 and y0 D 0.

By the same argument as the proof of Lemma 6.4, we can prove the following lemma.

Lemma 6.7 A 2 SL.3IZ/ is conjugate to the matrix0B@et0 0 0

0 ekt0 0

0 0 e.�1�k/t0

1CA :
Algebraic & Geometric Topology, Volume 16 (2016)
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Define elements y̨i and y̌ of �Gk
2

by

y̨i D

0BB@
1 0 0 xi

0 1 0 yi

0 0 1 zi

0 0 0 1

1CCA and y̌ D

0BB@
et0 0 0 0

0 ekt0 0 0

0 0 e�.1Ck/t0 0

0 0 0 1

1CCA ;
where 0@z1

z2

z3

1A
is an eigenvector of A corresponding to the eigenvalue et0 . Let � be the subgroup
of �Gk

2
generated by y̨1 , y̨2 , y̨3 and y̌. Then � is a uniform lattice of �Gk

2
. Since �

coincides with � via the homomorphism DW �Gk
2
!Gk

2
defined in Example 3.4, the

Lie gk
2
–flow F is diffeomorphic to the Lie gk

2
–flow in Example 3.4.

6C g
h 6D0

3
case

In the case in which g is isomorphic to g
h 6D0
3

, the basic dimension of F is one;
see [5; 11]. Hence the manifold M is diffeomorphic to a T 3–bundle over S1 and
�1.M /D Z ËA Z3 for some A 2 SL.3IZ/.

By the same argument as in Section 6B, we can prove the following lemma.

Lemma 6.8 The normal subgroup � 0 of � is contained in R2 .

By Lemma 6.8, we have

h.˛i/D

0@1 0 xi

0 1 yi

0 0 1

1A and

0@eˇt0 cos t0 �eˇt0 sin t0 x0

eˇt0 sin t0 eˇt0 cos t0 y0

0 0 1

1A :
Since � is uniform in Gh

3
, we have t0 6D 0. By conjugating in Gh

3
, we may assume

that x0 D 0 and y0 D 0.

By the equation
ˇ j̨ˇ

�1
D ˛

a1j

1
˛

a2j

2
˛

a3j
3
;

we have

Ax D eˇt0.cos t0x� sin t0y/ and Ay D eˇt0.sin t0xC cos t0y/;
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where

x D

0@x1

x2

x3

1A and y D

0@y1

y2

y3

1A :
By an easy calculation, we can show that x 6D 0 and y 6D 0. Hence xC iy and x� iy

are eigenvectors corresponding to the eigenvalues e.ˇCi/t0 and e.ˇ�i/t0 , respectively.

Let d t0 D e�2ˇt0 be the other eigenvalue of A, and let

zD

0@z1

z2

z3

1A
be an eigenvector of A corresponding to the eigenvalue d t0 . Let

y̨i D

0BB@
1 0 0 xi

0 1 0 yi

0 0 1 zi

0 0 0 1

1CCA and y̌ D

0BB@
eˇt0 cos t0 �eˇt0 sin t0 0 0

eˇt0 sin t0 eˇt0 cos t0 0 0

0 0 d t0 0

0 0 0 1

1CCA
be elements of �Gh

3
and � be the subgroup of �Gh

3
generated by y̨1 , y̨2 , y̨3 and y̌.

Then the subgroup � is a uniform lattice of �Gh
3

Since � coincides with � via the homomorphism DW �Gh
3
!Gh

3
defined in Example 3.5,

the Lie gh
3
–flow F is diffeomorphic to the Lie gh

3
–flow in Example 3.5.

6D g0
3

case

Suppose that g is isomorphic to g0
3

. By [10, Corollaries 2.4 and 2.7] and the theorem
of Caron and Carrière [2, Theorem 1], the manifold M is diffeomorphic to the 4–
dimensional torus T 4 .

Fix generators ˛1 , ˛2 , ˛3 and ˛4 of �1.M /' Z4 and set

h.˛i/D

�
ti ;

�
xi

yi

��
2G0

3 DR Ë� R2:

Since � is uniform in G0
3

, � is not contained in f0g�R2 . Hence we may assume that
t1 6D 0.

Lemma 6.9 ti 2 2�Z, for each i .
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Proof Suppose that there exists i such that ti 62 2�Z. We may assume that t1 62 2�Z.

Since � is abelian, we can show that � is contained in H , where

H D

(�
t;

�
1� cos t sin t

� sin t 1� cos t

��
x0

1

y0
1

�� ˇ̌̌̌
t 2R

)
is a simply connected 1–dimensional closed subgroup of G0

3
and�

x0
1

y0
1

�
D

�
1� cos t1 sin t1
� sin t1 1� cos t1

��1 �
x1

y1

�
:

Since � is uniform in G0
3

, the homogeneous space HnG0
3

is compact.

On the other hand, HnG0
3

is homeomorphic to R2 , since H is a simply connected
1–dimensional closed subgroup of G0

3
. This is a contradiction.

By Lemma 6.9, we have ti D 2�ni . Define a diffeomorphism F W G0
3
!R3 by

F W

�
t;

�
x

y

��
7!

0@ t

x

y

1A :
Then F j� W �!R3 is a homomorphism and F is F j� –equivariant, that is,

F.
 �g/D F j�.
 / �F.g/

for any 
 2 � and any g 2G0
3

. Therefore the rank of the matrix0@2�n1 2�n2 2�n3 2�n4

x1 x2 x3 x4

y1 y2 y3 y4

1A
is three.

We may assume that 0@2�n1

x1

y1

1A ;
0@2�n2

x2

y2

1A ;
0@2�n3

x3

y3

1A
are linearly independent. Consider the subgroup � of G0

3
�RDRË�R2�R generated

by y̨1 , y̨2 , y̨3 and y̨4 , where

y̨i D

�
2�ni ;

�
xi

yi

�
; 0

�
for i D 1; 2; 3 and y̨4 D

�
2�n4;

�
x4

y4

�
; 1

�
:

Algebraic & Geometric Topology, Volume 16 (2016)



Solvable Lie flows of codimension 3 2777

Then � is a uniform lattice of G0
3
�R and � coincides with � via the homomorphism

DW G0
3
�R!G0

3
in Example 3.6. Therefore the Lie g0

3
–flow is diffeomorphic to the

flow in Example 3.6.
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