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Torsion exponents in stable homotopy
and the Hurewicz homomorphism

AKHIL MATHEW

We give estimates for the torsion in the Postnikov sections �Œ1;n�S0 of the sphere
spectrum, and we show that the p–localization is annihilated by pn=.2p�2/CO.1/.
This leads to explicit bounds on the exponents of the kernel and cokernel of the
Hurewicz map ��.X /! H�.X IZ/ for a connective spectrum X . Such bounds
were first considered by Arlettaz, although our estimates are tighter, and we prove that
they are the best possible up to a constant factor. As applications, we sharpen existing
bounds on the orders of k –invariants in a connective spectrum, sharpen bounds on
the unstable Hurewicz map of an infinite loop space, and prove an exponent theorem
for the equivariant stable stems.

55P42, 55Q10

1 Introduction

Let X be a spectrum. Then there is a natural map (the Hurewicz map) of graded
abelian groups

��.X /!H�.X IZ/;

which is an isomorphism rationally. In general, this is the best that one can say. For
instance, given an element x 2 �n.X / annihilated by the Hurewicz map, we know that
x is torsion, but we cannot a priori give an integer m such that mx D 0. For example,
if K denotes periodic complex K–theory, then K=pk has trivial homology for each
k , but it contains elements in homotopy of order pk .

If, however, X is connective, then one can do better. For instance, the Hurewicz
theorem states in this case that the map �0.X /!H0.X IZ/ is an isomorphism. The
map �1.X /! H1.X IZ/ need not be an isomorphism, but it is surjective, and any
element in the kernel must be annihilated by 2. There is a formal argument that, in any
degree, “universal” bounds must exist.

Proposition 1.1 There exists a function M W Z�0!Z>0 with the following property:
if X is any connective spectrum, then the kernel and cokernel of the Hurewicz map
�n.X /!Hn.X IZ/ are annihilated by M.n/.
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Proof We consider the case of the kernel; the other case is similar. Suppose there
existed no such function. Then, there exists an integer n and connective spectra
X1;X2; : : : together with elements xi 2 �n.Xi/ for each i such that:

(a) Each xi is in the kernel of the Hurewicz map (and thus torsion).

(b) The orders of the xi are unbounded.

In this case, we can form a connective spectrum X D
Q1

iD1 Xi . Since homology
commutes with arbitrary products for connective spectra, as HZ can be given a cell
decomposition with finitely many cells in each degree (see [2, Theorem 15.2, part III]),
it follows that we obtain an element x D .xi/i�1 2 �n.X /D

Q
i�1 �n.Xi/ which is

annihilated by the Hurewicz map. However, x cannot be torsion since the orders of
the xi are unbounded.

We note that the above argument is very general. For instance, it shows that the
nilpotence theorem [12] implies that there exists a universal function P .n/W Z�0!Z>0

such that if R is a connective ring spectrum and x 2�n.R/ is annihilated by the M U –
Hurewicz map, then xP.n/ D 0. The determination of the best possible function P .n/

is closely related to the questions raised by Hopkins in [15].

Proposition 1.1 appears in [6], where an upper bound for the universal function M.n/

is established (although the above argument may be older).

Theorem 1.2 (Arlettaz [6, Theorem 4.1]) If X is any connective spectrum, then the
kernel of �n.X /! Hn.X IZ/ is annihilated by �1 � � � �n , where �i is the smallest
positive integer that annihilates the torsion group �i.S

0/. The cokernel is annihilated
by �1 � � � �n�1 .

Different variants of this result have appeared in [5; 8], and this result has also been
discussed in [10]. The purpose of this note is to find the best possible bounds for these
torsion exponents, up to small constants. We will do so at each prime p . In particular,
we prove:

Theorem 1.3 Let X be a connective spectrum and let n> 0.

(a) The 2–exponent of the kernel of the Hurewicz map �n.X /!Hn.X IZ/ is at
most dn=2eC 3: that is, 2dn=2eC3 annihilates the 2–part of the kernel.

(b) If p is an odd prime, the p–exponent of the kernel of the Hurewicz map
�n.X /!Hn.X IZ/ is at most d.nC 3/=.2p� 2/eC 1.

(c) The 2–exponent of the cokernel of the Hurewicz map is at most d.n� 1/=2eC3.

(d) If p is an odd prime, the p–exponent of the cokernel of the Hurewicz map is at
most d.nC 2/=.2p� 2/eC 1.
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We will also show that these bounds are close to being the best possible.

Proposition 1.4 (a) For each r , there exists a connective 2–local spectrum X and
an element x 2 �2r�1.X / in the kernel of the Hurewicz map such that the order
of x is at least 2r�1 .

(b) Let p be an odd prime. For each r , there exists a connective p–local spectrum
X and an element x 2 �.2p�2/rC1.X / annihilated by the Hurewicz map such
that the order of x is at least pr .

Our strategy in proving Theorem 1.3 is to translate the above question into one about
the Postnikov sections �Œ1;n�S0 and their exponents in the homotopy category of
spectra (rather than the exponents of some algebraic invariant). We shall use a classical
technique with vanishing lines to show that, at a prime p , the �Œ1;n�S0 are annihilated
by pn=.2p�2/CO.1/ . This, combined with a bit of diagram-chasing, will imply the
upper bound of Theorem 1.3. The lower bounds will follow from explicit examples.

Finally, we show that these methods have additional applications and that the precise
order of the n–truncations �Œ1;n�S0 play an important role in several settings. For
instance, we sharpen bounds of Arlettaz [4] on the orders of the k –invariants of a
spectrum in Corollary 6.2, improve and make explicit half of a result of Beilinson [10]
on the (unstable) Hurewicz map �n.X /! Hn.X IZ/ for X an infinite loop space
in Theorem 6.3, and prove an exponent theorem for the equivariant stable stems in
Theorem 6.6.

We also obtain, as a consequence, the following result.

Theorem 1.5 Let p be a prime number. Let X be a spectrum with homotopy groups
concentrated in degrees Œa; b�. Suppose each �i.X / is annihilated by pk . Then
pkC.b�a/=.p�1/C8 annihilates X (see Definition 2.1 below).

We have not tried to make the bounds in Theorem 1.5 as sharp as possible since we
suspect that our techniques are not sharp to begin with.

Notation In this paper, for a spectrum X , we will write �Œa;b�X to denote the Post-
nikov section of X with homotopy groups in the range Œa; b�, ie ��b��aX . Given
spectra X and Y , we will let Hom.X;Y / denote the function spectrum from X into
Y , so �0Hom.X;Y / denotes homotopy classes of maps X ! Y .

Acknowledgments I would like to thank Mike Hopkins and Haynes Miller, from
whom (and whose papers) I learned many of the ideas used here. I would also like
to thank Peter May for several helpful comments and Dustin Clausen for pointing
me to [10]. The author was supported by the NSF Graduate Fellowship under grant
DGE-110640.
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2 Definitions

Let C be a triangulated category. We recall:

Definition 2.1 Let X 2 C be an object. We will say that X is annihilated by n 2Z>0

if nidX 2 HomC.X;X / is equal to zero. We let exp.X / denote the minimal n (or 1
if none exists) such that n annihilates X .

Let D be any additive category and F W C ! D any additive functor. If X 2 C is
annihilated by n, then F.X / 2 D has nidF.X / D 0, too. Here are several important
examples of this phenomenon.

Example 2.2 Given any (co)homological functor F W C! Ab, the value of F on an
object annihilated by n is a torsion abelian group of exponent at most n. For instance,
if X is a spectrum annihilated by n, then the homotopy groups of X all have exponent
at most n.

Example 2.3 Suppose C has a t –structure, so that we can construct truncation functors
��k W C!C for k 2Z. Let X 2C be any object. Then, for any k , exp.��kX / j exp.X /.

Example 2.4 Suppose C has a compatible monoidal structure ^. Then if X;Y 2 C ,
we have exp.X ^Y / j gcd .exp.X /; exp.Y //.

Next, we note that such torsion questions can be reduced to local ones at each prime
p , and it will be therefore convenient to have the following notation.

Definition 2.5 Given X 2 C , we define expp.X / to be the minimal integer n� 0 (or
1 if none exists) such that pnidX D 0 in the group HomC.X;X /.p/ . For a torsion
abelian group A, we will also use the notation expp.A/ in this manner.

Proposition 2.6 Let X 0!X !X 00 be a cofiber sequence in C . Suppose X 0 is anni-
hilated by m and X 00 is annihilated by n. Then X is annihilated by mn. Equivalently,
expp.X /� expp.X

0/C expp.X
00/ for each prime p .

Proof We have an exact sequence of abelian groups

HomC.X;X
0/! HomC.X;X /! HomC.X;X

00/:

If X 0 and X 00 are annihilated by m and n, respectively, then it follows that groups on
the edges of the above exact sequence are of exponents dividing m and n, respectively.
It follows that HomC.X;X / is annihilated by mn, and in particular, the identity map
idX 2 HomC.X;X / is annihilated by mn.
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Corollary 2.7 Let X be a spectrum with homotopy groups concentrated in degrees
Œm; n� for m; n 2 Z. Suppose for each i 2 Œm; n�, we have an integer ei > 0 with
ei�i.X /D 0. Then exp.X / j

Qn
iDm ei .

The main purpose of this paper is to determine the behavior, as n varies, of the function
expp.�Œ1;n�S

0/. Corollary 2.7 gives the bound that expp.�Œ1;n�S
0/ is at most the sum

of the exponents of the torsion abelian groups �i.S
0/.p/ for 1� i � n. We will give

a stronger upper bound for this function, and show that it is essentially optimal.

Theorem 2.8 (Main theorem) (a) Let p D 2. Then

(1)
j

n�1

2

k
� exp2.�Œ1;n�S

0/�
l

n

2

m
C 3:

(b) Let p be odd. Then

(2)
�

n� 1

2p� 2

�
� expp.�Œ1;n�S

0/�

�
nC 3

2p� 2

�
C 1:

The upper bounds will be proved in Proposition 3.4 below, and the lower bounds will
be proved in Propositions 4.2 and 4.3. They include, as a special case, estimates on the
exponents on the homotopy groups of S0 , which were classically known (and in fact
our method is a refinement of the proof of those estimates). Note that the exponents
in the unstable homotopy groups have been studied extensively, including the precise
determination at odd primes [11], and that the method of using the Adams spectral
sequence to obtain such quantitative bounds has also been used by Henn [14].

3 Upper bounds

Let p be a prime number. Let Ap denote the mod p Steenrod algebra; it is a graded
algebra. Recall that if X is a spectrum, then the mod p cohomology H�.X IFp/ is a
graded module over Ap . Our approach to the upper bounds will be based on vanishing
lines in the cohomology.

Definition 3.1 Given a nonnegatively graded Ap –module M , we will say that a
function f W Z�0! Z�0 is a vanishing function for M if for all s; t 2 Z�0 ,

Exts;tAp
.M;F2/D 0 if t < f .s/:

Recall here that s is the homological degree and t is the grading.

Our main technical result is the following:
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Proposition 3.2 Suppose X is a connective spectrum such that each �i.X / is a finite
p–group. Suppose the Ap –module H�.X IFp/ has a vanishing function f . Let n be
an integer and let m be an integer such that f .m/�m> n. Then expp.�Œ0;n�X /�m.

Proof Choose a minimal resolution (see, eg [19, Definition 9.3]) of H�.X IFp/ by
free, graded Ap –modules

(3) � � � ! P1! P0!H�.X IFp/! 0:

Here we have Exts;t .H�.X IFp/;Fp/' HomAp
.Ps; †

tFp/ by [19, Proposition 9.4].
That is, the free generators of the Ps give precisely a basis for Exts;�.H�.X IFp/IFp/.

We can realize the resolution (3) topologically (see eg [19, Section 9.3]) via an Adams
resolution. That is, we can find (working by induction) a tower of spectra,

(4)

:::

��

F2X

��

// R2

F1X

��

// R1

F0X DX // R0

such that:

(a) Each Ri is a wedge of copies of shifts of HFp .

(b) Each triangle FiC1X ! FiX !Ri is a cofiber sequence.

(c) The sequence of spectra

X !R0!†R1!†2R2! � � �

realizes, on cohomology, the complex (3).

As a result, we find inductively that

H�.FiX IFp/'†
�i im.Pi! Pi�1/:

Now the graded Ap –module Pi is concentrated in degrees f .i/ and up, by hypothesis
and minimality. In particular, it follows that FiX is .f .i/�i/–connective. Specifically,
it follows that the map

X ! cofib.FiX !X /

is an isomorphism on homotopy groups below f .i/� i .
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Finally, we observe that the cofiber of each FiX ! Fi�1X is annihilated by p as it is
a wedge of shifts of HFp . It follows by the octahedral axiom of triangulated categories,
induction on i , and Proposition 2.6 that the cofiber of FiX !F0X DX is annihilated
by pi . Taking i D m, we get the claim since ��nX ' ��n.cofib.FmX ! X // is
therefore annihilated by pm by Example 2.3.

Since Ap is a connected graded algebra, it follows easily (via a minimal resolution)
that if M is a connected graded Ap –module, then Exts;t .M;Fp/ D 0 if t < s . Of
course, this bound is too weak to help with Proposition 3.2. In fact, an integer m

satisfying the desired conditions will not exist if we use this bound.

We now specialize to the case of interest. Consider ��1S0 D �Œ1;1�S
0 . It fits into a

cofiber sequence
S0
!HZ!†��1S0;

which leads to an exact sequence

0!H�.†��1S0
IFp/!H�.HZIFp/!H�.S0

IFp/! 0:

We know that Exts;tAp
.H�.HZIFp/IFp/ vanishes unless s D t (by the change-of-rings

theorem [19, Fact 3, page 438]), and is one-dimensional if s D t ; in this case, it maps
isomorphically to Exts;sAp

.Fp;Fp/. It follows that

(5) Exts;tAp
.H�.��1S0

IFp/IFp/D

�
Exts�1;t�1

Ap
.FpIFp/ if s ¤ t;

0 if s D t:

We will need certain classical facts, due to Adams [1] at pD 2 and Liulevicius [17] for
p > 2, about vanishing lines in the classical Adams spectral sequence. A convenient
reference is [19].

Proposition 3.3 [19, Theorem 9.43]

(a) Exts;tA2
.F2;F2/D 0 for 0< s < t < 3s� 3.

(b) Exts;tAp
.Fp;Fp/D 0 for 0< s < t < .2p� 1/s� 2.

Note also that Exts;tAp
.Fp;Fp/D 0 for t < s . As a result, one finds that the cohomology

of ��1S0 , when displayed using Adams indexing with t � s on the x–axis and s on
the y –axis, vanishes above a line with slope 1=.2p� 2/.

Finally, we can prove our upper bounds.

Proposition 3.4 (a) For p D 2, exp2.�Œ1;n�S
0/� dn=2eC 3.

(b) For p odd, expp.�Œ1;n�S
0/� d.nC 3/=.2p� 2/eC 1.
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Proof This is now a consequence of the preceding discussion. We just need to put
things together.

At the prime 2, by Proposition 3.3 and (5), the A2 –module H�.��1S0IF2/ has
vanishing function f .s/D 3s� 5. By Proposition 3.2, it follows that if 2m� 5> n,
then exp2.�Œ1;n�S

0/�m. Choosing mD dn=2eC 3 gives the minimal choice.

At an odd prime, one similarly sees that f .s/ D .2p � 1/s � 2p is a vanishing
function by Proposition 3.3 and (5). That is, if .2p � 2/m� 2p > n, then we have
expp.�Œ1;n�S

0/�m. Rearranging gives the desired claim.

4 Lower bounds

The purpose of this section is to prove the lower bounds of Theorem 2.8. The proof of
the lower bounds is completely different from the proof of the upper bounds. Namely,
we will write down finite complexes that have homology annihilated by p but for which
the p–exponent grows linearly. These complexes are simply the skeleta of BZ=p . We
will show, however, that the p–exponent of the spectra grows linearly by looking at
the complex K–theory. First, we need a lemma.

Lemma 4.1 Let X be a finite torsion complex with cells in degrees 0 through m.
Then, for each p , expp.X /D expp.�Œ0;m�S

0 ^X /.

Proof Without loss of generality, suppose that X is p–local. We know that expp.X /�

expp.�Œ0;m�S
0 ^X /; see Example 2.4. Thus, we need to prove the other inequality.

Let kD expp.X /. Let Hom.X;X / denote the endomorphism ring spectrum of X . The
identity map X !X defines a class in �0Hom.X;X /, which maps isomorphically to
�0Hom.X; �Œ0;m�S0^X / by the hypothesis on the cells of X . Thus, there exists a class
in �0Hom.X; �Œ0;m�S0^X / of order exactly pk . It follows that expp.�Œ0;m�S

0^X /�

k as desired.

We are now ready to prove our lower bound at the prime two.

Proposition 4.2 We have exp2.�Œ1;n�S
0/� b.n� 1/=2c.

Proof Since the function n 7! exp2.�Œ1;n�S
0/ is increasing in n (see Example 2.3),

it suffices to assume nD 2r � 1 is odd. Consider the space RP2r (for r 2 Z>0 ) and
its reduced suspension spectrum †1RP2r, which is 2–power torsion. We know that
zK0.RP2r /' Z=2r by [9, Proposition 2.7.7]. It follows that (see Example 2.2)

(6) exp2.†
1RP2r /� r:
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Now †1RP2r has cells in degrees 1 to 2r . By Lemma 4.1, exp2.�Œ0;2r�1�S
0 ^

†1RP2r /� r , too.

We have a cofiber sequence

�Œ1;2r�1�S
0
^†1RP2r

�! �Œ0;2r�1�S
0
^†1RP2r

�!HZ^†1RP2r :

The integral homology of †1RP2r is annihilated by 2, so the HZ–module spectrum
HZ^RP2r is a wedge of copies of HZ=2 and is thus annihilated by 2. It therefore
follows from this cofiber sequence and Proposition 2.6 that

exp2.�Œ1;2r�1�S
0
^†1RP2r /� r � 1;

so exp2.�Œ1;2r�1�S
0/� r � 1 as well (in view of Example 2.4).

Let p be an odd prime. We will now give the analogous argument in this case.

Proposition 4.3 We have expp.�Œ1;n�S
0/� b.n� 1/=.2p� 2/c.

Proof For simplicity, we will work with B†p (which, implicitly, will be p–localized)
rather than BZ=p . The p–local homology of B†p is well-known (for the mod
p homology from which this can be derived, together with the absence of higher
Bocksteins, see [18, Lemmma 1.4]): one has

Hi.B†pIZ.p//'

8<:
Z.p/ if i D 0;

Z=p if i D k.2p� 2/� 1; k > 0;

0 otherwise.

One can thus build a cell decomposition of the (reduced) suspension spectrum †1B†p

with cells in degrees � 0;�1 mod .2p� 2/ starting in degree 2p� 1.

Let k > 0, and consider the ..2p� 2/k/–skeleton of this complex. We obtain a finite
p–torsion spectrum Yk equipped with a map

Yk !†1B†p

inducing an isomorphism in H�. � IZ.p// up to and including degree k.2p�2/. That is,
by universal coefficients, H i.Yk IZ.p//'Z=p if iD 2p�2; 2.2p�2/; : : : ; k.2p�2/,
and is zero otherwise.

We now claim

(7) K0.Yk/' Z=pk :

In order to see this, we use the Atiyah–Hirzebruch spectral sequence (AHSS)

H�.Yk IZ/D)K�.Yk/:
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Since the cohomology of Yk is concentrated in even degrees, the AHSS degenerates
and we find that K0.Yk/ is a finite p–group of length k . However, the extension
problems are solved by naturality with the map Yk !†1B†p , as zK0.B†p/' Zp

after p–adic completion.

Now Yk is a finite spectrum with cells in degrees Œ.2p � 2/ � 1; .2p � 2/k�. Let
mD .2p� 2/.k � 1/C 1. Then we have, by Lemma 4.1 and (7),

(8) expp.Yk/D expp.�Œ0;m�S
0
^Yk/� k:

Finally, expp.HZ^Yk/D 1 since the p–local homology of Yk is annihilated by p .
It follows that expp.�Œ1;m�S

0/� k � 1, which is the estimate we wanted if we choose
k as large as possible so that mD .2p� 2/.k � 1/C 1� n.

Remark In view of the Kahn–Priddy theorem [16], it is not surprising that the skeleta
of classifying spaces of symmetric groups should yield strong lower bounds for torsion
in the Postnikov sections of the sphere.

5 The Hurewicz map

We next apply our results about the Postnikov sections �Œ1;m�S0 to the original question
of understanding the exponents in the Hurewicz map. Let Y be a connective spectrum.
Then the Hurewicz map is realized as the map in homotopy groups induced by the map
of spectra

Y ^S0
! Y ^HZ;

whose fiber is Y ^ �Œ1;1�S
0 . As a result of the long exact sequence in homotopy, we

find the following result.

Proposition 5.1 Let Y be any connective spectrum.

(a) Suppose �Œ1;n�S0 is annihilated by N for some N > 0. Then any element x in
the kernel of the Hurewicz map �n.Y /!Hn.Y IZ/ satisfies N x D 0.

(b) Suppose �Œ1;n�1�S
0 is annihilated by N 0 for some N 0>0. Then for any element

y 2Hn.Y IZ/, N 0y is in the image of the Hurewicz map.

The homotopy groups of X ^ ��1S0 are classically denoted �i.X / (and called
Whitehead’s � –groups). The following argument also appears in, for example, [7,
Theorem 6.6], [20, Corollary 4.6], and [10].
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Proof For the first claim, consider the fiber sequence Y ^ �Œ1;1�S
0! Y ! Y ^HZ.

Any element x 2 �n.Y / in the kernel of the Hurewicz map lifts to an element x0 2

�n.Y ^ �Œ1;1�S
0/. It suffices to show that N x0 D 0. But we have an isomorphism

�n.Y ^ �Œ1;1�S
0/' �n.Y ^ �Œ1;n�S

0/;

and the latter group is annihilated by N by hypothesis (and Example 2.2), so N x0D 0

as desired.

Now fix y 2 Hn.Y IZ/. In order to show that N 0y belongs to the image of the
Hurewicz map, it suffices to show that it maps to zero via the connective homomorphism
into �n�1.Y ^ �Œ1;1�S

0/. But we have an isomorphism �n�1.Y ^ �Œ1;1�S
0/ '

�n�1.Y ^ �Œ1;n�1�S
0/ and this latter group is annihilated by N 0 .

Remark One has an evident p–local version of Proposition 5.1 for p–local spectra
if one works instead with �Œ1;n�S0

.p/
.

Proof of Theorem 1.3 The main result on exponents follows now by combining
Proposition 5.1 and our upper bound estimates in Theorem 2.8.

It remains to show that the bound is close to being the best possible. This will follow
by re-examining our arguments for the lower bounds.

Proof of Proposition 1.4 We start with the prime 2. For this, we use the space
RP2k and form the endomorphism ring spectrum Z DHom.†1RP2k ; †1RP2k/'

†1RPk ^D.†1RP2k/ where D denotes Spanier–Whitehead duality. The spectrum
Z is not connective, but it is .1� 2k/–connective (ie its cells begin in degree 1� 2k ).
Then we have a class x 2 �0.Z/ representing the identity self-map of †1RP2k . We
know that x has order at least 2k (in view of (6)), but that 2x maps to zero under the
Hurewicz map since the homology of Z is a sum of copies of Z=2 in various degrees
by the integral Künneth formula, and since the homology of RP2k is annihilated by
2. If we replace Z by †2k�1Z , we obtain a connective spectrum together with a
class (the translate of 2x ) in �2k�1 of order at least 2k�1 that maps to zero under the
Hurewicz map.

At an odd prime, one carries out the analogous procedure using the spectra Yk used in
Proposition 4.3, and (8). One takes k D r C 1.

Remark We are grateful to Peter May for pointing out the following. Choose q � 0,
and consider the cofiber sequence

C D ��0S�q
! S�q

! �<0S�q:
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Choosing n> 0 and q appropriately, we can find an element in �n.C /D�nCq.S
0/ of

large exponent (eg using the image of the J –homomorphism), larger than exp.�Œ1;n�S0/.
This element must therefore not be annihilated by the Hurewicz map �n.C / !

Hn.C IZ/. Let the image in Hn.C IZ/ be x . However, the map Hn.C IZ/ !
Hn.S

�qIZ/ is zero, so x must be in the image of HnC1.�<0S�qIZ/. This gives
interesting and somewhat mysterious examples of homology classes in degree n of a
coconnective spectrum.

6 Applications

We close the paper by noting a few applications of considering the exponent of the
spectrum itself. These are mostly formal and independent of Theorem 2.8, which
nevertheless supplies the explicit bounds.

We begin by recovering and improving upon a result from [4] on k –invariants.

Theorem 6.1 Let X be a connective spectrum. Then the nth k –invariant ��n�1X !

†nC1H�nX is annihilated by exp.�Œ1;n�S0/.

Proof It suffices to show that H nC1.��n�1X I�nX / is annihilated by exp.�Œ1;n�S0/.
By the universal coefficient theorem (and the fact that the universal coefficient exact
sequence splits), it suffices to show that the two abelian groups Hn.��n�1X IZ/ and
HnC1.��n�1X IZ/ are each annihilated by exp.�Œ1;n�S0/. This follows from the
cokernel part of Proposition 5.1 as ��n�1X has no homotopy in degrees n or nC1.

Corollary 6.2 If X is a connective spectrum, then the nth k –invariant of X has
p–exponent at most dn=2e C 3 for p D 2, and at most d.nC 3/=.2p� 2/e C 1 for
p > 2.

Asymptotically, Corollary 6.2 is stronger than the results of [4], which give p–exponent
n�Cp for Cp a constant depending on p , as n!1.

Next, we consider a question about the homology of infinite loop spaces.

Theorem 6.3 Let X be an .m� 1/–connected infinite loop space. Then the kernel of
the (unstable) Hurewicz map �n.X /!Hn.X IZ/ is annihilated by exp.�Œ1;n�m�S

0/.
Therefore, the p–exponent of the kernel is at most d.n�m/=2eC 3 for p D 2, and at
most d.n�mC 3/=.2p� 2/eC 1 for p > 2.

This improves upon (and makes explicit) a result of Beilinson [10], who also considers
the cokernel of the map from �n.X / to the primitives in Hn.X IZ/.
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Proof Without loss of generality, we can assume that X is n–truncated. Let Y be
the m–connective spectrum that deloops X . Consider the cofiber sequence

Y ! ��n�1Y !†nC1H�nY:

By Theorem 6.1, the k –invariant map ��n�1Y ! †nC1H�nY is annihilated by
exp.�Œ1;n�m�S

0/. Consider the rotated cofiber sequence

†�1��n�1Y !†nH�nY ! Y:

Using the natural long exact sequence, we obtain a map

Y !†nH�nY;

which induces multiplication by exp.�Œ1;n�m�S
0/ on �n . Compare [3, Lemma 4] for

this argument.

Delooping, we obtain a map of spaces �W X!K.�nX; n/ which induces multiplication
by exp.�Œ1;n�m�S

0/ on �n . Now we consider the commutative diagram

�n.X /

��

��

// Hn.X IZ/

��

��

�n.K.�nX; n//
'
// Hn.K.�nX; n/IZ/:

Choose x 2 �n.X / to be in the kernel of the Hurewicz map; the diagram shows that
��.x/D exp.�Œ1;n�m�S

0/x D 0, as desired.

Next, we give a more careful statement of Theorem 1.5 (in terms of exponents of
Postnikov sections of S0 ), and prove it. Note that this result is generally much sharper
than Corollary 2.7.

Proposition 6.4 Let X be a p–torsion spectrum with homotopy groups concentrated
in an interval Œa; b� of length ` D b � a. Suppose pk annihilates �i.X / for each i .
Then expp.X /� kC expp.�Œ1;`�S

0/C expp.�Œ1;`�1�S
0/D kC `=.p� 1/CO.1/.

The argument is completely formal with the exception of the equality expp.�Œ1;`�S
0/C

expp.�Œ1;`�1�S
0/D `=.p � 1/CO.1/. This comparison follows from Theorem 2.8.

Proposition 6.4 plus the estimates of Theorem 2.8 yield Theorem 1.5. We note that a
simple calculation can make O.1/ explicit.

Proof Without loss of generality, we assume aD 0 so bD `. We consider the cofiber
sequence and diagram

�Œ1;1�S
0
^X !X !HZ^X:
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This induces an exact sequence

(9) �0Hom.HZ^X;X /! �0Hom.X;X /! �0Hom.�Œ1;1�S
0
^X;X /:

Let R1 D pexpp.�Œ1;b�S
0/ and R2 D pexpp.�Œ1;b�1�S

0/ . We will bound the exponents
of the terms on either side by R1 and R2pk in order to bound the exponent on the
group in the middle (which will give a torsion exponent for X ). Note that since X is
concentrated in degrees Œ0; b�, one has the following:

�0Hom.HZ^X;X /' �0Hom.��b.HZ^X /;X /;(10)

�0Hom.�Œ1;1�S
0
^X;X /' �0Hom.�Œ1;b�S

0
^X;X /:(11)

We claim first that ��b.HZ ^X / is annihilated by R2pk . To see this, it suffices
to show, since ��b.HZ ^ X / is a generalized Eilenberg–MacLane spectrum, that
its homotopy groups are each annihilated by R2pk . That is, we need to show that
each of the homology groups of X is annihilated by R2pk . For this, we consider the
Hurewicz homomorphism

�i.X /!Hi.X IZ/ for i � b:

The source is annihilated by pk , and Proposition 5.1 implies that the cokernel is
annihilated by R2 . This proves that Hi.X IZ/ is annihilated by R2pk for each
i 2 Œ0; b�. Therefore, (10) is annihilated by R2pk .

Next, we claim that �Œ1;b�S0^X is annihilated by R1 . This is evident by Example 2.4,
because �Œ1;b�S0 is. Thus, (11) is annihilated by R1 .

Putting everything together, we obtain the desired torsion bounds on the ends of (9), so
the middle term is annihilated by R1R2pk , and we are done.

Finally, we show that our results have applications to exponent theorems in equivariant
stable homotopy theory. We begin by noting a useful example on the stable homotopy
of classifying spaces.

Example 6.5 Let G be a finite group and let †1BG be the reduced suspension
spectrum of the classifying BG . Then for any n, the abelian group �n.†

1BG/ is
annihilated by jGjexp.�Œ1;n�S0/. This follows from Proposition 5.1 since the integral
homology of BG is annihilated by jGj. In fact, we obtain that the spectrum �Œ1;n�BG is
annihilated by jGjexp.�Œ1;n�S0/. We do not know if the growth rate of exp.�Œ1;n�BG/

is in general comparable to this.

Let G be a finite group, and consider the homotopy theory SG of genuine G –equivariant
spectra. The symmetric monoidal category SG has a unit object, the equivariant sphere
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S0 . We will be interested in exponents for the equivariant stable stems �n;G.S
0/D

�0HomSG
.Sn;S0/. More generally, we will replace the target S0 by a representation

sphere SV , for V a finite-dimensional real representation of G . In this case, we
will write �n;G.S

V / D HomSG
.Sn;SV /. For a subgroup H � G , we will write

WH DNG.H /=H for the Weyl group.

Theorem 6.6 Let V be a finite-dimensional G –representation. Suppose n is not equal
to the dimension dim VH for any subgroup H �G . Then the abelian group �n;G.S

V /

is annihilated by the least common multiple of fjWH jexp.�Œ1;n�dim VH �S
0/g as H �G

ranges over all the subgroups with dim VH < n. In particular, the p–exponent of
�n;G.S

V / is at most

expp.�n;G.S
V //� max

H�G;dim VH<n
.vp.jWH j/C expp.�Œ1;n�dim VH �S

0//

D max
H ;dim VH<n

�
vp.jWH j/C

n� dim VH

2p� 2

�
CO.1/;

where vp denotes the p–adic valuation.

Remark The least common multiple simplifies to jGjexp.�Œ1;n�dim V �S
0/ when n>

dim V .

Proof This follows from the Segal–tom Dieck splitting [13], which implies that

�n;G.S
V /D

M
H

�n..†
1SVH

/hWH
/;

where H ranges over a system of conjugacy classes of subgroups of G . When V is
the trivial representation, we can apply Example 6.5 to conclude.

In general, we have that .†1SVH
/hWH

is dim VH–connective. Moreover, the ho-
mology H�.S

VH
IZ/ is concentrated in dimension dim VH , so it follows that for n>

dim VH , Hn..†
1SVH

/hW H IZ/ is annihilated by the order of WH . For n<dim VH ,
there is no contribution in homotopy from .†1SVH

/hWH
. Applying Proposition 5.1

and Theorem 2.8, we obtain the desired exponent result.

In equivariant stable homotopy theory, one is more generally interested in maps SW !

SV where W and V are orthogonal representations of G . Unfortunately, the method
of Theorem 6.6 does not seem to give anything unless W is very small relative to V ,
in which case one can use a cell decomposition of SW and apply Theorem 6.6 to the
individual cells.
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