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Tits rigidity of CAT.0/ group boundaries

KHEK LUN HAROLD CHAO

ERIC SWENSON

We define Tits rigidity for visual boundaries of CAT.0/ groups, and prove that the
join of two Cantor sets and its suspension are Tits rigid.

53C23; 20F67, 51F99

1 Introduction

A CAT.0/ space X has two natural boundaries with the same underlying point set: the
visual boundary @X and the Tits boundary @T X . The obvious bijection from @T X

to @X is continuous, but need not be a homeomorphism.

In the classical case where X is a Riemannian .nC1/–manifold of nonpositive sectional
curvature, then @X D Sn , so the visual boundary contains very little information (only
the dimension). The Tits boundary, on the other hand, is much more interesting. For
example, the Tits boundary of EnC1 is also Sn , while the Tits boundary of HnC1 is
discrete. These are of course different for n> 0. Even in the case where nD 2, there
are at least two other possible Tits boundaries: the Tits boundary of H2 �R is the
spherical suspension of an uncountable discrete set; and the examples of Croke and
Kleiner give the infamous Eye of Sauron pattern. In this paper we examine the other
extreme, where the visual topology dictates the Tits metric.

Suppose that X admits a geometric group action. Ruane showed in [11] that if @X is
a suspension of Cantor set, then @T X is the spherical suspension of an uncountable
discrete set. In [4] it is shown that if @X is the join of two Cantor sets, and if X

admits a geometric action by a group G that contains Z2 , then @T X is isometric to
the spherical join of two uncountable discrete sets.

We prove that the same result holds without the Z2 assumption on G . We use the
action of ultrafilters over G on @X , whose properties were investigated in [6]. We will
also show that if @X is the suspension of a join of two Cantor sets, then @T X is also
the spherical suspension of the spherical join of two uncountable discrete sets. These
results suggest the definition of Tits rigidity, and the above results can be rephrased
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by saying that the suspension of a Cantor set, the join of two Cantor sets and the
suspension of the join of two Cantor sets are all Tits rigid. On the other hand, a sphere
of dimension n> 0 is not Tits rigid since, as we saw, EnC1 and HnC1 have different
Tits boundaries.

The organization of this paper is as follows. This section reviews some basic notions
and defines Tits rigidity; Section 2 completes the proof that the join of two Cantor sets
is Tits rigid; and Section 3 proves that the suspension of the join of two Cantor sets is
Tits rigid. We state some questions in Section 4.

We refer the reader to Bridson and Haefliger [2] or Ballmann [1] for more details.

Definition 1.1 For a metric space X and an interval I of R, an isometric embedding
˛W I !X is called a geodesic. By abuse of notation we will also refer to the image
of ˛ as a geodesic.

Definition 1.2 For a geodesic metric space X and a geodesic triangle �.a; b; c/ in X

with vertices a; b; c 2X , there is a Euclidean comparison triangle �D�.a; b; c/�E2

with d.a; b/ D d.a; b/, d.a; c/ D d.a; c/ and d.b; c/ D d.b; c/. We define the
comparison angle by †a.b; c/D†a.b; c/.

Each point z 2�.a; b; c/ has a unique comparison point z 2�. We say that the triangle
�.a; b; c/ is CAT.0/ if for any y; z 2�.a; b; c/ with comparison points y; z 2�, we
have d.y; z/� d.y; z/. The space X is said to be CAT.0/ if every geodesic triangle
in X is CAT.0/.

If X is CAT.0/, then for any geodesic ˛W Œ0; r �!X and ˇW Œ0; s�!X with ˛.0/D
ˇ.0/D a, the function

�.r; s/D†a.˛.r/; ˇ.s//

is an increasing function of r; s . Thus limr;s!0 �.r; s/ exists and we call this limit
†a.˛.r/; ˇ.s//. It follows that for any a; b; c in a CAT.0/ space,

†a.b; c/�†a.b; c/:

Recall that a metric space is proper if closed metric balls are compact. Recall also
that an action by isometries of a group G on a space X is geometric if the action is
properly discontinuous and cocompact.

In this paper, G will be a group and X an unbounded proper CAT.0/ space on which
G acts geometrically.

The (visual) boundary @X is the set of equivalence classes of rays, where rays are
equivalent if they are within finite Hausdorff distance of each other. Given a ray R and
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a point x 2X , there is a ray S emanating from x with R� S . Fixing a base point
0 2X , we define the visual topology on X DX [ @X by taking the basic open sets
about x 2 X to be the open metric balls about x . For y 2 @X and a ray R from 0
representing y , we construct basic open sets U.R; n; �/, where n; � > 0. We say that
z 2 U.R; n; �/ if the unit speed geodesic S W Œ0; d.0; z/�! X from 0 to z satisfies
d.R.n/;S.n// < � . These sets form a basis for a regular topology on X and @X . For
any x 2 X and u; v 2 @X , we can define †x.u; v/ and †x.u; v/ by parametrizing
the rays Œx;u/ and Œx; v/ by t 2 Œ0;1/ and taking the limit of †x as t ! 0 and as
t !1 respectively.

For u; v 2 @X , we define †.u; v/ D supp2X †p.u; v/. It follows from Bridson and
Haefliger [2, II 9.8] that †.u; v/D †p.u; v/ for any p 2 X . Notice that isometries
of X preserve the angle between points of @X . This defines a metric called the angle
metric on the set @X . The angle metric defines a path metric dT on the set @X , called
the Tits metric, whose topology is at least as fine as the visual topology of @X . Also
†.a; b/ and dT .a; b/ are equal whenever either of them is less than � . For any u2 @X ,
we define BT .u; �/Dfv 2 @X WdT .u; v/< �g and BT .u; �/Dfv 2 @X WdT .u; v/� �g.

The set @X with the Tits metric is called the Tits boundary of X , denoted @T X .
Isometries of X extend to isometries of @T X .

The identity function @T X ! @X is continuous, but the identity function @X ! @T X

is only lower semi-continuous. That is, for any sequences .un/; .vn/� @X with un!u

and vn! v in @X , we have

lim dT .un; vn/� dT .u; v/:

Definition 1.3 A subgroup H < G is called convex if there exists a closed convex
A�X with H acting geometrically on A.

Definition 1.4 For g 2 G , we define �.g/ D infx2X d.x;g.x//. This minimum is
realized, and Min.g/D fx 2X W d.x;g.x//D �.g/g is nonempty.

For any g 2 G , the centralizer Zg is a convex subgroup that acts geometrically on
Min.g/, which is closed and convex by Ruane [10, 3.2], and Bridson and Haefliger [2,
II 6.8]. In fact, if g is hyperbolic, then Min.g/DA�Y , where Y is a closed convex
subset of X on which Zg=hgi acts geometrically (see [2, II 6.2] and [12, Lemma 14]),
and A is an axis of g .

Definition 1.5 The boundary of a CAT.0/ space will be called a CAT.0/ boundary.
If G is a group acting geometrically on a CAT.0/ space X , then @X is called a CAT.0/
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boundary of G , or we say @X is a CAT.0/ group boundary. In all cases, a CAT.0/
boundary comes equipped with both the visual topology and the Tits metric (which
normally gives a finer topology).

Definition 1.6 Let A and B be boundaries of CAT.0/ spaces. A function f W A!B

is called a boundary isomorphism if f is a homeomorphism in the visual topology
and f is an isometry in the Tits metric. A function gW A! B is called a boundary
embedding if g is a boundary isomorphism onto its image, where the metric on g.A/

is the restriction of the Tits metric.

Two boundaries of the same CAT.0/ group need not be boundary-isomorphic to each
other, or even homeomorphic to each other; see Croke and Kleiner [5].

Definition 1.7 For A�X , ƒA is the set of limit points of A in @X . For H <G , we
define ƒH Dƒ.Hx/, where Hx is the H–orbit of some x 2X (this is independent
of the choice of x ).

Lemma 1.8 Let Y be a closed, convex subset of X . Inclusion of Y into X induces
a topological embedding �W @Y !ƒY of @Y in @X . Also, � is isometric for the angle
metric. Furthermore, if diam @T Y �� , then �W @T Y ! @T X is a boundary embedding.

Proof Since the inclusion Y !X is isometric, geodesics in Y are geodesics in X , so
by choosing a base point y 2Y we have @Y �@X , which defines �. Also, for a geodesic
R in Y from y , UX .R; n; �/\Y DUY .R; n; �/, where UX is the neighborhood in X

and UY the neighborhood in Y . Thus �W @Y ! @X is an embedding with image ƒY .
Since Y is isometrically embedded in X , for any ˛; ˇ 2ƒY , †y.˛; ˇ/ is the same in
both X and Y . It follows that � is isometric for the angle metric, and so �W @T Y !@T X

will be Lipschitz 1.

Now suppose diam @T Y � � . This implies that the set S D f.˛; ˇ/ 2 @Y � @Y W

dT .˛; ˇ/ < �g is dense in @T Y � @T Y . Since the angle metric and the Tits metric
are the same when either is less than � , dT ı .�� �/D dT on S , and it follows that
�W @T Y ! @T X is an isometric embedding.

A line in the Euclidean plane gives an example where � is not a boundary embedding.

Definition 1.9 A compact metrizable space Y is said to be Tits rigid if for any
two CAT.0/ group boundaries Z1 and Z2 homeomorphic to Y , Z1 is boundary
isomorphic to Z2 .
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Definition 1.10 (Bridson and Haefliger [2]) For topological spaces Y1 , Y2 , we define
the topological join Y1 �Y2 to be the quotient

Y1 �Y2 � Œ0;
�
2
�
.�

.a; b1; 0/� .a; b2; 0/ for a 2 Y1, b1; b2 2 Y2

.a1; b;
�
2
/� .a2; b;

�
2
/ for a1; a2 2 Y1, b 2 Y2

�
:

We will refer to Y1 � Y2 � f0g as Y1 and we will refer to Y1 � Y2 � f
�
2
g as Y2 . For

fixed yi 2 Yi , the arc .y1;y2; t/, t 2 Œ0; �
2
� will be called the join arc from y1 to y2 .

For metric spaces Y1 and Y2 with metrics bounded by � , the spherical join Y1 �S Y2

is the point set Y1 �Y2 endowed with the metric

d
�
.y1;y2; �/; .y

0
1;y
0
2; �
0/
�

D arccos
�
cos � cos � 0 cos.d.y1;y

0
1//C sin � sin � 0 cos.d.y2;y

0
2//
�
:

For a topological space Y , we define the suspension †Y to be the topological join
of Y with a discrete two-point set fn;pg. In this setting we refer to the join arcs
as suspension arcs. For a metric space Y with metric bounded by � , we define the
spherical suspension †SY to be the spherical join of Y with fn;pg, where d.n;p/

is defined to be � .

1.1 Ultrafilters and pulling

Recall that an ultrafilter ! on G is a function !W 2G ! f0; 1g that satisfies these
conditions:
� !.G/D 1.
� !.∅/D 0.
� !.A[B/D !.A/C!.B/�!.A\B/.

It follows that, for any A�G , either !.A/D 1 or !.G �A/D 1, but not both. For
a 2G , the principal ultrafilter ıa is defined as

ıa.B/D

�
1 if a 2 B;

0 if a 62 B:

It follows that ! is principal if and only if !.F /D 1 for some finite F �G . If ! is
not principal we call it a nonprincipal ultrafilter, or NPUF. By the axiom of choice,
there exist NPUFs on G . For a NPUF ! on G , !.F /D 0 for all finite F �G . For
any infinite A�G , there exists a NPUF ! on G with !.A/D 1.

For an ultrafilter ! on G and y 2 @X , we define the ultralimit of y with respect to !
to be limg!! g.y/D z 2 @X if for any neighborhood U of z in @X ,

! fg 2G W g.y/ 2 U g D 1:
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It turns out that the ultralimit always exists and is unique. We will denote limg!! g.y/

by T !.y/, and think of T ! as a (generically horribly discontinuous) function from @X

to @X , or if we are feeling more charitable we will think of T ! W @T X ! @T X as a
Lipschitz-1 map (see [6, Section 1.1] for more details).

For a NPUF ! on G , we say that ! pulls from n 2 @X if there is a geodesic ray
S �X representing n and a compact set C �X with !fg 2G W g.S/\C ¤∅g D 1.
We now translate [12, Lemma 7] into the language of ultrafilters:

Lemma 1.11 If ! is a NPUF of G pulling from n 2 @X , there is a point p 2 @X with
dT .p;T

!n/D � such that T ! maps @T X into the set of Tits geodesics of length �
from T !n to p . Furthermore, for any a 2 BT .n; �/, T ! is an isometry on a Tits
geodesic Œn; a� from n to a.

Acknowledgements This work was partially supported by grant number 209403 from
the Simons Foundation.

2 The join of two Cantor sets is Tits rigid

Suppose that @X is topologically the suspension of two Cantor sets C1 and C2 , so
@X Š C1 �C2 . Replacing G with a subgroup of index at most 2, we may assume that
C1 and C2 are G –invariant. By [4, Lemma 2.3] the action of G on X is not of rank
1. Thus, by [9], since @X is one-dimensional, diam.@T X /� 4�=3.

If g 2 G with fg˙g 6� Ci for i D 1; 2, then we are done by [4, Lemma 3.7 and the
discussion above it], since if @Min.g/ is the boundary of a flat, then Zg is virtually Z2

and the result follows from [4]. Thus we may assume that there are infinitely many
hyperbolic elements g 2G with fg˙g � C1 . Let ˛ D dT .C1;C2/.

By compactness, there will be points of C1 and C2 realizing this minimum. Since
C1 and C2 are closed invariant subsets of @X , d.p;Ci/ � �=2 for any p 2 @X and
i D 1; 2 by [9, Theorem 23], so ˛ � �=2. For a 2 Ci and b 2 C3�i , let ab be the
suspension arc from a to b . For any path 
 in @.X /, let `.
 / be the Tits length of
the path 
 (which may be 1).

Lemma 2.1 Fix 1 � i � 2. Let a 2 Ci and b 2 C3�i . There exists c 2 C3�i � fbg

such that `.ab/C `.ac/� � .

Proof Suppose not. Then for all c 2 C3�i �fbg, `.ab/C `.ac/ > � .
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First consider the case where `.ab/ > �=2. By lower semi-continuity, dT .a;C3�i/C

`.ab/ > � . We can choose p 2 ab with `.pb/ > �=2 and apC dT .a;C3�i/ > �=2.
Thus d.p;C3�i/ > �=2, a contradiction.

Now consider the case where `.ab/��=2. It follows that `.ab/D dT .a;C3�i/. Thus
for any c 2C3�i�fbg there is a point p 2 ac with `.pc/ > �=2 and `.ap/C`.ab/ >

�=2. It follows that dT .p;C3�i/ > �=2, a contradiction.

We then get the following obvious consequence.

Corollary 2.2 For any a 2 C1 and b 2 C2 , `.ab/� � �˛ .

Lemma 2.3 Fix 1� i � 2 and suppose that dT .b;C3�i/ > ˛ for some b 2 Ci . Then:

(1) ˛ <
�

4
.

(2) dT .b;C3�i/�
�

2
�˛ .

(3) `.bc/� � � 2˛� dT .b;C3�i/ for all c 2 C3�i .

Proof The subset Ai D fa 2 Ci W dT .a;C3�i/ D ˛g is closed and G–invariant. It
follows that

�

2
� dT .b;Ai/� dT .b;C3�i/C dT .C3�i ;Ai/D dT .b;C3�i/C˛;

and we have (1) and (2).

Now let c 2 C3�i . If `.bc/ > � �2˛�dT .b;C3�i/, then there is a point p 2 bc with
`.pc/C˛>�=2 and `.bp/CdT .b;C3�i/C˛>�=2. It follows that dT .p;Ai/>�=2,
a contradiction.

Theorem 2.4 Let ! be an ultrafilter on G and ci 2 Ci for i D 1; 2. Let Oci D T !.ci/

for i D 1; 2. Then T !.c1c2/D Oc1 Oc2 .

Proof Let � W C1�C2�Œ0; 1�!C1�C2 be the quotient map. Since Ci is G –invariant
for i D 1; 2, T !.Ci/� Ci .

Notice that for each g 2G , g.c1c2/D g.c1/g.c2/. Suppose that for some b 2 Œc1; c2�,
Ob D T !.b/ 62 Oc1 Oc2 . Then there exist open neighborhoods Ui of Oci in Ci for i D 1; 2

and an open set V 3 Ob of C1 � C2 with �.U1 �U2 � Œ0; 1�/\ V D ∅. Notice that
!fg 2G W g.ci/� Uig D 1 for i D 1; 2. However,

fg 2G W g.b/ 2 �.U1 �U2 � Œ0; 1�/g D

2\
iD1

fg 2G W g.ci/� Uig;
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and so
!fg 2G W g.b/ 2 �.U1 �U2 � Œ0; 1�/g D 1:

We then get !fg 2 G W g.b/ 2 V g D 0, which is a contradiction. It follows that
T !.c1c2/� Oc1 Oc2 . However, by Lemma 2.1, `.c1c2/� � , so c1c2 is connected in the
Tits metric, and since T ! is Lipschitz on @T X , T !.c1c2/ is connected, and therefore
T !.c1c2/D Oc1 Oc2 .

Lemma 2.5 Let g 2 G be hyperbolic, with fg˙g � C1 . If ˛ < �=2, then there are
infinitely many c 2 C2 with `.gCc/D dT .g

C;C2/.

Proof By lower semi-continuity, there exists c 2 C2 with `.gCc/D dT .g
C;C2/. If

any positive power of g fixes c , then by [12, Corollary 10, Lemma 11, Theorem 13]
we have Z2 < G and by [4], ˛ D �=2. Thus the hgi–orbit of c is infinite, and all
points b in this orbit satisfy

`.gCb/D dT .g
C;C2/:

Theorem 2.6 ˛ D
�

2

Proof We assume ˛ < �=2.

Case I For any x 2 C1 , dT .x;C2/ D ˛ . By hypothesis, there exists a hyperbolic
element g 2 G with g˙ 2 C1 , and we let b D gC . Using Lemma 2.5, there exist
distinct c; d 2 C2 with `.bc/ D ˛ D `.bd/. Choose a ¤ b , with a 2 C1 , and then
choose e 2 C2 with `.ae/D ˛ . By Corollary 2.2, `.ac/; `.ad/; `.be/� � �˛ . Each
of the loops aebd , aebc and adbc which is nontrivial must have length at least 2� .
It follows that `.ac/; `.ad/; `.be/D � �˛ . Let m be the midpoint of the segment bc .
Let ! be a NPUF of G pulling from m. Let T !.a/ D Oa, T !.b/ D Ob , T !.c/ D Oc ,
T !.d/D Od , T !.e/D Oe , and T !.m/D Om. By Lemma 1.11, T ! is an isometry on
each Tits segment of length at most � from m and T !.@X / is contained in the set of
all Tits geodesics of length � from Om to some point Op 2 @X . Since these geodesics can
branch only at Om and Op , it follows that T !.bd/�T !.be/. However, by Theorem 2.4,

T !.bd/D Ob Od and T !.be/D Ob Oe:

Thus Ob Od � Ob Oe , and it follows by definition that Od D Oe .

Since T ! is an isometry on any Tits segment from m of length at most � and
dT .c;m/ < dT .d;m/ � � , Oc ¤ Od , and similarly Oa ¤ Ob . Thus the loop Oa Oc Ob Od is
nontrivial. Since T ! is Lipschitz with constant one for the Tits metric,

`. Ob Od/D ˛ D `. Ob Oc/:
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C1

C2

b a

edc

m
˛

˛

Ob
Om

˛ Oc

Oa
Od D Oe

˛

C1

C2

b D gC a

edc

m
ˇ

ˇ

Ob
Om

˛ Oc

Oa
Od D Oe

˛

Figure 1: Proof of Theorem 2.6. Top: Case I. Bottom: Case II.

Since Oe D Od , `. Oa Od/D ˛ , and finally `. Oa Oc/ � � � ˛ . Thus the nontrivial loop Oa Oc Ob Od
has `. Oa Oc Ob Od/� 3˛C� �˛ D � C 2˛ < 2� since ˛ < �=2. This is a contradiction.

Case II There is x 2 C1 with dT .x;C2/ > ˛ . Let g 2 G be hyperbolic with
fg˙g � C1 , and let b D gC and ˇ D dT .b;C2/. Notice that ˇ < �=2 by Lemma 2.3.
Using Lemma 2.5, there are distinct elements c; d 2 C2 with

`.bc/D ˇ D `.bd/:

Choose a¤ b , with a2C1 , and then choose e 2C2 with `.ae/D ˛ . We now proceed
as in Case I, pulling from m the midpoint of bc . We obtain, as before, a nontrivial
loop Oa Oc Ob Od . However, this time we have

`. Ob Od/; `. Ob Oc/� ˇ:

Arguing as in Case I, `. Oa Od/D˛ and `. Oa Oc/���˛ . Thus, the nontrivial loop Oa Oc Ob Od has

`. Oa Oc Ob Od/� 2ˇC˛C� �˛ D � C 2ˇ < 2�

since ˇ < �=2, and we have the same contradiction as before.

Theorem 2.7 The join of two Cantor sets is Tits rigid.

Proof By Theorem 2.6, ˛D�=2, and so by Corollary 2.2, for any a2C1 and b 2C2 ,
`.ab/D �=2.
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Let yZDC1�S C2 be the spherical join, where the metric on C1 is always � for distinct
points and similarly for C2 , so both are discrete as metric spaces. Let Z D C1 �C2 be
the topological join (notice that C1 and C2 are not discrete here). Notice that yZ DZ

as point sets.

Define ˆW yZ ! @T X by ˆ being the identity on C1 and C2 and ˆ.c1; c2; t/ D x ,
where x 2 c1c2 with dT .c1;x/D t . Note that ˆ is an isometry. We must show that
ˆW Z! @X is a homeomorphism (same point sets, different topologies). Since Z is
compact and ˆ is a bijection, it suffices to show that ˆ is continuous. Let .zk/�Z

with zk ! z . Pulling back to the product, we have z D .a; b; t/, zk D .ak ; bk ; tk/,
where a; ak 2 C1 , b; bk 2 C2 and t; tk 2 Œ0; �=2�.

We will show that ˆ.zk/ ! ˆ.z/. For t D 0, ˆ.z/ D a. Consider the sequence
.ak/ � C1 � @X . Since ak ! a and dT .ak ; ˆ.zk// D tk by definition, we have
ˆ.zk/! aDˆ.z/ by lower semi-continuity of the Tits metric. The proof is similar
if t D �=2. If t 2 .0; �=2/, then ak ! a and bk ! b (this is not true in the other
two cases). By Theorem 2.4, any cluster point p of .ˆ.zk// lies on the join arc ab .
By lower semi-continuity, dT .p;C1/ � t and dT .p;C2/ � �=2� t . It follows that
dT .p;C1/D t , and so p D ˆ.z/, so ˆ.zk/! ˆ.z/. Thus ˆ is a homeomorphism
and a Tits isometry.

For any two such CAT.0/ group boundaries, we get the boundary isomorphism by
composing the map ˆ from one with the ˆ�1 from the other.

3 Suspension of the join of two Cantor sets

We have proven that the join of two Cantor sets C1 and C2 is Tits rigid. We want
to prove that the suspension of it, ie †.C1 �C2/, is also Tits rigid. We first need a
result from dimension theory. We will use inductive dimension, which is equivalent to
covering dimension in our setting.

We define dim∅D�1. We say that Z has dimension � k at a point z 2Z if for any
neighborhood U of z , there is a neighborhood V �U of z with dim @V � k�1. We
say that Z has dimension � k if Z has dimension � k at each point.

Lemma 3.1 If Z is a compact metrizable space of dimension k , then the suspen-
sion †Z of Z has dimension kC 1.

Proof Since Z is compact and .0; 1/ is one-dimensional, then by [7, page 34],

dimŒZ � .0; 1/�D dim ZC dim.0; 1/D kC 1:
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So Z � .0; 1/ has dimension � k C 1 at each point, with equality in at least one
point. Thus †Z has dimension � kC 1 at each point, with possible exceptions at the
suspension points p and n.

Every neighborhood U of p will contain a cone neighborhood V of p with @V ŠZ .
Thus the dimension of †Z at p is at most dim ZC 1D kC 1, and similarly for n.
Since †Z has dimension � k C 1 at each point with equality in at least one point,
dim†Z D kC 1.

Definition 3.2 Let Y be a metric space and A � Y . We say that A is quasidense
in Y if, for some r > 0, Y is contained in the r –neighborhood of A.

We now prove a result on the fixed point set of the group action on the boundary @X .

Lemma 3.3 Let G be a group acting geometrically on a CAT.0/ space X . If G

has a global fixed point p , then there is a closed convex quasidense set yX �X with
yX D R� Y , where Y is a closed convex subset of yX and R is an axis of a central

element of G .

Proof The group G is finitely generated by some elements g1; : : : ;gk . By [10,
Theorems 3.2 and 3.3], for each i , p 2 Fix.gi/ D ƒMin.gi/ D ƒZgi

. By [12,
Theorem 16],

p 2
\
ƒZgi

Dƒ
h\

Zgi

i
DƒZG ;

and, since ZG is convex by [12, Theorem 11], ZG contains an element g of infinite
order. By [10, Theorem 3.4], g acts trivially on @X , so @X D Fix.g/ D ƒMin.g/.
We now let yX DMin.g/ and apply [2, Chapter II, Theorem 6.8].

Proposition 3.4 Let X be a CAT.0/ space and G a group acting geometrically
on X . The set A of points virtually fixed by G on the boundary is a Tits sphere, and
@X DA�Z and @T X DA�S Z , where Z is a compact subset of @X .

Proof If A is nonempty, then after passing to a subgroup of finite index we may
assume that the set of global fixed points of G is nonempty. By Lemma 3.3 there
exists a hyperbolic element h 2 ZG with endpoints fn;pg � A, and X contains a
quasidense subspace which is a product of an axis of h with X1 , where X1 is a closed
convex subspace on which G=hhi (see [12, Lemma 14]) acts geometrically. Thus
@X Š fn;pg � @X1 D†@X1 , and @T X D fn;pg �S @T X1 D†S@T X1 .

Suppose dim @X D k (<1 by [12, Theorem 12]). We proceed by induction on k .
For k D 0, either A D ¿, or @X is a 0–sphere, because the 0–sphere is the only
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0–dimensional space which is a suspension (of the empty set). In the latter case,
AD @X is a 0–sphere.

Assume the result holds for dimension k � 1. Let @X be k –dimensional. If A is
empty, there is nothing to prove; if not, then X contains a quasidense subset R�X1 ,
with @X D fn;pg � @X1 and @T X D fn;pg �S @T X1 .

Since @X1 � @X , @X1 is finite-dimensional and by Lemma 3.1, dim @X1 D k � 1.
Applying the result to X1 with geometric action by G=hhi, the set A1 of all points
virtually fixed by G=hhi on @X1 is a Tits sphere. Also @X1 DA1 �Z1 and @T X1 D

A1 �S Z1 , where Z1 is a compact subset of @X1 . Any point virtually fixed by G

in A� fn;pg lies on a suspension arc through a unique point q in @X1 . Thus q is
virtually fixed by G , and also by G=hhi, so q 2A1 . It follows that A is the spherical
join of fn;pg with A1 , and so A is a Tits sphere in @T X and

@X D fn;pg � .A1 �Z1/D Œfn;pg �A1��Z1 DA�Z1;

with the same equalities for the spherical joins.

Corollary 3.5 Let X be a CAT.0/ space and G a group acting geometrically on X .
Suppose that fn;pg are points on @X that are stabilized by all homeomorphisms of @X .
Then the points n and p are the only virtually fixed points of G , and there is a closed
convex set Y �X and R a geodesic line in X satisfying these conditions:
� R is a line from n to p .
� There is a closed convex quasidense subset yX � X with yX decomposing as

Y �R.
� The CAT.0/ space Y admits a geometric action.

Proof G virtually fixes the points n and p , so n;p 2A, the sphere of points virtually
fixed by G , and @X DA�Z for some closed subset of Z of @X . If A¤ fn;pg, then
since any homeomorphism of A with the identity map on Z induces a homeomorphism
on their join, there would be homeomorphisms of @X that do not stabilize fn;pg,
which contradicts the assumption. So A D fn;pg as required. By Lemma 3.3, we
get a closed convex quasidense subset yX �X , where yX D Y �R and R is the axis
of a central element g 2ZG . Notice that n and p are the endpoints of R, since the
endpoints will be virtually fixed by G and n and p are the only virtually fixed points.
Also, G=hgi will act geometrically on Y by [12].

We need the following characterization of an arc.

Theorem 3.6 (Moore [8]) Let A be a compact connected metric space. If A has
exactly two noncut points, then A is an arc.
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Lemma 3.7 Let Y be the join of two Cantor sets C1 and C2 . Then the suspension
point set fn;pg is preserved by homeomorphisms of †Y . If †Y is also a suspension
of a subspace Z , then n and p are the Z–suspension points as well and Z is isotopic
to Y in †Y .

Proof The suspension arcs of †Y will be called Y –suspension arcs. Similarly, we
will call the suspension arc of the Z–suspension structure Z–suspension arcs. We
partition †Y by the local topology:

� The suspension points fn;pg which have a neighborhood basis consisting of
cone neighborhoods (cones on Y of course), so †Y is locally connected at n

and p .

� C D Œ†C1[†C2��fn;pg (the union of the open Y –suspension arcs running
through C1 and C2 ). †Y is not locally connected at these points. For p 2 C
and U a neighborhood of p , the component of U containing p is never a
2–manifold (it always contains a topological tri-plane)

� D D †Y � Œ†C1 [†C2�. †Y is not locally connected at these points. For
p 2D , for U a sufficiently small neighborhood of p , the component of p in U

will be homeomorphic to an open subset of a disk.

This means that the suspension points of the Z–suspension are also fn;pg, and that
this set is fixed by every homeomorphism of Y .

Since we can isotope up and down suspension arcs, if ˛ is an open Z–suspension arc
and ˛\C ¤∅, then ˛ � C . (Similarly, if ˛\D¤∅ then ˛ �D .) It follows that, for
each c 2C1[C2 , the Y –suspension arc through c will be a Z–suspension arc as well.
Let c1 2 C1 and c2 2 C2 . Let ˇ � C1 �C2 be the join arc from c1 to c2 . The disk
DD†ˇ�†.C1�C2/D Y has boundary ˛1 and ˛2 , the (Y and Z )–suspension arcs
throughout c1 and c2 , respectively. Let ! DZ \D . Since ˛i is a Z–suspension arc,
˛i \! is a single point zi (for i D 1; 2). We will show that ! is an arc by showing
that ! is connected and that z1; z2 are the only noncut points of ! .

Open Z–suspension arcs are disjoint, so D D†! . Since D�fn;pg Š ! � I (where
I is a open interval) is connected, ! is connected. Notice that †Œ! �fzig��fn;pg Š

ŒD � ˛i �, which is connected, and so ! � fzig is connected. Let z 2 ! with z ¤ zi

for i D 1; 2. Thus z 2 Int D , and so the Z–suspension arc 
 is contained inD , and

 \ @D D fn;pg since 
 cannot cross ˛i . It follows that D � 
 is not connected.
Since D� 
 Š Œ! �fzg�� I , it follows that ! �fzg is not connected. Thus z is a cut
point of ! and by Theorem 3.6, ! is an arc.
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Notice that D admits a PL structure as a square with vertices n; c1;p; c2 and so that
the map from cin and cip into D is an isometry, and we can do this in a canonical
way for all such D . We isotope ! to the line segment O! in D from z1 to z2 with
the isotopy fixing @D . We can do this for each such D at the same time. We call the
image Z under this isotopy yZ , which is a union of straight line segments in each of
our squares.

Now, for each c 2 C1[C2 , with z being the unique point of Z on the Y –suspension
arc ˛ through c , we choose an isotopy of ˛ fixing n and p which takes z to c . We
do these simultaneously and extend linearly on corresponding squares. This gives us
an isotopy from yZ to Y in †Y .

Theorem 3.8 The suspension of the join of two Cantor sets is Tits rigid.

Proof Let G be a group acting geometrically on the CAT.0/ space X , with @X Š
†ŒC1 �C2�, where C1 and C2 are Cantor sets. We will show that there is an isometry
�W @T X !†S ŒC1 �S C2� such that � is a homeomorphism from @X to †ŒC1 �C2�.

By Lemma 3.7, every homeomorphism of @X fixes the suspension point set fn;pg.
Thus, by Corollary 3.5, there exists a closed convex quasidense subset yX � X with
yX D Y �R, where Y is closed and convex in X and R is a geodesic line from n

to p . Also, Y admits a geometric action. Now @X D†ƒY and @T X D†SƒY . By
Lemma 3.7, ƒY is the join of two Cantor sets. By Lemma 1.8, @Y is the join of two
Cantor sets. By Theorem 2.7, @T Y is the spherical join of two Cantor sets B1 and B2 ,
where @Y is the topological join of B1 and B2 . By Lemma 1.8, in the restriction Tits
metric, ƒY Š B1 �S B2 . Thus @T X is isometric to †SB1 �S B2 , and this gives �,
as required.

4 Further questions

We recklessly conjecture that a boundary is Tits rigid if and only if it doesn’t have a
circle as a join factor. Clearly, the circle is not Tits rigid, and all higher-dimensional
spheres will have a circle as a join factor. Thus, every known non-Tits rigid space has
a circle as a join factor. Furthermore, if we have a boundary Z Š S1 �Y , where Y is
also a boundary, we see by taking products that Z will not be Tits rigid.

The first step is to prove that more boundaries are Tits rigid. Possible candidates include
the n–fold join of Cantor sets and their suspensions or more generally boundaries
of CAT.0/ cube complexes with certain properties. Visual boundaries of universal
covers of Salvetti complexes of right-angled Artin groups may be a source of examples,
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because the known examples can be realized as such. We also imagine that spherical
buildings are Tits rigid, but have not examined this at all.

The known Tits rigid boundaries have proper closed invariant subsets, except the Cantor
set and the set with two points. This may be a common property for other Tits rigid
boundaries. For those that do have closed invariant subsets, is it true that a Tits rigid
boundary always has some closed invariant subset which is also Tits rigid with the
induced topology?

Also, for a Tits rigid boundary that is not a suspension, is the suspension of this
boundary also Tits rigid? Corollary 3.5 is a partial result. The difficulty lies in the fact
that there may be nonhomeomorphic topological spaces with homeomorphic joins; an
example is given by the double suspension theorem of Cannon and Edwards [3].

In every known Tits rigid boundary, the topology of the Tits boundary resembles the
visual topology in the best possible way, ie all the paths in the visual topology are
still paths in the Tits boundary. We suspect that this may be the case for other Tits
rigid boundaries as well, although this should become much harder to show even for
particular cases when the dimension of the visual boundary is at least two.

Recall that a CAT.0/ group is rigid if it corresponds to a unique visual boundary up
to homeomorphism. There might be nonrigid CAT.0/ groups corresponding to some
Tits rigid boundaries. Boundaries of known nonrigid CAT.0/ groups are similar in the
sense that they are shape equivalent by a result of Bestvina. If one of them is Tits rigid,
should every other visual boundary of the same group be Tits rigid too because of their
similarity?
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