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Pontryagin classes of locally symmetric manifolds

BENA TSHISHIKU

Pontryagin classes pi .M/ are basic invariants of a smooth manifold M , and many
topological problems can be reduced to computing these classes. For a locally
symmetric manifold, Borel and Hirzebruch gave an algorithm to determine if pi .M/

is nonzero. In addition they implemented their algorithm for a few well-known M
and for i D 1 , 2 . Nevertheless, there remained several M for which their algorithm
was not implemented. In this note we compute low-degree Pontryagin classes for
every closed, locally symmetric manifold of noncompact type. As a result of this
computation, we answer the question: Which closed locally symmetric M have at
least one nonzero Pontryagin class?

57R20; 06B15

1 Introduction

For a manifold M and i > 0, the Pontryagin class pi .M/ 2H 4i .M IQ/ is a diffeo-
morphism invariant. When these classes are nonzero, they can serve as obstructions to
certain geometric problems (see Tshishiku [18], for example).

In this paper, we are interested in closed locally symmetric manifolds M of noncompact
type. Let G be a semisimple Lie group without compact factors; let K � G be a
maximal compact subgroup; and let � �G be a cocompact, torsion-free lattice. The
manifold G=K has a G–invariant Riemannian metric and is a symmetric space of
noncompact type. � acts freely and properly on G=K , and the closed manifold
M D �nG=K is a locally symmetric manifold of noncompact type.

Question 1.1 For which �nG=K is pi .�nG=K/¤ 0 for some i > 0?

Throughout this paper all cohomology groups H�. � / will be with Q coefficients
unless otherwise specified.

The classical approach to determine if pi .�nG=K/ ¤ 0 is roughly as follows. Let
U � GC be the maximal compact subgroup of the complexification of G . By the
proportionality principle (see Kamber and Tondeur [10, Section 4.14]), pi .�nG=K/¤0
if and only if pi .U=K/¤0. Borel and Hirzebruch [4] relate pi .U=K/ to the weights of
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the action of K on the Lie algebra Lie.U /. From this, showing pi .U=K/¤ 0 reduces
to showing that a polynomial is nonzero modulo an ideal; see [4] for details, which
also contains explicit computations, including computations that p1.F4=Spin9/¤ 0,
p1.G2=SO4/ ¤ 0, and that the first Chern class c1.U=K/ ¤ 0, where U=K is a
compact Hermitian symmetric manifold and U is not of exceptional type.

The objective of this paper is three-fold:

(1) Give a stream-lined way to determine if pi .�nG=K/ ¤ 0. One feature of our
approach is that it does not use the proportionality principle mentioned above to reduce
to computations for the compact dual U=K . Our main idea is to use the action of � on
the visual boundary @.G=K/ to study Pontryagin classes. This differs from the approach
of Borel and Hirzebruch but ultimately reduces to the same problem: determining if a
polynomial is nonzero modulo an ideal.

(2) Compute low-dimensional Pontryagin classes pi .�nG=K/ for every locally
symmetric manifold of noncompact type, including every exceptional example. As
mentioned above, for a handful of G these computations follow from computations
done by Borel and Hirzebruch [4]. Computations for G D E6.6/ and G D E6.�26/
were done by Takeuchi [17]; however, the author was unable to find computations for
every semisimple Lie group. The purpose of the present paper is to have a single source
for computations for every �nG=K .

(3) Answer Question 1.1. A priori the answer depends on the choice of both �

and G , but it follows from the proportionality principle that the answer is independent
of � (here it is important that � is cocompact). The author’s interest in Question 1.1
arose from Tshishiku [18], in which Theorem 1.2 below is used to address a Nielsen
realization problem: if pi .�nG=K/¤0 for some i >0, then the natural homomorphism
�1.M/! �0 Diff.M;�/ does not lift to Diff.M;�/.

Main results A complete list of the simple real Lie groups of noncompact type are
contained in Tables 1 and 2 below. We use subscripts instead of parentheses wherever
possible; for example, we use On instead of O.n/ to denote the orthogonal group. The
examples in Table 1 are complex Lie groups, viewed here as real Lie groups. For any
locally symmetric space M of noncompact type, the universal cover zM is a symmetric
space. Up to isogeny the isometry group of zM has identity component equal to a
product of groups in Tables 1 and 2. See Helgason [8] for further information.

For G in Table 1, we can conclude pi .�nG=K/ D 0 for all i > 0 without any
computation (see Section 5). This is why we have separated the simple, real Lie groups
into two separate tables. The main work involved in the present paper is to determine
those G in Table 2 for which pi .�nG=K/D 0 for all i > 0. Here is a summary of
our results:
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G K

SLnC SUn
SOnC SOn
Sp2nC Spn
EC
6 E6

EC
7 E7

EC
8 E8

FC
4 F4

GC
2 G2

Table 1: Complex noncompact
simple Lie groups

G K

AI SLnR SOn
AII SU�2n Spn
AIII SUp;q S.Up �Uq/

BDI SOp;q SOp �SOq
DIII SO�2n Un
CI Sp2nR Un
CII Spp;q Spp �Spq
E6I E6.6/ sp4
E6II E6.2/ su6 � su2
E6III E6.�14/ so10 � so2
E6IV E6.�26/ f4
E7V E7.7/ su8
E7VI E7.�5/ so12 � su2
E7VII E7.�25/ e6 � so2
E8VIII E8.8/ so16
E8IX E8.�24/ e7 � su2
F4I F4.4/ sp3 � su2
F4II F4.�20/ so9
G2 G2.2/ su2 � su2

Table 2: Real noncompact sim-
ple Lie groups

Theorem 1.2 Let G be any real, simple, noncompact Lie group and let � �G be a
cocompact lattice. Then pi .�nG=K/D 0 for all i > 0 if and only if G is

(i) one of the Lie groups in Table 1, or

(ii) one of SLn.R/, SU�2n , SOp;1 or E6.�26/ .

Theorem 1.2 and its proof (in Section 6) show that the answer to Question 1.1 is
somewhat subtle. For example, let G D SOp;q and assume p � q . If p , q � 2, then
p1.�nG=K/ ¤ 0 if and only if p ¤ q . If p D q , then p2.�nG=K/ ¤ 0 as long
as p � 4. If either p D q D 2 or p D q D 3 or p > q D 1, then pi .�nG=K/D 0 for
all i > 0.

It turns out that if G is not one of the groups from (i) or (ii) in Theorem 1.2, and
� � G is cocompact, then either p1.�nG=K/ ¤ 0 or p2.�nG=K/ ¤ 0. Thus to
answer Question 1.1, we need only consider low-dimensional Pontryagin classes. To
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determine if pi .�nG=K/ ¤ 0 for i � 3 using the methods of this paper would be
feasible, but more computationally intensive.

The proof of Theorem 1.2 immediately extends to the case when G is semisimple to
give a complete classification of which �nG=K have pi .�nG=K/D 0 for all i > 0.

Corollary 1.3 Let G D
Q
Gi be a semisimple Lie group with simple, noncompact

factors Gi , and let � �G be a cocompact lattice. Then pi .�nG=K/D 0 for all i > 0
if and only if each Gi is one of the groups from (i) or (ii) in Theorem 1.2.

Instead of asking for �nG=K with a nonzero Pontryagin class, one could ask for
�nG=K with a nonzero Pontryagin number. Specifically, let M be a manifold with
dimM D 4k , and let i1; : : : ; im 2 N be such that i1 C � � � C im D k . The cup
product pi1.M/[� � �[pim.M/2H 4k.M/ can be evaluated on the fundamental class
ŒM � 2H4k.M/, and the resulting integer

hpi1.M/[ � � � [pim.M/; ŒM �i 2 Z

is called a Pontryagin number. These integers are topological invariants of M by
Novikov’s theorem (see Lafont and Roy [12], for example). We remark that a manifold
can have zero Pontryagin numbers but have some nonzero Pontryagin classes. For
example, take � �G D SOp;q with p , q both odd. As explained in [12, Theorem B],
the Pontryagin numbers of �nG=K are all zero. On the other hand, we show that
if p > q > 2, then p1.�nG=K/ ¤ 0 (see Section 6). For more information about
Pontryagin numbers of locally symmetric spaces, see [12]. For recent results about the
Euler characteristic of homogeneous spaces, see Mostow [16].

Method of proof We compute pi .�nG=K/ by the following procedure. Write
nD dimM . The unit tangent bundle T 1M !M has a flat Homeo.Sn�1/ structure
with monodromy �W � ! Homeo.Sn�1/ given by the action of � on the visual
boundary @.G=K/ ' Sn�1 . The homomorphism � induces a map of classifying
spaces M � B�! BHomeo.Sn�1/ and hence a map

��W H�.BHomeo.Sn�1//!H�.M/:

There are classes qi 2H 4i.BHomeo.Sn�1// for which ��.qi /Dpi .M/; see Section 2.
To determine if ��.qi /D 0, note that � factors �D ˛1 ı˛2 ı˛3 , where

(1) �
˛3
�!Gı

˛2
�!G

˛1
�! Homeo.Sn�1/:

Here Gı is the group G viewed as a Lie group with the discrete topology. The map
˛3 is the inclusion, ˛2 is the identity (which is continuous), and ˛1 is the action of G
on its visual boundary.
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To understand �� D .˛1 ı˛2 ı˛3/� , we study the individual maps

(2) H�.BHomeo.Sn�1//
˛�1
��!H�.BG/

˛�2
��!H�.BGı/

˛�3
��!H�.M/:

Step 1 Computing ˛�1 reduces to computing weights of the adjoint action of K on
gD Lie.G/ (see Section 4).

Step 2 Computing ˛�2 reduces to computing the map H�.BGC/!H�.BG/ induced
by complexification G!GC . This follows from Chern–Weil theory (see Section 5).

Step 3 ˛�3 is injective on the image of H�.BG/!H�.BGı/ by a transfer argument
(see Section 6).

Structure of the paper In Section 2 we define the classes qi mentioned above and
show that ��.qi /D pi .M/. In Section 3 we recall Borel’s computation of H�.BK/
for K a compact Lie group, and we recall how characteristic classes of a representation
can be computed in terms of the weights of that representation. In Sections 4 and 5
we complete Steps 1 and 2, respectively. In Section 6 we explain Step 3 and combine
Steps 1, 2 and 3 to conclude which �nG=K have pi .�nG=K/ ¤ 0 for some i > 0
and thus prove Theorem 1.2.

Acknowledgement The author would like to thank his advisor B Farb for his gracious
and ceaseless support, for his encouragement to complete this project and for extensive
comments that significantly improved a draft of this paper. The author also thanks the
referee for carefully reading this paper and pointing out several typographical errors.

2 An algorithm for computing Pontryagin classes

This section has two goals. First we recall the definition of the Pontryagin classes
of topological sphere bundles qi 2 H 4i .BHomeo.Sn�1//. Then we explain why
��.qi / D pi .M/. This will follow from the construction of a flat Homeo.Sn�1/
structure on the unit tangent bundle T 1M !M .

2.1 Pontryagin classes of sphere bundles

The Pontryagin classes pi 2 H�.BOn/ are classically defined as invariants of real
vector bundles (see Milnor and Stasheff [15]). The following proposition shows that
these invariants can also be defined for topological Rn–bundles.

Proposition 2.1 The inclusion gW On ,! Homeo.Rn/ induces a surjection

g�W H�.BHomeo.Rn/IQ/!H�.BOnIQ/:
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Proposition 2.1 can be proved using results from Kirby and Siebenmann [11]. The
argument (which the author learned from A Hatcher) is given in [18].

From Proposition 2.1, Pontryagin classes of sphere bundles can be defined as follows.
Define a homomorphism ıW Homeo.Sn�1/! Homeo.Rn/ using the Alexander trick:
ı.f / performs the homeomorphism f on the sphere of radius r for every r > 0, and
ı.f / fixes the origin. This induces maps between classifying spaces and hence a map

ı�W H�.BHomeo.Rn//!H�.BHomeo.Sn�1//:

The restriction of ı to the subgroup On � Homeo.Sn�1/ is the standard action
On! Homeo.Rn/, so there is a commutative diagram:

(3)
H�.BHomeo.Rn// H�.BHomeo.Sn�1//

H�.BOn/

//ı�

((g� vv
r�

By Proposition 2.1, there is a class zpi 2H 4i .BHomeo.Rn// with g�. zpi /Dpi . Since
diagram (3) commutes, ı�. zpi / 2H 4i .BHomeo.Sn�1// is nontrivial. We refer to the
classes qi D ı�. zpi / as the Pontryagin classes of topological sphere bundles.

2.2 Flat structure on the unit tangent bundle

We continue to assume that G is a semisimple Lie group without compact factors
and that K � G is a maximal compact subgroup. With these assumptions G=K is
contractible and has a metric of nonpositive curvature such that G acts by isometries
on G=K . In addition, G acts on the visual boundary @.G=K/'Sn�1 (see eg Ballman,
Gromov and Schroeder [2]). If G has rank 1, then the action of G on @.G=K/ is
smooth, but this is not known in general. Thus, even though G=K is an algebraic
example of a contractible, nonpositively curved manifold, the action on @.G=K/ is a
priori only an action by homeomorphisms. By restriction to � �G , we obtain an action
� ! Homeo.Sn�1/, and from this action we can build an Sn�1–bundle E ! M ,
where E is the quotient of .G=K/�Sn�1 by the diagonal action of � .

Lemma 2.2 Let M be a complete Riemannian manifold of nonpositive curvature with
universal cover zM . The sphere bundle whose monodromy is the action of the deck
group �1.M/ on the visual boundary @ zM ' Sn�1 is isomorphic to the unit tangent
bundle T 1M !M .

Lemma 2.2 shows that T 1M ! M is flat. It also explains why the monodromy
�W � ! Homeo.Sn�1/ factors as claimed in (1): � is the � –action on @.G=K/,
which is the restriction of the G–action on @.G=K/.
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Proof of Lemma 2.2 Since M has nonpositive curvature, zM is contractible, and the
unit tangent bundle � W T 1 zM ! zM is trivial. An explicit trivialization can be defined
as follows. Define a map

�W T 1 zM ! @ zM

by associating a geodesic ray to a vector via the exponential map. Now define

� W T 1 zM ! zM � @ zM;

z 7! .�.z/; �.z//:

Since @ zM is homeomorphic to Sn�1 , this gives the desired trivialization.

It is not hard to see that � is equivariant with respect to the actions of the deck group
�1.M/ on T 1 zM and zM � @ zM . Note that T 1 zM=�1.M/' T 1M . Then the quotient
by the �1.M/–action induces a bundle isomorphism:

T 1M zM ��1.M/ @ zM

M

//� 0

'' ww

3 Compact Lie groups, characteristic classes, and
representations

Let K be a compact Lie group and let BK be its classifying space. In this section
we recall Borel’s computation of the cohomology H�.BK/ (see Theorem 3.1). For a
representation �W K!GLm.C/, we recall how to use Borel’s computation to determine
the image of ��W H�.BGLm.C//!H�.BK/ (specifically the image of the Chern
classes) in terms of the weights of � . For more details, see [4].

3.1 The cohomology of BK

Let K be a compact Lie group. Let S � K be a maximal abelian subgroup. S

is homeomorphic to an r –torus .S1/r for some integer r , which is called the rank
of K . Let NK.S/ denote the normalizer of S in K . The Weyl group is defined
as W DNK.S/=S .

Theorem 3.1 (Borel [3]) Let K be a compact Lie group with maximal torus S and
Weyl group W . The inclusion S ,!K induces an isomorphism

H�.BKIQ/'H�.BS IQ/W :
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3.2 Weights, transgression and characteristic classes

Let K be a compact Lie group with maximal torus S , and let �W K ! GLn.C/
be a representation. The restriction �jS is a sum of 1–dimensional representations
�i W S ! C� , called the weights of � . By the identification C� D K.Z; 1/ and the
fact that cohomology is a represented functor, the weights can be viewed as elements
of H 1.S IZ/. Since we are interested in cohomology with Q–coefficients, we view
the weights as elements of H 1.S/DH 1.S IQ/.

For the representation � , we are interested in computing the induced map

��W H�.BGLn.C/IQ/!H�.BKIQ/

in terms of the weights �1; : : : ; �n 2H 1.S IQ/. Let S!ES!BS be the universal
principal S –bundle. The edge map

� W H 1.S IQ/!H 2.BS IQ/

on the E2–page of the Serre spectral sequence of this fibration is an isomorphism,
called the transgression. Let wi D��.�i /. The total Chern class c.�/ 2H�.BS IQ/
is defined by

(4) c.�/D 1C c1.�/C � � �C cn.�/D

nY
iD1

.1Cwi /:

The Weyl group W permutes the weights of � , so c.�/ 2H�.BS/W 'H�.BK/.

If �W K! GLn.R/ is a real representation and �CW K! GLn.C/ is the complexifi-
cation, one defines the i th Pontryagin class pi .�/ of � by the formula

pi .�/D .�1/
ic2i .�C/:

Remark The transgression � can be given concretely as follows. Make the iden-
tification H 1.H IZ/ ' Hom.H;C�/, and define Hom.S;C�/! H 2.BS/: Given
'W S !C� , form the space

E' D
EH �C�

H
;

which is the quotient of EH �C� by the diagonal action of H , where H acts on C�

by ' . Now E' has a natural projection to EH=H D BH , and this makes E' a
C�–bundle over BH . The first Chern class c1.E'/ lives in H 2.BS IZ/, and the
transgression is given by �.'/D c1.E'/.
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3.3 The invariant polynomials H �.BS/W

Let K be a compact Lie group with maximal torus S . The ring of invariant polynomials
H�.BS/W is well known (see Humphreys [9, Chapter 3]). For the exceptional groups,
explicit polynomial generators for H�.BS/W can be computed as follows. Let K be
one of the exceptional compact Lie groups: E8 , E7 , E6 , F4 , G2 . Let V be a funda-
mental representation of K of minimal dimension. Denote by �1; : : : ; �d 2H 1.S/

the weights of this representation, so that �.�i / 2H 2.BS/. Mehta [13] shows that
power sums

Ik D

dX
iD1

�.�i /
k

generate the invariant polynomials H�.BS/W . In the remainder of this section we
recall the descriptions of H�.BS/W for the different compact Lie groups, and we
record explicit generators of H�.BS/W that will be used in Sections 5 and 6.

To express the weights �1; : : : ; �d for the exceptional K , we use the descriptions from
Adams [1]. We remark that our expressions for Ik for E8 , E7 , E6 and F4 agree with
[13] up to a change of basis. Let Sym.x1; : : : ; xn/�QŒx1; : : : ; xn� denote the subring
of symmetric polynomials.

BSOn Let k D bn=2c. As a subring of QŒy1; : : : ; yk�,

H�.B SOn/'H�.BS/W D
�

Sym.y21 ; : : : ; y
2
k
/ if nD 2kC 1;

hSym.y21 ; : : : ; y
2
k
/; y1 � � �yki if nD 2k:

BUn H�.BUn/'H
�.BS/W D Sym.y1; : : : ; yn/:

Note that H�.BSUn/ is the quotient of Sym.y1; : : : ; yn/ by the ideal generated by
y1C � � �Cyn . Similarly, H�.BS.Up �Uq// is the quotient of

Sym.y1; : : : ; yp/˝Sym.z1; : : : ; zq/

by the ideal generated by y1C � � �CypC z1C � � �C zq .

BSPn H�.B Sp.n//'H�.BS/W D Sym.y21 ; : : : ; y
2
n/:

BE8 Let S � E8 be a maximal torus with Weyl group W . Up to conjugation, we
can assume S � Spin16 �E8 and that S is a maximal torus of Spin16 . This allows
us to identify H 1.S/'QfJ1; : : : ; J8g and H 2.BS/'QŒz1; : : : ; z8� in such a way
that the roots of E8 are

(5)
�
˙Ji ˙Jj if 1� i < j � 8;
1
2
.˙J1˙ � � �˙J8/ if there are an even number of negations.

Algebraic & Geometric Topology, Volume 15 (2015)



2716 Bena Tshishiku

See [1, page 56]. W preserves the roots, and H�.BS/W 'H�.BE8/ is generated by

I2k D
X

1�i<j�8

..zi C zj /
2k
C .zi � zj /

2k/C
X 1

22k
.z1˙ � � �˙ z8/

2k;

where the second sum is over all terms with an even number of negations. According to
[13, page 1088], H�.BS/W 'QŒI2; I8; I12; I14; I18; I20; I24; I30�. We record here
that I2 D 30.z21 C � � �C z

2
8/.

BE7 For any embedding SU2 ,!E8 , the identity component of the centralizer of SU2
is isomorphic to E7 (see [1, page 49]). Choose SU2 so that its roots are ˙.J7�J8/
in E8 (cf (5)). Let S �E7 be a maximal torus with Weyl group W . Since the roots of
E7 are orthogonal to the roots of SU2 , we can identify H 1.S/'QfJ1; : : : ; J6; J7C
J8g. Let zi D �.Ji / in H 2.BS/ for 1� i � 6 and let z7 D �.J7CJ8/.

Following [1, page 52], the fundamental representation of E7 is 56–dimensional, and
by restricting this representation to so12 � su2 � e7 , one can compute the weights:�

˙Ji ˙
1
2
.J7CJ8/ if 1� i � 6;

1
2
.˙J1˙ � � �˙J6/ if an odd number of the Ji are negated.

W preserves these weights, and H�.BS/W 'H�.BE7/ is generated by

I2k D

6X
iD1

�
1
2
z7C zi

�2k
C
�
1
2
z7� zi

�2k
C

1

22k

X
.z1˙ � � �˙ z6/

2k;

where the second sum is over all terms with an odd number of minus signs. According
to [13, page 1086], H�.BS/W 'QŒI2; I6; I8; I10; I12; I14; I18�. Note that for this
description of E7 ,

I2 D 6.z
2
1 C � � �C z

2
6/C 3z

2
7 :

A second computation for BE7 We will also need the following description of
H�.BE7/. This time choose SU2 ,! E8 so that its roots are ˙.J1C � � �C J8/. Let
S �E7 be a maximal torus with Weyl group W . H 1.S/ is the orthogonal complement
of J1 C � � � C J8 in QfJ1; : : : ; J8g. One can compute the weights (with respect to
this description of H 1.S/) of the fundamental representation of E7 by restricting to
SU8 �E7 (see [1, page 69]). The weights are

˙
�
Ji CJj �

1
4
.J1C � � �CJ8/

�
; 1� i < j � 8:

Let zi D �.Ji / 2 H 2.BS/ for 1 � i � 8. (Technically Ji does not live in H 1.S/,
so we really mean the restriction of the weight Ji for E8 to a weight for E7 .)
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H�.BS/W 'H�.BE7/ is generated by

I2k D
X

1�i<j�8

�
.zi C zj /�

1
4
.z1C � � �C z8/

�2k
:

As above, H�.BS/W DQŒI2; I6; I8; I10; I12; I14; I18�, and one computes

I2 D
3

4

�
7
X
1�i�8

z2i C 2
X

1�i<j�8

zizj

�
:

BE6 For any embedding SU3 ,! E8 , the identity component of the centralizer
of SU3 is isomorphic to E6 (see [1, page 49]). Choose SU3 so that its roots are
˙.J6 � J7/, ˙.J6 � J8/, and ˙.J7 � J8/ (cf (5)). Let S � E6 be a maximal torus
with Weyl group W . Since the roots of E6 are orthogonal to the roots of SU3 , we can
identify

H 1.S/'QfJ1; : : : ; J5; J6CJ7CJ8g:

Let zi D �.Ji / 2H 2.BS/ for 1� i � 5, and let z6 D �.J6CJ7CJ8/.

Lie.E6/D e6 has two 27–dimensional fundamental representations U1; U2 . One can
compute the weights of Ui by restricting to so10 � so2 � e6 . Following [1, page 53],
U1 D �

�4C�110˝ �
2C�C˝ ��1 and its weights are8<:

˙Ji C
1
3
.J6CJ7CJ8/ if 1� i � 5;

1
2

�
˙J1˙ � � �˙J5�

1
3
.J6CJ7CJ8/

�
if an even number of the Ji are negated,

�
2
3
.J6CJ7CJ8/:

W preserves these weights, and H�.BS/W 'H�.BE6/ is generated by

(6) IkD
�
�
2
3
z6
�k
C

5X
iD1

�
1
3
z6Czi

�k
C
�
1
3
z6�zi

�k
C
1

2k

X�
˙z1˙� � �˙z5�

1
3
z6
�k
:

In particular, I1 D I3 D 0, I2 D 6.z21 C z
2
2 C z

2
3 C z

2
4 C z

2
5/C 2z

2
6 and I4 D 1

12
.I2/

2 .
According to [13, page 1086], H�.BS/W 'QŒI2; I5; I6; I8; I9; I12�.

A second computation for BE6 We will also need the following description of
H�.BE6/. This time choose SU3 ,!E8 so that the roots are

(7)
˚
˙
1
2
.J1C � � �CJ6/˙

1
2
.J7CJ8/; ˙.J7CJ8/

	
:

Let S � E6 be a maximal torus with Weyl group W . H 1.S/ is the subspace of
QfJ1; : : : ; J8g that is orthogonal to the roots in (7).
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For this description of e6 , we compute the weights of the fundamental representations
U1 and U2 by restricting to su6 � su2 � e6 . As an su6 � su2–representation,

U1 D �
2
6C�

5
6˝�

1
2 and U2 D �

4
6C�

1
6˝�

1
2;

where �im denotes the i th exterior power of the standard representation of sum . Since
a Cartan subalgebra for su6 � su2 is also a Cartan subalgebra for e6 , we can iden-
tify the weights of Ui as an su6 � su2–representation with the weights of Ui as an
e6–representation.

Let uD 1
2
.J1C� � �CJ6/C

1
2
.J7CJ8/ and vD 1

2
.J1C� � �CJ6/�

1
2
.J7CJ8/. One

computes that the weights of U1 are�
Ji CJj �

1
3
.uC v/ if 1� i < j � 6 (corresponding to �26),

Ji ˙
1
2
.J7�J8/�

5
6
.uC v/ if 1� i � 6 (corresponding to �56˝�

1
2).

W preserves these weights. Let zi D �.Ji / 2 H
2.BS/ for 1 � i � 6 and let

z7 D �.J7 � J8/. (As above, by Ji we really mean the restriction of the weight
for E8 to a weight for E7 .) With respect to this basis, H�.BS/W ' H�.BE6/ is
generated by

Ik D
X

1�i<j�6

�
zi C zj �

1
3
.z1C� � �C z6/

�k
C

X
1�i�6
�2f˙1g

�
zi �

5
6
.z1C� � �C z6/C

1
2
�z7

�k
:

As above, H�.BS/W 'QŒI2; I5; I6; I8; I9; I12�, and one computes

I2 D 5.z
2
1 C � � �C z

2
6/C 3z

2
7 � 2

X
1�i<j�6

zizj :

BF4 Let S � F4 be a maximal torus with Weyl group W . Up to conjugation we can
assume S �Spin9�F4 and that S is a maximal torus of Spin9 (see [1, page 53]). This
allows us to identify H 1.S/ 'QfL1; : : : ; L4g and H 2.BS/ 'QŒz1; : : : ; z4�. The
26–dimensional fundamental representation of F4 has the following nonzero weights
(these are the short roots of F4 ; see [1, page 55]):�

˙Li if 1� i � 4;
1
2
.˙L1˙L2˙L3˙L4/:

W preserves these weights, and H�.BS/W 'H�.BF4/ is generated by

(8) I2k D

4X
iD1

z2ki C
1

22k

X
.�1z1C �2z2C �3z3C z4/

2k :
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The second sum is over all tuples .�1; �2; �3/ 2 f˙1g3 . According to [13, page 1091],
H�.BS/W DQŒI2; I6; I8; I12�. Note that I2 D 3.z21 C z

2
2 C z

2
3 C z

2
4/.

BG2 Let S � G2 be a maximal torus (its dimension is 2). Let J1 , J2 2 H 1.S/

be simple roots for G2 . Denote zi D �.Ji / 2 H 2.BS/. The Weyl group W is the
dihedral group of order 12 and it permutes the nonzero weights of the 7–dimensional
fundamental representation. These weights are

f˙J1; ˙.J1CJ2/; ˙.2J1CJ2/g:

See [6, Lecture 22], for example. H�.BS/W is generated the polynomials

I2k D z
2k
1 C .z1C z2/

2k
C .2z1C z2/

2k :

According to [13, page 1094], H�.BS/W 'QŒI2; I6�. Note that

I2 D 2.3z
2
1 C 3z1z2C z

2
2/:

4 Computing ˛�
1
W H �.BHomeo.S n�1//!H �.BG/

Since the inclusion K ,! G is a homotopy equivalence, it induces an isomorphism
H�.BG/ �!� H�.BK/. To understand ˛�1 , we study ˛1jK W K! Homeo.Sn�1/.

Let T 1eK.G=K/ be the space of rays through the origin in TeK.G=K/. The action
of K on G=K induces an action on T 1eK.G=K/. The exponential map defines a
K–equivariant homeomorphism

sW T 1eK.G=K/! @.G=K/:

The K–action on TeK.G=K/ can be described as follows. The adjoint action of
K on g D Lie.G/ decomposes into invariant subspaces k˚ p, where k D Lie.K/
and p' TeK.G=K/. This implies the following lemma. For more details, see [18].

Lemma 4.1 The action of K �G on @.G=K/ is induced by a linear representation
�W K! Aut.p/.

We refer to the representation �W K!Aut.p/'GLn.R/ as the isotropy representation.
Let r W GLn.R/!Homeo.Sn�1/ be the GLn.R/–action on the space of rays through
the origin in Rn . By Lemma 4.1, ˛1jK D r ı �. Since the map

r�W H�.BHomeo.Sn�1//!H�.BGLn.R//

is understood via diagram (3), it remains only to understand

��W H�.BGLn.R//!H�.BK/:
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As described in Section 3.2, �� can be computed using the weights of �. This will
be carried out in Sections 4.1–4.12 as follows. Let S �K be a maximal torus. The
isotropy representation �W K! Aut.p/ is a real representation, so we complexify to
get a representation �CW KC!Aut.pC/. On the maximal abelian subgroup H �KC ,
we obtain weights �i W H ! C� . To compute the weights explicitly, we pass to
the Lie algebra h of H and view the weights as elements of h� D Hom.h;C/.
After computing the weights of �C , we use (4) to express the total Chern class
c.�C/ as a polynomial in H�.BH/. Finally, since S ,! H induces an isomor-
phism H�.BH/!H�.BS/, we obtain the Pontryagin classes pi .�/D .�1/ic2i .�C/
as polynomials in H�.BS/W ' H�.BK/ ' H�.BG/. This computes ˛�1 since
˛�1 .qi /D pi .�/.

Below, Vn will denote the standard representation of gln.C/, sln.C/, son.C/ or
sp2k.C/ (for nD 2k ).

4.1 Isotropy representation for SLn.R/

Upon complexification, we need to study the isotropy representation of SOn.C/, a
subgroup of SLn.C/. The adjoint representation of sln.C/ is isomorphic to the kernel
of the contraction Vn˝V �n !C . As an son.C/–representation,

Vn˝V
�
n 'ƒ

2.Vn/CSym2.Vn/:

ƒ2.Vn/ is the adjoint representation of son.C/. The representation Sym2.Vn/ is not
irreducible because son.C/ preserves a symmetric bilinear form BW Sym2.Vn/!C .
The kernel of B is the isotropy representation p.

There is a standard form B for which the diagonal subgroup H � SO.B/' SOn.C/
is a Cartan subgroup (see [6, page 268]) For this choice, we have a standard basis
h� D hL1; : : : ; Lki, where k D Œn=2�. If n is even, the weights of p are ˙Li ˙Lj
for 1� i; j � k . If n is odd, we have the additional weights ˙Li for 1� i � k .

As elements of H 2.BH/'QŒy1; : : : ; yk�, we have the following total Chern classes
for the isotropy representation. If n is even, then

(9) c.�C/D
Y
i;j

.1Cyi Cyj /.1Cyi �yj /.1�yi Cyj /.1�yi �yj /

and if n is odd, then

(10) c.�C/D
Y
i

.1�yi /.1Cyi /
Y
i;j

.1CyiCyj /.1Cyi�yj /.1�yiCyj /.1�yi�yj /:
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4.2 Isotropy representation for SUp;q

Let nD pC q . Upon complexification we need to study the isotropy representation
of KC � SLn.C/, where KC is the block diagonal subgroup

KC D .GLp.C/�GLq.C//\SLn.C/:

As described in Section 4.1, the adjoint representation of sln.C/ is a subspace of
Vn˝V

�
n . As a kC –representation,

Vn˝V
�
n D .Vp˝V

�
p CVq˝V

�
q /C .Vp˝V

�
q CV

�
p ˝Vq/:

The adjoint representation of kC is a codimension-1 subspace of the first summand.
The second summand is the isotropy representation p.

The diagonal subgroup H � KC coincides with the diagonal subgroup of SLn.C/,
so we identify h� as the quotient of hL1; : : : ; Lni by the subspace generated by
L1C� � �CLn . The weights of the isotropy representation are ˙.Li�Lj / for 1� i �p
and pC 1� j � pC q .

As an element of H 2.BH/�QŒy1 : : : ; yp; z1; : : : ; zq�, the total Chern class for the
complexified isotropy representation is

(11) c.�C/D
Y

1�i�p
1�j�q

.1C .yi � zj //.1� .yi � zj //D
Y

1�i�p
1�j�q

.1� .yi � zj /
2/:

4.3 Isotropy representation for Sp2n.R/

Upon complexification we need to study the isotropy representation of the subgroup
GLn.C/� Sp2n.C/ of matrices of the form�

A

.At /�1

�
for A 2 GLn.C/.

As a gln.C/–representation, the standard representation of sp2n.C/ decomposes as
V2n D VnC V

�
n . The adjoint representation of sp2n.C/ is isomorphic to Sym2.V /

and, as a gln.C/–representation,

Sym2.V /' .Vn˝V �n /C .Sym2.Vn/CSym2.V �n //:

Vn˝ V
�
n is the adjoint representation of gln.C/ and Sym2.Vn/C Sym2.V �n / is the

isotropy representation.
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Let H � GLn.C/ be the diagonal subgroup and identify h� D hL1; : : : ; Lni using
the standard basis. The weights of the isotropy representation are ˙.Li CLj / for
1 � i , j � n. As an element of H 2.BH/'QŒy1; : : : ; yn�, the total Chern class of
the complexified isotropy representation is

(12) c.�C/D
Y
i<j

.1Cyi Cyj /.1� .yi Cyj //
Y
i

.1C 2yi /.1� 2yi /

D

Y
i<j

.1� .yi Cyj /
2/
Y
i

.1� 4y2i /:

4.4 Isotropy representation for SOp;q

Let nD pC q , aD Œp=2� and b D Œq=2�. Upon complexification, we need to study
the isotropy representation of SOp.C/�SOq.C/� SOn.C/.

The adjoint representation of son.C/ is ƒ2.Vn/ and, as an sop.C/�soq.C/–represen-
tation,

ƒ2.Vn/' .ƒ
2.Vp/Cƒ

2.Vq//CVp˝Vq:

ƒ2.Vp/Cƒ
2.Vq/ is the adjoint representation of sop.C/� soq.C/, and Vp˝Vq is

the isotropy representation.

Let H � SOp.C/ � SOq.C/ be the standard Cartan subgroup, and identify h� D

hL1; : : : ; La; LaC1; : : : ; LaCbi. In this basis, the weights of the isotropy representa-
tion are 8̂̂̂<̂

ˆ̂:
˙Li ˙Lj if p, q are even,
˙Li ˙Lj ;˙Li if p is even and q is odd,
˙Li ˙Lj ;˙Lj if p is odd and q is even
˙Li ˙Lj ;˙Li ;˙Lj if p is odd and q is odd,

where 1� i � a and aC 1� j � aC b .

As an element of H�.BH/'QŒy1; : : : ; ya; z1; : : : ; zb�, we have the following total
Chern classes. If p and q are both even, then

(13) c.�C/D
Y
.1Cyi C zj /.1Cyi � zj /.1�yi C zj /.1�yi � zj /

D

Y
1�i�a
1�j�b

.1� .yi C zj /
2/.1� .yi � zj /

2/:

If p is even and q is odd, then

(14) c.�C/D

aY
iD1

.1�y2i /
Y
1�i�a
1�j�b

.1� .yi C zj /
2/.1� .yi � zj /

2/:
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If p is odd and q is even, then

(15) c.�C/D

bY
iD1

.1� z2j /
Y
1�i�a
1�j�b

.1� .yi C zj /
2/.1� .yi � zj /

2/:

If p and q are both odd, then

(16) c.�C/D

aY
iD1

.1�y2i /

bY
jD1

.1� z2j /
Y
1�i�a
1�j�b

.1� .yi C zj /
2/.1� .yi � zj /

2/:

4.5 Isotropy representation for Spp;q

Let nD pC q . After complexifying, we need to study the isotropy representation of
Sp2p.C/�Sp2q.C/� Sp2n.C/.

The adjoint representation of sp2n.C/ is Sym2.V2n/ and, as an sp2p.C/� sp2q.C/–
representation,

Sym2.V2n/' .Sym2.V2p/CSym2.V2q//CV2p˝V2q:

Sym2.V2p/C Sym2.V2q/ is the adjoint representation of sp2p.C/ � sp2q.C/, and
V2p˝V2q is the isotropy representation.

Let H � Sp2p.C/� Sp2q.C/ be the standard Cartan subgroup, and identify h� D

hL1;:::;Lp;LpC1;:::;LpCqi. The weights of the isotropy representation are ˙Li˙Lj ,
where 1 � i � p and 2p C 1 � j � 2p C q . As an element of H 2.BH/ '

QŒy1; : : : ; yp; z1; : : : ; zq�, the total Chern class of the complexified isotropy repre-
sentation is

(17) c.�C/D
Y

1�i�p
1�j�q

.1Cyi C zj /.1Cyi � zj /.1�yi C zj /.1�yi � zj /:

4.6 Isotropy representation for SO�

2n

Define SO�2n as the subgroup of GL2n.C/ that preserves the Hermitian form and
bilinear form defined by

In;n D

�
In
�In

�
and Bn D

�
0 In
In 0

�
;
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respectively. We complexify and study the isotropy representation of the subgroup
GLn.C/� SO2n.C/ of matrices of the form�

A

.At /�1

�
for A 2 GLn.C/.

As a gln.C/–representation, the standard representation of so2n.C/ decomposes as
V2nD VnCV

�
n . The adjoint representation of so2n.C/ is ƒ2.V2n/ and, as a gln.C/–

representation,

ƒ2.V2n/' Vn˝V
�
n C .ƒ

2.Vn/Cƒ
2.V �n //:

Vn˝V
�
n is the adjoint representation of gln.C/, and ƒ2.Vn/Cƒ2.V �n / is the isotropy

representation.

Let H � GLn.C/ be the diagonal subgroup and identify h� D hL1; : : : ; Lni. The
weights of the isotropy representation are ˙.Li C Lj / for 1 � i < j � n. As an
element of H 2.BH/'QŒy1; : : : ; yn�, the total Chern class is

(18) c.�C/D
Y
i<j

.1C .yi Cyj //.1� .yi Cyj //D
Y
i<j

.1� .yi Cyj /
2/:

4.7 Isotropy representation for SU�

2n

After complexifying, we need to study the isotropy representation of Sp2n.C/, a
subgroup of SL2n.C/. As described in Section 4.1, the adjoint representation of
sl2n.C/ is contained in V2n˝V �2n . As a sp2n.C/–representation,

V2n˝V
�
2n ' Sym2.V2n/Cƒ2.V2n/:

Sym2.V2n/ is the adjoint representation of sp2n.C/. The representation ƒ2.V2n/ is
not irreducible because, by definition, sp2n.C/ preserves an antisymmetric bilinear
form J W ƒ2.V2n/!C . The kernel of J is the isotropy representation p.

Let H � Sp2n.C/ be the standard Cartan subgroup, and identify h� D hL1; : : : ; Lni.
The nonzero weights of the isotropy representation are ˙Li ˙Lj for 1� i < j � n.
As an element of H 2.BH/, the total Chern class of the isotropy representation is

(19) c.�C/D
Y

1�i<j�n

.1Cyi Cyj /.1Cyi �yj /.1�yi Cyj /.1�yi �yj /:
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4.8 Isotropy representation for real forms of E8

Let h�.e8/ be the dual to the Cartan subalgebra of e8 . As in [1, page 56], we identify
h�8 D hJ1; : : : ; J8i.

In the remainder of this section, we use �in to denote the i th exterior power of the
standard representations of the real Lie algebras sun , son and spn .

E8.8/ The maximal compact subgroup K � E8.8/ has Lie algebra so16 . As a
K–representation, e8 decomposes as

e8 D so16˚�
C;

where �C is the positive spin representation of so16 (see [1, Chapter 6]). Then the
isotropy representation of K �E8 is the spin representation. Let h�.so16/ denote the
dual to the Cartan subalgebra of so16 . We identify h�.so16/ D hL1; : : : ; L8i. The
weights of the isotropy representation are

1
2
.˙L1˙L2˙ � � �˙L8/;

where the number of + signs is even.

Let S �K be a maximal torus. As an element of H�.BS/'QŒy1; : : : ; y8�, the total
Chern class of the complexified isotropy representation is

(20) c.�C/D
Y�

1� 1
2
.�1y1C � � �C �8y8/

�
;

where the product is over all tuples .�1; : : : ; �8/ 2 f˙1g8 that have an even number of
negatives.

E8.�24/ The maximal compact subgroup K �E8.�24/ has Lie algebra e7� su2 . As
a K–representation, e8 decomposes as

e8 D .e7˚ su2/˚ .V ˝�
1
2/;

where V is the 56–dimensional representation of E7 . See [1, page 54].

Since K � E8 have the same rank, we can identify the (dual) Cartan subalgebras
h�.e8/D hJ1; : : : ; J8i and h�.K/D

˝
J1; : : : ; J6;

1
2
.J7CJ8/

˛
˚
˝
1
2
.J7�J8/

˛
.

The roots for e7�su2 are ˙.J7�J8/ together with all the roots of e8 that are orthogonal
to J7�J8 . The roots of e8 that are not roots of e7� su2 correspond to the weights of
the isotropy representation pD V ˝�12 . Then the weights of p are�

˙Ji ˙
1
2
.J7CJ8/˙

1
2
.J7�J8/ if 1� i � 6;

1
2
.˙J1˙ � � �˙J6/˙

1
2
.J7�J8/ if an even number of the Ji are negated.
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Let S � K be a maximal torus. Define yi D �.Ji / 2 H
2.BS/ for 1 � i � 6,

y7 D �.J7C J8/ and y8 D �.J7 � J8/. The total Chern class for the complexified
isotropy representation c.�C/ 2H�.BS/W is

(21) c.�C/D
Y�

1�
�
�yiC�7 �

1
2
y7C�8 �

1
2
y8
��Y�

1� 1
2
.�1y1C� � �C�6y6C�8y8/

�
:

The first product is over i D 1; : : : ; 6 and all tuples .�; �7; �8/ 2 f˙1g3 . The second
product is over the tuples .�1; : : : ; �6; �8/ 2 f˙1g7 with an even number of negatives.

4.9 Isotropy representation for real forms of E7

E7.7/ The maximal compact subgroup K �E7.7/ has Lie algebra su8 . Following
[1, page 69], as a K–representation, e7 decomposes as

e7 D su8˚�
4
8:

Here pD �48 is the isotropy representation, and the weights are Li1CLi2CLi3CLi4
for 1� i1 < � � �< i4 � 8.

Let S�K be a maximal torus. We identify H�.BS/ with the quotient of QŒy1; : : : ;y8�
by the ideal generated by y1C � � � C y8 . The total Chern class of the complexified
isotropy representation is

(22) c.�C/D
Y

1�i1<i2<i3<i4�8

.1� .yi1 Cyi2 Cyi3 Cyi4//:

E7.�5/ The maximal compact subgroup K � E7.�5/ has Lie algebra so12 � su2 .
Following [1, page 52], e7 decomposes as a K–representation as

e7 D .so12˚ su2/˚�
C
˝�12;

where �C is the positive spin representation of K . Here p D �C ˝ �1 is the
isotropy representation. Identify h�.K/' hL1; : : : ; L6i˚ hL7i in the standard way.
The weights of the isotropy representation are 1

2
.�1L1 C � � � C �6L6/˙L7 , where

.�1; : : : ; �6/ 2 f˙1g
6 has an even number of negatives.

Let S �K be a maximal torus. As an element of H�.BS/'QŒy1; : : : ; y6�˝QŒy7�,
the total Chern class for the complexified isotropy representation is

(23) c.�C/D
Y�

1� 1
4
.�1y1C � � �C �6y6Cy7/

2
�
;

where .�1; : : : ; �6/ 2 f˙1g6 has an even number of negatives.
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E7.�25/ The maximal compact subgroup K �E7.�25/ has Lie algebra e6 � so2 . In
a similar way to [1, page 52], one shows that e7 decomposes as a K–representation:

e7 D .e6˚ so2/˚U1˝ �
2
˚U2˝ �

�2;

where U1 and U2 are the 27–dimensional representations of E6 . Make the identifica-
tions

h�.e6/D hJ1; : : : ; J5; J6CJ7CJ8i and h�.e7/D hJ1; : : : ; J6; J7CJ8i

as subspaces of h�.e8/ (see Section 3). The orthogonal complement of h�.e6/ in h�.e7/

is 1–dimensional and generated by �2J6CJ7CJ8 . We have

h�.e6 � so2/D hJ1; : : : ; J5; J6CJ7CJ8i˚ h�2J6CJ7CJ8i:

The weights of the isotropy representation are the roots of e7 that are not roots of e6�so2 .
These are ˙.J7CJ8/, ˙Ji ˙J6 for 1� i � 5, and

1
2
.�1J1C � � �C �5J5C �6.J6�J7�J8//;

where .�1; : : : ; �6/ 2 f˙1g6 has even number of negatives. To write these roots as
weights of e6 � so2 , note that

J7CJ8 D
1
3
Œ2.J6CJ7CJ8/C .�2J6CJ7CJ8/�

and
J6 D

1
3
Œ.J6CJ7CJ8/� .�2J6CJ7CJ8/�:

The weights of the isotropy representation are

� ˙
1
3
Œ2.J6CJ7CJ8/C .�2J6CJ7CJ8/�,

� ˙Ji ˙
1
3
Œ.J6CJ7CJ8/� .�2J6CJ7CJ8/� for 1� i � 5, and

�
1
2

�
�1J1 C � � � C �5J5 C �6 �

1
3
Œ�.J6 C J7 C J8/ � 2.�2J6 C J7 C J8/�

�
for

.�1; : : : ; �6/ 2 f˙1g
6 with an even number of negatives.

Let S �E6�SO2 be a maximal torus. Let zi D �.Ji / 2H 2.BS/ for 1� i � 5, and
let z6 D �.J6C J7C J8/ and z7 D �.�2J6C J7C J8/. As elements of H 2.BS/,
the weights of the isotropy representation are

� ˙.2z6C z7/,

� ˙zi ˙
1
3
.z6� z7/ for 1� i � 5, and

�
1
2

�
�1z1C � � � C �5z5C �6 �

1
3
.�z6 � 2z7/

�
for .�1; : : : ; �6/ 2 f˙1g6 with even

number of negatives.

Algebraic & Geometric Topology, Volume 15 (2015)



2728 Bena Tshishiku

The total Chern class is

(24) c.�C/D
�
1� 1

9
.2z6Cz7/

2
�Y�

1� .ziC
1
3
.z6�z7//

2
��
1� .zi �

1
3
.z6�z7//

2
�

�

Y�
1� 1

4

�
�1z1C � � �C �5z5C �6

1
3
.�z6� 2z7/

�2�
:

The first product is over 1� i � 5. The second product is over .�1; : : : ; �6/ 2 f˙1g6

with an even number of negatives.

4.10 Isotropy representation for real forms of E6

E6.6/ The maximal compact subgroup K � E6.6/ has Lie algebra sp4 . As a K–
representation, e6 decomposes as

e6 D sp4˚W;

where W � �48 is the kernel of the contraction map �48 ! �28 . It is the irreducible
representation of K with highest weight L1CL2CL3CL4 . So p D W and the
nonzero weights of the isotropy representation are�

˙Li ˙Lj if 1� i < j � 4;
�1L1C � � �C �4L4 if .�1; : : : ; �4/ 2 f˙1g4:

Let S � Sp4 be a maximal torus. As an element of H�.BS/ ' QŒy1; : : : ; y4�, the
total Chern class is

(25) c.�C/D
Y

1�i<j�4

.1� .yi Cyj /
2/.1� .yi �yj /

2/

�

Y
.1� .�1y1C �2y2C �3y3Cy4/

2/:

The second product is over all tuples .�1; �2; �3/ 2 f˙1g3 .

E6.2/ The maximal compact subgroup K �E6.2/ has Lie algebra su6 � su2 . As a
K–representation, e6 decomposes as

e6 D .su6˚ su2/˚ .�
3
6˝�

1
2/:

With respect to the standard basis for h�.su6 � su2/, the isotropy representation
pD �36˝�

1
2 has weights Li1 CLi2 CLi3 ˙L7 , where 1� i1 < i2 < i3 � 6.

Let S �K be a maximal torus. As an element of QŒy1; : : : ; y7��H�.BS/ the total
Chern class is

(26) c.�C/D
Y

1�i1<i2<i3�6

.1� .yi1 Cyi2 Cyi3 Cy7/
2/:
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E6.�14/ The maximal compact subgroup K �E6.�14/ has Lie algebra so10 � so2 .
According to [1, page 53], as a K–representation e6 decomposes as

e6 D .so10C so2/˚ .�
C
˝ �3C��˝ ��3/;

where �W SO2!C� denotes the identity representation of SO2 (or rather the induced
Lie algebra representation), and �k W SO2!C� denotes the kth power of � .

With respect to the standard basis h�.so10�so2/D hL1; : : : ; L5i˚hL6i, the isotropy
representation pD�C˝ �3C��˝ ��3 has weights

1
2
.�1L1C � � �C �5L5/C 3�6L6;

where .�1; � � � ; �6/ 2 f˙1g6 has an even number of negatives.

Let S �K be a maximal torus. As an element of H�.BS/'QŒy1; : : : ; y5�˝QŒy6�,
the total Chern class of the isotropy representation is

(27) c.�C/D
Y�

1� 1
4
.�1y1C � � �C �5y5C 6y6/

2
�
;

with the product over the tuples .�1; : : : ; �5/2 f˙1g5 with an even number of negatives.

E6.�26/ The maximal compact subgroup K�E6.�26/ has Lie algebra f4 . Following
[1, page 95], as a K–representation, e6 decomposes as

e6 D f4˚U;

where U is the 26–dimensional fundamental representation of f4 . With respect to the
standard basis h�.f4/D hL1; : : : ; L4i, the isotropy representation p' U has weights
˙Li for 1� i � 4 and 1

2
.˙L1˙L2˙L3˙L4/.

Let S � F4 be a maximal torus. As an element of H�.BS/'QŒy1; y2; y3; y4�, the
total Chern class of the isotropy representation is

(28) c.�C/D

4Y
iD1

.1�y2i /
Y

.�1;�2;�3/2f˙1g3

�
1� 1

4
.�1y1C �2y2C �3y3Cy4/

2
�
:

4.11 Isotropy representation for real forms of F4

F4.4/ The maximal compact subgroup K � F4.4/ has Lie algebra su2 � sp3 . As a
K–representation, f4 decomposes as

f4 D .su2˚ sp3/˚�
1
2˝W;

where W � �36 is the kernel of the contraction map �36 ! �16 (it is an irreducible
representation of Sp3 of dimension 14).
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Since K � F4.4/ have the same rank, we can identify h�.f4/D hJ1; J2; J3; J4i and
h�.su2 � sp3/D hL1i˚ hL2; L3; L4i.

The roots of F4 are8<:
˙Ji if 1� i � 4;
˙Ji ˙Jj if 1� i < j � 4;
1
2
.˙J1˙J2˙J3˙J4/:

According to [7, page 390], the roots of su2 � sp3 � f4 are

˙.J1�J2/; ˙.J1CJ2/; ˙J3; ˙J4; ˙J3˙J4;
1
2
.˙.J1CJ2/˙J3˙J4/:

We can identify these roots with the roots of su2 � sp3 inside h�.su2 � sp3/ by the
identification

J1�J2 ! 2L1;

J1CJ2 ! 2L2;

J3CJ4 ! 2L3;

J3�J4 ! 2L4:

Under this identification, the weights of the isotropy representation pDW ˝�12 will
be the roots of f4 that are not roots of su2 � sp3 . Then the weights of the isotropy
representation are ˙L1˙Li for i D 2, 3, 4 and ˙L1˙L2˙L3˙L4 (for all 16
sign choices).

Let S �K be a maximal torus. As an element of H�.BS/'QŒy1�˝QŒy2; y3; y4�,
the total Chern class for the isotropy representation is

(29) c.�C/D
4Y
iD2

.1�.y1Cyi /
2/.1�.y1�yi /

2/
Y
.1�.y1C�2y2C�3y3C�4y4/

2/;

where the second product is over all tuples .�2; �3; �4/ 2 f˙1g3 .

F4.�20/ The maximal compact subgroup K � F4.�20/ has Lie algebra so9 . Follow-
ing [1, page 51], f4 decomposes as a representation of K as

f4 D so9˚�;

where � is the spin representation of K . The isotropy representation p D � has
weights 1

2
.˙L1˙ � � �˙L4/.

Let S � K be the maximal torus. As an element of H�.BS/'QŒy1; : : : ; y4�, the
total Chern class of the isotropy representation is

(30) c.�C/D
Y

.�1;�2;�3/2f˙1g3

�
1� 1

4
.�1y1C �2y2C �3y3Cy4/

2
�
:
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4.12 Isotropy representation for real forms of G2

The maximal compact subgroup of G2.2/ is K D SU2 �SU2 . As a K–representation,
g2 decomposes as

g2 D .su2 � su2/CSym2.V /˝V;

where V is the standard representation of SU2 , and Sym2.V / is the 2nd symmetric
power. The weights of pD Sym2.V /˝V are ˙L1˙L2 and ˙3L1˙L2 . (Compare
with [6, Lecture 22] or [7, page 393].)

Let S � SU2 �SU2 be a maximal torus. As an element of H�.BS/'QŒy1; y2�, the
total Chern class is

(31) c.�C/D .1� .y2C 3y1/2/.1� .y2Cy1/2/.1� .y2�y1/2/.1� .y2� 3y1/2/:

5 Computing ˛�
2
W H �.BG/!H �.BG ı/

The following theorem allows us to compute ˛2W H�.BG/!H�.BGı/ for G a real,
semisimple Lie group.

Theorem 5.1 (Milnor [14, Theorem 2]) Let G be a real, simple, connected Lie group.
Assume that its complexification GC is simple. Then the sequence

H�.BGCIQ/
i�

�!H�.BGIQ/
˛�2
��!H�.BGı IQ/

induced by the maps Gı ! G! GC is “exact” in the sense that the kernel of ˛�2 is
the ideal generated by the image of i�W Hk.BGC/!Hk.BG/ for k > 0.

Theorem 5.1 applies to all the groups G in Table 2. If G is one of the complex Lie
groups from Table 1, then GC 'G �G is not simple, so Theorem 5.1 does not apply.
In this case, we have the following theorem, whose proof comes from Chern–Weil
theory (see [14, Lemma 11]).

Theorem 5.2 Let G be a complex, simple Lie group with finitely many components.
Then ˛�2 W H

i .BGIQ/!H i .BGı IQ/ is zero for i > 0.

By Theorem 5.2, if G is one of the groups from Table 1, then ˛�2 is zero in positive
degrees and so pi .�nG=K/D 0 for i > 0. This proves Theorem 1.2 for the groups in
Table 1.

In the remainder of this section we use Theorem 5.1 to compute ˛�2 for all the G in
Table 2. Let G be one of the groups in Table 2 with maximal compact subgroup K .
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Let GC be the complexification of G and let U be the maximal compact subgroup
of GC . Let S �K and S 0 � U be maximal tori such that complexification G!GC

sends S into S 0 . We have the following diagram of inclusions, and an induced diagram
on cohomology.

G GC

K U

S S 0

//
OOOO

//

//

OO OO

H�.BG/ H�.BGC/

H�.BK/ H�.BU /

H�.BS/W H�.BS 0/W
0

H�.BS/ H�.BS 0/

oo i�

��
'

��
'

oo

oo
j ��� ' �� '

oo

� _

��

� _

��

In the diagram on the right, the top two vertical arrows are isomorphisms because
K ,!G and U ,!GC are homotopy equivalences. The middle two vertical arrows are
isomorphisms by Theorem 3.1. Thus to compute the map i� it is enough to compute j � .
We do this in the remainder of this section.

5.1 Computing ˛�

2
for G D SLn.R/

Here K D SOn and U D SUn . For � 2R=2�Z, let

� D

�
cos.�/ sin.�/
� sin.�/ cos.�/

�
:

Let k D Œn=2�. The map S ! S 0 sends

(32)

0BBB@
�1

: : :

�k
.1/

1CCCA 7!
0@D D�1

.1/

1A ;
where

D D

0B@e
i�1

: : :

ei�k

1CA ;
and the 1 in (32) appears only if n is odd. Make the identifications

H�.BS 0/W
0

'
Sym.x1 : : : ; xn/
.x1C � � �C xn/

Algebraic & Geometric Topology, Volume 15 (2015)



Pontryagin classes of locally symmetric manifolds 2733

and

H�.BS/W '

�
Sym.y21 ; : : : ; y

2
k
/ if nD 2kC 1;

hSym.y21 ; : : : ; y
2
k
/; y1 � � �yki if nD 2k:

From (32) we see that the image of j �W H�.BS 0/W
0

!H�.BS/W is Sym.y21 ; : : : ; y
2
k
/.

5.2 Computing ˛�

2
for G D SUp;q

Here KD S.Up�Uq/ and U D SUpCq , and the inclusion S ,! S 0 is an isomorphism.
Make the identifications

H�.BS 0/W
0

'
Sym.x1 : : : ; xpCq/
.x1C � � �C xpCq/

and
H�.BS/W '

Sym.y1 : : : ; yp/˝Sym.z1; : : : ; zq/
.y1C � � �CypC z1C � � �C zq/

:

The image of j �W H�.BS 0/W
0

!H�.BS/W is Sym.y1; : : : ; yp; z1; : : : ; zq/.

Corollary 5.3 Let p , q � 2 and let G D SUp;q . Then ˛�2 W H
�.BG/!H�.BGı/

is injective on the linear subgroup generated by
P
i<j yiyj and

�P
yi
�2 .

Proof For 1� i � p (resp. 1� i � q ), let �yi (resp. �zi ) denote the i th elementary
symmetric polynomial in fy1; : : : ; ypg (resp. fz1; : : : ; zqg), viewed as elements of
H�.BS/W ' H�.BG/. Similarly, let �y;zi denote the i th elementary symmetric
polynomial in fy1; : : : ; yp; z1; : : : ; zqg. Let I denote the ideal

I D .�y;z1 ; : : : ; �
y;z
pCq/:

The following relations are easy to verify:

(33) �
y;z
1 D �

y
1 C �

z
1 and �

y;z
2 D �

y
2 C �

y
1 �

z
1 C �

z
2 :

Note that .�y1 /
2 D

�P
yi
�2 and �y2 D

P
i<j yiyj . By Theorem 5.1, to prove the

corollary it is enough to show that no nontrivial linear combination c � �y2 C d � .�
y
1 /
2

belongs to I . The elements of I that have total degree 2 all have the form

.a�
y
1 C b�

z
1 / � �

y;z
1 Cm � �

y;z
2 ;

where a; b;m are scalars. By simple linear algebra, one checks that if

c � �
y
2 C d � .�

y
1 /
2
D .a�

y
1 C b�

z
1 / � �

y;z
1 Cm � �

y;z
2 ;

then m D a D b D 0. This implies c D d D 0 because �y2 and .�y1 /
2 are linearly

independent in H�.BS/W . Hence no nontrivial linear combination c � �y2 Cd � .�
y
2 /
2

belongs to I .
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Corollary 5.4 Let p � 2 and let G D SUp;1 . Then ˛�2 W H
�.BG/! H�.BGı/ is

nonzero on
P
i<j yiyj , and

˛�2

�X
yi

�2
D ˛�2

�X
i<j

yiyj

�
:

Proof We use the same notation as in the proof of Corollary 5.3. Since q D 1 in the
present case, the relations in (33) simplify to the following relations:

(34) �
y;z
1 D �

y
1 C �

z
1 and �

y;z
2 D �

y
2 C �

y
1 �

z
1 :

Since the elements �yi , �zj are all linearly independent in H 2.BS/W , it is a simple
matter of linear algebra to show that �y2 is not in I , and hence is not in the kernel
of ˛�2 .

To see that ˛�2 ..�
y
1 /
2/D ˛�2 .�

y
2 /, note that the first equation in (34) implies that

�
y
1 � �

y;z
1 D .�

y
1 /
2
C �

y
1 �

z
1 2 I:

Then �y2 � .�
y
1 /
2D �

y;z
2 ��

y
1 ��

y;z
1 belongs to I (the right-hand side obviously does).

This implies that �y2 and .�y1 /
2 have the same image under ˛�2 .

5.3 Computing ˛�

2
for G D Sp2n.R/

Here K D Un and U D Sp.n/, and the inclusion S ,! S 0 is an isomorphism. Make
the identifications

H�.BS 0/W
0

' Sym.x21 ; : : : ; x
2
n/ and H�.BS/W ' Sym.y1; : : : ; yn/:

The image of j �W H�.BS 0/W
0

!H�.BS/W is Sym.y21 ; : : : ; y
2
n/.

Corollary 5.5 Let G D Sp2n.R/. Then ˛�2
�P

yi
�2
¤ 0.

Proof Let �i (resp. !i ) be the i th elementary symmetric polynomial in fy1; : : : ; yng
(resp. fy21 ; : : : ; y

2
ng). Let I denote the ideal .!1; : : : ; !n/.

By Theorem 5.1, to show �21 D
�P

yi
�2 is not in ker˛�2 , it is enough to show �21 … I .

Note that !1D�21�2�2 and that the only elements of I of degree 2 are scalar multiples
of !1 . Since �21 is obviously not a multiple of �21 � 2�2 , we conclude �21 … I .
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5.4 Computing ˛�

2
for G D SOp;q

Here K D SOp �SOq and U D SOpCq . Let mD Œ.pCq/=2�, let aD Œp=2�, and let
b D Œq=2�. Make the identifications

H�.BS 0/'QŒx1; : : : ; xm� and H�.BS/' Œy1; : : : ; yp; z1; : : : ; zq�:

It is not hard to see that the image of j �W H�.BS 0/W
0

! H�.BS/W contains
Sym.y21 ; : : : ; y

2
p ; z

2
1 ; : : : ; z

2
q/.

Corollary 5.6 Let p , q � 2 and let G D SOp;q . Then ˛�2
�P

y2i
�
¤ 0.

Proof The proof is the same as in Corollary 5.5. The image of

H 4.BS 0/W
0

'H 4.BGC/!H 4.BG/'H 4.BS/W

is generated by multiples of
P
y2i C

P
z2j , and

P
y2i does not have this form.

Corollary 5.7 Let p � 4 and let G D SOp;p . Then ˛�2 W H
�.BG/!H�.BGı/ is

injective on the linear subgroup generated by
P
i<j y

2
i y
2
j and

�P
y2i
�2 .

Proof The proof is identical to the proof of Corollary 5.3 after replacing yi and zj
by y2i and z2j .

5.5 Computing ˛�

2
for G D Spp;q

Here K D Sp.p/ � Sp.q/ and U D Sp.p C q/, and the inclusion S ,! S 0 is an
isomorphism. Make the identifications

H�.BS 0/W
0

' Sym.x21 ; : : : ; x
2
pCq/

and
H�.BS/W ' Sym.y21 ; : : : ; y

2
p/˝Sym.z21 ; : : : ; z

2
q/:

The image of j �W H�.BS 0/W
0

! H�.BS/W is Sym.y21 ; : : : ; y
2
p ; z

2
1 ; : : : ; z

2
q/. We

have Corollaries 5.8 and 5.9, whose proofs are identical to the proofs for Corollaries
5.6 and 5.7, respectively.

Corollary 5.8 Let p , q � 1 and let G D Spp;q . Then ˛�2
�P

y2i
�
¤ 0.

Corollary 5.9 Let q � 1 and p � 2, and let G D Spp;q . Then ˛22 is injective
on

�P
yi
�2 . If p; q � 2, then ˛�2 is injective on the linear subgroup generated byP

i<j y
2
i y
2
j and

�P
y2i
�2 .
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5.6 Computing ˛�

2
for G D SO�

2n

Here K D Un and U D SO2n , and the inclusion S ,! S 0 is an isomorphism. Make
the identifications

H�.BS 0/'QŒx1; : : : ; xn� and H�.BS/'QŒy1; : : : ; yn�:

The image of

j �W H�.BS 0/W
0

!H�.BS/W D Sym.y1; : : : ; yn/

contains Sym.y21 ; : : : ; y
2
n/. We have the following corollary, whose proof is identical

to the proof of Corollary 5.5.

Corollary 5.10 Let G D SO�2n . Then ˛�2
�P

yi
�2
¤ 0.

5.7 Computing ˛�

2
for G D SU�

2n

Here K D Spn and U D SU2n . Make the identifications

H�.BS 0/W
0

'
Sym.x1; : : : ; x2n/
.x1C � � �C x2n/

and
H�.BS/W ' Sym.y21 ; : : : ; y

2
n/:

It is not hard to see that j �W H�.BS 0/W
0

!H�.BS/W is surjective.

Corollary 5.11 Let G D SU�2n . For i > 0, the map ˛�2 W H
i .BG/! H i .BGı/ is

zero.

5.8 Computing ˛�

2
for G a real form of E8

E8.8/ Here Lie.K/Dso16 and U DE8 , and the inclusion S ,!S 0 is an isomorphism.
As in Section 3, we identify

H 1.S 0/' hJ1; : : : ; J8i and H 1.S/' hL1; : : : ; L8i:

Under H 1.S 0/ ! H 1.S/ we have Ji 7! Li . Let zi D �.Ji / 2 H
2.BS 0/ and let

yi D �.Li / 2H
2.BS/. In Section 3, we explained that

H�.BS 0/W
0

'QŒI2; I8; I12; I14; I18; I20; I24; I30�:
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Under j �W H 4.BS 0/!H 4.BS/ the polynomial I2 maps to a multiple of y21C� � �Cy
2
8 .

By Theorem 5.1 the elements of H 8.BS/W in the kernel ˛�2 are multiples of

.y21 C � � �Cy
2
8/
2
D

� 8X
iD1

y4i

�
C 2

� X
1�i<j�8

y2i y
2
j

�
:

This implies the following corollary:

Corollary 5.12 Let G DE8.8/ . With the notation above, ˛�2
�P8

iD1 y
4
i

�
¤ 0.

E8.�24/ Here K D E7 � SU2 and U D E8 , and the inclusion S ,! S 0 is an
isomorphism. Make the identifications H 1.S 0/' hJ1; : : : ; J8i and

H 1.S/' hJ1; : : : ; J6; J7CJ8i˚ hJ7�J8i:

Let zi D �.Li / 2H 2.BS 0/ for 1� i � 8. Let yi D �.Li / 2H 2.BS/ for 1� i � 6,
y7 D �.J7CJ8/ and y8 D �.L7�L8/. In Section 3 we explained that

H�.BS 0/W
0

'QŒI2; I8; I12; I14; I18; I20; I24; I30�;

and I2D 30.z21C� � �Cz
2
8/. Under j �W H 2.BS 0/!H 2.BS/, zi 7! yi for 1� i � 6,

z7 7!
1
2
.y7Cy8/ and z8 7! 1

2
.y7�y8/, so

j �.I2/D 30.y
2
1 C � � �Cy

2
6/C 15.y

2
7 Cy

2
8/:

By Theorem 5.1, every element of the kernel H 4.BE8.�24//!H 4.B.E8.�24//
ı/ is

a scalar multiple of j �.I2/. This implies the following corollary:

Corollary 5.13 Let G DE8.�24/ . With the notation above, ˛�2 .y
2
8/¤ 0.

5.9 Computing ˛�

2
for G a real form of E7

E7.7/ Here Lie.K/D su8 and U DE7 , and the inclusion S ,!S 0 is an isomorphism.
We identify H 1.S 0/ as the subspace of hJ1; : : : ; J8i orthogonal to J1C� � �CJ8 , and
we identify H 1.S/ as the subspace of hL1; : : : ; L8i orthogonal to L1 C � � � C L8 .
Then H 1.S 0/! H 1.S/ is the obvious map Ji 7! Li . Let zi D �.Ji / 2 H 2.BS 0/

and yi D �.Li / 2H 2.BS/. In Section 3 we explained that

H�.BS 0/W
0

'QŒI2; I6; I8; I10; I12; I14; I18�;

and computed I2 D
3
4

�
7
�P

z2i
�
C 2

�P
zizj

��
for this copy of E7 � E8 . Under

j �W H�.BS 0/!H�.BS/,

I2 7!
3

4

h
7
�X

y2i

�
C 2

�X
yiyj

�i
D�9

�X
yiyj

�
:
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The equality follows because of the relation
P
y2i D�2

P
yiyj in H�.BS/W . By

Theorem 5.1, every element of the kernel of

˛�2 W H
8.BE7.7//!H 8.B.E7.7//

ı/

is a scalar multiple of
�P

y2i
�2 . This implies the following corollary:

Corollary 5.14 Let G DE7.7/ . With the notation above, ˛�2
�P

y4i
�
¤ 0.

E7.�5/ Here Lie.K/ D so12 � su2 and U D E7 , and the inclusion S ,! S 0 is an
isomorphism. As in Section 3, we identify

H 1.S 0/' hJ1; : : : ; J6; J7CJ8i and H 1.S/' hL1; : : : ; L6i˚ hL7i:

Under H 1.S 0/!H 1.S/, we have�
Ji 7! Li if 1� i � 6;

J7CJ8 7! 2L7:

Let zi D �.Ji / 2 H
2.BS 0/ for 1 � i � 6 and let z7 D �.J7 C J8/. Let yi D

�.Li / 2H
2.BS/. In Section 3 we explained that

H�.BS 0/W
0

'QŒI2; I6; I8; I10; I12; I14; I18�:

Under j �W H 4.BS 0/!H 4.BS/,

I2 7! 6.y21 Cy
2
2 Cy

2
3 Cy

2
4 Cy

2
5 Cy

2
6 C 2y

2
7/:

In particular, by Theorem 5.1 every element of the kernel of

˛�2 W H
4.BE7.�5//!H 4.B.E7.�5//

ı/

is a scalar multiple of j �.I2/. This implies the following corollary:

Corollary 5.15 Let G DE7.5/ . With the notation above, ˛�2 .y
2
7/¤ 0.

E7.�25/ Here Lie.K/ D e6 � so2 and U D E7 , and the inclusion S ,! S 0 is an
isomorphism. Make the identifications H 1.S 0/' hJ1; : : : ; J6; J7CJ8i and

H 1.S/' hJ1; : : : ; J5; J6CJ7CJ8i˚ h2J6�J7�J8i:

Let zi D �.Ji / 2H 2.BS 0/ for 1� i � 6, and let z7 D �.J7CJ8/. For 1� i � 5, let
yi D �.Ji / 2H

2.BS/, and let y6 D �.J6CJ7CJ8/ and y7 D �.2J6�J7�J8/.

In Section 3 we explained that

H�.BS 0/W
0

'QŒI2; I6; I8; I10; I12; I14; I18�;
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where I2 D 6.z21 C � � � C z
2
6/C 3z

2
7 . Under j �W H 2.BS 0/ ! H 2.BS/, zi 7! yi

for 1� i � 5, z6 7! 1
3
.y6�y7/ and z7 7! 1

3
.2y6Cy7/, so

j �.I2/D 6.y
2
1 Cy

2
2 Cy

2
3 Cy

2
4 Cy

2
5/C 2y

2
6 Cy

2
7 :

By Theorem 5.1, j �.I2/ generates the kernel of

˛�2 W H
4.BE7.�25//!H 4.B.E7.�25//

ı/:

In particular, we have the following corollary:

Corollary 5.16 Let G DE7.�25/ . With the notation above, ˛�2 .y
2
7/¤ 0.

5.10 Computing ˛�

2
for G a real form of E6

E6.6/ Here Lie.K/ D sp4 and U D E6 . Make the identifications H 1.S/ '

hL1; : : : ; L4i and
H 1.S 0/� hJ1; : : : ; J6; J7�J8i

as the subspace orthogonal to the roots in (7). Under sp4 ,! e6 ,! e8 the Cartan
subalgebra h.sp4/ � sp4 is contained in the image of the Cartan subalgebra for
su6 � su2 � su8 . Under h�.e8/! h�.sp4/, we have8̂̂̂<̂

ˆ̂:
Ji 7! Li if 1� i � 3;

JiC3 7! �Li if 1� i � 3;
J7 7! L4;

J8 7! �L4:

It is then easy to determine the restriction of this map to h�.e6/.

Let zi D �.Ji / for 1 � i � 6 and z7 D �.J7 � J8/ in H 2.BS 0/. Let yi D
�.Li /2H

2.BS/ for 1� i �4. By Section 3, H�.BS 0/W
0

'QŒI2; I5; I6; I8; I9; I12�,
where

I2 D 5.z
2
1 C � � �C z

2
6/C 3z

2
7 � 2

X
1�i<j�6

zizj :

Under j �W H�.BS 0/!H�.BS/,

I2 7! 12.y21 Cy
2
2 Cy

2
3 Cy

2
4/:

By Theorem 5.1, j �.I2/ and j �.I2/2 generate (as a vector space) the kernel of

˛�2 W H
k.BE6.6//!Hk.B.E6.6//

ı/

for k D 4, 8. In particular, we have the following corollary:
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Corollary 5.17 Let G DE6.6/ . With the notation above, ˛�2
�P

y4i
�
¤ 0.

E6.2/ Here Lie.K/ D su6 � su2 and U D E6 , and the inclusion S ,! S 0 is
an isomorphism. We identify H 1.S 0/ � hJ1; : : : ; J6; J7 � J8i as the subspace of
hJ1; : : : ; J8i orthogonal to the roots in (7). We identify H 1.S/ as the subspace of
hL1; : : : ; L6i ˚ hL7i orthogonal to L1C � � � CL6 . The map H 1.S 0/! H 1.S/ is
given by Ji 7! Li for 1� i � 6 and J7�J8 7! 2Li .

Let zi D �.Ji / 2 H
2.BS 0/ for 1 � i � 6 and let z7 D �.J7 � J8/. Let yi D

�.Li / 2H
2.BS/ for 1� i � 7. In Section 3, we explained that

H�.BS 0/W
0

'QŒI2; I5; I6; I8; I9; I12�;

where
I2 D 5.z

2
1 C � � �C z

2
6/C 3z

2
7 � 2

X
1�i<j�6

zizj :

Under j �W H�.BS 0/!H�.BS/,

I2 7! 5.y21 C � � �Cy
2
6/C 12y

2
7 � 2

X
1�i<j�6

yiyj :

Since
P
y2i D�2

P
yiyj in H�.BSU6/, we can re-write this polynomial as

j �.I2/D 6.y
2
1 C � � �Cy

2
6 C 2y

2
7/:

By Theorem 5.1, the kernel of

˛�2 W H
4.BE6.2//!H 4.B.E6.2//

ı/

is generated by scalar multiples of j �.I2/. In particular, we have the following
corollary:

Corollary 5.18 Let G DE6.2/ . With the notation above, ˛�2 .y
2
7/¤ 0.

E6.�14/ Here Lie.K/D so10 � so2 and U D E6 , and the inclusion S ,! S 0 is an
isomorphism. As in Section 3 we identify

H 1.S 0/' hJ1; : : : ; J5; J6CJ7CJ8i and H 1.S/' hL1; : : : ; L5i˚ hL6i:

Under H 1.S 0/!H 1.S/ we have Ji 7! Li for 1 � i � 5 and J6C J7C J8 7! L6 .
Let zi D �.Ji / 2 H

2.BS 0/ for 1 � i � 5 and let w D �.J6 C J7 C J8/. Let
yi D �.Li / 2H

2.BS/. In Section 3, we explained that

H�.BS 0/W
0

'QŒI2; I5; I6; I8; I9; I12�:
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Under H 4.BS 0/!H 4.BS/,

I2 7! 6.y21 Cy
2
2 Cy

2
3 Cy

2
4 Cy

2
5/C 3y

2
6 :

In particular, by Theorem 5.1 every element of the kernel of

˛�2 W H
4.BE6.�14//!H 4.B.E6.�14//

ı/

is a scalar multiple of j �.I2/. This implies the following corollary:

Corollary 5.19 Let G DE6.�14/ . With the notation above, ˛�2 .y
2
6/¤ 0.

E6.�26/ Here K D F4 and U DE6 . Make the identifications

H 1.S/' hL1; : : : ; L4i and H 1.S 0/D hJ1; : : : ; J5; J6CJ7CJ8i:

Let zi D �.Ji /2H 2.BS 0/ for 1� i � 5 and let z6D �.J6CJ7CJ8/. For 1� i � 4,
let yi D �.Li / 2H 2.BS/.

Under H�.BS 0/!H�.BS/ we have z5 , z6 7! 0 and zi 7! yi for i D 1; : : : ; 4. By
(8) and (6), it is easy to see that j � is surjective.

Corollary 5.20 Let G DE6.�26/ . For i > 0, the map ˛�2 W H
i .BG/!H i .BGı/ is

zero.

5.11 Computing ˛�

2
for G a real form of F4

F4.4/ Here Lie.K/ D su2 � sp3 and U D F4 , and the inclusion S ,! S 0 is an
isomorphism. As in Section 3 we identify H 1.S 0/ ' hJ1; : : : ; J4i and we identify
H 1.S/'hL1i˚hL2; L3; L4i. Let zi D �.Ji /2H�.BS 0/ and yi D �.Li /2H�.BS/
for i D 1; : : : ; 4. In Section 4.11, we described the isomorphism H�.S 0/!H�.S/

and so, under j �W H�.BS 0/!H�.BS/,

j W

8̂̂̂<̂
ˆ̂:
z1 7! y1Cy2;

z2 7! y2�y1;

z3 7! y3Cy4;

z4 7! y3�y4:

In Section 3 we explained that H�.BS 0/W
0

'QŒI2; I6; I8; I12�, where

I2 D 3.z
2
1 C z

2
2 C z

2
3 C z

2
4/:

Under j �W H�.BS 0/!H�.BS/,

1
3
I2 7! .y1Cy2/

2
C .y2�y1/

2
C .y3Cy4/

2
C .y3�y4/

2
D 2.y21Cy

2
2Cy

2
3Cy

2
4/:
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By Theorem 5.1 the elements of H 4.BS/W that are in the kernel of ˛�2 are all scalar
multiples of y21 C � � �Cy

2
4 . The following corollary will be used in Section 6.

Corollary 5.21 Let G D F4.4/ . With the notation above, ˛�2 .y
2
1/¤ 0.

F4.�20/ Here Lie.K/D so9 and U D F4 , and the inclusion S ,! S 0 is an isomor-
phism. As in Section 3,

H 1.S 0/' hJ1; : : : ; J4i and H 1.S/' hL1; : : : ; L4i:

Under H 1.S 0/!H 1.S/ we have Ji 7! Li . Let zi D �.Ji / 2H 2.BS 0/ and yi D
�.Li / 2 H

2.BS/ for i D 1; : : : ; 4. In Section 3 we explained that H�.BS 0/W
0

'

QŒI2; I6; I8; I12�, where I2 D 3.z21 C z
2
2 C z

2
3 C z

2
4/. By Theorem 5.1, the elements

of H 8.BS/W that are in the kernel of ˛�2 are all scalar multiples of

j �.I2/
2
D 9

� 4X
iD1

y4i C 2
X

1�i<j�4

y2i y
2
j

�
:

This implies the following corollary:

Corollary 5.22 Let GDF4.�20/ . With the notation above, ˛�2
�P

1�i<j�4 y
2
i y
2
j

�
¤0.

5.12 Computing ˛�

2
for G a real form of G2

G2.2/ Here K D SU2 �SU2 and U DG2 , and the inclusion S ,! S 0 is an isomor-
phism. H 1.S 0/' hJ1; J2i and H 1.S/' hL1; L2i and, under H 1.S 0/!H 1.S/,�

J1 7! 2L1;

J2 7! �3L1CL2:

Let zi D �.Ji / in H 2.BS 0/ for i D 1, 2 and yi D �.Li / in H 2.BS/ for j D 1, 2.

In Section 3 we explained that H�.BS 0/W
0

'QŒI2; I6�, where

I2 D 2.3z
2
1 C 3z1z2C z

2
2/:

Under j �W H�.BS 0/! H�.BS/, I2 7! 2.3y21 C y
2
2/. By Theorem 5.1, 3y21 C y

2
2

generates the kernel of ˛�2 W H
4.BG2.2//!H 4.B.G2.2//

ı/. In particular, we have
the following corollary:

Corollary 5.23 Let G DG2.2/ . With the notation above, ˛�2 .y
2
1/¤ 0.
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6 Conclusion

Recall that G is a simple Lie group from Table 2 and � �G is a cocompact lattice.
Our goal in this section is to find nonzero elements in the image of the composition

H�.BHomeo.Sn�1//
˛�1
��!H�.BG/

˛�2
��!H�.BGı/

˛�3
��!H�.B�/:

In Section 4 we showed that ˛�1 .qi / D pi .�/ D .�1/ic2i .�C/, and we computed
the polynomial c.�C/. The kernel of ˛�2 is generated as an ideal by the image of
i�W H>0.BGC/!H>0.BG/ by Theorem 5.1, and i� was computed in Section 5.
Finally, ˛�3 is injective by the following proposition:

Proposition 6.1 Let � � G be a cocompact lattice. Then the image of the map
H�.BG/!H�.BGı/ injects into H�.B�/.

The proof of Proposition 6.1 uses a transfer argument and can be found in [5, Sec-
tion 2.3]. We can thus combine the computations from Sections 4 and 5 to determine if
pi .�nG=K/¤ 0.

6.1 Pontryagin classes for SLn.R/–manifolds

Theorem 6.2 Let � �G D SLn.R/ be a cocompact lattice. Then pi .�nG=K/D 0
for i > 0.

Proof In Section 4.1 we computed the total Chern class c.�C/ of the isotropy
representation. By (9) and (10), c.�C/ is a symmetric polynomial in fy21 ; : : : ; y

2
k
g,

where k D Œn=2�. This implies that c.�C/ is in the image of

H�.BSLn.C//!H�.BSLn.R//;

by Section 5.1. Then ˛�2 .c.�C//D 0 by Theorem 5.1. Hence

pi .M/D ˛�3˛
�
2˛
�
1 .qi /D .�1/

i˛�3˛
�
2 .c.�C//D 0:

6.2 Pontryagin classes for SUp;q –manifolds

Theorem 6.3 Let p , q � 1 and .p; q/¤ .1; 1/. Let G D SUp;q and let � �G be a
cocompact lattice. Then p1.�nG=K/¤ 0.

Note that SU1;1 ' SO2;1 . This case is covered in Theorem 6.7.
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Proof of Theorem 6.3 From (11), one computes

p1.�/D q
X

y2i Cp
X

z2j � 2
X

yizj :

Using the relation
P
yi C

P
zj D 0 in H�.BS/W 'H�.BG/, and the relation

˛�2

�X
y2i C

X
z2j

�
D 0

from Section 5.2, it follows that

˛�2p1.�/D .q�pC 2/˛
�
2

�X
yi

�2
C 2.p� q/˛�2

�X
yiyj

�
:

If q D 1, then ˛�2
�P

yi
�2
D ˛�2

�P
yiyj

�
by Corollary 5.4 and so

˛�2p1.�/D .pC 1/˛
�
2

�X
yiyj

�
;

which is nonzero (again, see Corollary 5.4).

If q � 2, then ˛�2
�P

yi
�2 and ˛�2

�P
yiyj

�
are linearly independent by Corollary 5.3,

and it follows that ˛�2p1.�/¤ 0. Hence p1.M/D ˛�3˛
�
2p1.�/¤ 0 by Proposition 6.1.

6.3 Pontryagin classes for Sp2n.R/–manifolds

Theorem 6.4 Fix n � 2. Let � � G D Sp2n.R/ be a cocompact lattice. Then
p1.�nG=K/¤ 0.

Proof From (12), one computes

p1.�/D .nC 3/
X

y2i C 2
X

yiyj :

By Section 5.3, ˛�2
�P

y2i
�
D 0. Using the relation

�P
yi
�2
D
P
y2i C 2

P
yiyj ,

˛�2p1.�/D 2˛
�
2

�X
yiyj

�
D ˛�2

�X
yi

�2
;

which is nonzero by Corollary 5.5. Hence p1.M/D˛�3˛
�
2p1.�/¤0 by Proposition 6.1.

6.4 Pontryagin classes for SOp;q –manifolds

Theorem 6.5 Let p , q � 2. Let � � G D SOp;q be a cocompact lattice. Then
p1.�nG=K/¤ 0 if and only if p ¤ q .
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Theorem 6.6 Fix p � 4. Let � � G D SOp;p be a cocompact lattice. Then
p2.�nG=K/¤ 0.

Remark SO2;2 ' SL2.R/�SL2.R/ is not simple and SO3;3 ' SL4.R/ is covered
by Theorem 6.2.

Theorem 6.7 Let � � G D SOp;1 be a cocompact lattice. Then pi .�nG=K/ D 0
for i > 0.

Proof of Theorem 6.5 Let aD Œp=2� and b D Œq=2�.

Case 1 Assume p D 2a and q D 2b are both even. From (13) one computes

p1.�/D 2b
X

y2i C 2a
X

z2j :

By Section 5.4, ˛�2
�P

y2i
�
C˛�2

�P
z2j
�
D 0, and so

˛�2p1.�/D 2.b� a/˛
�
2

�X
y2i

�
:

By Corollary 5.6, ˛�2
�P

y2i
�
¤ 0. The assumptions that p ¤ q and that p and q are

both even imply that ˛�2p1.�/¤ 0. Hence p1.M/D˛�3˛
�
2p1.�/¤ 0 by Proposition 6.1.

Case 2 Assume p D 2a and q D 2bC 1. From (14) one computes

p1.�/D .2bC 1/
X

y2i C 2a
X

z2j :

Similar to Case 1,
˛�2p1.�/D .2b� 2aC 1/˛

�
2

�X
y2i

�
;

which is nonzero and so p1.M/D ˛�3˛
�
2p1.�/¤ 0.

Case 3 Assume p D 2aC 1 and q D 2b . Using (15), in an entirely similar fashion to
Case 2,

˛�2p1.�/D .2b� 2a� 1/˛
�
2

�X
y2i

�
;

which is nonzero, and this implies p1.M/¤ 0.

Case 4 Assume p D 2aC 1 and q D 2bC 1. From (16) one computes

p1.�/D .2bC 1/
X

y2i C .2aC 1/
X

z2j :

Then
˛�2p1.�/D 2.b� a/˛

�
2

�X
y2i

�
;

which is nonzero since p ¤ q and p and q are both odd. Then p1.M/¤ 0 in this
case.

Algebraic & Geometric Topology, Volume 15 (2015)



2746 Bena Tshishiku

Proof of Theorem 6.6 We separate the cases when p is even and when p is odd.

Case 1 Assume p D 2a is even. From (13) one computes

p2.�/D
�2a
2

�X
y4i C

�2a
2

�X
z4j C .2a/

2
X

y2i y
2
k

C .2a/2
X

z2j z
2
` C .4a

2
� 6/

X
y2i z

2
j :

By the computation in Section 5.4,

˛�2

�X
y4i C

X
z4j

�
D 0 and ˛�2

�X
y2i y

2
k C

X
z2j z

2
` C

X
y2i z

2
j

�
D 0:

From these relations, it follows that

(35) ˛�2p2.�/D�6˛
�
2

�X
y2i z

2
j

�
:

From the fact that ˛�2
�P

y2i C
P
z2j
�2
D 0, it follows that

(36) ˛�2

�X
y2i z

2
j

�
D ˛�2

�X
y2i

�2
:

By Corollary 5.7, ˛�2
�P

y2i

�2
¤ 0 for p � 4, so we conclude from (35) and (36) that

˛�2p2.�/¤ 0. Then p2.M/D ˛�3˛
�
2p2.�/¤ 0 by Proposition 6.1.

Case 2 Assume pD 2aC1 is odd. The total Chern class of the isotropy representation
is given in (16). Let A D

Qa
iD1.1 � y

2
i /
Qa
jD1.1 � z

2
j /. From the computation in

Section 5.4 (combined with Theorem 5.1), it is immediate that ˛�2 .A/D 1. Then the
computation of ˛�2p2.�/ is the exact same as in Case 1. Again we conclude p2.M/¤0.

Proof of Theorem 6.7 If G D SOp;1 , then b D 0 and the total Chern class is a
symmetric polynomial in fy21 ; : : : ; y

2
ag. In Section 5.4, we saw that all such polyno-

mials are in the image of H�.BGC/!H�.BG/, and hence in the kernel of ˛�2 by
Theorem 5.1. This implies pi .M/D 0 for all i � 1.

6.5 Pontryagin classes for Spp;q –manifolds

It is worth noting the similarity between Spp;q and SO2p;2q . On the level of cohomol-
ogy,

H�.B Spp;q/' Sym.y21 ; : : : ; y
2
p/˝Sym.z21 ; : : : ; z

2
q/;

while

H�.B SO2p;2q/' hSym.y21 ; : : : ; y
2
p/; y1 � � �ypi˝ hSym.z21 ; : : : ; z

2
q/; z1 � � � zqi:
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Note also, from Sections 4.4 and 4.5, the weights of the isotropy representation for
both are ˙yi ˙ zj for i D 1; : : : ; p and j D 1; : : : q . Then in both cases the total
Chern class of the isotropy representation is

c.�C/D
Y
.1Cyi C zj /.1Cyi � zj /.1�yi C zj /.1�yi � zj /:

Finally, by Sections 5.4 and 5.5, for G D Spp;q or G D SO2p;2q ,

ImŒj �W H�.BGC/!H�.BG/�D Sym.y21 ; : : : ; y
2
p ; z

2
1 ; : : : ; z

2
q/;

so the relations used to compute ˛�2pi .�/ for SO2p;2q also compute ˛�2pi .�/ for Spp;q .
From these observations and from the proofs of Theorems 6.5 and 6.6, we have the
following two theorems. (One should replace the use of Corollaries 5.6 and 5.7 in the
proofs of Theorems 6.5 and 6.6 by Corollaries 5.8 and 5.9, respectively.)

Theorem 6.8 Let p , q � 1 such that .p; q/ ¤ .1; 1/. Let � � G D Spp;q be a
cocompact lattice. Then p1.�nG=K/¤ 0 if and only if p ¤ q .

Note that Sp1;1 ' SO4;1 , which is treated in Theorem 6.7.

Theorem 6.9 Fix p � 2. Let � � G D Spp;p be a cocompact lattice. Then
p2.�nG=K/¤ 0.

6.6 Pontryagin classes for SO�

2n–manifolds

Theorem 6.10 Fix n � 3. Let � � G D SO�2n be a cocompact lattice. Then
p1.�nG=K/¤ 0.

Remark We only consider n� 3 because SO�2 'C and SO�4 is not simple.

Proof From (18), one computes

p1.�/D .n� 1/
X

y2i C 2
X

yiyj :

By the computation in Section 5.6, ˛�2
�P

y2i
�
D 0. Using the relation

�P
yi
�2
DP

y2i C 2
P
yiyj , it follows that

˛�2p1.�/D 2˛
�
2

�X
yiyj

�
D ˛�2

�X
yi

�2
;

which is nonzero by Corollary 5.10. Then p1.M/D˛�3˛
�
2p1.�/¤0 by Proposition 6.1.
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6.7 Pontryagin classes for SU�

2n–manifolds

Theorem 6.11 Let � � G D SU�2n be a cocompact lattice. Then pi .�nG=K/ D 0
for i > 0.

Proof By Corollary 5.11, ˛�2 is zero in positive degrees.

6.8 Pontryagin classes for E8–manifolds

Theorem 6.12 Let � � G D E8.8/ be a cocompact lattice. Then p1.�nG=K/D 0
and p2.�nG=K/¤ 0.

Proof From Equation (20), one computes

p1.�/D 16.y
2
1 C � � �Cy

2
8/

and
p2.�/D 126

8X
iD1

y4i C 244
X

1�i<j�8

y2i y
2
j :

By Theorem 5.1 and the computation of Section 5.8,
P8
iD1 y

2
i and

�P8
iD1 y

2
i

�2
generate the kernel of

˛�2 W H
k.BE8.8//!Hk.B.E8.8//

ı/

for k D 4, 8. Then ˛�2p1.�/D 0 and

˛�2p2.�/D 4˛
�
2

�X
y4i

�
C 122 ˛�2

h�X
y2i

�2i
„ ƒ‚ …

D0

:

By Corollary 5.12, ˛�2p2.�/D 4˛
�
2

�P
y4i
�
¤ 0, and so p2.M/D ˛�3˛

�
2p2.�/¤ 0 by

Proposition 6.1.

Theorem 6.13 Let � �G DE8.�24/ be a cocompact lattice. Then p1.�nG=K/¤ 0.

Proof From (21), one computes

p1.�/D 12.y
2
1 C � � �Cy

2
6/C 6y

2
7 C 14y

2
8 :

By Theorem 5.1 and the computation of Section 5.8, 2.y21 C � � �Cy
2
6/Cy

2
7 generates

the kernel of
˛�2 W H

4.BE8.�24//!H 4.B.E8.�24//
ı/:

Then
˛�2p1.�/D 14˛

�
2 .y

2
8/

is nonzero by Corollary 5.13, and so p1.M/D ˛�3˛
�
2p1.�/¤ 0 by Proposition 6.1.
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6.9 Pontryagin classes for E7–manifolds

Theorem 6.14 Let � � G D E7.7/ be a cocompact lattice. Then p1.�nG=K/D 0
and p2.�nG=K/¤ 0.

Proof From (22), one computes

p1.�/D 595
X

y2i C 1210
X

yiyj ;

and

p2.�/D 52 360
X

y4i C 220 660
X

y3i yj C 336 790
X

y2i y
2
j

C 684 810
X

y2i yjykC 1 392 444
X

yiyjyky`:

By Theorem 5.1 and the computation of Section 5.9, for k D 4, 8, the kernel of

˛�2 W H
�.BS/W 'Hk.BE7.7//!Hk.B.E7.7//

ı/

is generated by
P
y2i and

�P
y2i
�2 . Since

P
y2i and

P
yiyj are linearly dependent

in H�.BSU8/, it follows that ˛�2p1.�/ D 0. Using relations among the symmetric
polynomials and that ˛�2

�P
y2i
�2
D 0, we find that

˛�2p2.�/D�348 109˛
�
2

�X
y4i

�
;

which is nonzero by Corollary 5.14. Then p2.M/D˛�3˛
�
2p2.�/¤0 by Proposition 6.1.

Theorem 6.15 Let � �GDE7.�5/ be a cocompact lattice. Then p1.�nG=K/¤ 0.

Proof From (23), one computes

p1.�/D 8

7X
iD1

y2i :

By Theorem 5.1 and the computation of Section 5.9, the kernel of

˛�2 W H
4.BE7.�5//!H 4.B.E7.�5//

ı/

consists of scalar multiples of I D y21 C � � �Cy
2
6 C 2y

2
7 , and so

˛�2p1.�/D 8˛
�
2 .I �y

2
7/D�8˛

�
2 .y

2
7/;

which is nonzero by Corollary 5.15. Then p1.M/D˛�3˛
�
2p1.�/¤0 by Proposition 6.1.

Theorem 6.16 Let � �G DE7.�25/ be a cocompact lattice. Then p1.�nG=K/¤ 0.
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Proof From (24), one computes

p1.�/D 6.y
2
1 C � � �Cy

2
5/C 2y

2
6 C 3y

2
7 :

From Section 5.9, the kernel of

˛�2 W H
4.BE7.�25//!H 4.B.E7.�25//

ı/

is generated by
6.y21 Cy

2
2 Cy

2
3 Cy

2
4 Cy

2
5/C 2y

2
6 Cy

2
7 :

Then
˛�2p1.�/D 2˛

�
2 .y

2
7/:

By Corollary 5.16, ˛�2 .y
2
7/¤ 0, and so p1.M/D ˛�3˛

�
2p1.�/¤ 0 by Proposition 6.1.

6.10 Pontryagin classes for E6–manifolds

Theorem 6.17 Let � � G D E6.6/ be a cocompact lattice. Then p1.�nG=K/D 0
and p2.�nG=K/¤ 0.

Proof From (25), one computes

p1.�/D 14.y
2
1 Cy

2
2 Cy

2
3 Cy

2
4/;

p2.�/D 91
X

y4i C 166
X

y2i y
2
j :

From Section 5.10, I D y21 Cy
2
2 Cy

2
3 Cy

2
4 and I 2 generate the kernel of

˛�2 W H
k.BE6.6//!Hk.B.E6.�14//

ı/

for k D 4; 8. Then ˛�2p1.�/D 0 and

˛�2p2.�/D 8˛
�
2

�X
y4i

�
C 83 ˛�2

�X
y4i C 2

X
y2i y

2
j

�
„ ƒ‚ …

D0

:

By Corollary 5.17, ˛�2
�P

y4i
�
¤0, and so p2.M/D˛�3˛

�
2p2.�/¤0 by Proposition 6.1.

Theorem 6.18 Let � �G DE6.2/ be a cocompact lattice. Then p1.�nG=K/¤ 0.

Proof From (26), one computes

p1.�/D 10

6X
iD1

y2i C 20y
2
7 C 8

X
1�i<j�6

yiyj D 6

6X
iD1

y2i C 20y
2
7 :

Algebraic & Geometric Topology, Volume 15 (2015)



Pontryagin classes of locally symmetric manifolds 2751

In Section 5.10, we computed that

I D

6X
iD1

y2i C 2y
2
7

generates (as a vector space) the kernel of

˛�2 W H
4.BE6.2//!H 4.B.E6.2//

ı/:

Then
˛�2p1.�/D ˛

�
2 .6I C 8y

2
7/D 8˛

�
2 .y

2
7/:

By Corollary 5.18, ˛�2 .y
2
7/¤ 0. Then p1.M/D ˛�3˛

�
2p1.M/¤ 0 by Proposition 6.1.

Theorem 6.19 Let � �G DE6.�14/ be a cocompact lattice. Then p1.�nG=K/¤ 0.

Proof From (27), one computes

p1.�/D 4.y
2
1 Cy

2
2 Cy

2
3 Cy

2
4 Cy

2
5/C 144y

2
6 :

By Theorem 5.1 and the computation of Section 5.10,

I D 3.y21 C � � �Cy
2
5/Cy

2
6

generates the kernel of

˛�2 W H
4.BE6.�14//!H 4.B.E6.�14//

ı/:

Since p1.�/¤ c � I for any scalar c , we conclude that p1.�/ is not in ker˛�2 . Hence
p1.M/D ˛�3˛

�
2p1.�/¤ 0 by Proposition 6.1.

Theorem 6.20 Let � �G DE6.�26/ be a cocompact lattice. Then pi .�nG=K/D 0
for i > 0.

Proof By Corollary 5.20, ˛�2 is zero in positive degrees.

6.11 Pontryagin classes for F4–manifolds

Theorem 6.21 Let � �G D F4.4/ be a cocompact lattice. Then p1.�nG=K/¤ 0.

Proof From (29), one computes

p1.�/D 14y
2
1 C 10y

2
2 C 10y

2
3 C 10y

2
4 :
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By Theorem 5.1 and the computation in Section 5.11,
P4
iD1 y

2
i generates the kernel of

˛�2 W H
4.BF4.�20//!H 4.BF ı4.�20//:

Then
˛�2p1.�/D 4˛

�
2 .y

2
1/C 10 ˛

�
2 .y

2
1 Cy

2
2 Cy

2
3 Cy

2
4/„ ƒ‚ …

D0

:

By Corollary 5.21, ˛�2p1.�/D4˛
�
2 .y

2
1/¤0, so p1.M/D˛�3˛

�
2p1.�/¤0 by Proposition

6.1.

Theorem 6.22 Let � �G D F4.�20/ be a cocompact lattice. Then p1.�nG=K/D 0
and p2.�nG=K/¤ 0.

Proof From (30), one computes

p1.�/D 2.y
2
1 C � � �Cy

2
4/ and p2.�/D

7

4

X
y4i C

5

2

X
1�i<j�4

y2i y
2
j :

By Theorem 5.1 and the computation in Section 5.11,
P4
iD1 y

2
i and

�P4
iD1 y

2
i

�2
DP

y4i C 2
P
y2i y

2
j generate the kernel of

˛�2 W H
k.BF4.�20//!Hk.BF ı4.�20//

for k D 4, 8, respectively. Then ˛�2p1.�/D 0 and

˛�2p2.�/D
7

4
˛�2

�X
y4i C 2

X
y2i y

2
j

�
„ ƒ‚ …

D0

�
2

2
˛�2

�X
y2i y

2
j

�
D�˛�2

�X
y2i y

2
j

�
:

Then ˛�2p2.�/¤ 0 by Corollary 5.22, so p2.M/D ˛�3˛
�
2p2.�/¤ 0 by Proposition 6.1.

6.12 Pontryagin classes for G2–manifolds

Theorem 6.23 Let � �G DG2.2/ be a cocompact lattice. Then p1.�nG=K/¤ 0.

Proof From (31), one computes

˛�2 W H
4.BG2.2//!H 4.BGı2.2//:

Then

˛�2p1.�/D ˛
�
2 .8y

2
1 C 12y

2
1 C 4y

2
2/D 8˛

�
2 .y

2
1/C 4 ˛

�
2 .3y

2
1 Cy

2
2/„ ƒ‚ …

D0

D 8˛�2 .y
2
1/:
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By Corollary 5.23, ˛�2 .y
2
1/¤ 0, and so p1.M/D ˛�3˛

�
2p1.�/¤ 0 by Proposition 6.1.
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