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Mod p decompositions of the loop spaces
of compact symmetric spaces

SHIZUO KAJI

AKIHIRO OHSITA

STEPHEN THERIAULT

We give p–local homotopy decompositions of the loop spaces of compact, simply
connected symmetric spaces for quasi-regular primes. The factors are spheres, sphere
bundles over spheres and their loop spaces. As an application, upper bounds for the
homotopy exponents are determined.

55P15, 55P40; 57T20

1 Introduction

If X is a topological space and there is a homotopy equivalence X 'A�B then there
are induced isomorphisms of homotopy groups �m.X /Š �m.A/˚�m.B/ for every
m� 1. So in order to determine the homotopy groups of a space it is useful to first try to
decompose it as a product, up to homotopy equivalence. Ideally, the factors are simpler
spaces which are easy to recognise, so that one can deduce homotopy group information
about the original space X from known information about the factors. This approach
has been very successful in obtaining important information about the homotopy groups
of Lie groups (Harris [15], and Mimura, Nishida and Toda [30]), Moore spaces (Cohen,
Moore and Neisendorfer [10]), finite H–spaces (Cohen and Neisendorfer [11]) and
certain manifolds (Beben and Wu [3], and Beben and Theriault [2]).

In practise, it helps if the initial space X is an H–space. Then the continuous multipli-
cation can be used to multiply together maps from potential factors. For this reason, it
is often the loop space of the original space that is decomposed up to homotopy, as
looping introduces a multiplication and it simply shifts the homotopy groups of X

down one dimension. It also helps to localize at a prime p , or rationally, in order to
simplify the calculations while retaining p–primary features of the homotopy groups.

From now on, let p be an odd prime and assume that all spaces and maps have been
localized at p . Harris [15] and Mimura, Nishida and Toda [30] gave p–local homotopy
decompositions of torsion free simply connected, simple compact Lie groups into
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products of irreducible factors. These were used, for example, in [30] to calculate the
p–primary homotopy groups of the Lie group through a range, in Bendersky, Davis
and Mimura [4] to calculate the v1 –periodic homotopy groups in certain cases, and in
Davis and Theriault [12] to determine bounds on the homotopy exponents in certain
cases. Here, the p–primary homotopy exponent of a space X is the least power of p

that annihilates the p–torsion in ��.X /.

It is natural to extend the decomposition approach to other spaces related to Lie groups.
Some work has been done to determine homotopy decompositions of the loops on
certain homogeneous spaces (Beben [1], and Grbić and Zhao[13]) and analyze the
exponent implications. In this paper we consider the loops on symmetric spaces with
an eye towards deducing exponent information.

Compact, irreducible, simply connected Riemannian symmetric spaces were classified
by Cartan [6; 7] and an explicit list as homogeneous spaces was given in Ishitoya and
Toda [22]. In an ad hoc manner, the homotopy groups of symmetric spaces have been
studied in several papers, for example Beben [1], Burns [5], Harris [16; 17], Hirato,
Kachi and Mimura [18], Mimura [28], Ōshima [35] and Terzić [36]. We give a more
systematic approach.

A compact Lie group is quasi-p–regular if it is p–locally homotopy equivalent to a
product of spheres and sphere bundles over spheres. Let G=H be a compact, irreducible,
simply connected Riemannian symmetric space where G is quasi-p–regular. Then for
p � 5 we obtain p–local homotopy decompositions for �.G=H /, which are stated
explicitly in Theorems 5.4 and 5.8. It is notable that in all the decompositions, the
factors are spheres, sphere bundles over spheres and the loops on these spaces.

The key to our method is to replace the fibration

(1-1) �.G=H /!H !G

with a homotopy equivalent one

(1-2)
Y
.fib.M.qi/// �!

Y
M.A0i/

Q
M.qi /
������!

Y
M.Ai/

using Cohen and Neisendorfer’s construction of finite H–spaces [11] (see Theorem 2.2).
Here, (1-2) is an H–fibration with a different H–structure from that in (1-1), but the
maps M.qi/ are simple enough to allow us to identify their homotopy fibres.

The paper is organized as follows. In Sections 2 through 4 we obtain the homotopy
fibration (1-2) from (1-1), and prove properties about it. In Section 5 we identify the
maps qi in a case-by-case analysis, and thereby obtain a homotopy decomposition for
�.G=H /. In Section 6 we test the boundaries of our methods: examples are given to
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show that our methods can sometimes be extended to non-quasi-p–regular cases and
sometimes not; we also give an example to show that our loop space decompositions
sometimes cannot be delooped. In Section 7 we use the homotopy decompositions of
�.G=H / to deduce homotopy exponent bounds for G=H .

The authors would like to thank the referee for suggesting improvements and for
pointing out a mistake in an early version of the paper.

Acknowledgements The first named author was partially supported by KAKENHI,
Grant-in-Aid for Young Scientists (B) 26800043.

2 A decomposition method

Let G and H be Lie groups and let 'W H ! G be a group homomorphism. In this
section we describe a method for producing a homotopy decomposition of the homotopy
fibre of ' when both G and H are quasi-p–regular. In the case when ' is a group
inclusion, this gives a homotopy decomposition of �.G=H /. To do so, we first need
some preliminary information.

The following is a consequence of the James construction [23]. For a path-connected,
pointed space X , let EW X !�†X be the suspension map, which is adjoint to the
identity map on †X .

Theorem 2.1 Let X be a path-connected space. Let Y be a homotopy associative
H–space and suppose that there is a map f W X ! Y . Then there is an extension

X Y

�†X

f

E
f

where f is an H–map and is the unique H–map (up to homotopy) with the property
that f ıE ' f .

Next, Cohen and Neisendorfer [11] gave a construction of finite p–local H–spaces
satisfying many useful properties. The ones we need are listed below. For a Z=pZ–
vector space V , let ƒ.V / be the exterior algebra on V . Take homology with mod-p
coefficients.

Theorem 2.2 Fix a prime p . Let Cp be the collection of CW–complexes consisting
of ` odd-dimensional cells, where ` < p� 1. If A 2 Cp then there is a finite H–space
M.A/ with the following properties:

Algebraic & Geometric Topology, Volume 15 (2015)



1774 Shizuo Kaji, Akihiro Ohsita and Stephen Theriault

(a) There is an isomorphism of Hopf algebras H�.M.A//Šƒ. zH�.A//.

(b) There are maps M.A/
s
�! �†A

�
�!M.A/ such that � ı s is homotopic to the

identity map on M.A/.

(c) The composite A
E
�!�†A

�
�!M.A/ induces the inclusion of the generating set

in homology.

Further, if A;A0;A00 2 Cp then:

(d) A map f W A0!A induces a map M.f /W M.A0/!M.A/.

(e) The maps � and s in part (b) are natural for maps f W A0!A.

(f) If there is a homotopy cofibration A0 ! A ! A00 then there is a homotopy
fibration M.A0/!M.A/!M.A00/.

It will help to have some information about s� . Let a be the composite

aW A
E
�!�†A

�
�!M.A/

and let E be the composite

EW A
a
�!M.A/

s
�!�†A:

It may not be the case that E is homotopic to E . However, we will show that they induce
the same map in homology modulo commutators. Recall by the Bott–Samelson theorem
that H�.�†A/Š T . zH�.A//, where T . � / is the free tensor algebra functor. It is well
known that for a Z=pZ–vector space V there is an algebra isomorphism T .V / Š

ULhV i, where LhV i is the free Lie algebra generated by V and U is the universal
enveloping algebra functor. Thus there is an algebra isomorphism H�.�†A/ Š

ULh zH�.A/i.

Lemma 2.3 We have .E/� DE� modulo commutators in ULh zH�.A/i.

Proof Since s is a right homotopy inverse of � , we have � ıE D � ı s ı a' a. By
definition of a, we also have � ıE D a. If ` < p� 2 then by [37], � is an H–map,
so � ı .E �E/' � ıE � � ıE is null homotopic. However, we would also like the
statement of the lemma to hold for `D p� 1 so we argue without knowing whether
� ı .E �E/ is null homotopic.

Define the space F and the map f by the homotopy fibration

F
f
�!�†A

�
�!M.A/:
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By [11], this fibration is modelled in homology by the short exact sequence of algebras

0 �! U ŒL;L�
U.g/
���! UL

U.ab/
���! ULab �! 0;

where L is the free Lie algebra generated by zH�.A/, Lab is the free abelian Lie
algebra (that is, the bracket is identically zero) generated by zH�.A/, ŒL;L� is the Lie
algebra kernel of the abelianization map

L ab
�!Lab;

and g is the inclusion of ŒL;L� into L. So �� ıE� D �� ıE� implies by exactness
that E��E� factors through f� D U.g/. But as g is the map sending commutators
of L into L, we obtain E��E� D 0 modulo commutators.

The following proposition is the key for decomposing �.G=H /.

Theorem 2.4 Let 'W H !G be a homomorphism of Lie groups. Suppose that there
is a homotopy commutative diagram

t_
iD1

A0i

t_
iD1

Ai

H G

Wt
iD1 qi

j 0

'

j

where A0i ;Ai 2 Cp for 1 � i � t , there are Hopf algebra isomorphisms H�.H / Š

ƒ. zH�.
Wt

iD1 A0i// and H�.G/ Š ƒ. zH�.
Wt

iD1 Ai//, and j 0; j induce the inclusions
of the generating sets in homology. Then there is a homotopy commutative diagram

tY
iD1

M.A0i/

tY
iD1

M.Ai/

H G

Qt
iD1 M.qi /

'

e0 e

where e0; e are homotopy equivalences.

Proof First, since H and G are loop spaces, they are homotopy associative H–spaces,
so Theorem 2.1 implies that the maps j 0 and j extend to H–maps xj 0W �†.

Wt
iD1 A0i/!
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H and xj W �†.
Wt

iD1 Ai/! G . Since ' is an H–map, the uniqueness statement in
Theorem 2.1 implies that there is a homotopy commutative diagram:

(2-1)
�†

� t_
iD1

A0i

�
�†

� t_
iD1

Ai

�

H G

�†.
Wt

iD1 qi /

xj 0

'

xj

Second, the inclusion of a wedge summand Ak!
Wt

iD1 Ai induces a map �†Ak!

�†.
Wt

iD1 Ai/. The loop multiplication on �†.
Wt

iD1 Ai/ lets us take the product of
these maps for 1� k � t to obtain a map

J W

tY
iD1

�†Ak !�†

� t_
iD1

Ai

�
:

This construction is natural for a map

t_
iD1

A0i

t_
iD1

Ai

Wt
iD1 qi

so we obtain a homotopy commutative diagram:

(2-2)

tY
iD1

�†A0i

tY
iD1

�†Ai

�†

� t_
iD1

A0i

�
�†

� t_
iD1

Ai

�
�†.

Wt
iD1 qi /

Qt
iD1�†qi

J 0 J

Third, since A0i ;Ai 2 Cp , by Theorem 2.2(b) there are maps s0i W M.A0i/! �†A0i
and si W M.Ai/!�†Ai that have left homotopy inverses. The naturality property in
Theorem 2.2(e) then implies that there is a homotopy commutative diagram:

(2-3)

tY
iD1

M.A0i/

tY
iD1

M.Ai/

tY
iD1

�†A0i

tY
iD1

�†Ai

Qt
iD1 M.qi /

Qt
iD1�†qi

Qt
iD1 s0

i

Qt
iD1 si
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Let e0 and e be the composites:

e0W

tY
iD1

M.A0i/

tY
iD1

�†A0i �†

� t_
iD1

A0i

�
H

eW

tY
iD1

M.Ai/

tY
iD1

�†Ai �†

� t_
iD1

Ai

�
G

Qt
iD1 s0

i

Qt
iD1 si

J 0

J

xj 0

xj

Then juxtaposing (2-1), (2-2) and (2-3) we obtain a homotopy commutative diagram:

tY
iD1

M.A0i/

tY
iD1

M.Ai/

H G

Qt
iD1 M.qi /

'

e0 e

Finally, we show that e0 and e are homotopy equivalences. By Whitehead’s theorem,
it suffices to show that e0 and e induce isomorphisms in homology or cohomology.
Consider the restriction of e to

Wt
iD1 Ai , that is, consider the composite:

t_
iD1

Ai

tY
iD1

M.Ai/

tY
iD1

�†Ai �†

� t_
iD1

Ai

�
G

Wt
iD1 ai

Qt
iD1 si J xj

By the definition of ai and Theorem 2.2(c), .ai/� is the inclusion of the generating
set into H�.M.Ai//. So if we can show that .e ı

Wt
iD1 ai/� is the inclusion of the

generating set into H�.G/, then e� induces an isomorphism on generating sets. As
H�.M.A// and H�.G/ are primitively generated, dualizing to cohomology implies
that e� is an isomorphism on generating sets. Therefore, as e� is an algebra map, it is
an isomorphism in all degrees. The same argument holds for e0 .

It remains to show that .e ı
Wt

iD1 ai/� is the inclusion of the generating set into
H�.G/. By definition of the map E , we have .

Qt
iD1 si/ ı

Wt
iD1 ai D

Wt
iD1 Ei . So

by Lemma 2.3, modulo commutators in H�.
Qt

iD1�†Ai/, this map induces the same
map in homology as .

Wt
iD1 Ei/� . Observe that J is a product of H–maps and xj

is an H–map, so they induce algebra maps in homology. Therefore, as H�.G/ is a
commutative algebra, .xj ıJ /� sends all commutators in H�.

Qt
iD1�†A/ to zero in

H�.G/. Thus .xj ıJ ı .
Qt

iD1 si/ ı
Wt

iD1 ai/� D .xj ıJ ı .
Wt

iD1 Ei//� . The left map
in this equality is .e ı

Wt
iD1 ai/� . For the right map, by the definitions of J and xj ,

the composite xj ıJ ı .
Wt

iD1 Ei/' j . Thus .e ı
Wt

iD1 ai/� D j� . By hypothesis, j�
is the inclusion of the generating set into H�.G/, and hence so is .e ı

Wt
iD1 ai/� .
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Let fib.M.qi// be the homotopy fibre of the map M.A0i/
M.qi /
���!M.Ai/. The homotopy

commutative diagram in Theorem 2.4 implies that there is a homotopy fibration diagram

tY
iD1

fib.M.qi//

tY
iD1

M.A0i/

tY
iD1

M.Ai/

�.G=H / H G

Qt
iD1 M.qi /

'

� e0 e

for some induced map � of fibres. Since e0; e are homotopy equivalences, the five-
lemma implies that � is as well. Thus we obtain the following.

Corollary 2.5 There is a homotopy equivalence

�.G=H /'p

tY
iD1

fib.M.qi//:

3 The quasi-p–regular case

In this section we aim towards Theorem 3.6, which shows that if H and G are both
quasi-p–regular and satisfy mild restrictions on the factors, then the hypotheses of
Theorem 2.4 are satisfied. To do this, we first need to study properties of the factors.

We begin by defining some spaces and maps following [30]. For n � 2, define the
space B.2n� 1; 2nC 2p� 3/ by the homotopy pullback:

S2n�1 B.2n� 1; 2nC 2p� 3/ S2nC2p�3

S2n�1 O.2nC 1/=O.2n� 1/ S2n

1
2
˛1.2n/

Notice that H�.B.2n� 1; 2nC 2p� 3//Šƒ.x2n�1;x2nC2p�3/ and P1.x2n�1/D

x2nC2p�3 . In particular, B.2n � 1; 2n C 2p � 3/ is a three-cell complex. Let
A.2n� 1; 2nC 2p � 3/ be the .2nC 2p � 3/–skeleton of B.2n� 1; 2nC 2p � 3/

and let
i2n�1W A.2n� 1; 2nC 2p� 3/! B.2n� 1; 2nC 2p� 3/

be the skeletal inclusion. Then A.2n�1; 2nC2p�3/ is a two-cell complex consisting
of the bottom two cells in B.2n� 1; 2nC 2p� 3/. Observe that

H�.B.2n� 1; 2nC 2p� 3//Šƒ. zH�.A.2n� 1; 2nC 2p� 3//:
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The space B.2n� 1; 2nC 2p� 3/ is analogous to M.A.2n� 1; 2nC 2p� 3//. It is
introduced in addition to M.A.2n� 1; 2nC 2p� 3// because the standard homotopy
decompositions of Lie groups due to Mimura, Nishida and Toda [30] are given in terms
of the spaces B , and these will be used subsequently as a starting point for producing
alternative decomposition in terms of the spaces M.A/ via Theorem 2.4. For now,
we note that the two are homotopy equivalent provided p � 5. (If p D 3, then as
A.2n� 1; 2nC 2p� 3/ has two cells, Theorem 2.2 does not apply; that is, the space
M.A.2n� 1; 2nC 2p� 3// does not exist.)

Lemma 3.1 Let p � 5. If n� 2 then there is a homotopy equivalence

M.A.2n� 1; 2nC 2p� 3//'p B.2n� 1; 2nC 2p� 3/:

Proof For simplicity, let ADA.2n� 1; 2nC 2p� 3/, B DB.2n� 1; 2nC 2p� 3/

and i W A! B be i2n�1 . Since p � 5, by [27] the top cell splits off †B , that is,
†i has a left homotopy inverse t W †B!†A. Consider the diagram

A �†A

B �†B �†A M.A/

E

E �t �

i �†i

where � is the map from Theorem 2.2. The left square homotopy commutes by the
naturality of the suspension map E and the triangle homotopy commutes since t is a
right homotopy inverse of †i . Let eD�ı�†tıE be the composition along the bottom
row. By Theorem 2.2(c), �ıE induces the inclusion of the generating set in homology,
so the homotopy commutativity of the preceding diagram implies that e ı i does as
well. But i is the inclusion of the .2nC 2p� 3/–skeleton, so it induces the inclusion
of the generating set in homology. Thus e� is a self-map of ƒ.x2n�1;x2nC1p�3/,
which is an isomorphism on the generating set. As e is a map of spaces, e� is a map of
coalgebras, and any such map satisfies �ıe�D .e�˝e�/ı�, where � is the reduced
diagonal. Applying the reduced diagonal to the product class x2n�1˝x2nC2p�3 we
immediately see that e� is also an isomorphism in degree 4nC 2p� 4. Thus e� is an
isomorphism in all degrees and so e is a homotopy equivalence.

In what follows we need information about the homotopy sets

ŒA.2n� 1; 2nC 2p� 3/;S2m�1�;

ŒA.2n� 1; 2nC 2p� 3/;B.2m� 1; 2mC 2p� 3/�
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for various n and m. We do this now, starting by listing some known homotopy group
calculations.

Lemma 3.2 (Toda [38]) Localised at an odd prime p , we have

�2m�1Ct .S
2m�1/D

8<:
Z=pZ t D 2i.p� 1/� 1; 1� i � p� 1;

Z=pZ t D 2i.p� 1/� 2;m� i � p� 1;

0 otherwise for 1� t � 2p.p� 1/� 3:

Lemma 3.3 (Mimura and Toda [31], Kishimoto [25]) Localised at an odd prime p ,
we have

�3Ct .B.3; 2pC 1//D

8<:
Z=p2Z t D 2i.p� 1/� 1; 2� i � p� 1;

Z.p/ t D 2p� 2;

0 otherwise for 1� t � 2p.p� 1/� 3;

�2m�1Ct .B.2m� 1; 2mC 2p� 3//

D

8̂̂̂<̂
ˆ̂:

Z=p2Z t D 2i.p� 1/� 1; 2� i � p� 1;

Z=pZ t D 2i.p� 1/� 2;m� i � p� 1;

Z.p/ t D 2p� 2;

0 otherwise for 1� t � 2p.p� 1/� 3:

Remark 3.4 Notice that if 0< t � 4p�6 and t is even then �2m�1Ct .S
2m�1/Š 0,

except in the one case when mD2 and �3C.4p�3/.S
3/ŠZ=pZ. Also, if 0< t�4p�6

and t is even then �3Ct .B.3; 2pC1//Š0 and �2m�1Ct .B.2m�1; 2mC2p�3//Š0.

Lemma 3.5 Let 2�m; n� p . Select spaces Am and Bn as follows:

Am 2 f�;S
2m�1;A.2m� 1; 2mC 2p� 3/g;

Bn 2 f�;S
2n�1;S2nC2p�3;B.2n� 1; 2nC 2p� 3/;B.2nC 2p� 3; 2nC 4p� 5/g:

Exclude the case when Am D A.2p � 1; 4p � 3/ and Bn D S3 . If m ¤ n, then
ŒAm;Bn�Š 0.

Proof If AmD� then we are done. Otherwise, the possible dimensions for the nontriv-
ial cells of Am are 2m�1 and 2mC2p�3. Observe that �2m�1.Bn/D�2n�1Ct .Bn/

for t D 2m�2n, and �2mC2p�3.Bn/D �2n�1Ct 0.Bn/ for t 0D 2mC2p�2n�2. In
particular, both t and t 0 are even. Also, we may assume that t; t 0 � 0. As m¤ n we
obtain t > 0, and as 2�m; n� p , we also obtain t 0 > 0. Finally, since 2�m; n� p

we have 2mC 2p � 4p and 2n � 4. Thus t < 4p � 6 and t 0 � 4p � 6. So by
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Remark 3.4, �2m�1.Bn/ Š 0 and, as the excluded case in the hypotheses rules out
obtaining �4p�3.S

3/, we also have �2mC2p�3.Bn/Š 0.

Therefore, if Am D S2m�1 then ŒAm;Bn� Š 0. If Am D A.2m� 1; 2mC 2p � 3/

then the homotopy cofibration S2m�1! Am! S2mC2p�3 implies that there is an
exact sequence

�2mC2p�3.Bn/! ŒAm;Bn�! �2m�1.Bn/:

As the homotopy groups on the left and right are zero we obtain ŒAm;Bn�Š 0.

Return to Lie groups. Let G be a simply connected, simple compact Lie group that is
quasi-p–regular. Then by [30] there is a homotopy equivalence

G 'p

pY
mD2

Bm;

where Bm is one of the following:

�; S2m�1; B.2m� 1; 2mC 2p� 3/; S2mC2p�3; B.2mC 2p� 3; 2mC 4p� 5/:

Let Am be one of the following spaces:

�; S2m�1; A.2m� 1; 2mC 2p� 3/; S2mC2p�3; A.2mC 2p� 3; 2mC 4p� 5/:

Notice that in each case, H�.Bm/Šƒ. zH
�.Am//. Let j be the composite

j W

p_
mD2

Am!

pY
mD2

Bm
'
�!G;

where the left map is determined by the skeletal inclusion of Am into Bm . Then there
is an isomorphism H�.G/Šƒ. zH�.

Wp
mD1

Am// for which j � is the projection onto
the generating set.

Now suppose that H DH1 �H2 , where H1 and H2 are simply connected, simple
compact Lie groups which are quasi-p–regular. (In theory, this could be generalised to
a product of finitely many such Lie groups, but in practise two factors suffice. In fact,
it will often be the case that H1 is trivial.) By [30] there are homotopy equivalences

H1 'p

pY
mD2

B0m;1; H2 'p

pY
mD2

B0m;2:

This time we impose a more stringent condition than in the case of G . We demand
that

(3-1) B0m;1;B
0
m;2 2 f�;S

2m�1;B.2m� 1; 2mC 2p� 3/g:
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Let A0
m;1
; A0

m;2
be the corresponding skeleta:

A0m;1;A
0
m;2 2 f�;S

2m�1;A.2m� 1; 2mC 2p� 3/g:

Let B0mDB0
m;1
�B0

m;2
and A0mDA0

m;1
_A0

m;2
. Then there is a homotopy equivalence

H 'p

Qp
mD2

B0m and a map

j 0W

p_
mD2

A0m!

pY
mD2

B0m
'
!H

which induces the inclusion of the generating set in homology.

Theorem 3.6 Let G be a simply connected, simple compact Lie group, let H D

H1�H2 be a product of two such Lie groups, and let 'W H !G be a homomorphism.
Suppose that both G and H are quasi-p–regular, that the factors of H satisfy (3-1),
and that if A0m has A.2p�1; 4p�3/ as a wedge summand then B2¤ S3 . Then there
is a homotopy commutative diagram

t_
mD2

A0m

t_
mD2

Am

H G

Wt
mD2 qm

j 0

'

j

where j 0 and j induce the inclusions of the generating sets in homology.

Proof First, consider the composite

�k W A
0
k ,!

p_
mD2

A0m
j
�!H

'
�!G

'
�!

pY
mD2

Bm:

By Lemma 3.5, ŒA0
k
;Bm�Š 0 unless mD k . Therefore �k factors as the composite

A0k
�k
��! Bk

incl
��!

pY
mD2

Bm
'
�!G;

where �k is the projection of �k onto Bk .

Next, observe that if Bk 2 f�;S
2m�1;S2mC2p�3g then Ak D Bk , so �k factors

through the inclusion Ak ! Bk (which is the identity map). On the other hand, if
Bk D B.2m� 1; 2mC 2p � 3/ or Bk D B.2mC 2p � 3; 2mC 4p � 5/ then as the
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dimension of A0
k

is at most 2mC 2p� 3, we have �k factoring through the skeletal
inclusion Ak ! Bk . Thus, in any case, �k factors as a composite

A0k
qk
�!Ak ,! Bk

for some map qk .

Putting this together, for each 2� k � p we obtain a homotopy commutative diagram:

A0
k Ak Bk

p_
mD2

A0m H G

pY
mD2

Bm

qk incl

incl incl

j 0 ' '

Taking the wedge sum of these diagrams for 2� k �p and composing with the inverse
equivalence

Qp
mD2

Bm
'
�!G gives the diagram in the statement of the theorem.

Remark 3.7 We will apply Theorem 3.6 in the case when G=H is a symmetric space.
This requires that we also consider the possibility that H DS1�H2 . Then ADS1_A0

2
,

and as G is simply connected, the restriction of the composite A!H
'
!G to S1 is

null homotopic. We are left with the composite A0
2
!H

'
!G , to which Theorem 3.6

applies. We obtain a homotopy commutative diagram:

S1 _

� p_
mD2

A0m

� p_
mD2

A0m

p_
mD2

Am

H G

pinch
Wp

mD2
qm

j 0 j

'

4 Identifying the map qm and the homotopy fibre of M.qm/

The next step is to try to identify the maps qm in Theorem 3.6 and the homotopy fibre
of M.qm/. Since j 0; j induce the inclusion of the generating set in homology, they
induce the projection onto the generating set in cohomology. Thus .qm/

� is determined
by the map of indecomposable modules induced by H

'
!G :

Q'�W QH�G!QH�.H /:

Based on the calculations to come in the subsequent sections, we will consider several
possibilities for qm with .qm/

�¤ 0. In Lemma 4.2 we will show that this cohomology
information is sufficient to determine the homotopy type of the fibre of M.qm/.
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At this point it is appropriate to notice that if p D 3 then Theorem 2.2 does not apply
to the two cell complex A.2n�1; 2nC2p�3/. That is, the space M.A.2n�1; 2nC

2p� 3// does not exist. To avoid this, from now on we will assume that all spaces and
maps have been localized at a prime p � 5.

We begin by listing eight types of maps:

v1W Am!Am:

v2W S
2m�1

!A.2m� 1; 2mC 2p� 3/:

v3W A.2m� 1; 2mC 2p� 3/! S2mC2p�3:

v4W A.2m� 1; 2mC 2p� 3/!A.2mC 2p� 3; 2mC 4p� 5/:

v5W S
2m�1

_S2m�1
! S2m�1:

v6W S
2m�1

_S2m�1
!A.2m� 1; 2mC 2p� 3/:

v7W S
2m�1

_A.2m� 1; 2mC 2p� 3/!A.2m� 1; 2mC 2p� 3/:

v8W A.2m�1; 2mC 2p� 3/_A.2m�1; 2mC 2p�3/!A.2m�1; 2mC 2p�3/:

Here, v1 is a homotopy equivalence, v2 is the inclusion of the bottom cell, v3 is the
pinch map to the top cell, v4 is the composite of the pinch map to the top cell and the
inclusion of the bottom cell, v5 is a homotopy equivalence when restricted to each
wedge summand, v6 is the inclusion of the bottom cell on each wedge summand,
v7 is the inclusion of the bottom cell when restricted to S2m�1 and is a homotopy
equivalence when restricted to Am , and v8 is a homotopy equivalence when restricted
to each copy of Am .

Apply the functor M in Theorem 2.2 to the maps v1 to v8 . Using the facts that
M.S2n�1/'p S2n�1 and M.X _Y /'p M.X /�M.Y /, we obtain maps:

M.v1/W M.Am/!M.Am/:

M.v2/W S
2m�1

!M.A.2m� 1; 2mC 2p� 3//:

M.v3/W M.A.2m� 1; 2mC 2p� 3//! S2mC2p�3:

M.v4/W M.A.2m� 1; 2mC 2p� 3//!M.A.2mC 2p� 3; 2mC 4p� 5//:

M.v6/W S
2m�1

�S2m�1
! S2m�1:

M.v6/W S
2m�1

�S2m�1
!M.A.2m� 1; 2mC 2p� 3//:

M.v7/W S
2m�1

�M.A.2m� 1; 2mC 2p� 3//!M.A.2m� 1; 2mC 2p� 3//:

M.v8/W M.A.2m� 1; 2mC 2p� 3//�M.A.2m� 1; 2mC 2p� 3//

!M.A.2m� 1; 2mC 2p� 3//:
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Let fib.M.vi// be the homotopy fibre of M.vi/. In Lemma 4.2 we identify the
homotopy type of fib.M.vi// for 1� i � 8. First we need a preliminary lemma, which
holds integrally or p–locally.

Lemma 4.1 Suppose that there are maps X
f
!Y

g
!Z where Y and Z are H–spaces

and g is an H–map. Let h D g ı f . If m is the multiplication on Z , we obtain a
composite

h �gW X �Y
h�g
���!Z �Z

m
�!Z:

Let F be the homotopy fibre of g . Then the homotopy fibre of h � g is homotopy
equivalent to X �F .

Proof There is a homotopy equivalence � W X �Y !X �Y given by sending .x;y/
to .x; �.f .x/;y// where � is the multiplication on Y . As g is an H–map, h �g is
homotopic to the composite

 W X �Y
�
�!X �Y

�2
�! Y

g
�!Z;

where �2 is the projection onto the second factor. The homotopy fibre of  is clearly
X �F , and so this is also the homotopy fibre of h �g .

Lemma 4.2 Let p � 5. The following hold:

(1) fib.M.v1//'p �.

(2) fib.M.v2//'p �S2mC2p�3 .

(3) fib.M.v3//'p S2m�1 .

(4) fib.M.v4//'p S2m�1 ��S2mC4p�5 .

(5) fib.M.v5//'p S2m�1 .

(6) fib.M.v6//'p S2m�1 ��S2mC2p�3 .

(7) fib.M.v7//'p S2m�1 .

(8) fib.M.v8//'p M.A.2m� 1; 2mC 2p� 3//' B.2m� 1; 2mC 2p� 3/.

Proof Since v1 is a homotopy equivalence, it induces an isomorphism in homology,
which implies by Theorem 2.2(a) that M.v1/ also induces an isomorphism in homology
and so is a homotopy equivalence. It follows that fib.M.v1//'p �, proving part (1).
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By Theorem 2.2(f), the homotopy cofibration S2m�1!A.2m� 1; 2mC 2p� 3/!

S2mC2p�3 induces a homotopy fibration S2m�1!M.A.2m� 1; 2mC 2q� 3//!

S2mC2p�3 . We immediately obtain fib.M.v2//'p �S2mC2p�3 and fib.M.v3//'p

S2m�1 , proving parts (2) and (3).

For part (4), since v4 is the composite

A.2m� 1; 2mC 2p� 3/
v3
�! S2mC2p�3 v2

�!A.2mC 2p� 3; 2mC 4p� 5/

the naturality property in Theorem 2.2 implies that M.v4/ is homotopic to the composite

M.A.2m� 1; 2mC 2p� 3//
M.v3/
����! S2mC2p�3

M.v2/
����!M.A.2mC 2p� 3; 2mC 4p� 5//:

Further, by [37], the maps M.v2/ and M.v3/ are H–maps so we obtain a homotopy
pullback of H–spaces and H–maps

(4-1)

S2m�1 X �S2mC4p�5

S2m�1 M.A.2m�1; 2mC2p�3// S2mC2p�3

M.A.2mC2p�3; 2mC4p�5//DM.A.2mC2p�3; 2mC4p�5//

@

M.v2/

M.v3/M.v4/

which defines the H–space X and the H–map @. Note that X 'p fib.M.v4//. In
general, the attaching map for the .2nC 2p� 3/–cell in M.A.2n� 1; 2nC 2p� 3//

is ˛1 , so the fibration connecting map @W �S2nC2p�3 ! S2n�1 satisfies @ ıE '

˛1 . In our case, after looping (4-1), we obtain a composite of connecting maps
�2S2mC4p�5 �@�!�S2mC2p�3 @0

!S2m�1 where the homotopy fibre of @0 is �M.v2/.
We have @0ı�@ıE2'˛1ı˛1 , which is null homotopic by [38]. Thus @0ı�@ıE2 lifts
through �M.v2/. Taking the adjoint, this implies that @ ıE lifts through M.v2/ to
a map �W S2mC4p�6!M.A.2m� 1; 2mC 2p� 3//. By [37], M.A.2m�1; 2mC

2p� 3// is homotopy associative, so by Theorem 2.1, � extends to an H–map


 W �S2mC4p�5
!M.A.2m� 1; 2mC 2p� 3//;

and as M.v2/ is an H–map, the uniqueness property of Theorem 2.1 implies that
M.v2/ ı 
 ' @. The pullback property of X therefore implies that 
 pulls back to a
map �S2mC4p�5! X , which is a right homotopy inverse for X ! �S2mC4p�5 .
Since X is an H–space, this section implies that there is a homotopy equivalence
X 'p S2m�1 ��S2mC4p�5 .

Parts (5) through (8) are all special cases of Lemma 4.1.
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Next, we aim to show that if .qm/
� ¤ 0 in cohomology then qm can be described in

terms of the maps v1 to v8 .

Lemma 4.3 Let qmW A
0
m ! Am be a map as in Theorem 3.6 and suppose that, in

cohomology, .qm/
�¤0. Write u for an arbitrary unit in Z.p/ . Then the following hold:

(1) If A0m DAm then qm is a homotopy equivalence.

(2) If A0m D S2m�1 and Am DA.2m� 1; 2mC 2p� 3/ then qm ' u � v2 .

(3) If A0m DA.2m� 1; 2mC 2p� 3/ and Am D S2mC2p�3 then qm ' u � v3 .

(4) If A0m D A.2m� 1; 2mC 2p � 3/ and Am D A.2mC 2p � 3; 2mC 4p � 5/

then qm ' u � v4 .

Proof For part (1), if A0m D Am equals � or S2m�1 then the assertion is clear. If
they both equal A.2m� 1; 2mC 2p� 3/ then recall that

H�.Am/D Z=pZfx2m�1;x2mC2p�3g

and P1.x2m�1/Dx2mC2p�3 . This Steenrod operation implies that if .qm/
� is nonzero

on either generator then it is nonzero on both. Consequently, .qm/
� is an isomorphism

and so qm is a homotopy equivalence.

Part (2) is a consequence of the Hurewicz theorem.

For parts (3) and (4), observe that there is a homotopy cofibration sequence

S2m�1 i
�!A.2m� 1; 2mC 2p� 3/

q
�! S2mC2p�3 ˛1.2m/

�����! S2m

where i is the inclusion of the bottom cell and q is the pinch map onto the top cell.
For any space X , we obtain an induced exact sequence

�2m.X /! �2mC2p�3.X /
q�

�! ŒA.2m� 1; 2mC 2p� 3/;X �
i�
�! �2m�1.X /:

Taking X D S2mC2p�3 or X D A.2mC 2p � 3; 2mC 4p � 5/, by connectivity
�2m.X /Š �2m�1.X /Š 0, so q� is an isomorphism. The Hurewicz theorem implies
in either case that �2mC2p�3.X / is isomorphic to H�.X /. Therefore, in both cases,
the homotopy class of qm is determined by its image in cohomology, and the assertions
follow.

Arguing as for Lemma 4.3 we also obtain the following.

Lemma 4.4 Let qmW A
0
m;1
_A0

m;2
! Am be a map as in Theorem 3.6 and suppose

that, in cohomology, .qm/
� ¤ 0 when projected to either H�.A0

m;1
/ or H�.A0

m;2
/.

Write u;u0 for arbitrary units in Z.p/ . Then the following hold:
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(5) If A0
m;1
DA0

m;2
D S2m�1 and Am D S2m�1 then qm ' u_u0 is a wedge sum

of homotopy equivalences.

(6) If A0
m;1
DA0

m;2
D S2m�1 and Am D A.2m � 1; 2mC 2p � 3/ then qm '

u � v2 _u0 � v2 .

(7) If A0
m;1
D S2m�1 , A0

m;2
D A.2m � 1; 2mp C 2p � 3/ and Am D A.2m �

1; 2mC 2p� 3/ then qm ' u � v2 _ e0 where e0 is a homotopy equivalence.

(8) If A0
m;1
DA0

m;2
DA.2m�1; 2mpC2p�3/ and AmDA.2m�1; 2mC2p�3/

then qm ' e_ e0 where e; e0 are homotopy equivalences.

Lemmas 4.3 and 4.4 identify qm in terms of the maps vi , up to multiplication by
units in Z.p/ or homotopy equivalences. Thus M.qm/ can similarly be written in
terms of the maps M.vi/. As multiplication by a unit in Z.p/ or composition with a
homotopy equivalence does not affect the homotopy type of the fibre; the homotopy
fibre of M.qm/ has the same homotopy type as the homotopy fibre of the corresponding
M.vi/. So Lemma 4.2 implies the following.

Proposition 4.5 Let p � 5 and let qmW A
0
m! Am be a map as in Theorem 3.6. If

.qm/
� ¤ 0, then – listing cases as in Lemmas 4.3 and 4.4 – the homotopy fibre of

M.qm/ is as follows:

(1) fib.M.qm//'p �.

(2) fib.M.qm//'p �S2mC2p�3 .

(3) fib.M.qm//'p S2m�1 .

(4) fib.M.qm//'p S2m�1 ��S2mC4p�5 .

(5) fib.M.qm//'p S2m�1 .

(6) fib.M.qm//'p S2m�1 ��S2mC2p�3 .

(7) fib.M.qm//'p S2m�1 .

(8) fib.M.qm//'p M.A.2m�1; 2mC2p�3//'p B.2m�1; 2mC2p�3/.

5 Case by case analysis

In this section, we give homotopy decompositions of �.G=H / when G is quasi-p–
regular using a case by case analysis. Note that when G is quasi-p–regular, H is
automatically so by the classification of the symmetric space. The classical cases are
considered first, followed by the exceptional cases.
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5.1 Classical cases

The following homotopy decompositions for quasi-p–regular classical Lie groups are
due to Mimura and Toda [31].

Theorem 5.1 For an odd prime p , there are homotopy equivalences as in Figure 1.

G p (odd)

SU.n/ p > n=2

n�pC1Y
iD2

B.2i � 1; 2i C 2p� 3/�

min.n;p/Y
jDmax.2;n�pC2/

S2j�1

SO.2nC1/ p > n

n�.p�1/=2Y
iD1

B.4i � 1; 4i C 2p� 3/�

min.n;.p�1/=2/Y
jDn�.p�3/=2

S4j�1

Sp.n/ p > n

n�.p�1/=2Y
iD1

B.4i � 1; 4i C 2p� 3/�

min.n;.p�1/=2/Y
jDn�.p�3/=2

S4j�1

SO.2n/ p > n�1

n�.pC1/=2Y
iD1

B.4i � 1; 4i C 2p� 3/�

min.n�1;.p�1/=2/Y
jDn�.p�1/=2

S4j�1
�S2n�1

Figure 1

We will also use the following homotopy decompositions, due to Harris [15].

Theorem 5.2 [15] For an odd prime p , there are homotopy equivalences:

SU.2n/'p Sp.n/�SU.2n/=Sp.n/:

SU.2nC 1/'p Spin.2nC 1/�SU.2nC 1/=Spin.2nC 1/:

SO.2nC 1/'p Spin.2nC 1/'p Sp.n/:

SO.2n/'p Spin.2n/'p Spin.2n� 1/�S2n�1:

For expositional purposes, the AIII case is examined first.

5.1.1 Type AIII Assume that 2m� n. Observe that

SU.n/=SU.n�m/D U.n/=U.n�m/:

Since the upper-left inclusion and the lower-right inclusions for U.n/ are conjugate
and thus homotopic, the inclusion U.m/�U.n�m/ ,! U.n/ is homotopic to

U.m/�U.n�m/
�m��n�m
,�����! U.n/�U.n/

�
�! U.n/;

Algebraic & Geometric Topology, Volume 15 (2015)



1790 Shizuo Kaji, Akihiro Ohsita and Stephen Theriault

where �mW U.m/ ,! U.n/ and �n�mW U.n�m/ ,! U.n/ are the upper-left inclusions.
By Lemma 4.1, for m� n�m there is an integral homotopy equivalence

�.U.n/=U.n�m/�U.m//' U.m/��.SU.n/=SU.n�m//:

By Theorem 5.1, there are homotopy equivalences

SU.n�m/D

n�m�pC1Y
iD2

B.2i � 1; 2i C 2p� 3/�

min.p;n�m/Y
jDn�m�pC2

S2j�1;

SU.n/D
n�pC1Y

iD2

B.2i � 1; 2i C 2p� 3/�

min.p;n/Y
jDn�pC2

S2j�1:

So if we define spaces A0i and Ai for i � 2� p by

p_
iD2

A0i D

n�m�pC1_
iD2

A.2i � 1; 2i C 2p� 3/_

min.p;n�m/_
jDn�m�pC2

S2j�1;

p_
iD2

Ai D

n�pC1_
iD2

A.2i � 1; 2i C 2p� 3/_

min.p;n/_
jDn�pC2

S2j�1;

then by Theorem 3.6 there is a homotopy commutative diagram:

p_
iD2

A0i

p_
iD2

Ai

SU.n�m/ SU.n/

Wp

iD2
qi

'

In each case, since '� is a projection, each .qi/
� is an epimorphism. So by Proposition

4.5 and Corollary 2.5 we have

�.SU.n/=SU.n�m//'p

pY
iD2

fib.M.qi//'p

nY
jDn�mC1

�S2j�1:

Thus, for p > n=2, we obtain

�.U.n/=U.m/�U.n�m//'p U.m/��.SU.n/=SU.n�m//

'p

mY
jD1

S2j�1
�

nY
jDn�mC1

�S2j�1:

Remark 5.3 Using a different approach, in [1; 13] a homotopy decomposition for
�.SU.n/=SU.n �m// is obtained that holds for n � .p � 1/.p � 2/. This range
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includes the quasi-p–regular cases and more. However, those methods do not extend
to exceptional cases while ours do, so the argument above was given in detail for the
sake of illustrating our approach.

5.1.2 Type CII Assume 2m� n. Similar to the type AIII case, for n< p we have

�.Sp.n/=.Sp.m/�Sp.n�m///'p Sp.m/��.Sp.n/=Sp.n�m//

'p

mY
jD1

S4j�1
�

nY
jDn�mC1

�S4j�1:

5.1.3 Type BDI Similar to the type AIII case, we have

�.SO.n/=.SO.m/�SO.n�m///'p SO.m/��.SO.n/=SO.n�m//;

where 2m� n. By Theorem 5.2, for p odd there are homotopy equivalences

SO.2kC 1/'p Sp.k/ and SO.2kC 2/'p Sp.k/�S2kC1:

Therefore, we obtain homotopy equivalences:

�.SO.2nC 1/=SO.2.n�m/C 1//'p �.Sp.n/=Sp.n�m//:

�.SO.2nC 1/=SO.2.n�m/C 2//'p S2.n�m/C1
��.Sp.n/=Sp.n�m//:

�.SO.2nC 2/=SO.2.n�m/C 1//'p �S2nC1
��.Sp.n/=Sp.n�m//:

�.SO.2nC 2/=SO.2.n�m/C 2//

'p S2.n�m/C1
��S2nC1

��.Sp.n/=Sp.n�m//:

Complete decompositions are now obtained from the CII case.

5.1.4 Types AI; AII Homotopy decompositions of

SU.2n/=Sp.n/ and SU.2nC 1/=SO.2nC 1/

are given in [30, Theorem 4.1] as sub-decompositions of SU.n/:

SU.2n/=Sp.n/'p

n�pC1
2Y

iD1

B.4i C 1; 4i C 2p� 1/�

min.n�1;p�1
2
/Y

jDmin.1;n�p�1
2
/

S4jC1 .p > n/;

SU.2nC 1/=SO.2nC 1/

'p

n�p�1
2Y

iD1

B.4i C 1; 4i C 2p� 1/�

min.n;p�1
2
/Y

jDmin.1;n�p�3
2
/

S4jC1 .p > n/:
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For SU.2n/=SO.2n/, by [32, Theorem 6.7],

Q'�WQH t.SU.2m//!QH t.SO.2m//

is nontrivial for t 2 f3; 7; : : : ; 4m� 5g. So arguing as in the AIII case, we obtain a
homotopy equivalence

�SU.2n/=SO.2n/

'p �S2n
�

n�pC1
2Y

iD1

�B.4i C 1; 4i C 2p� 1/�

min.n�1;p�1
2
/Y

jDmin.1;n�p�1
2
/

�S4jC1 .p > n/:

5.1.5 Types CI; DIII For the type CI case of Sp.n/=U.n/, Sp.n/ is quasi regular
when p > n and then

U.n/'p

nY
iD1

S2i�1:

By [32, Theorem 5.8],

Q'�W QH t .Sp.n//!QH t .U.n//

is nontrivial for t 2 f3; 7; : : : ; 4Œn=2�g. So arguing as in the AIII case we obtain a
homotopy equivalence

�.Sp.n/=U.n//'p

Œn�1
2
�Y

jD0

S4jC1
�

nY
jDŒnC2

2
�

�S4j�1 .p > n/:

For the type DIII case of SO.2n/=U.n/, we can reduce it to a type CII case by

SO.2n/=U.n/D SO.2n� 1/=U.n� 1/'p Sp.n� 1/=U.n� 1/:

Summarising the results for classical cases, we have the following.

Theorem 5.4 For p � 5, there are homotopy equivalences as in Figure 2.

Remark 5.5 Terzić’s computation of the rational homotopy groups of classical sym-
metric spaces in [36] can be reproduced from the decompositions above. Our list
corrects a typo in her description of the rational homotopy type of SO.2n/=U.n/. See
also Remark 5.9 for the exceptional cases.

Remark 5.6 Mimura [29] showed that the homotopy decompositions for types AI
and AII deloop. He also showed that these cases hold for p D 3 as well, and the AII
case can be strengthened to hold for p � n.
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Type G=H p � 5 Homotopy type of �.G=H /

AI SU.2nC 1/=SO.2nC 1/ p > n
Qn�

p�1
2

iD1
�B.4i C 1; 4i C 2p� 1/

�
Qmin.n;p�1

2
/

jDmin.1;n�p�3
2
/
�S4jC1

SU.4nC 2/=SO.4nC 2/ p D
Qn�1

iD1 �B.4i C 1; 4i C 2p� 1/

2nC 1 ��S8nC1 ��S8nC3

SU.2n/=SO.2n/ p > 2n �S2n

�
Qn�

pC1
2

iD1 �B.4i C 1; 4i C 2p� 1/

�
Qmin.n�1;

p�1
2
/

jDmin.1;n�p�1
2
/
�S4jC1

AII SU.2n/=Sp.n/ p > n
Qn�

pC1
2

iD1 �B.4i C 1; 4i C 2p� 1/

�
Qmin.n�1;

p�1
2
/

jDmax.1;n�p�1
2
/
�S4jC1

AIII
U.n/

U.m/�U.n�m/

|

p > n
2

Qm
jD1 S2j�1�

Qn
jDn�mC1�S2j�1

BDI
SO.2nC 1/

SO.2m/�SO.2.n�m/C 1/

|

p > n
Qm�1

jD1 S4j�1 �S2m�1

�
Qn

jDn�mC1�S4j�1

SO.2nC 1/

SO.2m� 1/�SO.2.n�m/C 2/

}

p > n
Qm�1

jD1 S4j�1 �S2.n�m/C1

�
Qn

jDn�mC1�S4j�1

SO.2nC 2/

SO.2mC 1/�SO.2.n�m/C 1/

|

p > n
Qm

jD1 S4j�1 ��S2nC1

�
Qn

jDn�mC1�S4j�1

SO.2nC 2/

SO.2m/�SO.2.n�m/C 2/

}
p >

n� 1

Qm�1
jD1 S4j�1 �S2m�1 �S2.n�m/C1

��S2nC1�
Qn

jDn�mC1�S4j�1

CI Sp.n/=U.n/ p > n
Q�

n�1
2

�
jD0

S4jC1 �
Qn

jD
�

nC2
2

��S4j�1

CII
Sp.n/

Sp.m/�Sp.n�m/

|

p > n
Qm

jD1 S4j�1�
Qn

jDn�mC1�S4j�1

DIII SO.2n/=U.n/
p >

n� 1

Q�
n�2

2

�
jD0

S4jC1 �
Qn�1

jD
�

nC1
2

��S4j�1

Figure 2: For | , we assume 2m� n . For } , we assume 2m� nC 1 .
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5.2 Exceptional cases

The following homotopy decompositions for quasi-p–regular exceptional Lie groups
are due to Mimura and Toda [31].

Theorem 5.7 For an odd prime p , there are homotopy equivalences as in Figure 3.

G p

G2 5 B.3; 11/

� 7 S3 �S11

F4 5 B.3; 11/�B.15; 23/

7 B.3; 15/�B.11; 23/

11 B.3; 23/�S11 �S15

� 13 S3 �S11 �S15 �S23

E6 5 B.3; 11/�B.9; 17/�B.15; 23/

7 B.3; 15/�B.11; 23/�S9 �S17

11 B.3; 23/�S9 �S11 �S15 �S17

� 13 S3 �S9 �S11 �S15 �S17 �S23

E7 11 B.3; 23/�B.15; 35/�S11 �S19 �S27

13 B.3; 27/�B.11; 35/�S15 �S19 �S23

17 B.3; 35/�S11 �S15 �S19 �S23 �S27

� 19 S3 �S11 �S15 �S19 �S23 �S27 �S35

E8 11 B.3; 23/�B.15; 35/�B.27; 47/�B.39; 59/

13 B.3; 27/�B.15; 39/�B.23; 47/�B.35; 59/

17 B.3; 35/�B.15; 47/�B.27; 59/�S23 �S39

19 B.3; 39/�B.23; 59/�S15 �S27 �S35 �S47

23 B.3; 47/�B.15; 59/�S23 �S27 �S35 �S39

29 B.3; 59/�S15 �S23 �S27 �S35 �S39 �S47

� 31 S3 �S15 �S23 �S27 �S35 �S39 �S47 �S59

Figure 3

In analysing the loop space of an exceptional symmetric space corresponding to a map
'W H !G between quasi-p–regular Lie groups, we will use the following strategy.

Strategy:

(1) Use Theorem 2.4 to replace H
'
!G by

pY
mD2

M.A0m/

Qp

mD2
M.qm/

���������!

pY
mD2

M.Am/:
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(2) Determine those qm which are nontrivial in cohomology via the induced map of
indecomposable modules, Q'�W QH�.G/!QH�.H /.

(3) Observe that the remaining maps qmW A
0
m!Am are trivial because either A0m

or Am is trivial.

(4) Deduce the homotopy fibre of M.qm/ from Proposition 4.5 or from the fact that
M.qm/ is trivial.

(5) Use Corollary 2.5 to obtain �.G=H /'
pQ

mD2

fib.M.qm//.

5.2.1 Type G Recall that SO.4/'p S3�S3 for p� 5. For pD 5, by Theorem 3.6
there is a homotopy commutative diagram:

S3 _S3 A.3; 11/

SO.4/ G2

'

Since '�W QH 3.G2IFp/ ! QH 3.SO.4/IFp/ Š QH 3.S3 � S3IFp/ is non-trivial,
Proposition 4.5 implies that there is a homotopy equivalence

�.G2=SO.4//'p S3
��S11 .p D 5/:

For p > 5, the space A.3; 11/ is replaced by S3 _S11 and arguing as in the p D 5

case we obtain
�.G2=SO.4//'p S3

��S11 .p > 5/:

5.2.2 Type FI By Theorem 5.1 there are homotopy equivalences

SU.2/ �Sp.3/'p

�
S3 �B.3; 11/�S7 .p D 5/;

S3 �S3 �S7 �S11 .p > 5/:

It is shown in [22] that

H�.FIIFp/D Fp Œf4; f8�=.r16; r24/ .p � 5/

for some relations r16; r24 in degrees 16 and 24 respectively. Thus

Q'�W QH m.F4IFp/!QH m.SU.2/ �Sp.3/IFp/

is non-trivial for m 2 f3; 11g and p � 5. When p D 5, by Theorem 3.6 there is a
homotopy commutative diagram:

S3 _A.3; 11/_S7 A.3; 11/_A.15; 23/

SU.2/ �Sp.3/ F4

'
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Proposition 4.5 therefore implies that there is a homotopy equivalence

�FI '5 S3
�S7

��B.15; 23/:

For p > 5, arguing similarly we obtain

�FI 'p S3
�S7

��S15
��S23:

5.2.3 Type FII By Theorem 5.1 there are homotopy equivalences

Spin.9/'p

8<:
B.3; 11/�B.7; 15/ .p D 5/;

B.3; 15/�S7 �S11 .p D 7/;

S3 �S7 �S11 �S15 .p > 7/:

Since H�.FIIIZ/D ZŒx8�=.x
3
8
/, we have

Q'�W QH m.BF4IFp/!QH m.B Spin.9/IFp/

non-trivial for m 2 f3; 11; 15g and p � 5. Therefore, arguing as in the FI case, we
obtain homotopy equivalences

�.F4=Spin.9//'p S7
��S23 .p � 5/:

5.2.4 Type EIV It will be convenient to describe the EIV case before that of EI .
We contribute nothing new to this case. By [16], for odd primes p there is a homotopy
equivalence E6 'p E6=F4 � F4 . So from the decompositions of E6 and F4 in
Theorem 5.7 one obtains homotopy equivalences

E6=F4 '

�
B.9; 17/ .p D 5/;

S9 �S17 .p � 7/:

5.2.5 Type EI By [20], for odd primes p there is an isomorphism

H�.EIIFp/D Fp Œe8�=.e
3
8/˝E.e9; e17/:

Notice that the right side is abstractly isomorphic to

H�.F4=Spin.9/IFp/˝H�.E6=F4IF4/:

At odd primes, PSp.4/ 'p Spin.9/ so EI D E6=PSp.4/ 'p E6=Spin.9/. Let
�W E6=F4!E6 be the inclusion from the homotopy equivalence E6'p F4�E6=F4

and let  W F4=Spin.9/!E6=Spin.9/ be the map of quotient spaces induced from
the factorisation of the group homomorphism Spin.9/ ! E6 through F4 . From
the homotopy fibration sequence E6

@
!E6=Spin.9/! B Spin.9/! BE6 there is a

homotopy action
� W E6 �E6=Spin.9/!E6=Spin.9/
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which extends @_ id. The composition

� ı .� � /W E6=F4 �F4=Spin.9/!E6=Spin.9/

therefore induces an isomorphism in mod-p cohomology and so is a homotopy equiva-
lence. Combined with the identification of EIV and FII cases, we obtain homotopy
equivalences

�E6=PSp.4/'
�
�B.9; 17/�S7 ��S23 .p D 5/;

�S9 ��S17 �S7 ��S23 .p � 7/:

5.2.6 Type EII By Theorem 5.1 there are homotopy equivalences

SU.2/ �SU.6/'p

�
S3 �B.3; 11/�S5 �S7 �S9 .p D 5/;

S3 �S3 �S5 �S7 �S9 �S11 .p > 5/:

By [21], for p � 5,

H�.E6=SU.2/ �SU.6/IFp/D Fp Œx4;x6;x8�=.r16; r18; r24/

for some relations r16; r18; r24 in degrees 15; 18; 24 respectively. Thus for p � 5,

Q'�W QH m.E6IFp/!QH m.SU.2/ �SU.6/IFp/

is non-trivial for m 2 f3; 9; 11g. For p D 5, by Theorem 3.6 there is a homotopy
commutative diagram:

S3 _A.3; 11/_S5 _S7 _S9 A.3; 11/_A.9; 17/_A.15; 23/

SU.2/ �SU.6/ E6

'

Proposition 4.5 therefore implies that there is a homotopy equivalence

�.E6=SU.2/ �SU.6//'5 S3
�S5

�S7
��S17

��B.15; 23/:

For p > 5, arguing similarly we obtain

�.E6=SU.2/ �SU.6//'p S3
�S5

�S7
��S15

��S17
��S23 .p > 7/:

5.2.7 Type EIII By Theorem 5.1 there are homotopy equivalences

Spin.10/'p Spin.9/�S9
'

�
S9 �B.3; 11/�B.7; 15/ .p D 5/;

S9 �B.3; 15/�S7 �S11 .p D 7/:

It is shown in [19; 39] that for p � 5

H�.E6=T 1
�Spin.10/IFp/D Fp Œx2;x8�=.r18; r24/
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for some relations r18; r24 in degrees 18; 24. Thus

Q'�W QH m.E6IFp/!QH m.T 1
�Spin.10/IFp/

is non-trivial for m 2 f3; 9; 11; 15g for p � 5. Therefore, arguing as in the EII case
(but modifying slightly to account for the S1 term by using Remark 3.7) we obtain
homotopy equivalences

�.E6=T 1
�Spin.10//'p S1

��S17
�S7

��S23 .p � 5/:

5.2.8 Type EV By Theorem 5.1, for p � 11 there are homotopy equivalences

SU.8/=f˙Ig 'p SU.8/'p S3
�S5

�S7
�S9

�S11
�S13

�S15:

By the appendix,

Q'�W QH m.E7IFp/!QH m.SU.8/=f˙IgIFp/

is non-trivial for m 2 f3; 11; 15g when p � 11. For p D 11, by Theorem 3.6 there is
a homotopy commutative diagram:

S3_S5_S7_S9_S11_S13_S15 A.3; 23/_A.15; 35/_S11_S19_S27

SU.8/=f˙Ig E7

'

Proposition 4.5 therefore implies that there is a homotopy equivalence

�E7=.SU.8/=f˙Ig/'5 S5
�S7

�S9
�S13

��S19
��S23

��S27
��S35:

For p > 11, arguing similarly we obtain

�E7=.SU.8/=f˙Ig/

'p S5
�S7

�S9
�S13

��S19
��S23

��S27
��S35 .p � 11/:

5.2.9 Type EVI By Theorem 5.1, there are homotopy equivalences

Spin.12/'p S3
�S7

�S11
�S11

�S15
�S19 .p � 11/:

By [33], for p � 5 H�.E7=T 1 � Spin.12/IFp/ D Fp Œx2;x8;x12�=.r24; r28; r36/ for
some relations r24; r28; r36 in degrees 24; 28; 36 respectively. From the fibre sequence

S2 ,!E7=T 1
�Spin.12/!E7=SU.2/ �Spin.12/
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we therefore obtain H�.E7=SU.2/ �Spin.12/IFp/D Fp Œx4;x8;x12�=I for some ideal
I consisting of elements of degrees at least 24. Hence

Q'�W QH m.E7IFp/!QH m.SU.2/ �Spin.12/IFp/

is non-trivial for m 2 f3; 11; 15; 19g when p � 11. Therefore, arguing as in the EV
case we obtain homotopy equivalences

�E7=SU.2/ �Spin.12/'p S3
�S7

�S11
��S23

��S27
��S35 .p � 11/:

5.2.10 Type EVII By Theorem 5.7 there are homotopy equivalences

E6 'p

�
B.3; 23/�S9 �S11 �S15 �S17 .p D 11/;

S3 �S9 �S11 �S15 �S17 �S23 .p > 11/:

By [8; 40], for p � 11,

H�.E7=T 1
�E6IFp/D Fp Œx2;x10;x18�=.r20; r28; r36/

for some relations r20; r28; r36 in degrees 20; 28; 36 respectively. Thus

Q'�W QH m.E7IFp/!QH m.T 1
�E6IFp/

is non-trivial for m 2 f3; 11; 15; 23g when p � 11. Therefore, arguing as in the EV
case (modifying slightly to account for the S1 term by using Remark 3.7) we obtain
homotopy equivalences

�E7=T 1
�E6 'p S1

�S9
�S17

��S19
��S27

��S35 .p � 11/:

5.2.11 Type EVIII Using Theorem 5.1, there are homotopy equivalences

Ss.16/'p S15
�Sp.7/

'p

8<:
B.3; 23/�B.7; 27/�S11 �S15 �S15 �S19 .p D 11/;

B.3; 27/�S7 �S11 �S15 �S15 �S19 �S23 .p D 13/;

S3 �S7 �S11 �S15 �S15 �S19 �S23 �S27 .p � 17/:

By [14] and [24],

Q'�W QH�.E8IFp/!QH�.Ss.16/IFp/

is non-trivial for m 2 f3; 15; 23; 27g when p > 5. For p D 11, by Theorem 3.6 there
is a homotopy commutative diagram:
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A.3; 23/_A.7; 27/_S11_S15_S15_S19 A.3; 23/_A.15; 35/_A.27; 47/_A.39; 59/

Ss.16/ E8

'

Proposition 4.5 therefore implies that there is a homotopy equivalence

�E8=Ss.16/'11 S7
�S11

�S15
�S19

��S35
��S47

��B.39; 59/:

For p > 11, arguing similarly we obtain

�E8=Ss.16/

'p

�
S7 �S11 �S15 �S19 ��S39 ��S47 ��B.35; 59/ .p D 13/;

S7 �S11 �S15 �S19 ��S35 ��S39 ��S47 ��S59 .p � 17/:

5.2.12 Type EIX Recall the four cases for the homotopy decomposition of E7 in
Theorem 5.7 when p � 11. By [34],

H�.E8=T 1
�E7IFp/D Fp Œx2;x12;x20�=.r40; r48; r60/;

for some relations r40; r48; r60 in degrees 40; 48; 60, resp. From the fibre sequence

S2 ,!E8=T 1
�E7!E8=SU.2/ �E7

we obtain H�.E8=SU.2/ � E7IFp/ D Fp Œx4;x12;x20�=I , where I is some ideal
consisting of elements in degrees at least 40. Thus

Q'm
W QH�.E8IFp/!QH m.SU.2/ �E7IFp/

is non-trivial for m 2 f3; 15; 23; 27; 35g when p � 11. Arguing similarly to the EVIII
case we obtain homotopy equivalences

�E8=SU.2/ �E7 'p

�
S3 �S11 �S19 ��S47 ��B.39; 59/ .p D 11/;

S3 �S11 �S19 ��S39 ��S47 ��S59 .p � 13/:

Summarising the results for the exceptional cases, we have the following (together with
exponent information which will be proved later in Section 7).

Theorem 5.8 For an odd prime p , there are homotopy equivalences as in Figure 4.

Remark 5.9 Two of the decompositions in the previous table deloop. Harris [16]
showed that E6=F4 '5 B.9; 17/ and E6=F4 'p S9 � S17 for p � 7, and in this
paper we show that E6=PSp.4/'p E6=F4 �F4=Spin.9/ for p � 3.

Remark 5.10 Terzić’s computation of the rational homotopy groups [36] can be easily
reproduced from these decompositions. We found minor mistakes in her calculations
for G2=SO.4/ and E6=SU.2/ �SU.6/. See also Remark 5.10 for classical cases.
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6 Limitations and extensions of the methods

In this section we examine the boundaries of our methods and results. It is natural to
ask whether the loop space decompositions of symmetric spaces deloop, and whether
the methods can be extended to apply in cases that are not quasi-p–regular.

6.1 Impossibility of delooping

We gave decompositions for the loop spaces of symmetric spaces. It is reason-
able to ask whether they actually come from decompositions of symmetric spaces
themselves. Kumpel [26] and Mimura [29] showed that if the homotopy fibration
H ! G ! G=H is totally non-cohomologous to zero then the symmetric space
will decompose, delooping our results. This holds for SU.2n C 1/=SO.2n C 1/,
SU.2n/=Sp.n/, Spin.2n/=Spin.2n� 1/ and E6=F4 . However, in general a delooping
does not exist, as we now see with the particular example of FI D F4=SU.2/ �Sp.3/.

We have shown that
�FI '5 S3

�S7
��B.15; 23/:

However, this decomposition does not deloop, as we now show. The following calcula-
tion will be needed.

Theorem 6.1 [22]

H�.FIIFp/D
Fp Œf4; f8; f12�

.f 3
4
� 12f4f8C 8f12; f4f12� 3f 2

8
; f 3

8
�f 2

12
/

In particular,

H�.FIIF5/D
F5Œf4; f8; f12�

.f 3
4
� 2f4f8� 2f12; f4f12� 3f 2

8
; f 3

8
�f 2

12
/
:

We will show that this ring cannot be a non-trivial tensor product of two rings. From
the relations we obtain:

3.f 3
4 � 2f4f8� 2f12/) f12 D 3f 3

4 �f4f8;

f4f12� 3f 2
8 ) f 4

4 � 2f 2
4 f8�f

2
8 ;

f 3
8 �f

2
12:

If a splitting exists, there should be a substitution

f4 7! f4; f8 7! af 08C bf 2
4 ; a 2 F�5 ; b 2 F5
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such that the relation f 4
4
� 2f 2

4
f8 � f

2
8

lies in F5Œf4� [ F5Œf
0

8
�. However, this is

impossible. Therefore there is no non-trivial product decomposition for FI localised at
p D 5.

6.2 Non-quasi-p–regular cases

We study examples of Lie group homomorphisms H
'
�!G when H and/or G are not

quasi-p–regular. In the first three examples, the methods from Sections 2 to 4 hold and
a homotopy decomposition of �.G=H / is obtained, while in the final two examples
potential obstructions appear.

All the examples occur at the prime p D 7, and relate to the homotopy equivalences

E7 '7 B.3; 15; 27/�B.11; 23; 35/�S19;

E8 '7 B.3; 15; 27; 39/�B.23; 35; 47; 59/;

established in [30].

(1) EV DE7=.SU.8/=f˙Ig/ Here,

SU.8/=f˙Ig '7 SU.8/'7 B.3; 15/�S5
�S7

�S9
�S11

�S13:

We hope to apply Theorem 2.4. Consider the composite

�W A.3; 15/_S5
_S7

_S9
_S11

_S13
! SU.8/

'
�!E7

'
�! B.3; 15; 27/�B.11; 23; 35/�S19:

By [30], the homotopy groups of B.3; 15; 27/�B.11; 23; 35/� S19 are zero in di-
mensions f5; 7; 9; 13g, so � factors through a map

�0W A.3; 15/_S11
�! B.3; 15; 27/�B.11; 23; 35/�S19:

As well, by [30] �t .B.11; 23; 35// D 0 for t 2 f3; 15g, �11.B.3; 15; 27// D 0 and
�t .S

19/D 0 for t 2 f3; 11; 15g, so the map �0 is determined by the maps

�01W A.3; 15/! B.3; 15; 27/ and �02W S
11
! B.11; 23; 35/:

The 15–skeleton of B.3; 15; 27/ is A.3; 15/ so �0
1

factors as a composite A.3; 15/
g1
�!

A.3; 15; 27/! B.3; 15; 27/ for some map g1 . Similarly, �0
2

factors as a composite
S11 g2
�!A.11; 23; 35/! B.11; 23; 35/ for some map g2 . Hence there is a homotopy
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commutative diagram

A.3; 15/_S5_S7_S9_S11_S13 A.3; 15/_S11

A.3; 15; 27/_A.11; 23; 35/_S19

SU.8/ E7

Q

'

g1_g2

where Q is the pinch map. Therefore, noting that M.S2nC1/'S2nC1 , by Theorem 2.4
and Corollary 2.5, the homotopy fibre of the map SU.8/ '!E7 is homotopy equivalent
to the homotopy fibre of the composite

M.A.3; 15//�S5
�S7

�S9
�S11

�S13 �
�!M.A.3; 15//�S11

M.g1/�M.g2/
����������!M.A.3; 15; 27//�M.A.11; 23; 35//�S19

where � is the projection.

In the appendix it is shown that

Q'�W QH m.E7/!QH m.SU.8/=f˙Ig/

is nontrivial for m 2 f3; 11; 15g. Thus g�
1

and g�
2

are onto in mod-7 cohomology,
implying that M.g1/

� and M.g2/
� are onto in mod-7 cohomology. Therefore, arguing

as in Proposition 4.5, there is a homotopy equivalence

�.E7=.SU.8/=f˙Ig/'7 S5
�S7

�S9
�S13

��S27
��B.23; 35/��S19:

(2) EVIDE7=SU.2/ �Spin.12/ Here,

SU.2/ �Spin.12/'7 SU.2/�Spin.12/'7 S3
�B.3; 15/�B.7; 19/�S11

�S11:

Arguing as in the previous case, we obtain maps g1W S
3 _A.3; 15/! A.3; 15; 27/,

g2W S
11 _S11!A.11; 23; 35/ and g3W A.7; 19/!S19 and a homotopy commutative

diagram:

.S3_A.3; 15//_.S11_S11/_A.7; 19/ A.3; 15; 27/_A.11; 23; 35/_S19

S3 �Spin.12/ E7

g1_g2_g3

'

As in Section 5.2.8, Q'� is nonzero in degrees f3; 11; 15; 19g, so arguing as in the
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previous case we obtain a homotopy equivalence:

�.E7=SU.2/ �Spin.12//'7 S3
��S27

�S11
��B.23; 35/�S7:

(3) EVIIDE7=T 1 �E6 Here,

T 1
�E6 '7 T 1

�E6 '7 S1
�B.3; 15/�B.11; 23/�S9

�S17:

Arguing as in Case 1, we obtain maps g1WA.3; 15/!A.3; 15; 27/ and g2WA.11; 23/!

A.11; 23; 35/, and a homotopy commutative diagram

S1_A.3; 15/_A.11; 23/_S9_S17 A.3; 15/_A.11; 23/

A.3; 15; 27/_A.11; 23; 35/_S19

S1 �E6 E7

Q

'

g1_g2

where Q is the pinch map. As in Section 5.2.9, Q'� is nonzero in degrees f3; 11;

15; 23g, so arguing as in the first case we obtain a homotopy equivalence

�.E7=T 1
�E6/'7 S1

��S27
��S35

�S9
�S17

��S19:

(4) EVIIIDE8=Ss.16/ Here,

Ss.16/'7 Spin.16/'7 B.3; 15; 27/�B.7; 19/�B.11; 23/�S15:

We hope to apply Theorem 2.4. Consider the composite

�W A.3; 15; 27/_A.7; 19/_A.11; 23/_S15
! Spin.16/

'
�!E8

'
�! B.3; 15; 27; 39/�B.23; 35; 47; 59/:

By [30], the homotopy groups of B.3; 15; 27; 39/�B.23; 35; 47; 59/ are zero in di-
mensions f7; 19g so � factors through a map

�0W A.3; 15; 27/_A.11; 23/_S15/! B.3; 15; 27; 39/�B.23; 35; 47; 59/:

By [30], �t .B.23; 35; 47; 59/ D 0 for t 2 f3; 15; 27g and �t .B.3; 15; 27; 35/ D 0

for t 2 f11; 23g, so the map �0 is determined by maps �0
1
W A.3; 15; 27/_S15 !

B.3; 15; 27; 39/ and �0
2
W A.11; 23/! B.23; 35; 47; 59/. Notice that the 27–skeleton

of B.3; 15; 27; 39/ is A.3; 15; 27/ [ e18 , and �27.S
18/ Š Z=7Z. Thus there is a

potential obstruction to lifting �0
1

to a map A.3; 15; 27/_S15!A.3; 15; 27; 39/. It
is unclear whether the obstruction vanishes. If not, then Theorem 2.4 cannot be applied
and the homotopy type of �.E8=Ss.16// at p D 7 would remain undetermined.
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(5) EVIXDE8=SU.2/ �E7 As in the previous example, we obtain an obstruction
to lifting �0

1
W S3 _A.3; 15; 27/! B.3; 15; 27; 39/ to A.3; 15; 27; 39/, which leaves

unresolved the homotopy type of �.E8=SU.2/ �E7/ at p D 7.

Remark 6.2 An important difference between the three E7 examples that worked
and the two E8 examples that did not is that the domains in the three E7 examples
were all quasi-p–regular while this was not the case in the E8 examples.

7 Exponents

Recall that, for a prime p , the p–primary homotopy exponent of a space X is the
least power of p that annihilates the p–torsion in ��.X /. If the p–primary exponent
is pr , write expp.X /D pr . The homotopy decompositions of �.G=H / allow us to
find precise exponents or upper and lower bounds on the exponent of G=H .

Observe that in every homotopy decomposition of �.G=H / in Theorems 5.4 and 5.8,
the factors are either spheres, sphere bundles over spheres, or the loops on either
of these two. Exponent information about these spaces is known. A precise expo-
nent for spheres was determined in [9], and exponent bounds for spaces of the form
B.2m� 1; 2mC 2p� 3/ was determined in [12].

Theorem 7.1 [9] Let p � 5. Then expp.S
2nC1/D pn .

Theorem 7.2 [12] Let p � 5. Then expp.B.3; 2pC 1//D ppC1 and for m> 2,

pmCp�2
� expp.B.2m� 1; 2mC 2p� 3//� pmCp�1:

Suppose that X is a product of spheres and spaces B.2i�1; 2iC2p�3/ for various i .
Rationally, X is homotopy equivalent to a product of odd dimensional spheres, say
X 'Q

Q`
iD1 S2miC1 . The type of X is the list fm1; : : : ;m`g where – relabelling if

necessary – we may assume that m1 � � � � �m` . Theorems 7.1 and 7.2 immediately
imply that the exponent of X depends only on the exponent of the factors of X

containing a generator in cohomology of degree 2m`C 1. Explicitly, expp.X /D pm`

if each factor of X containing a generator in cohomology of degree 2m`C1 is a sphere,
and pm` � expp.X / � pm`C1 if at least one factor of X containing a generator in
cohomology of degree 2m`C1 is B.2m`�2pC3; 2m`C1/. In our case, observe that
the homotopy decompositions for �.G=H / in the classical cases listed in Theorem 5.4
imply that the factor containing a generator in cohomology of maximal degree is of the
form B.2i �1; 2iC2p�3/ only for SU.2nC1/=SO.2nC1/, SU.2n/=SO.2n/ and
SU.2n/=Sp.n/ when nD p� 1. Thus we have the following.
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Type G=H p � 5 Exponent

AI SU.2nC 1/=SO.2nC 1/ p > n

�
� p4nC2 if p� 1D n

D p4nC1 if p� 1> n

SU.2n/=SO.2n/ p > n

�
� p4n if p� 1D n

D p4n�1 if p� 1> n

AII SU.2n/=Sp.n/ p > n

�
� p4n if p� 1D n

D p4n�1 if p� 1> n

AIII
U.n/

U.m/�U.n�m/

|

p > n=2 D p2n�1

BDI
SO.2nC 1/

SO.2m/�SO.2.n�m/C 1/

|

p > n D p4n�1

SO.2nC 1/

SO.2m� 1/�SO.2.n�m/C 2/

}

p > n D p4n�1

SO.2nC 2/

SO.2mC 1/�SO.2.n�m/C 1/

|

p > n D p4n�1

SO.2nC 2/

SO.2m/�SO.2.n�m/C 2/

}

p > n�1 D p4n�1

CI Sp.n/=U.n/ p > n D p4n�1

CII
Sp.n/

Sp.m/�Sp.n�m/

|

p > n D p4n�1

DIII SO.2n/=U.n/ p > n�1 D p4n�3

Figure 5: For | , we assume 2m� n . For } , we assume 2m� nC 1 .

Theorem 7.3 For p � 5, there are exponent bounds as in Figure 5.

Theorems 7.1 and 7.2 also imply the exponent bounds listed in Theorem 5.8.

Appendix

For p > 5, we show that Qi�W QH m.E7IFp/!QH m.SU.8/=C IFp/ is non-trivial
for m 2 f3; 11; 15g, where C D f˙Ig. To see this we show that

Qi�W QH m.BE7IFp/!QH m.B.SU.8/=C IFp//

is non-trivial for m 2 f4; 12; 16g via the Weyl group invariant subrings.
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The extended Dynkin–Coxeter diagram for E7 is as follows:

b b b b b b b
b

�z̨ ˛1

˛2

˛3 ˛4 ˛5 ˛6 ˛7

We adopt a basis ftig8iD1
satisfying

z̨ D t1� t2; ˛1 D t3� t2; ˛2 D
.t1C � � �C t4/� .t5C � � �C t8/

2
;

˛i D tiC1� ti .3� i � 7/:

The Weyl group W .A7/ for SU.8/=C is generated by the reflection corresponding to
˛i (i ¤ 2) and z̨ , and

H�.B.SU.8/=C /IFp/DH�.BT IFp/
W .A7/ D Fp Œc2; : : : ; c8�;

where ci is the i th elementary symmetric polynomial in the tj . Let � be the reflection
corresponding to ˛2 . We check that there are algebra generators in

H�.BE7IFp/DH�.BT IFp/
W .E7/ D Fp Œc2; : : : ; c8�

�:

in degrees 4, 12 and 16 and they contain c2 , c6 and c8 , respectively.

Let ai and bi be the i th elementary symmetric polynomials in t1; : : : ; t4 and t5; : : : ; t8 ,
respectively. Notice that

˛2 D
t1C t2C t3C t4� t5� t6� t7� t8

2
D a1

and ci D
P

jCkDi aj bk .

Denote ˛2=2 by � , for short. Since �.ti/ D ti � � for i � 4 and �.ti/ D ti C � for
i � 4, we can compute �.ai/ and �.bi/ easily, and this yields the following:

�.c2/D c2;

�.c3/D c3C 2.a2� b2/�;

�.c4/� c4C 3.a3� b3/� � 3.a2C b2/�
2 mod .�4/;

�.c5/� c5C 4.a4� b4/� � 2.a3C b3/�
2 mod .�4/;

�.c6/� c6C .a3b2� a2b3/� � 2a2b2�
2
� 2.a3� b3/�

3 mod .�4/;

�.c8/� c8C .a4b3�a3b4/�C.a4b2Ca2b4�a3b3/�
2
� .a3b2�a2b3/�

3 mod .�4/:
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We then conclude a generator xi in degree i satisfies the following by computing
modulo .�2/:

x4 D c2;

x12 � c6�
1
6
c2c4C

1
8
c2

3 mod .a1/;

x16 � c8�
1
4
c2c6�

1
8
c3c5C

1
12

c2
4 mod .a1/:
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