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Framed graphs and the non-local ideal
in the knot Floer cube of resolutions

ALLISON GILMORE

This article addresses the two significant aspects of Ozsvéth and Szabd’s knot Floer
cube of resolutions that differentiate it from Khovanov and Rozansky’s HOMFLY-
PT chain complex: (1) the use of twisted coefficients and (2) the appearance of
a mysterious non-local ideal. Our goal is to facilitate progress on Rasmussen’s
conjecture that a spectral sequence relates the two knot homologies. We replace
the language of twisted coefficients with the more quantum-topological language
of framings on trivalent graphs. We define a homology theory for framed trivalent
graphs with boundary that— for a particular non-blackboard framing — specializes
to the homology of singular knots underlying the knot Floer cube of resolutions. For
blackboard-framed graphs, our theory conjecturally recovers the graph homology
underlying the HOMFLY-PT chain complex. We explain the appearance of the non-
local ideal by expressing it as an ideal quotient of an ideal that appears in both the
HOMFLY-PT and knot Floer cubes of resolutions. This result is a corollary of our
main theorem, which is that closing a strand in a braid graph corresponds to taking
an ideal quotient of its non-local ideal. The proof is a Grobner basis argument that
connects the combinatorics of the non-local ideal to those of Buchberger’s algorithm.

57TM27

1 Introduction

This article aims to elucidate the key differences between Ozsvath and Szab6’s cube of
resolutions chain complex for knot Floer homology [12] and the cube of resolutions
chain complex underlying Khovanov and Rozansky’s HOMFLY-PT homology [8]; see
also Rasmussen [13]. Comparing the constructions is especially interesting in light of
the conjecture that there should be a spectral sequence from HOMFLY-PT homology to
knot Floer homology; see Dunfield, Gukov and Rasmussen [3] and Rasmussen [13]. In
both constructions, a knot in S? is studied by considering the collection of graphs G
for I € {0, 1}" obtained by replacing each crossing in an n—crossing braid diagram
with its oriented resolution or with a thick edge, as in Figure 1. The graphs are planar
and trivalent, with one thick and two thin edges incident to each vertex. They are
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Figure 1: A collection of graphs is obtained from a braid diagram for a knot
by replacing each crossing with either its oriented resolution (left) or with a

thick edge (right).
=X

Figure 2: Graphs, as defined in Section 2.1, correspond to singularized links
via the exchange above.

equivalent to singular knots by exchanging thick edges for 4—valent vertices, as in
Figure 2.

In the cube of resolutions for knot Floer homology, one associates a graded algebra
Burk (Gr) to each graph and assembles these into a bigraded chain complex whose
homology is the knot Floer homology of the original knot. In HOMFLY-PT homology,
one associates a bigraded chain complex to each Gy, then assembles these into a
triply-graded chain complex. The triply-graded complex has one differential coming
from the complexes associated to the Gy, but it is also given a new differential. Taking
homology with respect to each of these in turn produces the HOMFLY-PT homology of
the knot. Let Bgr(Gy) denote the homology of the chain complex associated to Gy .

The process of assembling a final chain complex from the Bypk(Gy) or the Bxr(Gy)
is quite similar; it is a standard cube of resolutions construction. We focus here on the
differences between Byrkx and Bgr, which we call the knot Floer graph homology and
the HOMFLY-PT graph homology, respectively.

Both the knot Floer and HOMFLY-PT graph homologies are built from certain ideals
in polynomial rings. The polynomial rings are edge rings: they have indeterminates
corresponding to thin edges of the graph. Generating sets for the ideals can be read
off directly from the graph. Ozsvath and Szabé [12] observe that the ideals used
in the two constructions are remarkably similar, but a precise relationship between
the constructions has not been previously described. Our goal will be to make the
comparison precise, with the intention of facilitating progress on the spectral sequence
conjecture.
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We address two major differences between the knot Floer and HOMFLY-PT graph
homologies:

(1) Twisted coefficients The knot Floer edge ring is defined over Z[t~!, ], the ring of
Laurent series in ¢, while the HOMFLY-PT edge ring is defined over Q (see Khovanov
and Rozansky [8] and Rasmussen [13]) or Z (see Krasner [9]). The variable ¢ appears
in the definition of the knot Floer ideals as well because the knot Floer graph homology
is in fact the singular knot Floer homology (see Ozsvath, Stipsicz and Szab6 [11]) of
the graph in S*, computed with a particular choice of twisted coefficients.

(2) The non-local ideal The HOMFLY-PT graph homology is built from two ideals,
L(G) and Q(G), both of which are specified entirely by local information (individual
thick edges and their incident thin edges) in the graph. The knot Floer graph homology
uses (twisted analogues of) these ideals, but also a non-local ideal N(G), which cannot
in general be specified by only local data from the graph.

We address the issue of twisted coefficients by recasting it in terms of framed graphs.
For a framed, planar, trivalent graph G, possibly with boundary, we define an edge
ring £(G), which is itself a quotient of a polynomial ring by an ideal F(G) derived
from the framing. We define mild generalizations of the ideals L(G), Q(G) and N(G)
mentioned above, and a graph homology

E(G) £(G) ) 2 AV,

BG) = T"f*(m’ NG

where Vg is the free £(G)—module spanned by certain connected components of G .

If G is a closed braid graph (ie obtained by replacing the crossings in a closed braid
diagram with thick edges) with its outermost strand cut, then we recover the knot Floer
and (conjecturally) HOMFLY-PT graph homologies by imposing certain framings. For
a particular non-blackboard framing e, we have Byrk(G) = B(G*®). For a different
non-blackboard framing, we recover the variant on the knot Floer graph homology
considered in Gilmore [4].

Letting b denote the blackboard framing, one may write the HOMFLY-PT graph
homology as

£(GP) £(GP)
L(G®)" 0(GP)

BKR(G) = TOI‘*( ) ® A* VG,

but one may also restate Conjecture 1.3 of Manolescu [10] as

Tor (S(Gb) S(Gb))NTor (S(Gb) S(Gb))
*\L(G?)’ 0(G*) ) = T\ L(G?) N(G®) )’
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If that conjecture holds, it would follow immediately that Bxr(G) = B(G®). That
is, for the blackboard framing, our B would specialize to the HOMFLY-PT graph
homology.

The approach via framed graphs is a modest generalization of existing graph homologies,
but it situates these graph homologies in the context of quantum topology. In that
setting, invariants of framed graphs are a natural extension of invariants of knots, and
a typical stop along the way to invariants of 3—manifolds. It should be possible to
extend B to an invariant of knotted framed trivalent graphs via a cube of resolutions
chain complex. It would be interesting to relate the resulting invariant to Viro’s quantum
relative of the Alexander polynomial [14], which draws on the representation theory
of the quantum supergroup gl(1]1) to extend the multivariable Alexander polynomial
to knotted framed trivalent graphs. Understanding such a relationship could help fill
gaps in both the categorified and decategorified settings. On the categorified side, one
might hope to extend knot Floer homology to tangles without appealing to bordered
sutured theory; see Zarev [15]. On the decategorified side, Heegaard Floer homology
might suggest how to upgrade Viro’s invariant of framed graphs to a gl(1|1) invariant
of closed 3—manifolds.

These advertisements for the framed graphs approach aside, our main result concerns
the non-local ideal N(G). It will be clear from the definitions that Q(G) € N(G)
for any graph G. Furthermore, the non-local ideal N(G) coincides with the local
ideal Q(G) when G is a braid graph with none of its strands closed; that is, when G
can be obtained from a braid diagram o (with none of its strands closed) by replacing
crossings with thick edges as in Figure 1 (see Gilmore [5, Proposition 3.1.1] and
Manolescu [10, Proposition 5.4], or implicitly Ozsvath and Szab6 [12, Lemma 3.12]
and Gilmore [4, Proposition 3.1]). It is only as we close strands of the braid graph that
we begin to see examples in which Q(G) & N(G). Therefore, we study the partially
closed braids G = G, GV, ..., G®D obtained by closing one strand at a time,
as in Figure 3. We allow any framing on G, and assume that the framing on G ® is
inherited from that on G . We consider G ®~1 to be the closure of G, even though its
outermost strand is still open. (See Remark 2.10.)

We prove that closing a braid strand corresponds to taking an ideal quotient of the non-
local ideal by the edge variable associated to the strand being closed. See Section 2.5
for full details of the notation.

Theorem 1.1 Let G be a braid graph with no strands closed and G® denote the
diagram obtained by closing the right-most k strands of G. Let ny: £(G ‘k)) —
£(G*k+D) denote the projection of edge rings corresponding to closing the (k+1)*
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strand of G% . Let z**D denote the edge ring variable corresponding to the top
boundary edge of the (k+1)* strand of G® . Then, for 0 < k < b — 2, the equality

JTk(N(G(k))) . (Z.l(:k+1)) — N(G(k+l))
holds in £(G k+D),
As a corollary, we may express the non-local ideal of a braid graph’s closure in terms
of a local ideal of the underlying braid graph.
Corollary 1.2 With notation as in Theorem 1.1, the equality

Tp—z 00 mo(Q(G)) : (2 -z P7P) = N(G7)

holds in £(G ®~V).
The reason for the appearance of the ideal quotient in relation to braid closures remains
mysterious. There is a tempting analogy to Hochschild homology, which is the closure
operation in Khovanov’s construction of HOMFLY-PT homology via Soergel bimod-
ules [7]. Soergel bimodules categorify the Hecke algebra and Hochschild homology
categorifies Ocneanu’s trace on the Hecke algebra, so Khovanov’s whole construction

has a clean decategorification. One might hope for a similar story involving the ideal
quotient and the Alexander polynomial.

Z(rb) Z,(‘-bil)zg) Zg) Z-([b) Zghfl)z.(EZ)

®» _6—1_0 1 ®» =1 _Q
Zg Zg Zp I Zg g %

Figure 3: From left to right: the braid graph G = G (¥ obtained by replacing
all crossings in a braid diagram o with thick edges, the partial closure G (I’
and the full closure G 4~V .

With the ideal quotient result and interpretation via framed graphs in hand, we may
describe the status of the HOMFLY-PT to knot Floer spectral sequence conjecture (see
Dunfield, Gukov and Rasmussen [3] and Rasmussen [13]) as follows.! Let K be a
knot in S3. Let K be an n—crossing braid diagram for K with outermost strand cut.
Let Gy for I € {0, 1}"* be the collection of planar trivalent graphs that can be obtained

1 All of the following results have parallels involving HFK and the reduced HOMFLY-PT homology.
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by replacing each crossing of K with either a thick edge or with the oriented smoothing,
as in Figure 1.

Recall that e denotes the framing for which B specializes to the knot Floer graph
homology. Ozsvéth and Szabé constructed the original cube of resolutions for knot
Floer homology from the collection of B(G7y) for I € {0, 1}", which arose for them as
singular knot Floer homology [11] with twisted coefficients. They showed that their
cube of resolutions complex is the £ page of a spectral sequence to HFK™ (K) that
collapses at the E, page [12, Theorem 1.1, Section 5]. Manolescu [10] studied the
untwisted version of their construction. He described appropriate differentials and
gradings with which to assemble a cube of resolutions chain complex from the B (G}’).
He identified that complex as the E; page of a spectral sequence to HFK™ (K) [10,
Theorem 1.1]. Using yet another framing, for which B also specializes to the knot
Floer graph homology, the author has described another cube of resolutions chain
complex [4]. Like the Ozsvath—Szab6 complex, it is the E; page of a spectral sequence
to HFK™ (K) that collapses at the E, page (see the proof of [4, Proposition 9.1]).

While both of the non-blackboard-framed spectral sequences mentioned above collapse
at the E, page, Manolescu’s blackboard-framed spectral sequence does not. In fact, he
conjectures that it is exactly the desired spectral sequence from HOMFLY-PT homology
to knot Floer homology. More precisely, and translating to our language, Manolescu
conjectures that B(G}’) =~ Bgr(Gy), which would imply that the £, page of the
blackboard-framed spectral sequence was the middle HOMFLY-PT homology of K
[10, Conjecture 1.3].

Corollary 1.2 allows us to rephrase Manolescu’s conjecture as

£(G) £(GH) (G E@D)
T‘”*(L(G}’)’ 0GH) < (-1 ...Z;b—D)) = T‘”*(L(G;’)’ Q(G}’))'

Theorem 1.1 suggests an inductive approach to the proof: close one strand of a braid
diagram at a time and study how the corresponding ideal quotient changes the result of
applying Tors«(E(G})/L(G}), —). Theorem 1.1 and Corollary 1.2 also provide a new
map to employ: the multiplication map

E(Gr) 2"z E(Gy)
N(Gy) 0(Gr)

The multiplication map fits into a short exact sequence

E(Gy) zV 2"V E(Gy) N £(Gy)
N(Gy) 0G1)  0(Gy) + (2D ... 287D

— 0,
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which induces a long exact sequence when Tor(E(Gy)/L(Gy),—) is applied. The
multiplication map does not have the correct grading to induce Manolescu’s conjectured
isomorphism for all Tor;, but it does have the appropriate grading to induce the
isomorphism in the top degree, ie when i = b — 1 [10, Conjecture 5.2].

We expect that there are cube of resolutions chain complexes and spectral sequences anal-
ogous to those described above for many other compatible choices of framings on the
set of Gy obtained from a given knot diagram. Any choice of framings that corresponds
to an admissible twisting of the singular knot Floer homology (see Manolescu [10,
Lemma 2.1] and Ozsvath and Szabd [12, Section 2.1]) should do, and that encompasses
any non-negative framing. We expect all such spectral sequences to converge to knot
Floer homology, and to collapse if sufficiently far from blackboard-framed. In particular,
we expect that such a spectral sequence would collapse if the compatible choice of
framings had the property that every closed component of every Gy had non-zero total
framing. It would be interesting to know under what conditions the £ and/or E, pages
of such spectral sequences are knot invariants, and whether there is any relationship to
HOMFLY-PT homology outside the blackboard-framed case.

Aside from the conjectured spectral sequence, it would be interesting to study B(G)
(or a suitable generalization to knotted framed graphs) as an invariant in its own right.
For example, it would be interesting to know for what framings B satisfies (perhaps
modified) categorified Murakami—Ohtsuki—Yamada relations, as it does for b and e;
see Khovanov and Rozansky [8] and Gilmore [4]. There has also been little work done
on applications of knot Floer homology to the study of singular knots or spatial graphs.
As a starting point, one might look for a relationship between B and the sutured Floer
homology of a graph’s complement in S3.

The proof of Theorem 1.1 is a computational commutative algebra argument. We
use a Grobner basis technique (Buchberger’s algorithm) to construct a generating set
for the appropriate ideal quotients from the defining generating set of N(G (k)). The
result is miraculously the same as the defining generating set for N(G ®t1D). The
computational approach makes for some rather involved arguments, but ultimately
succeeds because of a match between the combinatorics of Buchberger’s algorithm and
those of the ideals we associate to framed graphs. We are optimistic that Grobner basis
techniques may prove useful for the spectral sequence conjecture or in other efforts to
study B.

The paper is organized as follows. Section 2 makes precise the concepts and notation
referenced so far: framed graphs, the framing ideal, the local and non-local ideals,
edge rings, and the graph homology B. It also discusses the relation of B to the
HOMFLY-PT and knot Floer graph homologies, and computes B in two simple cases.
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Finally, it establishes the notation used to state Theorem 1.1. Section 3 is a primer on
Grobner basis techniques and Buchberger’s algorithm. Since the proof of Theorem 1.1
is rather technical, Section 4 gives an overview and Section 5 an example illustrating
the arguments to come. Sections 4 and 5 also highlight the reasons that Grobner basis
techniques are well suited to the combinatorics of our problem. Sections 6 and 7 carry
out the proof in detail for the blackboard-framed case, where it is at least somewhat
less notationally intensive. Section 8 describes the modifications necessary to extend
from blackboard to arbitrary framings.

Acknowledgements The author thanks Ciprian Manolescu, who was the first to men-
tion ideal quotients to her in this context, and who provided useful input on drafts of
this paper. She is also grateful for several useful conversations with Mikhail Khovanov,
Robert Lipshitz, Peter Ozsvath, and Zoltan Szabé. Finally, the author appreciates
the hospitality of the Simons Center for Geometry and Physics, where she proved a
limited version of this result (see [5]) while a visiting student. The author was partially
supported by NSF grant number DMS-1103801.

2 Framed graphs and associated algebraic objects

2.1 Framed graphs

In this paper, graph will mean an oriented graph properly embedded in the disk D?
with the following properties:
(1) Vertices have degree at most three.
(2) Every connected component has at least one vertex of degree greater than one.
(3) Edges have an assigned weight of one (thin) or two (thick).
(4) Edges incident to univalent and bivalent vertices are thin.

(5) For trivalent vertices, the sum of weights of incoming edges equals the sum of
weights of outgoing edges.

Univalent vertices will also be called boundary vertices of the graph and their incident
edges will be called boundary edges. All other thin edges will be called interior edges.
Graphs with these properties are equivalent to singularized projections of tangles:
exchange thick edges in the graph for 4—valent vertices as in Figure 2.

A framing of a graph G will mean an extension of the embedding G < D? to an
embedding F < D? x [0, 1], where F is a compact surface with boundary such that
these properties hold:
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(1) G=FnN(D?*x {%}) is a deformation retract of F'.
(2) FNJoG =0FNIG.

(3) FN(dD?x[0,1]) = F N (dD? x {1}), with each component thereof an arc
containing exactly one univalent vertex of G .

The blackboard framing of G is the surface Fy obtained by taking a closed neighbor-
hood of G in D? x {%}. We require the thick edges in our graphs to be blackboard-
framed. On each edge, one may compare a framing F to the blackboard framing to
obtain an integer, which is the number of positive or negative half-twists that must be
inserted in Fy to match F. We will represent a framed graph diagrammatically by
marking each thin edge and labeling the marking with an integer. We will omit the
framing from the text notation for the graph unless discussing a property that holds
only for particular framings.

We will consider framed graphs up to planar graph isotopies: isotopies of the graph in
D? x {1} that extend to isotopies of the framing surface F in D? x [0, 1] and fix its
intersection with dD? x [0, 1]. It will be clear from the definitions that 3 is invariant
under such isotopies. We expect that B could be extended to an invariant of knotted
framed graphs (ie allow the graph to be embedded in D? x [0, 1] and require merely
that isotopies fix the intersection of the graph with dD?) using a cube of resolutions
construction, but we do not pursue the point here.

2.2 Ideals associated to framed graphs

We work over a ground ring R = F[t~!,¢] of Laurent series in ¢, with F a field.?
Let G be a framed graph, so each thin edge of G' has an orientation and a marking.
Assign to each thin edge a pair of indeterminates x; and y; labeling the first and second
(with respect to the orientation) segments of the thin edge. Let x(G) and y(G) denote
the sets of x; and y;. We consider four ideals in R[x(G), y(G)] associated to the
graph G.

Definition 2.1 (a) The framing ideal, F(G), is generated by linear polynomials
associated to markings on thin edges:

) Yi
t"yi—x; to ¢

Xi
2Much of the background material on Grébner bases that we use generalizes to the case where F is

a Noetherian commutative ring, but certain computability properties are required of the ring for the full
theory of Grobner bases to generalize.
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(b) The linear ideal, L(G), is generated by linear polynomials associated to thick

edges:
Xa N\, Xp
(xqg +xp) — (e + ya) to
e Vd

(¢) The quadratic ideal, Q(G), is generated by quadratic polynomials associated to

thick edges:
Xq Xp
XaXp = VcVd 1O
Ve yd

and linear polynomials associated to bivalent vertices:

Xa

Xqg — to
a™ Je L}c

(d) The non-local ideal, N(G), is generated by polynomials of varying degrees
associated to sets of thick edges and bivalent vertices in G. Let X be the set of thick
edges and bivalent vertices in G. Let I' € Xg. The weight w(I") of I" is the sum of
the framings on thin edges that are internal to " (ie have both endpoints incident to an
element of I'). Let xr o, be the product of the x; associated to thin edges from I" to
either Xg \I' or 0G. Let yr, be the product of the y; associated to thin edges into
I' from either Xg \ I" or dG. Then the generator of N(G) associated to I' is

w(T
14 ( )xF,out_yF,in-

X, Xb
14
Ve Vb
Figure 4: Example for Definition 2.1(d)

For example, in Figure 4, X¢ is the single thick edge. Let I' = X . Only the edge
labeled with x; and yy, is internal to T", so w(I") = £. The complement of I" in Xg
is empty, so X1 oy and yr i, involve only the edges between I' and dG . Therefore,
the generator of N(G) associated to I' is thxg — V¢ . Notice that a thin edge with a
marking denoting its framing is still treated as a single edge. That is, markings are not
the same as bivalent vertices.

The definition of a subset’s weight given above differs from that in [12], but be-
comes equivalent in the edge ring when the graph has the appropriate framing. See
Proposition 2.5. If G is a closed braid graph (obtained from a braid diagram by replacing
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crossings with thick edges), then the ideal N(G) has other generating sets. Rather
than associating a generator to each subset in G, we may instead associate a generator
to each closed path in G or to certain regions in D? \ G. The equivalence of all of
these definitions is proved in [4, Proposition 3.1]. These alternative generating sets are
smaller in general, but less well adapted to the combinatorics of Buchberger’s algorithm.

Definition 2.2 The edge ring of G is

R[x(G), y(G)]

E(G)=Rx(G)] 2z ———F—,

(6)=RIx(G) = — =

fixing the isomorphism that retains the variable x; from each generator tfyi — xi
of F(G).

Remark 2.3  Although we have defined L(G), 0(G) and N(G) in R[x(G), y(G)],
we will actually work with their images in £(G). When referring to specific elements
of these ideals, we will assume that they have been rewritten to use only variables
in x(G).

In the edge ring, we have Q(G) € N(G) for any G. The generator associated to a
bivalent vertex in Q(G) is the same as itis in N (G), unless the incoming and outgoing
edges of the bivalent vertex coincide. If they do, and that edge has framing ¢, then the
generator of N(G) is t¢ — 1. The generator of Q(G) is (¢ — 1)x for the appropriate
edge variable x. Suppose I' consists of a single thick edge in G . If none of its incident
thin edges coincide, then the generator of N(G) corresponding to I will be identical
to the generator of Q(G) associated to that thick edge. If some of its incident thin
edges do coincide, then the generator of Q(G) will be a multiple of the generator
of N(G). For example, we have seen that the generator of N(G) corresponding to the
thick edge in Figure 4 is t*x, — y.. The generator of Q(G) associated to the same
thick edge is x4xp — ¥p Ve, Which becomes x,xp — t_gxbyc =1xp(ttx, — Ye) in
the edge ring.

We allow some of the connected components of G to be designated “special”. Let Vg
be the free £(G)—module spanned by the non-special connected components of G .
Then we define the graph homology promised in the introduction to be

£(G) 5(G))®A*V .

2-1) B(G) = Tor (L(G)’ NG)
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2.3 Relation of 5 to other graph homologies

As mentioned in the introduction, B(G) specializes to the knot Floer and (conjecturally)
HOMFLY-PT graph homologies for particular framings on G. In this section, we
indicate more precisely how those specializations hold. Although the definition of B(G)
makes sense for framed graphs in the generality described in Section 2.2, we restrict to
closed braid graphs here because of the parallel restriction on the graph homologies
in [12; 4; 10]. Recall from the introduction that we use “closed” to describe a braid
graph with its outermost strand cut.

Proposition 2.4 Let G be a closed braid graph with its outermost connected compo-
nent (containing the cut edge) designated special. Let b denote the blackboard framing.
Assume that [10, Conjecture 1.4] holds. Then

B(G®) = Bxr(G),
where the right-hand side is the HOMFLY-PT graph homology defined in [8].

Proof It is immediate from the definitions that L, Q and N (as ideals in &) are
identical to those defined in [10]. When G is blackboard-framed, every subset has
weight zero and the framing ideal merely identifies each x; with its corresponding y; .
Our B(GP) and Bgr(G) are then identical to those in [10]. Theorem 1.2 of [10] is
that Bgr is the HOMFLY-PT graph homology from [8], and Conjecture 1.4 of [10] is
that B == Bgr. O

Proposition 2.5 Let G be a closed braid graph with its outermost connected compo-
nent (containing the cut edge) designated special. Let e denote the framing in which
each thin edge is + 1—framed. Then

B(G®) = A(G),

where A is the knot Floer graph homology defined in [12].

Proof Treat the graph G as a singular knot by replacing thick edges with 4—valent
vertices as in Figure 2. The images in £(G*®) of the generating sets of L(G®), Q(G®)
and N(G®) are exactly the ideal generated by the relations given in the definition
of A(G) in [12, Section 1]. For example, the generator x, + xp — Yy — y4 of L(G®)
becomes X4 + Xp —t " 'xe —t71xy in £(G®) via the elements 1y, — X and tyg — x4
of F(G®). The generator t"’(r)xr,out — Jr.in becomes t“’(r)xp,om — l_“’iﬂ(r)xr,in,
where wi,(I") is the sum of the framings on the thin edges into I from Xg \I" or dG,
and xr ;, 18 the product of the x; associated to those thin edges. Clearing denominators,
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we have w(I") 4+ wi(I") as the exponent of ¢, which is the sum of the framings on all
thin edges incoming to I"'. When G has the framing e, that sum is twice the number of
thick edges plus the number of bivalent vertices in I', which is the weight that Ozsvéath
and Szabd assign to I" in [12].

It follows directly from these observations that the knot Floer graph homology A(G)
defined in [12, Section 1] is isomorphic to £(G*®)/(L(G®) + N(G*®)), which is the
degree-zero part of B(G*®). If G is connected, then one may adapt the argument for [12,
Theorem 3.1] to see that B(G*®) is concentrated in degree zero, so B(G®) =~ A(G).
If G is not connected, then A(G) vanishes. The same is true of B(G®). The complete
set of thick edges and bivalent vertices in a closed component of G® not containing
the cut strand will yield a generator of the form ¢ —1 in N(G*®), where £ > 0. Since
Y —1 is a unit in the ground ring, £(G®)/N(G*®) will vanish. a

Finally, we define a framing for which B specializes to the graph homology studied
in [4], which is an alternative knot Floer graph homology that also satisfies certain
categorified Murakami—Ohtsuki—Yamada relations. Let G' be obtained (by replacing
crossings with thick edges) from a braid diagram in which each crossing appears in a
distinct horizontal layer. If there are k thick edges between the incident thick edges
of a given thin edge, assign the framing k + 1 to that thin edge. The total framing on
each strand will be equal to the number of thick edges in G . Call this framing s.

Proposition 2.6 Let G be a closed braid graph with its outermost connected compo-
nent (containing the cut edge) designated special. Let s be the framing defined above.
Then

B(G®) = A(G).

where A is the alternative knot Floer graph homology defined in [4].

Proof The argument is almost the same as for Proposition 2.5. If G is disconnected,
both B(G*) and A(G) vanish, again because a generator of the form ¢¢ — 1 appears
in N(G?®). Otherwise, with a bit more care, the proof of [12, Theorem 3.1] may be
adapted to prove that B(G®) is concentrated in degree zero.

The degree-zero part of B(G#®) is £(G®)/(L(G®) + N(G#®)). Compare the layered
diagram used to define the framing s with the layered diagrams studied in [4] by
replacing a marking denoting a framing of & with & — 1 bivalent vertices. Tracing
through the definitions, one may confirm that the images of L(G®), Q(G®) and N(G*®)
in £(G®) are exactly the L, Q and N defined in [4] (after clearing denominators in
some generators). Therefore, the degree-zero part of B(G®) is isomorphic to A(G). O
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2.4 Examples

Example 2.7 Consider the diagram

with one thick edge, two boundary edges, and framing £ on the remaining thin edge.
Assume that the edges labeled x and z were blackboard-framed and that we have
already used the corresponding generators of the framing ideal to eliminate one variable
associated to each.

The framing ideal F, edge ring £ (under the convention for retaining edge labels
specified in Definition 2.2), and generating sets for (the images of) L, Q and N in &
are given by:

e F=('y—w).

e &=~TRlw,x,z].

o L=x+w-—z—1"tw).

e 0=(xw—1"twz).

e N=('x—2).

Using the sole generator of L to resolve £/ L, then tensoring with £/ N, we obtain
the chain complex

x+w—z—t"tw

g/N T ey,

whose homology is Tor«(£/L,E/N). We simplify that chain complex using the
generator of N to eliminate x:

—Z_l —_
Rlw, z] w)R[u),z].

Then we conclude that

B Rlw, z](1) ® Rlw, z]oy if £ =0,
A RIz)0) otherwise,

since the map (1~¢ —1)(z — w) has no kernel unless £ = 0.
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Example 2.8 Consider the diagram

Assume that unmarked edges were blackboard-framed and that we have already elimi-
nated one variable associated to each of them using the appropriate generators of the
framing ideal. Then we have:

. F:(tew/—w,tky/—y,tmz’—z).

e Ex=TRv,w,x,y,zl].

e L=(+z—t w—1t"z,x+w—v—-1"Fy).

o 0= ((y—t7t"mw)z, xw—1"%vy).

o N=(@My—t"tw, tktttmyx _y).
The generators of L are a regular sequence in £. We use the Koszul complex to

resolve £/ L, then tensor with £/N to obtain the complex

—t~fw+(1—t—") x+w—v—t—K

(E/N X S E/N)®(E/N % E/N).

whose homology is Tor«(£/L,E/N). Then we simplify by using the generators of N
to eliminate w and v:

1) (" z— thtetm_1y=F y—x)

(Rlx, y.z] ( ) RIx, . z]) ® (Rlx, y.z] ( R[x, y,z]).

The homology of the complex above depends on whether m and/or k + £ 4+ m is zero.
If one or both values is zero, then the maps in one or both tensor factors of the complex
are zero. Otherwise, ™ — 1 and/or t*T¢+™ _1 is a unit in R and the map involving
that factor has no kernel. When both maps are non-zero, we have a Koszul complex on
a regular sequence in R[x, y, z]. Therefore, the possible outcomes are as follows:

RIx](0) m#0,k+L+m#0,
5 Rx, z]0) @ Rlx. z](1) m=0,k+{+m#0,
| RIx. yo) @ RIx, yl) m#£0k+L+m=0,

RIx, y.2)0) ®RIx, y, 2, ®RIx, p. 2]y m =0,k +L+m=0.
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2.5 Notation for Theorem 1.1

As in the introduction and Figure 3, let o be a braid diagram with b strands, none of
which are closed. Let G = G @ be the framed braid graph obtained by replacing the
crossings in o with thick edges. Let G = G @, G, ..., G®~D be the intermediary
graphs obtained by closing one strand of G at a time from right to left. Assume that
the G© inherit their framings from G, with newly closed strands bearing the sum of
the framings on the edges that formed them.

Abbreviate the edge ring £(G®) by & and the ideals L(G*), 0(G®), and
N(G®) by Ly, Q. and Ni. Let z% and z;}k) denote the top- and bottom-most
remaining edges on the k™ strand of G after the variables in y(G) have been discarded
via the isomorphism specified in Definition 2.2. The z%® and z%® are not new variables,
but simply alternate names for certain variables in x(G). Let a; be the framing on the

top boundary edge of the k" strand of G. Let Zj | C & be the ideal generated by

k+1) ap41 . (k+1)
Zg —1okHlzy .

Closing the (k+1)* strand of G ®) corresponds to taking the quotient of & by Zj41.
Let mg: & —> k41 be the quotient map with kernel Zj 4 that retains zk+D and
discards Zékﬂ) .In G® | we call the joined edges z¥ = t“izlg” for i <k closure

edges and continue to call the remaining z{" and z g) for i > k boundary edges.

The generators of the linear and quadratic ideals depend only on local information at each
thick edge, which will not change when strands are closed. Therefore, 7y (Lg) = Lg+1
and 73 (Qr) = Qk+1- The analogous statement is not at all true for the non-local ideal.
The set of edges that are internal to a subset I' may change as we proceed from G *
to G*+D _ Specifically, a subset I' in G® may have z&+D and z%*1 as outgoing
and incoming edges, respectively. The generator of Ny C & associated to I" will then
have Z.:.k D dividing one of its terms and Z&+D dividing the other. Under 7y, the
z%+D Wil be replaced by r%+1 z*+D 50 both of its terms will be divisible by z*+1.
In G**D however, the closure edge on the (k+1)* strand will be internal to T'.
Therefore, neither term of the generator of Ny associated to I" will be divisible by
zék‘H). Refer to Section 5 and the set I' U A in Figure 6 for a concrete example of how
this can occur.

We have seen so far that 7z (Ng) & Nig41. The content of Theorem 1.1 is that the
situation described above fully explains the discrepancy. That is, closing a braid strand
corresponds to taking an ideal quotient of the non-local ideal.

Definition 2.9 Let /, J be ideals in a ring R. The ideal quotient of I by J is
I1:J={reR|rJCI}.
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Note that / is always contained in [ : J.

In the abbreviated notation of this section, Theorem 1.1 claims that
. k+1
T (Ni) : 25FD) = Ny

Corollary 1.2 concerns closing G completely to G b=b  This corresponds to taking
successive quotients of £(G) by each of the Zj . Equivalently, let Z C £(G) be the
ideal generated by z % — 1z ék) for 1 <k <b—1. Then the edge rings of G and
its closure are related by £(G)/Z =~ £(G®~Y). Let n: £(G) — £(G®D) be the
composition 75_5 0+--0 1y, so 7 retains all of the z% and discards all of the szk’

except z/(gb). Let z; = zV--. 26~ Corollary 1.2 then states that
7(Q(G) 1 (z) = N(G*7P).

The corollary follows immediately from two facts: (1) that Q(G) = N(G) because G
is a braid graph with none of its strands closed, and (2) that 7 : (xy) = (I : (x)) : ()
for any ideal I, ring R, and ring elements x, y € R.

Remark 2.10 The final graph G ®~D has two boundary points, but we refer to it as
the closure of G nonetheless. The choice to work with diagrams in which the outermost
strand is cut is typical in the quantum topology literature because the representation
theory underlying the Alexander polynomial demands it (see eg [14]). It is also in line
with the use of basepoints in related work [4; 10; 12].

3 Background: Grobner bases and Buchberger’s algorithm

We approach Theorem 1.1 as a commutative algebra calculation: given generating sets
for two ideals in a polynomial ring, create a generating set for their ideal quotient. In
fact, we would like to recreate a previously specified generating set. Grobner bases are a
convenient tool for this sort of calculation. They make it possible to generalize sensibly
the division algorithm for single-variable polynomials to a division algorithm for
multivariable polynomials, thereby reducing certain difficult questions in commutative
algebra and algebraic geometry to computational problems. Grobner bases are the
foundation of computer algebra programs that do commutative algebra in polynomial
rings, such as Macaulay 2 [6]. In this section, we define Grobner bases, describe
an algorithm for converting an arbitrary generating set for an ideal into a Grobner
basis, and explain how Grobner bases can be used to calculate generating sets for ideal
intersections and quotients. The exposition here is an adaptation of that in [1].
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3.1 Monomial orders

Let F be a field and F[xy, ..., x,] = F[x] a polynomial ring over it.

Definition 3.1 A monomial order is a total ordering of the monomials xgo cexph
in [F[x] that satisfies these conditions:

(H 1< xgo ... xy" for all monomials with «; not all zero.

(2) y <y implies yz < y’z for any monomials y, )’,z in F[x].

We will use the lexicographic ordering on F[x] in which xg > x1 > -+ > x, > 1.
This means that x;° - -- x," > xg" -o.xP" when a; > B; for the first i at which the
exponents differ. The largest monomial is written first. For example, the following
polynomials are written correctly with respect to the lexicographic term order:

2 2 3
J1=x{x2—x1x5, f2=2x1 —xax3x4, f3=x5+4x5—1

Throughout the remaining sections, we will write polynomials with respect to the
lexicographic order unless we specify otherwise.

Given a monomial order, denote the leading term and the leading monomial of a
polynomial f € F[x] by LT(f) and LM( f') respectively. For example, LT( f2) = 2x;
and LM( f2) = x; . For blackboard-framed graphs, there will be no difference between
leading terms and leading monomials because our coefficients are always +1. When
we deal with polynomials that have only two terms, we will denote the trailing term
(ie the non-leading term) by TT( /) and the trailing monomial by TM( /).

3.2 Grobner bases and the division algorithm

A Grobner basis is a generating set for an ideal that accounts for all possible leading
monomials of polynomials in that ideal.

Definition 3.2 A Grobner basis for anideal 7 CIF[x] is a set of polynomials g1, ..., gx
in I such that for any f € I, there is some i for which LM(g;) divides LM(f).

It follows from the Hilbert basis theorem and a few basic observations that every
nonzero ideal in [F[x] has a Grobner basis [1, Corollary 1.6.5]. Grébner bases are not
unique and are typically highly redundant; an ideal typically has a smaller generating
set that is not a Grobner basis.

The key advantage of Grobner bases over other generating sets is that they make it
possible to generalize the division algorithm to multivariable polynomials in a useful
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way. Generalizing the algorithm is straightforward enough: To divide f by g in F[x],
we see whether LM(g) divides LM( /). If it does, we record LT( /)/LT(g) as a term
of the quotient and replace f by f — (LT(f)/LT(g))g. If not, we record LT(f) as
a term in the remainder and replace f with f —LT(f). Continuing this process as
long as possible, we eventually obtain a decomposition of f as f = gg + r for some
q,r € F[x]. We may also divide f by a collection of polynomials g, ..., gz to obtain
a decomposition

S=qig1+ - +aqrgr+r.

At each step, we look for the first i such that LM(g;) divides LM( /), then record
LT(f)/LT(g;) as a term in the quotient ¢; and replace f by f — (LT(f)/LT(gi))gi-
If no LM(g;) divides LM( /), then we record LT( /') as a term in the remainder » and
replace f with f —LT(f). We will write

fgl sssss gk}"

and say f reduces to r via gy, ..., gy if r is obtained as a remainder when using this
algorithm to divide f by gi,...,gk-

In general, the result of this generalized division algorithm depends on the monomial
order chosen on F[x] and the order in which the polynomials gy, ..., g; are listed.
Neither the quotients ¢, ..., g; nor the remainder r are unique. Consequently, this
generalized division algorithm on its own is of little use. It is not true, for example,
that the remainder r is zero if and only if f is in the ideal generated by g4, ..., gk.

However, if gq,...,gr are a Grobner basis for the ideal they generate, then the
remainder r is unique: it does not depend on the monomial order or on the order
in which the g; are listed. The quotients are still not unique, but the uniqueness
of the remainder is sufficient to make the generalized division algorithm useful for

commutative algebra computations. For instance, if g1, ..., g; are a Grobner basis for
the ideal they generate, then f lies in (gq,..., g) if and only if f reduces to zero
via g1,...,8k-

3.3 Buchberger’s algorithm and ideal quotients

Buchberger [2] developed an algorithm for converting any generating set of an ideal
into a Grobner basis. Such an algorithm must produce new generators that account for
leading monomials of polynomials in the ideal that did not appear as leading monomials
among the original generators. New leading monomials arise when a linear combination
of existing generators causes their leading terms to cancel. Buchberger’s algorithm
systematically produces these cancellations using S—polynomials.
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Definition 3.3 The S—polynomial of two non-zero polynomials f, g € F[x] is
lem(LM(f).LM(g)) . lem(LM(f),LM(g))

LT(f) LT(g)
LM(g) = LM( /)

= LC(/) gedLM(/). LM(g))

where f = f —LT(f) and g = g — LT(g).

S(f.g) =

" LC(g) ged(LM(f), LM(g)) &

If LT(f) = LM(f) and LT(g) = LM(g), we have the simplification

B LM(g) - LM(f) _
S(f.g) = - g
ged(LM(f).LM(g))"  ged(LM(f).LM(g))
Buchberger’s theorem [1, Theorem 1.7.4] is that a generating set g1, ..., gx for an

ideal I C F[x] is a Grobner basis for 7 if and only if
S(gi, gj) £ 0

for all i # j. Buchberger’s algorithm, then, is as follows.

Algorithm 3.4 (Buchberger) Let g1,..., g; be a generating set for anideal 7 C F[x].

(1) Compute S(gi,g;) for some i # j and attempt to reduce it via g, ..., gk
using the generalized division algorithm.

(2) If S(gi.gj) LLw8ky () 90 back to the previous step and compute a different
S—polynomial. If S(g;,gj) LleoBly poand r # 0, then add r to a working

basis.

(3) Repeat the previous two steps until a basis gy, ..., gx+s is obtained for which
S(gi. gj) El8hts, 0 forall i # .

Buchberger [2] proved that this algorithm terminates and produces a Grobner basis
for 1.

We will use Buchberger’s algorithm to produce an explicit generating set for the ideal
quotient 7t (Ng) : (Z{.k D). It will be readily recognizable as the generating set by
which Ng . was defined. First, we will produce a generating set for the intersection
7w (NN (zr(k D) in & 4. The following straightforward proposition explains how a
generating set for an intersection yields a generating set for a quotient. It is a rephrasing
of [1, Lemma 2.3.11], for example.

Proposition 3.5 Let I C R be an ideal in a polynomial ring and x € R. If hy, ..., hy
is a generating set for I N (x), then hy/x, ..., h;/x is a generating set for I : (x).
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To produce a Grobner basis for an intersection, we follow the method prescribed in
[1, Proposition 2.3.5]. Suppose that I, J C F[xy,..., x,] are ideals with generating
sets pi,..., pir and ¢, ..., qg respectively. Enlarge the polynomial ring to include
a dummy variable v. Define the monomial order on F[xg, ..., X,, v] to be lexico-
graphic with v > x¢ > --- > x > 1. (The lexicographic ordering is a special case
of an “elimination ordering”, which is what is actually required for this procedure to
work.) Then

INJ=wl+@w®-1)J)NF[xg,...,Xnl

and a Grobner basis for 1 N J can be obtained from a Grébner basis for v + (v —1)J
by intersecting the basis with F[xo, ..., x,] [1, Theorem 2.3.4]. Therefore, to obtain a
basis for I N J, we apply Buchberger’s algorithm to the basis

VPl s VPR, (W —1)gq, ..., (v—1)gy,
then discard any generator in which v appears.

In sum, we have the following algorithm for producing a Grobner basis for the ideal
quotient / : (x) (where x is a monomial) starting from a generating set py,..., Pk
for I.

Algorithm 3.6 (1) Apply Buchberger’s algorithm (Algorithm 3.4) to {vpy, ..., Vpg,
vx —x} in F(xog,..., Xy, v] with an ordering in which v > x; for all x;. Let
{P1...., Pk+sy (m > k) be the output of Buchberger’s algorithm.

(2) Intersect {pi..... pr+s} With F[xo. ..., xu]. Let {p]..... py,} be the resulting
subset of generators.

(3) Divide each of the p; by x. The set {p|/x,..., p,,/x} is a Grobner basis
for I:(x).

3.4 Simplifying Grobner basis computations

We record here a collection of propositions that will simplify computations encountered
when applying Buchberger’s algorithm.

Proposition 3.7 Let f, g € F[x]. If gcd(LM(f).LM(g)) =1, then S(f, g)ﬁo.
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Proof Let f =LT(f)+ f and g = LT(g) + g. Then we can compute and reduce
S(f,g) as follows. The two possible term orders are considered successively:

U0 = ol e (redwety oL San@a)
- —%_@)(LM(f) + LCJ({J,)) (reduce by + #_LC(g)f)
o,

and

SU0 =T Tt ol (redueeby + o E s an()+ )
= (M0 + ) (anety - m )
=0.

This concludes the proof. a

Proposition 3.8 Let f = LT(f)+ f and g = LT(g) + g be polynomials in F[x].
Let a, b be monomials in F[x]. Then

S(af,ag) =aS(/f.g).

If ged(a, b) = ged(a, LM(g)) = ged(h, LM(f)) = 1, then
S(af.bg) =abS(/.g).

If ged(a, LM(f)) = 1, then

S(af.alT(g) + &) = S(/.aLT(g) +g).

Proof Since gcd(aLM(f),alLM(g)) = a gcd(LM(f),LM(g)), we compute as fol-
lows for the first claim:

alLM(g) - aLM(f)

S(01-48) = TPy gedTM (/). IM(2)) ) ™ LC(g)a ged M), LM(g) “
_ a( LM(g) - LM(/) )
LC(/) ged(LM(f), LM(2))” ~ LC(g) ged(M(/), LM(g))
—aS(f.2).
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The term order in the first two lines above may not be as written, but it is not changed
by canceling or factoring out a from the expression.

For the second claim, our assumptions imply that ged(af,bg) = ged(f, g). The
computation is as follows:

HLM(g) - aLM(f)

S(@]-b8) = [o(7) ged@M( /). IM(g) ) ™ LC(g) gedLM(f). LM(g))
. b( LM(g) - LM(/) g_)
LC(/) gedM(f). LM(2))] ~ LC(g) ged(LM(f). LM(g))
=abS(f, g).

Again, the term order may not be as written, but it does not change when we factor
out ab.

For the third claim, the key observations are that

ged(aLM(f), aLM(g)) = a ged(LM(f),LM(g))
and

ged(LM(f),aLM(g)) = ged(LM(f),LM(g))
when ged(a, LM(f)) = 1. Therefore,

S(af,alT(g) +8)

_ aLM(g) aF— aLM(f) -
LC(f)a ged(LM(f), LM(g)) LC(g)a ged(LM(f),LM(g))

_ alLM(g) = LM(f) z
LC(f) ged(LM(f),aLM(g)) "  LC(g) ged(LM(f),aLM(g))

= S(f,aLT(g) + 2). O

We will sometimes encounter expressions with unknown term order after computing an
S—polynomial. The following proposition allows us to reduce some such expressions
without explicitly determining their term order.

Proposition 3.9 Let p,q,r,s € F[x] be monomials whose relationships to each other
under the monomial order are unknown. Then whichever of ps —rq or rq — ps is
correctly ordered is reducible to zero by the correctly ordered versions of p —¢q and
r—s.

Proof Suppose that ps —rgq is correctly ordered, so ps > rq. Then either p > g or
s > r or both. Assume without loss of generality that p > ¢g. Then (note that term
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orders are correct), reducing ps —rq by —s(p — ¢q), we obtain either g(s —r) or
q(r —s), depending on whether r < s or s < r. Either way, the last expression reduces
by the version of r —s with the correct term order.

If instead rq — ps is correctly ordered, then either ¢ > p or r > s or both. Without loss
of generality, assume ¢ > p. Reduce by ¢ — p to get p(r —s) or p(s —r) depending
on which term order is correct for » —s. Either way, the result reduces by the correctly
ordered version of r —s. a

4 Outline of proof of Theorem 1.1

Grobner bases and Buchberger’s algorithm offer a concrete, constructive approach to
our claim that the non-local ideal arises as an ideal quotient. With a carefully chosen
monomial order, the computations and reductions of S—polynomials prescribed by
Buchberger’s algorithm actually produce exactly the defining generators of the non-
local ideal for the braid graph with one additional strand closed. Moreover, it is possible
to interpret all S—polynomial computations required by Buchberger’s algorithm with
reference to the graph, and thereby ensure that the algorithm produces no extraneous
generators for the ideal quotient.

This section outlines the proof of Theorem 1.1 via Algorithm 3.6. Algorithm 3.6 calls
for an application of Buchberger’s algorithm (Algorithm 3.4) to a set derived from a
generating set for mz (Ng) C Ex4+1[v], so we begin in Sections 4.1 and 4.2 by setting
up notation to describe such a set and defining a monomial order on & ([v]. We
then describe how Buchberger’s algorithm progresses (Section 4.3) and the output it
produces (Lemma 4.3). We go on to prove Theorem 1.1 from Lemma 4.3 in Section 4.4.
In Section 5, we work out a detailed example illustrating the algorithm for a particular
small graph.

4.1 Notation and a monomial order

Refer to Section 2.5 and Figure 3 for notation. Consider the closure of the (k+1)%
strand of G® . Under our conventions for retaining edge labels when forming

edge rings, & 1; is the polynomial ring over R with indeterminates z(",...,z®,
zék“), ...,z®  and an appropriate proper subset of x(G).

To implement Algorithm 3.6, we require a monomial order on & 1[v]. The ordering
we employ relies crucially on the edge labeling conventions specified above.

Definition 4.1 Let xg, ..., x, label the edges of G from top to bottom, right to left.
The monomial order on & 1[v] is the lexicographic ordering with v > Zr(k D> x> 1
forall i and x; > x; when i < j.
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The property that Zr(k D precedes all other edge variables in the monomial order on
Ek+1[v] allows us to relate divisibility by zr(k D to determination of a polynomial’s
leading term. In diagrammatic terms, divisibility by zr(k D encodes the relationship
of a subset to the braid strand being closed. This connection between the monomial
order and the braid diagram is what makes it possible to keep the size and composition
of our Grobner basis under control, which is ultimately what allows us to describe the
process and outcome of Buchberger’s algorithm.

Observation 4.2 Let [ € & 41[v] be a polynomial with no term divisible by v.
If z*+D divides exactly one term of f, then the term divisible by z*+1 must be the
leading term of f.

The observation follows immediately from the requirement that the monomial order
satisfy z%*D > x; for all x;. With this requirement, only a term divisible by v
could precede a term divisible by z+1  In the absence of v, we look to z**1 to
determine the leading term. If it occurs in only one term, then that term must lead. Any
monomial order for which Observation 4.2 holds could be used to prove Theorem 1.1 in
the same way. We have specified the lexicographic ordering on the remaining variables
simply for concreteness.

4.2 Input and output bases and the monomial order

To implement Algorithm 3.6, we first require a generating set for 7z (Ng) C Ex41. We
will obtain it from the generating set of Ny C & specified in Definition 2.1(d). Let h}k )
denote the generator of Ny associated to a subset I' C X of the thick edges and
bivalent vertices in G . Let glﬁk ) = (hlﬂk ’) denote its image in Ny ;. Let glikH)
denote the generator of N associated to I". Then our input basis for Algorithm 3.6
is the set of glik) for all subsets I', which means our starting basis for Buchberger’s

algorithm is
4-1) goz{vglgk) T C Xg} U {vztD bty

as a set of polynomials in & 1[v]. We will prove Theorem 1.1 by showing that the
output of Algorithm 3.6 is

(4-2) Gena = {25+ | T C Xe},
which is the defining basis for Ny .

At this point, we officially introduce the assumption that the graphs G’ are blackboard-
framed. The non-blackboard case will be handled in Section 8. We also introduce a
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small abuse of notation: replacing Xg with G so that “C G” or “in G” means “is a
subset of the thick edges and bivalent vertices in G”.

We now analyze the polynomials g(k) and g(k+l) in greater detail, particularly with

respect to the monomial order on & 1[v]. Given subsets I' and A in G, let xp A be
the product of interior edges in G = G® from I" to A. Let z{? denote the product
of closure edges z(J ’ that go from T to A in G?, let Z(Il‘) denote the product of
edges Z(] ’ that go from T to the top boundary of G?, and let z“? denote the product

of 21(3]) in G® that go from the bottom boundary of G® to T'.

For example, in Figure 6, this notation amounts to the following:

xrAa =1, XA, = X2,
(1)A — 1 <2>A =@ =y,
Zi“l)r _ Z(2) _— Zi“z)r —1.
Zr =1 Zr =1
Z‘(gl)A = Zl(gz) 1(33) = X3X5, ,(BZ)A = 21(33) X5.

Notice that the factors of z(’) r.A — because they are products of closure edges — come
only from Z(J ’ with indices j < i, while the factors of Z;’) . and zg)r — because they
are products of boundary edges — come only from z(] " or Z}}J) with indices j >i.
Ignoring term orders for the moment, we may express generators of Ny as

k) __ k) k) k) k)
(4-3) hp” = xr,g\rzp G\FZI‘ t ~XG\I'\TZG\1,r?8,1

The generator of Ny associated to I' C G is

(k+1) k+1) _k+1) k+1) _k+1)
(4-4) &r ' =XT.G\I’ro\r°rr —YG\I.TZG\r,r?gr -

The map 7y replaces all instances of zlgk D with z#FD | Let

k+1)

4-5) E(kﬂ) rr z*FDif z&+D s internal to T in GK+D,
fk% B otherwise.

Then the generators of my (Ng) and N are related by
(4-6) gI(‘k) = (h(k)) — §<k+1> (k+1)

We write g}l )94 for the monomial of g(’ ) that is a product of edges outgoing from T’
and g(” " for the monomial of glﬁ) that is a product of edges incoming to I'. It
follows from (4-6) that g(k) and g(kH) have the same term order with respect to
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the monomial order on &y [v]. If this term order is determined by an outgoing edge
variable, then we call ' out-led. If it is determined by an incoming edge variable,
we call I" in-led. The labeling of I as out-led or in-led depends on k because the
monomial ordering depends on k. Since we work in & 4 throughout the proof of
Theorem 1.1, we will always mean in-led and out-led with respect to the term order on
Ek+1[v]- See Section 5 for examples of in-led and out-led subsets.

4.3 Algorithm overview

We now outline the computations that occur as we run Buchberger’s algorithm on G .
The flowchart in Figure 5 summarizes the first round of the algorithm, which produces
the basis G’. In the second round, all S—polynomials reduce to zero within G” and the
algorithm terminates. Lemma 4.3 describes the outcome of the algorithm.

Buchberger’s algorithm instructs us to compute S—polynomials among all of the gener-
ators in the initial basis Gy . Initially, this means we have two types of computations:
S—polynomials between vz K+ — zk+D and the vg(k’ and S—polynomials among
the v g(k) These are handled in Sections 6.1 and 6.2, respectively.

*k+1 _ (k+1)
T

* ket
Z‘E

4.3.1 S-polynomials with vz As the only element of G that is not
divisible by v, the generator v — z§k *D plays a special role. Proposition 3.8
implies that S—polynomials among the elements of G, divisible by v are equal to
v times an S—polynomial of the underlying generators of 7 (Ny ). Therefore, the steps
of Buchberger’s algorithm on G that do not involve vzék"' b_ Z.([k D are parallel to the
steps of Buchberger’s algorithm applied to the basis for w3 (N ). That is, in the process
of running Buchberger’s algorithm on Gq, we incidentally produce a Grobner basis
for 7y (Ny) itself, except that every basis element is multiplied by v. By contrast, the
S—polynomials involving vz*+D — z*+D haye no parallel in Buchberger’s algorithm
applied to a basis for 7z (Ny). They are the only steps of the algorithm that can possibly
produce generators that do not involve v in any of their terms. The plan, of course,
is to discard any generator in which v appears (Step 2 of Algorithm 3.6). Therefore,
precursors to the g(k+1)
to be produced by S—polynomials with vz(k +b

The result of S(vzKk+D — zKk+D vg(k)) depends on whether z**1 divides the
leading monomial of grk If not, then the S—polynomial reduces to z‘k‘H) g(k+1)
which is a precursor to g(kH) If it does, then the S—polynomial with vz(k tH_gde+D
reverses the term order of v gF k) by removing v from its leading term. We call the
resulting polynomial a tilde generator

{vggo /i g;]f)’out if T is out-led,

pg®out_ g®n e T s in-led.

which we are hoping to find in the ideal quotient, will have
— ket

4-7) gr =
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5}
vgr

S(I)Z.(Ek—H) —Z§k+1),—) S(Ug(k) _)

k+1 _(k+1
K+D D
$k ——————— ()

¥ | LM(gp) 6D 4 LM(gr)

*k+1 , K+
zz gr

25D L TM(gf) 8D | T™(g)

P (k+ D_ (k+1)

8r &+1
ér R z(k+1)g

S(vzg""” — Zék—H), -)

*k+1 , K+
Zy gr

Figure 5: Round 1 of Buchberger’s algorithm applied to Gy. Generators
added to the working basis G’ are shown in bold. The ** indicates that
various outcomes are produced at that step, but all reduce to zero as indicated,
where A e {T’'\ (TN A),A\(TNA),TNA, TUA}.

If gf,k > had also a trailing monomial divisible by Zr(k‘H’ (meaning that the edge
labeled z k1 goes both into and out of T' in G**1)), then the tilde generator will
reduce to zt(k +h gf‘k D which belongs in G’. Otherwise, we add the tilde generator
itself to the working basis. We then immediately compute a second S—polynomial
Sz&+D %+ 51y which produces z(kH)gI(,kH) so we add that to G’ as well.
At this point, we will have produced z‘k +Dh g‘kﬂ) for all subsets I', so we will have

confirmed that .
e (NE)  (20°70) 2 Niya.»

The working basis will be
@8) G =GoU{gr|T G2tV |LT(g). 264Dy TT(g )}
U <{Z(k+1)g(k-i-1) | rc G}.

All remaining computations will be aimed at proving that no further additions to our
working basis are required, which will establish that

Tk (N)  (25FD) € Niysy
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Lemma 4.3 The outcome of Algorithm 3.4 applied to Gy in &4 1[v] with the mono-
mial order of Definition 4.1 is G'. In particular, G’ is a Grobner basis for vy (Ny) +
(v —1D)(FD).

4.3.2 S—polynomials among the vgl(,k )
produced the precursors to all of the generators of N, the hope now is that all re-
maining S—polynomials reduce to zero via the working basis G’. Section 6.2 establishes

that this is the case for S(vglﬂk) , vg(Ak)) for any pair of subsets I" and A.

The linchpin to the argument is Lemma 6.7, which expresses S (glﬁk ), g(Ak) ) in terms of

intersections, unions, and complements of I" and A. The least common multiples and
greatest common divisors of monomials that appear in the S—polynomial formula trans-
late into unions and intersections of sets in G'. For example, ged(xr,G\r, XA,G\A) =
XrnA,G\(rua)- This correspondence between operations on monomials and operations
on sets in G is what makes it possible to describe the progress of Buchberger’s algorithm
in terms of the graph.

Since S—polynomials with vz K+D _z k+1

Once these convenient expressions for the .S (glik ), g(Ak ’) have been obtained, it remains

to argue that S'(v gf,k v g(Ak)) may be reduced to zero in G’. For that, we make liberal
use of Observation 4.2 to analyze and compare term orders of the S—polynomials and

the elements of G'.

4.3.3 S-polynomials involving generators in G’ \ Gy Our initial S—polynomial
calculations produced only two types of generators to include in G’ that were not
already in Gy : tilde generators for a limited class of subsets, and Zr‘k +b glﬂk D for all
subsets. Section 7 carries out a final round of computations to check that S—polynomials
involving these new generators reduce to zero within G’. Much of the computational
work follows from Section 6 combined with the shortcuts of Section 3.4. The arguments
for the reductions to zero essentially follow from Observation 4.2, but require careful
case-by-case analyses of term orders. This work completes the proof of Lemma 4.3.

4.4 Proof of Theorem 1.1 from Lemma 4.3

Proof Having completed Buchberger’s algorithm (Step 1 of Algorithm 3.6) and
obtained G’ C &4 1[v], we must now intersect with &4 ;. Doing so produces

G Népr = {20 g T T C Gy

as a basis for mx(Ng) N (z%+D) in & . For the last step of Algorithm 3.6, we
divide each element of G’ N &1 by z*+D to obtain

Gend = {gl("k+1) | C G}
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as our basis for my (Ng) : (Zr(k"'l’) in & 4+1. The result is exactly the generating set
for Ng 41 described in Definition 2.1. a

5 Example/illustration

There are three critical features of our setup that make it possible to characterize the
progress and outcome of Algorithm 3.6 as we have done:

(1) The divisor ideal (Zt‘k +1) is principal and monomial, which makes the role of
Sz&+D 2 d+D ) clear.

(2) The S—polynomial of the non-local generators associated to a pair of subsets
can be described in terms of operations on subsets.

(3) Divisibility by zék D s closely related to the determination of a polynomial’s
leading term, as recorded in Observation 4.2.

This section aims to illustrate these features by way of the small graphs in Figure 6.

X1
X1
X4 | X4 |
X2 X2
A A
X5 X3 X5
GM G@

Figure 6: Example for Section 5

5.1 Setup

The graphs GV and G in Figure 6 are labeled as in Definition 4.1. We take them
to be blackboard-framed, leaving a non-blackboard-framed example to Section 8. The
edge rings of G and G® are
&1 =R[xo,X1,X2,X3,X4,X5], E =TR[xo, X1, X2, X4, Xs5].
2)

It would also be consistent with our notation to say that xo =z, x; =z, x3=z 5

Xq4 = 21(3’ ,and x5 =z ‘§3 ) but we will not use these labels in this section.
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The map m;: & — &, is the quotient by (x; — x3). The non-local ideals for GV
and G® are N; and N, respectively. Theorem 1.1 claims that

w1 (Np) @ (x1) = N

as ideals in &,. Algorithm 3.6 begins with a basis for vy (Ny) + (v — 1)(x), which
Algorithm 3.4 will turn into a Grobner basis.

The monomial order on & is x1 > X¢ > X3 > x4 > X5. All polynomials in this section
are written correctly with respect to the monomial order. Let I be the upper (right)
thick edge and A be the lower (left) thick edge. The non-local generators are

M 2

gr =mi(x1 —x2) = x1 — X2, g = X1— X2,

M _ _ @ _

gA = m1(X2Xg — X3X5) = —X{X5+X2X4, g = —X1X5+ XXy,
O =m1(X1X4 —X3X5) = X1X4 — X1X @D xa—x
grua 1(X1X4 3X5 1X4 1X5, grua 4 5-

Notice that I and "'UA are out-led while A is in-led. These labels are to be interpreted
with respect to £, and its monomial order. With respect to £, all three of I", A, and
I' U A would be out-led.

We run Buchberger’s algorithm in &,[v] with monomial order
V>X1>X)> Xy > X4 > X5
and starting basis

— b hH hH
Go = {vx1 —x1,vgp  vgA L VEPUAS-

5.2 S-polynomials with vx; — xq

As expected, the S—polynomials with vx; —x; remove factors of v, thereby reversing
term orders. In two cases, the result is a tilde generator:
D 5
S(xy —xp, ng ) =vx;—X1 =gr,
D =
S(vxy —xy, vg(A ) = VX2X4 — X1 X5 = ZA.
In the third case, the result reduces by vx; —x; to a precursor of a generator of N;:

@y _ VX[ —X] _ )
S(vxX1 —X1,V8pp) = VX1X5 — X1 X4 ————> —X1X4 + X1 X5 = —X1 & A

We add all three of these outputs to the working basis.
Further S—polynomials between vx;—x and the tilde generators produce the remaining
precursors to generators of N, which we also add to the working basis:

5 2 2).
S(x1—X1,8r) = X7 —X1X2 = X181 ;

~ _ .2 _ @)
S(vX1—X1,8A) = X{X5 —X1X2X4 = —X1Z4 -
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As expected, the working basis at this point is

(D (1) (H 2) (2)
G ={vx; —x1. g1 vgh Vvgia- 8. 8A. X181 18K X181 0A )
It contains all of the precursors to the generators of N, and contains no other poly-
nomials that will survive the intersection with £,. The hope is that all remaining
S—polynomials will reduce to zero within G’.

Notice that the choice of monomial order contributed to the efficiency of the calcula-
tions in this section. Since x; determined the leading terms of g(l) and g(l) these
polynomials were efficiently handled by S(vx; — x1,—). For example, if the term
order of g(l) had been reversed, S(vx; — x1, vg(Al)) would have produced x;ga.
Keeping the degree of S—polynomials as low as possible helps to keep the size and
composition of the working basis under control.

(¢))
TUA

5.3 S—polynomials among vgl(.l’ , vgzl’ ,and vg

As expected, these S—polynomials all reduce to zero within the working basis G’. There
are often several ways to reduce one of these S—polynomials. We follow the methods
used in the general arguments of Section 6.2.

Recall that I" and I' U A are out-led, while A is in-led. The S—polynomials among

vglﬁl) , vg(Al) and gl(qld A can be computed from the expressions in Proposition 6.6

using their relationships to the non-local generators of N, along with Proposition 3.8.
For example:

Sep' vey) = S(gp . vgy)
=vS (ga) (2)) by Proposition 3.8
= VXA,T gru A by Proposition 6.6, with roles of I' and A reversed

= vx3(x4 — X5).
Similar computations give

@ @
S(wgl vgd) ) =vg? = vx x5 —vxaxy,

[¢)) [¢)) _ 2),out (2) out 2),in _(2),in 2 2
S(Wea - vErua) = V(€ria €a —ErUagA ) = VX1X5 —VX2X].

All three of these S—polynomials reduce as described in Lemma 6.7. To determine
which case is relevant, notice that x; is internal to I’ U A and not to I or A, and
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that x; divides exactly one term of g\’ and of g}’ . Therefore

S(vg}}), Vgg)) gar by Case 3 in the proof of Lemma 6.7,

1 1 v (AD
S(vg},), VgHJA) —0 by Case 2(b) in the proof of Lemma 6.7,
5 @
VX1—X1,8A>X18

Swgl, vl 4 LT by Case 2(b).
Note also that the full generality of Case 2(b) is not needed in the second computation
above because g’ = g\

We have now computed all of the S—polynomials among generators in the original
basis Go. Although reducing these S—polynomials by hand was straightforward enough,
the computations might seem rather ad hoc, and would seem more so if we had
considered all of the alternative ways to reduce each S—polynomial. Standardizing the
reduction procedures is crucial to being able to generalize to arbitrary pairs of subsets
in arbitrary graphs. In turn, characterizing the output of these S—polynomials in terms
of operations on subsets is crucial to standardizing the reduction procedures. This, in
brief, is the content of Section 6.2.

5.4 Remaining S—polynomials

It remains to check that S—polynomials involving elements of G’ \ Go reduce to zero
within G’. We leave it to the unusually detail-oriented reader to confirm the necessary
calculations, but state the results with references to the relevant arguments in Section 7.

It may seem that many of the calculations in this section are redundant. For example,
the various S—polynomials involving generators associated to I and A almost all
produce a multiple of gFU A - However, gFU A itself is not in the working basis, hence
not available for reductions. Therefore the multiple makes a difference: v may allow
us to reduce by a multiple of vgFU A X1 may allow us to reduce by a multiple of
gI(,ZL)J A - Sometimes, as we saw for S(v gr(‘l), v g(Al)) above, these simple reductions are
impossible. We must turn instead to tilde generators or vx; — x;. So, despite the
similarity of the remaining S—polynomial calculations, the reduction arguments are

delicate.

It is also worth noting that S—polynomials involving tilde generators do not behave like
the S—polynomials involving their non-tilde counterparts. The generator gr is effec-
tively v g(” with its term order reversed. Therefore, S(gr, —) bears little relation to
S(vg(l) —). For example S(vgf,l), vglilL)JA) reduced via g(l) while S(gr, vglﬁlL)JA)

reduces via XlgFUA and xlgr2
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The argument at the beginning of Section 7, referring to Proposition 6.1(6), takes care
of S—polynomials involving vx; — x; and elements of G’ \ Gy. It confirms that

VX1—X] xlg(Z)
2) TISA

S(x;—x1,Xx18,5")
for A € {T, A, T UA}.

The next argument in Section 7, which refers to Proposition 3.8 and Lemma 6.7, con-
cerns S—polynomials involving pairs of elements of the form x; gj(\z) . It confirms that

e)
x1g
@ @ rua
S(x1gr,x184) — 0,

®
X18
@ @ A
S(xlgr ’xlgruA) >0,

2 @)
X18A sX18
2 2 A TruA
S(xlgAaxlgr‘UA) > 0.

Lemma 7.3 concerns S—polynomials involving one generator of the form v g}\l) and

one of the form x gj(\Z) . It applies to

o)
vg
S(vglﬁl),xlgIﬁZ)) =0 and S(vglﬂl),xlg(Az)) BNy

in Case 3, but not in its full generality, and to

(1)
v
D (2) _ @) [@€)) A
S(Vgr ,xlgruA)—S(Vgr *VgFUA)_)O

before the breakdown into cases. Similarly, it applies to

(1)

Y&rua
S(vg(Al),xlglﬁZ))—U>O and S(vg(Al),xlg(Az))zo

in Case 3, but not in its full generality, and to

PR~ (2)
2) 58 8 VX1 =X1,8AX18TUA

Sg . xigd ) =Swg vgd ) 0

before the breakdown into cases. Finally, it applies to

2 2 2
x1g o 182 e

S(vgliltjA,xlgI(‘z’)———»O and S(ng(-ILjA,xlgA)—>0
in Case 1, and to
S 1 2) =0
(VgFUAJClgpuA)

before the breakdown into cases. Lemma 7.4 concerns S—polynomials between tilde
generators and generators of the form v gj(\l) . Case 1 applies to

@ 2 2
VX=X, X1 A X181 VX1—X1,X18

0 and S(vglﬂl&A,gA)—>O.

S(Ugl("ll_)JAagr)
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Case 2 applies to

~ (@) 5 (@]
. . &r.xigy . . &r.xigx
S(Vgi})agl")—>0, S(Ugi})9gA)—> )
5 e) o)
- . &ax18r - . &aXi18A
S(ng)’gr)—>09 S(Ugg)agA)4>
Finally, we have
- - xlggEJA
S(@r.ga) ——0 (by Lemma 7.2),
- 2 VX1—X1,X1g§),X1gi—?LA
S(gA,xlg%bA) 0 (by Lemma 7.1).

The remaining pairs of elements in G’ involving at least one element of G’ \ G have no
common divisors in their leading monomials, so their S—polynomials reduce to zero
by Proposition 3.7.

5.5 Calculating the ideal quotient

We have checked that all S—polynomials among elements of G’ reduce to zero within G’.
Therefore, Buchberger’s algorithm has terminated and G’ is a Grobner basis for
v (N1) + (v —1)(x1). That is, we have verified Lemma 4.3 for this example. We
now intersect with £, to obtain a basis for 1 (Ny) N (xy1):

2 2 2
G'NE ={x1gd . x125 . x1810 A}
Divide each of these generators by x; to obtain a basis for the quotient

(N () = (22, ¢2,¢2)).

This basis is the defining basis for N, .

6 Implementing Buchberger’s algorithm: Round 1

As we compute S—polynomials, we will record the results in tables showing the
propositions used and whether the result of the S—polynomial was added to the working
basis. Table 1 records the S—polynomials we compute in this section.

6.1 S—polynomials with vz * D — 7 &+D

(k+1) (k+1)
Zz —Zz

We begin by describing the behavior of S(v , —) with respect to various

types of polynomials in & 41[v].
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S(—,-) Result Proposition  Add to G'?
S(uzdtb &+ vgifo) Zék"'l’ggfﬂ) or gr Proposition 6.1 yes
Szk+D _k+D 5r) z%k"'l)ggcﬂ) Proposition 6.1 yes
S(vgif‘), vgf’) 0 Lemma 6.7 no

Table 1: S—polynomials, round 1. All computations are assumed to be among
generators in G’ and are carried out in 4 ([v]. S—polynomials are listed in
the order they are computed in Section 6.

Proposition 6.1 Let f €&y and f =LT(f)+f. If gcd(LM(f), z*+D) =1, then

v2§k+l)—z§k+l) Z1(:k+1)f

k+1D _ k+1D -
(1) S(z! 28D v L
2) S(vzékﬂ) _ Z<Tk+1>’ VLT(f) + T) = _w’
LC(f)
3) S(uzk+h _k+D p) pzltD_ Gt _Z.(Ek+1)f.
r C LC(/f)
If gcd(LM(f)’ZékJrl)) — Zr(k+1), then
4) S(uzkFD _ kD _Lcl(f) 0T LT,
k+1D _ d+1D o~ —L
(5) S(vzg 5D VLT + f) = 7
1 _
k+D _ e+ oy
(6) S(vzy zz )= LC) (v f +LT(f)).

Proof The least common multiple of the leading monomials in the first three cases is
vzék TDLM(f). We calculate the first S—polynomial above as follows:

S(VZ.([kJrl) _Z‘([k+1)’ Uf)

k+D k+1)
_vzEOLM(S) gy, vEETPLMGS) - ,
- W(_Zr )— W(V f) (LT determined by v)
k+1) 7 -
vir S ek / k+1) _ _d+1) )
T LM duce by + ——— _
LC(f) Zr (f) reduce by + LC(f) (VZI zy )
B _Z;k"H)f
LC(f)

The second and third claims come from similar calculations.
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In the latter three cases, the least common multiple of the leading monomials is
VLM( f). Given this, we calculate as follows:

vLM( f) B (k+1)) vLM( f)

S(VZ;k‘i‘l)—Z.(rk‘*‘l),Vf) = Uzék-l-l) ( Z; LT(f) ( f)
=-— v/ — —LM(f) (LT determined by v).
LC(f)
The fifth and sixth cases are similar. O

We apply Proposition 6.1 to compute S(vzK+D —z&+D, vg}k ’) and see which new
generators must be added to the working basis, keeping in mind that leading coefficients
are currently assumed to be 1. See the flowchart in Figure 5. If zt‘k 1 does not divide

the leading term of gf,k ’, then Proposition 6.1(1) applies, so

(k+l) (k+l)

*k+1 *k+1) (k) *k+1) (k)
— —)
S(vZ Zr , Vg ) —Z; 8r -
Since Z(k D does not divide both terms of g , we have g(k) =4 1(~k b . So we may

say that it is z(k +h g(k *D that should be added to the working basis.

If z‘k“’ does divide the leading term of g(k ’, then Proposition 6.1(4) applies, and

S(uz(kH) 284D 1g®) — _gr. Recall from (4-7) that
vg{f) oin gif) U SF T s out-led,
pg®out_ g®n e T s in-led.

If zk+D also divides the trailing term of g(k) then gr reduces via vz*+D —z

to leave g}]f) In this case, z%k D must have been both an outgoing and an incoming

edge to I in G*+D 5o

&r =

*k+1
T

k) _ (k+1> (k+1)
g[‘ &r

k+1) o (k+1)

Therefore, if zr(k D divides gF , we end up adding z; gr and not gr to the

working basis. These results are recorded in Table 1.

The only case in which we have added gr and not zk+D gf‘kﬂ) to G’

is when z(k+D
divides the leading term but not the trailing term of glik >, For convenience, we immedi-

ately compute S—polynomials S(vzK+D —z%*+D 1) in this case: Proposition 6.1(2)
implies that
k+1 k+1 k+1) o
SzfTh — 87D gp) =z )gF .
Since z**1 divided only one term of gF , we also have g(k ) = glik D Therefore,
k+1)

we may record that we are adding z; g(k D (o the working basis in this case

as well.
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Putting all of this together, we have produced z%+D gI(‘k *D for all I'. The working
basis is now

g/=goU{gI‘|FCG,Z;k+1) |LT(gl(-k)),Zr(k+1) +TT(g1(—‘k))}U{Z.L(.k+l)gl(—‘k+l) IT CGY.

k)

6.2 S—polynomials among the vg .

Our goal in this section is to describe the results of S—polynomials among generators of
the form v glﬂk > in terms of generators associated to related subsets. We first establish a
general principle that will allow us to tackle products of interior edges (ie monomials
labeled x) separately from products of boundary and closure edges (ie monomials

labeled z).

Proposition 6.2 Let f+, fx, fz, ]72, gx.&x.22. 82 € Q[x] be monomials with the
property that any monomial with an x subscript is relatively prime to any monomial
with a z subscript. Let S(fx + fx.8x 4+ &x)1 and S(fx + fx.gx + gx)2 denote
the first and second terms of S( fx + fx, gx + gx) as written in the definition of
S—polynomial in Section 3, not necessarily with respect to the monomial order, and
similarly for S(f; + f 2,82+ g-). Then

S(fx fz+ fxfz’gxgz +82x82)

=S(/x+ ]?x’gx +gx)1§(fz + fz,gz +82)1 3
—S(fx+ fx8x+8x)2S(fz+ [2.82+82)2
S(fx+]?x;gx+§x)»S(fz+fz,gz+§z)

0.

Proof The assumptions about gcds among the monomials mean that

fx fzgxgz
ged(fx, gx) ged( /2, g2)

The S—polynomial calculations proceed as follows:

S(fxfz+ J7xf_27 8x8z+ 8x8z)
8x8z = = Jx/z
= fx fz -
ged(fx, gx) ged( /2. g2) ged(fx, gx) ged( /2. g2)
_ 8Ex ]7 8z ]7 _ Sx g Jz g
- X z X Z-
ged(fx, gx) " " ged(fz, 82) ged(fx, gx) " ged(/fz, &2)
The term order in this expression is not clear. However, the first term is a product of

the first terms of S(fx + fx.gx + &x) and S(f; + f.g-+ &) and the second term
is a product of their second terms, assuming everything is written as in Definition 3.3,

= lem( fx, gx)lem( fz, g2).

lem( fx /2. 8x82) =

8x8&:z
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not necessarily with respect to the monomial order. Regardless of the correct term
order, Proposition 3.9 shows that expressions of this form reduce to zero by their
constituent parts. a

Proposition 6.3 Let I', A C G. Assume term orders of the S—polynomial input are
as written. Then the following statements hold in any &; :

(1) S(XT,G\r — XG\I',[» XA,G\A — XG\A,A)

= xG\(FUA),FﬂA(onu\t(I‘mA)inr‘l\(I‘nA) - x?‘u\t(l"ﬂA)xiAn\(I‘ﬂA))’
(2)  S(XG\I,r = XT,G\I's XG\A,A — XA,G\A)

= XTNA,G\(TUA) (XX\(FOA)X?‘u\t(FﬂA) - xilll\(rnA)onu\t(mA))’
(3)  S(XG\I,r = XT,G\I's XA,G\A — XG\A,A)

= xr\rna).a\na) (FPUaYPha — ¥Fua¥Fna)-

The term orders of the results in the first two statements are undetermined in general.

Proof This proof is mainly a long calculation. It holds in any &; because it involves
only interior edges and the projection of edge rings ; is the identity when restricted
to the subring of &; generated by such edges. The outcome of the calculation in all
cases relies on the fact that least common multiples and greatest common divisors of
monomials behave in the same way as union and intersection of subsets. The second
statement follows from the first by taking complements, so we exhibit the calculation
only in the first and last cases.

Case 1 The greatest common divisor of the leading monomials is Xrna,G\(rua)» SO

the least common multiple is
XT,G\I'XA,G\A

XTNA,G\(TUA)
The least common multiple divided by each leading term is
XT,G\TXA,G\A
XT'NA,G\(TUA)XT,G\T'
XT,G\TXA,G\A
XTNA,G\(TUA)XA,G\A

= XA\(TNA),G\(TUA)XA,T\(TNA)>

= XT\(TNA),G\(TUA)XT,A\(TNA)-

We may now compute the S—polynomial. Expanding, then regrouping produces the
form claimed in the proposition. Term order is unknown throughout.

S(XT,G\I' = XG\I',[' XA,G\A — XG\A,A)
= XA\('NA),G\(TUA)XA,[\(TNA)XG\T,I
+ XT\(T'NA),G\(TUA)XT,A\(TNA)XG\A,A
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= XA\(T'NA),G\(TUA)X¥A\(TNA),T\(TNA)XTNA,T\(TNA)
*XA\(TNA),T\(TNA)XG\(TUA),I\(T'NA)XA\(T'NA),TNAXG\(T'UA),[NA
+ XI\(I'NA),G\(TUA)XT\(I'NA),A\(TNA)XTNA,A\(T'NA)
*XT\(TNA),A\(T'NA)XG\(TUA),A\(TNA)XT\(I'NA),TNAXG\(TUA),'NA
= xG\(FUA),FﬂA(XA\(FOA),G\Axl"ﬂA,F\(FﬂA)xG\F,F\(FﬂA)xA\(FﬂA),FﬂA
_xF\(FﬁA),G\I‘xFﬂA,A\(I‘ﬂA)xG\A,A\(FmA)xF\(I‘ﬂA),FﬂA)

= xG\(FuA),FﬂA(xf{(rm)xig\(mm - x%u\t(l"nA)le\(FﬂA))'

Case 3 The greatest common divisor of leading monomials in this case is the product
of the edges that go from A\ (' N A) to '\ (I’ N A). The S—polynomial removes
those edges, which are internal to I' U A, while combining the incoming edges of I"
with those of A and the outgoing edges of I" with those of A. Specifically, the greatest
common divisor of the leading monomials is XA\(rna),r\(rna), o the least common
multiple is

XG\I',[XA,G\A
XA\(TNA),T\(TNA)

= XA\(I'NA),I\(TNA)XG\(TUA),T\(TNA)
*XG\I,TNAXA\(T'NA),G\(TUA)XTNA,G\A >

and the S—polynomial calculation is

(6-1) S(XG\I,r — XT,G\I'» XA,G\A — XG\A,A)
= XA\('NA),G\(TUA)XTNA,G\A * XT,G\T
— XG\(TUA),I\(TNA)XG\T,'NA * XG\A,A
= XA\(F'NA),G\(TUA)XTNA,G\(TUA)XTNA,T\(TNA)
*XT\(T'NA),G\(TUA)XT\(I'NA),A\(TNA)XTNA,G\(TUA)XTNA,A\(TNA)
— XG\(TUA),I\(TNA)XG\(TUA),FNAXA\(T'NA),TNA
*XG\(TUA),A\(T'NA)XG\(TUA),TNAXT\(T'NA),A\(TNA)XT\(I'NA),[NA
= XI\("'nA),A\(TNA) (XTUA,G\(TUA)XTNA,G\(TNA)
_xG\(FUA),FUAxG\(FﬂA),FﬂA)-

This concludes the proof. a

So far, we have established that S—polynomials of the interior edge portions of the gr(‘k )

can always be written in terms of the interior edge portions of generators of the same
form associated to unions, intersections, and complements of the original subsets.
The next task is to consider the boundary and closure edge portions of the glﬁk) . In

consideration of S—polynomials that will need to be computed later in the algorithm,
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we do the necessary computations for the boundary and closure edge portions of

g}kﬂ) € &k+1, which have the form

k+1 _k+1D *k+1D _k+1)
IP,G\I'°T,G\I' ~ “G\I,['?8,T

In each of these terms, the first factor is divisible by Zt‘i > only if i <k +1 and the second
only if i > k + 1, so the two factors are relatively prime. In light of Proposition 6.2,
we may separate the S—polynomial computations for products of boundary edges
like zf‘k D from those for products of closure edges like zl(,kg\lr), For the closure
edges, the computations will be identical to those we did for interior edges, but we
state the results below for completeness. For the boundary edges, the computations are

slightly different, but still straightforward. They are outlined in Proposition 6.5.

Proposition 6.4 Let I', A C G. Assume term orders of the S—polynomial input are
as written. The following equalities hold in 41 :

k+1 k+1 <k+1> (k+1) _ _k+D
(M S(ep ,G\I' " ZG\I,I'" ?A G\A ZG\A, A= ZG\(TuA),r'NA
( k+1 k k+ D k
ZA\(TNA),G\A A\(FnA) TNAZTNA,T\(TNA) G\l" I‘\(I‘OA)
(k+1) <k+1> (k+1> <k+1) )
ZM\(TNA),FNAZT\(TNA),G\T*TNA,A\(TNA)Y?G\A,A\(TNA) )
k+1 *k+1  _k+D (k+1) (k+1)
@ S(ZG\I‘ T _Zr LG\’ “G\A,A ~ %A G\A) =rna G\(I‘UA)
( &+ k+1) k k
mA LA\(TNA)?G\A,A\(TNA) F\(FnA) TNA I‘\(I‘mA) G\T
(k+1) (k+1) <k+1) (k+1) )
ZINA,T\(TNA)ZG\T,T\(TNA)Z A\(TNA),G\AZA\(TNA),[NA
k+1 k+1  _k+D k+1 \ _ _k+D
€) S(ZG\F r—°r G\F’ ZAG\A T ZG\AA) T Zr\(rnA) A\(TNA)

( *k+ k+ ) Z(k Z(k+1) )
FUA ,G\(TUA)’TNA,G\(T'NA) G\(FUA) TUA“G\(I'NA),T'NA

In all cases, the term orders of the results are undetermined in general.

Proof These are all straightforward computations that are analogous to those in the
proof of Proposition 6.3. a

Proposition 6.5 Let I', A C G. Assume term orders of the S—polynomial input are
as written. The following equalities hold in &4 1 :

k k k k
(D S(Z( +1 Z;g’;_l)?Z(Atl)_Z(ﬂZD)

*k+1 (Z(k+1) k+D k+D ~k+1 )

B.ITNA\TA\(T'NA),T ,B r\(rnA) — F\(FﬂA) T B A\(TNA)/»

k k k k
(2) S(Z( +D i_‘:-l)’z(ﬂZl) Z(A-it—l))

<k+1) ( *k+1 (k+1) (k+1) (k+1) )
TIrnA, B, A\(TNA) T\(TNA),r ~ ZB,T\(TNA)ZA\(TNA),z)

—Z
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&+ *k+D _k+1 _ (k+1) (k+1) &+1D k+1 _k+D
S(Z “Iire A ) = “TUA,7°TNA,r ~ ?B,TUAZB,INA"

3)

The term orders of the results in the first two statements are undetermined in general.

Proof The argument is a straightforward calculation in each case. Keep in mind
throughout that all monomials involved in this computation are products of z& and zg)

fori >k+1.

Case1 We have

*k+1 *k+1D _k+1 k+1
S(z —Zgr o IAr —ZﬂA)

k+1 _&k+1 k+1 _&k+1
_ T “Ax 1 (— (k+1)) It “Az 1 (- (k+1))
Z(k+1) *k+1 Z(k+1) *k+1
I'NnA,T It I'NnA,T AT
_ (k+1) (k+1)+ k+1 (k+1)
= TZA\(TNA),ZB,T IP\(TNA),78,A
— _k+tD ( k+1 Sk+D Sk+D ~k+D )
B, I'NA A\(FﬂA) T B NTnAa) — I‘\(FﬂA) T 5 A\('NA)

Case 2 The calculation here is almost identical to that of Case 1.

Case 3 Since z ék; Diisa product of z g and Z(k thisa product of Z.éi) , they cannot

have any common divisors. The result as stated Just follows from rewriting

k+1 _k+1 _ _k+D _k+1) k+1) _k+1) _ _k+1 _k+1D
e ZAq FUAcTAA,; ad Zg 0 " zg N =ZgnaZgraas O

Combining the calculations in Propositions 6.3, 6.4 and 6.5 with the general principle

in Proposition 6.2, we obtain S(gp et 1) , g(AkH) ) for various combinations of in-led

and out-led subsets.

Proposition 6.6 Let I', A C G. The following statements hold in 41 :
(1) If T and A are both out-led, then
k+1 _k+Dy _ *k+1 (k+1>
S(er "7, 8a " ) = XG\(TUA),TNAZG\(TUA).FNAZBINA

k+1,out _k—+1),in mnk+1),0ut _(k+1),in
(gA\(I‘nA)gl"\(l"ﬂA) &r\(rna) gA\(I‘ﬂA))

(k+1) (k+1)
Er\(rnAa) AN NA)

(2) If T and A are both in-led, then
k+1D _k+Dy _ &+1D k+1
S(Er 7. 8x" ) =Xrna ,G\(TUA)ZTNA,G\(TUA)’TNA,t
k+1),in k+1,out k+D,in _k+1),out
(gA\(FﬂA)gF\(FﬂA) gF\(FﬂA)gA\(FnA))

(k+1) (k+1)
ET\(rnA) 8§ AN(TNA)
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(3) If T isin-led and A is out-led, then

k+1 k+1) k+1)
S(gr " gx ") = XD\(TNA),A\TNA) 2N (T A). AV TNA)
k+1) _(k+D

d+1D,out_k+1),0ut k+D,in _k+1,iny §rua-8rna
—_ =
(gl"UA &rna —&rua &rna ) 0.

Proof All three cases follow directly from applying the appropriate cases of Proposi-
tions 6.3, 6.4 and 6.5. The reduction statements follow from Proposition 3.9. a

Finally, we compute the S—polynomials among generators of the form v g‘k ’ from the
original basis Gy and show that they can all be reduced by generators in the working
basis G’. This will be the first argument in which the choice of monomial order comes
into play. Observation 4.2 will be used repeatedly.

Lemma 6.7 Let ', A C G. Then
S(vg(k) vg(Ak)) i> 0
in Egy1[v].

Proof For any in-led/out-led combination of I' and A, the first step to compute

S(vg(k) vg(Ak)) is to rewrite

(k) ;(k+1> k+1) §(k+1) k+1)

and ga

so that we may apply the results of Proposition 6.6. The extra factors of ¢} e+1

and ¢ *+D are either zK*TD or 1, depending on whether zK*D is internal to T
and/or A
Consider S(vg(k) vg(Ak)) = vS(Z(kH) ke+1) §<k+1) (Ak+1)), where we have used

Proposition 3.8 to move the factor of v. The possible values of ¢ lﬁkH) and ¢ (Ak+1) ,

along with the rules in Proposition 3.8, give us the following cases:

(1) é‘(kH) é‘(Ak’Ll) =z &+ that is, z**D is internal to both T and A. Then the
first equality in Proposition 3.8 implies

(k+1> <k+1) (k+1) (k+1> k+1 *k+1  _(k+1
vS(&f ) = vz KD g (gD gD,

(2) §1£k+1) = zék"'l), Z(Akﬂ) = 1; that is, zk*1 is internal to exactly one of T

and A, which we take to be I' without loss of generality. In this case, zt(kH) divides
at most one term of g(k .

(a) z%FD divides neither term of gh k)

implies

. Then the second equality in Proposition 3.8

k+1 k+1 k+1 k+1 k+1 k+1 k+1
vS(E( ) ( ) é—( ) ( ))=VZ.£ + )S(gl(" )’g(A ))
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(b) Z(k +D divides exactly one term of g(k ). Observation 4.2 implies that it divides

the leading term, so the third equality in Proposition 3.8 implies

US(é-(k+1) *k+1) g-(k-l-l) (k+1)) vS(g(kH),g(AkH))

3) é‘(kH) E(kﬂ) = 1; that is, Z(k+1) is internal to neither T nor A. Then

k+1) <k+1) (k+1> k+1) k+1 k+1
VS N AT ) =vSEr " ga ).

Explicit expressions in &4 1[v] for S(v gr(,k), v g(Ak)) are then multiples of the expres-

sions for S(g(kﬂ) , g(AkH)) (by v and possibly by z+1) in Proposition 6.6. In

Cases 1 and 2(a), where there is a factor of z**1 in front of S(g‘kﬂ) , g(AkH)) we

may reduce by some combination of z#+D gX"““ for

Ae{T\(TNA),A\(TNA),TNA,TUA}

exactly paralleling the reductions in Proposition 6.6. Generators of the form

(k+1> *k+1)
A

are in the working basis for any A.

Cases 2(b) and 3 are more delicate. Since we do not have the factor of z‘k D jp
(k+1) _k+1)

front of vS(gp .g&A ), we cannot necessarily reduce by generators of the form
z(k“)g(k H). We may always reduce by generators of the form vg‘kH) as in
Proposition 6.6, but these are in the working basis G’ only if
k) (k+1)
EA = 8a

(ie if ¢} e+ — 1), which is not always true. We suppose now that g<k ) £ g(k D for

atleastone of A e {'\(I'NA),A\(TNA),TNA, TUA}.

Case 2(b) §<k+1>_z<k+1) §<k+1) 1, Z(k+1> |LT(g(k’) andg‘k) 7ég<k+1> for
atleastone of A e {I'\(I'NA),A\(T'NA),TNA, TUA}.

We have assumed that z¥*1 is internal to I" but not A, which means that it cannot
be internal to I'NA or A\ (I'NA). We have also assumed that Z.L(.k D divides one
term of g , which means that Z(k‘H) must go either into or out of A. Therefore,
zk+D cannot be internal to T\ (I' N A) either. So g(k) g(k+1) for

Ae{TNA,A\(TNA),T\(TNA).

The only scenario compatible with our assumptions, then, is that Z.ék *D s internal to

I" UA and so

k) k+1)
grua # &rua -
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We then must find an alternative method of reducing vS(gp k+1) g(Ak'H)) when one

subset is in-led and the other out-led (Case 3 of Proposition 6.6).

Suppose first that I" is in-led and A is out-led. Then zt(k T must go out of I'N A and
into '\ (I'NA). Proposition 6.6(3) gives the following expression for the S—polynomial
we are trying to reduce:

k+1 _k+Dy _ k+1
vS(gr . ga ) = VAT\(T'NA),A\(TNA)ZT\(TNA),A\(TNA)
ke+1,out _(k+1,out k+D,in_k+1),in
“(graa ™ graa ™ —grua " grna )
The term order shown is correct; it is determined by the fact that z‘k D divides
only one of the terms. Since Z(k"'” is internal to I" U A, it divides neither term of
gf‘kUJrAl) Since it goes out of but not into I' N A, it divides gf‘karAl) ! but not gliknJrAl) i

Since both v and Zr‘k D divide the leading term of this expression, we reduce first by
vz(k+1) _Z(k+1) .
T T :

LK+ _ G+

*k+D k+D
vS(gr 7.2 )—”CF\(FHA)A\(FﬂA)Zr\(rmA)A\(rnA)

k+1),in _¢k+1),in k+1,0ut _k+1),0ut
(VgruA groa’ —&rua’ &raa )

The leading term in the result is determined by v. Now, since Z.ék D goes out of
but not into I' N A, we have available in the working basis the I' N A tilde generator,
which must have the term order

(k+1),in (k+1),0ut
grna = V&rna —&rna .

This term order is compatible with the term order of our reduced expression for
vS(gy k+D g(Ak D) so we reduce further, as follows:

Z&tD_ (k-H)

k+D okt ik &rna
vS(gr 7. gx ) XT\(I'NA),A\(T'NA)
(k+1) k+D,out _k+1)
IP\(CNA),A\(NA)ETNA  8TuaA -
Since gf‘kUJrAl) is the only factor in this expression with more than one term, its term

order determines the term order of the expression. Since zék D divides glikﬂJrAl) out,

we may reduce to zero using Zr(k +h g(kzl) , which is in the working basis.

The other possibility in Case 2(b) was that I" was out-led and A in-led. This means that
2+ goes out of I'\(I'NA) and into TNA. Our expression for vS(g(k“) , g(AkH))
comes from Proposition 6.6(3) again, but with the roles of I' and A reversed. The
argument for reducing by vzK+D — z&+D ‘then g, then z*+D glﬂk"'Al) is very
similar to the argument just given, so we omit the details here.
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Case 3 §(k+” §‘k+1) =1 and g(k) £ ch+1) for at least one of

Ae{T\(TNA),A\(TNA),TNA,TUAL

k+1 k+1
G ana g+

Our assumptions about and mean that zr(k *D is not internal to T or A,
hence notto '\ (' N A), A\ (' N A) or ' N A. Therefore, we assume that it is
internal to ' U A, so that gr(,kd A gl(]ijrAl) . Then z**1 must go between '\ (T NA)
and A\ (I' N A) in one direction or the other. We will assume that it goes out of
A\ (I'NA) and into T'"\ (I' N A). The other case is analogous, with the roles of I"

and A reversed throughout the argument.

We know, then, that A is out-led, I' is in-led, and z(k D divides exactly one term
of g(k *D and exactly one term of g(k +D  Therefore, we have available in the
working basis

(k+1),out (k+1),in (k+1),in k+1), out
gr = vgr —&r and  gA =vg, —8&a

We will use these to reduce vS(gy k+1) , g(AkH)) to zero. Begin with a refactored

version of Proposition 6.6(3) (eg refer to the first line of Case (3) in Proposition 6.3):

k k
VS(g( +1)’g(A+1))

k+1 _k+1D,out
= VXA\(I'NA),G\(TUA)XTNA,G\AZA\(T'NA),G\(TUA)ZTNA,G\AZA ¢ &T

k+1 _k+1,in
—VXG\(TUA),T\(TNA)XG\T,TNAZG\(TUA),T\(TNA)ZG\T,TNAZg T &A

The term order of this expression is unknown since v divides both terms and Zr(k th

divides neither. It is reducible by gr if the term order shown is correct and by ga if
not. The argument is similar either way, so we suppose now that the term order shown
is correct and omit the other case. Reducing by gr produces the following, in which
the term order is determined by v and shown correctly:

g
US(g(k+l), (k+l)) _F)

k+1 _(k+1,in
VXG\(TUA),I\(TNA)XG\TI, TNAZG\(TUA),T\(TNA)ZG\T. TNAZZ T A
k+1 _k+D,in

—XA\(T'NA),G\(TUA)XTNA,G\AZA\(T'NA),G\(TUA)TNA,G\AZA ¢ 8T
This expression can be reduced by ga, leaving the following, in which the term order
is unknown:

&+ _k+D gF’gA
US(g sgA )
k+1 _k+D,in

XA\('NA),G\(TUA)XTNA,G\AZA\('NA),G\(TUA)ZTNA,G\AZA ¢ &T

*k+1D _*k+D, Out
—XG\(T'UA),T\(I'NA)XG\I'.\TNAZG\(TUA),I\(TNA)ZG\I.TNAZg 1 8
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This expression is actually zero, which we may see by refactoring the term written first
above:
k+1 k+1,in
XA\(I'NA),G\(TUA)XTNA,G\AZA\(T'NA),G\(TUA)ZTNA,G\AZA ;8T

= XA\('NA),G\(TUA)XTNA,G\AXG\T',[
*ZA\(T'NA),G\(TUA)ZT'NA,G\AZG\T, rzftl)zgkffl)
= XA\(TNA),G\(TUA)XTNA,G\AXG\(TUA),TXA\(T'NA),T\(TNA)XA\(TNA),[NA

“ZA\(T'NA),G\(TUA)ZTNA,G\AZG\(TUA),[ ZA\(TNA),T\(TNA)ZA\(TNA),TNA

k+D _k+1D
"“Ar BT
= XA,G\AXG\(T'UA),TXA\(I'NA),T'NA
k+1 _dk+1)
"ZA,G\AZG\(TUA),TZA\(TNA),TNA "ZA ¢ 28T
k+1),0ut &k+1

=gA XG\(TUA),TXA\(T'NA),['NA * ZG\(TUA),[ ZA\(TNA),[NA * Zﬁ r -
One more refactoring shows that this last expression is the same as the second term in

our reduced expression for vS(gp k +h g(Ak H)) above. So we have shown that

k+D Kkt gr’gA

vS(gr . 8a )/ O

We have now computed S—polynomials among generators of the form v gF o for all
combinations of in-led and out-led subsets, and seen that they all reduce to zero by
elements of the working basis G’. Therefore, we close this section with the same
working basis as at the end of the previous section.

7 Implementing Buchberger’s algorithm: Round 2

Buchberger’s algorithm now calls for a new round of S—polynomials: those involving
elements of G'\ Gy. As we will see, these all reduce to zero within G’. So, at the close
of this section, we will have confirmed that the S—polynomial of any pair of generators
in G’ reduces to zero within G’. This will complete the proof of Lemma 4.3. Table 2
records the computations undertaken in this section.

First, we may quickly take care of S(vz*+D — z&k+D ;&+D (k+1)) by appealing to

Proposition 6.1(6). Assuming that LC(g(kH)) =1,
k+1 k+1 k+1
S(VZ;kH) _Z;k+1)’2;k+1) k+ )) _ (k'H)TT(g( + ))—z;kH)LT(g}JF ))
(k+1) k+1
8r

(Reduce by +TT(g (k+1))(vzt(k +D _ 7 k4D to go from the first line to the second.)
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Therefore,

f pz D Gt 1) Zr(k—i-l)g;‘k-i-l)
S(vzr(k"'l) _Zr(k+1)’zék+1) ( +1)) 0.

Second, we apply Proposition 3.8 and Proposition 6.6 to see that

k+1) _(k+1 _k+1) k+Dy _ _k+1) k+1 _k+1
S(z; &r »Zg )gA )—Zr( S(g[‘ s 8A ),

which reduces to zero either by the pair

k+1) (k+1)
A\(T'NA)’

k+1) (k+1)

p gr\(rna) and z;

z

or by the pair
(k+1) k+1) *k+1) _k+1)
grua and zg TNA -

In either case, these are elements of the working basis G’.

A similar method works for S(z; k+1D glik th gA), but in this case the term order of

the S—polynomial’s result will be determined by the presence of v on one term but not
the other. This means that we cannot use Proposition 3.9 to reduce these expressions
to zero (as we did in Proposition 6.6).

S(—,-) Result Proposition Add to G'?
S(zk+D gkt D SkAD kD) | Proposition 6.1(6) no
S(zkFDghtD Stetb okt Dy 0  Propositions 3.8 & 6.6 no
Sk gETD g0y 0 Lemma 7.1 no
S(gr,&a) 0 Lemma 7.2 no
S(Vg(k) Z(k+1) (k+1)) 0 Lemma 7.3 no
S(vg(k), ga) 0 Lemma 7.4 no

Table 2: S—polynomials, round 2. All computations are assumed to be among
generators in G’ and are carried out in 4 ([v]. S—polynomials are listed in
the order they are computed in Section 7.

Lemma 7.1 Let T, A C G. Suppose that z**1 divides the leading term but not the
trailing term of g(k ). Then either

(k+1) _ (k+l) Zkt+D , (k+ 1D (k+1) (k+1)

Vz¢ sZT sZT g
k+1)  k+1) =~ r\(rna) A\TNA)
S( gr . &n) 0
or (k+1) _ (k+1) (k+1) (k+1) _(k+1)  (k+1)
S k+1) _k+1) =~ Vze sZT grua %t Erna
(Z‘[ gl" ’gA)
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Proof Applying the second equality in Proposition 3.8, we have

S( k+1 k+1

g N )_Z(k+1)S(g(k+1) ~

+&n)

(k+1)S(g(k+l) vTT(g(k+1)) LT(g(k+1))).
Propositions 6.3, 6.4 and 6.5 can then be used to compute the S—polynomial explicitly
1ntermsofg(k+1) for A e {T\(TNA)LA\NTNA), TUA, T NA}, just as in

Proposition 6.6. The leading term of the result will be divisible by both v and Z(k b
s0 it will be reducible by vz *+1 —z &+ (and term order will be determined by v). Let

d = ged(LM(g &+, TM(g & 1)).

Then, assuming that all coefficients are +1,

(k+l)S(g(k+1) gA)

VTT(g%+D) LT(gE*")
:Z;k'f‘l)( d TT( (k+1)) d LT( (k+1)))

pzKHD_ kD) LT(g(k—I—l)) . (g<k+1)) "
N Z.(Ek+1)( y LT( ¢ +1)) -y TT( [¢ +1)))'

The expression inside the parentheses may be expanded in terms of g(kH) for A €
{T\(TNA),A\(I'NA),NA, T UA} just as in Proposition 6.6. The term order
of the resulting expression will be unknown, but since we have z**1 in front of it,
we are effectively in the situation of Cases 1 and 2(a) of Lemma 6.7. Proposition 3.9
allows us to reduce by some combination of zr(k +h gX“H) . These generators are in
the working basis G’ for any A. a

Next, we consider S—polynomials between tilde generators. Note that we only consider
tilde generators that occur in G’, which justifies the assumptions about divisibility by
2%+ in the statement below.

Lemma 7.2 Let I, A C G. Assume that z** D divides LT(g(k’) and LT(g(k)) and
that z*+1 does not divide TT(g (k)) or TT(g (k)) Then the reduction

(2D gkt Dy
S(Er.ga) 230

holds in &y +1[v] for some combination of A € {T'\(I'NA), A\(TNA),TNA, TUA}.
All such generators are in the working basis G'.

Proof Since we have assumed that z%* 1 divides the leading terms of g(k) and g(k)
but does not divide the trailing terms, we know that Z(k+1) is incident but not in-

ternal to both I' and A. Therefore g(k) = gg“rl) and gf) = gZ‘H). Let d =
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gcd(TM(g ‘k‘H)) TM(g‘k'H))). Assuming that all coefficients are +1,
(7). S(r.ga) = SOTT(gp ") ~LT(gf ™). vTT(gp ™) ~LT(g )

(g(k+1)) (g(k-l-l))
d d

The term order here is unknown, since v divides neither term and z<k D divides both
(because it divides the leading terms of both g *+D and gA e+ 1) ). We may expand this
expression in terms of gX"H’ for some combination of

Ae{T\(TNA),A\(TNA),TNA,TUA}

LT( (k+1)) LT( (k+1))

just as in Proposition 6.6 or directly, using the computations in Propositions 6.3, 6.4
and 6.5. Effectively, we are computing the S—polynomial of g(k D and g(k D both
with their term orders reversed.

If the result of expanding line (7-1) looks like Case 1 of Proposition 6.6, then both
trailing terms must be products of outgoing edges, which means zt‘k 1 s incoming to
both T" and A. Since it is internal to neither I nor A, z(k+1’ must go from G\ (T'UA)
to ' A. Then z(k D divides the factor of Z(Gk\#b A).FAA in front of the expanded
expression. Therefore, regardless of term order, we may invoke Proposition 3.9 to

reduce to zero by

<k+1> (k+1)

k+1) (k+1)
Er\(rna)

and  z; EA\(TNA)’

which are in the working basis G’.

If the result of expanding line (7-1) looks like Case 2 of Proposition 6.6, then both
trailing terms are products of incoming edges, which means zék D goes from I'N A to
G\ (T'UA). Therefore, it divides the factor of ZI(‘kn-i_Al,)G\(I‘u Ay in front of the expanded
expression. So we may again reduce by

k+1) (k+1) k+1 (k+1)
Zr ' U8r\rnay Ad 2T UgA\(rna)

regardless of term order.

If the result of expanding line (7-1) looks like Case 3 of Proposition 6.6, then the trailing
term of g(k thiisa product of incoming edges and the trailing term of g(k thiisa
product of outgoing edges. Therefore, Z(k D goes from '\ (TN A) to A\ (I'NA),
which means that it divides the factor of zr(‘k\zrrlr)1 A).A\(TNA) in front of the expanded
expression. Regardless of term order, we may reduce to zero by a combination of

(k+1)g(k+1> k+1) (k+1)

Iz rna and z; 8rua -

both of which are in the working basis G’.
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The only other possibility is that the result of expanding line (7-1) looks like Case 3 of
Proposition 6.6 with the roles of I and A reversed. In that case, reverse the roles of I"
and A in the previous paragraph’s argument to see that we may again reduce to zero by

(k+1> (k+1) k+1) (k+1)
8rna and  zZmTUgR A o

The remaining two propositions carry out the computations necessary to see that

S(vglﬁk), ékﬂ) (k+1))_>0 and S(vg(k),g’A)i)O-

In both cases, the computations themselves follow directly from our earlier results,
but some additional work is required to see that reductions are always possible by
generators in G'. This will complete Table 2 and finish the proof of Lemma 4.3.

Lemma 7.3 Let I, A C G. Then S(vg(k) z‘k+1)g(k+1))i>0in Err1[v].

Proof This S—polynomial is closely related to the one considered in Lemma 6.7. By
the second equality in Proposition 3.8, we have

k) <k+1) <k+1) k) <k+1) <k+1)
S(‘)gr‘ ’ 1: )_US(gF ’ 1: )

If zk+D is internal to A, then
k k+1 k k k k
vS(gl(a ) T(k+1> (k+ ))—vS(gf, ),g(A))—S(vg( ) Vg(A))
We have already shown in Lemma 6.7 that this S—polynomial reduces to zero within G’.

If zt(k D is not internal to A, then we have the following breakdown into cases:

(D zr‘k“) is internal to I". Then

ko <k+1> (k+1) _ (k+1) <k+1) <k+1> (k+1)
VS(gr' yZ1 ) VS(Z N )

_ o -k+D (k+1) (k+1)
Vzg S(gr ' 8A )s

by the first equality in Proposition 3.8. After expanding via Proposition 6.6, we
may reduce this expression to zero by some combination of zék +h gl(\kﬂ) for A €
{CA (T NA),A\N(T'NA), IT'NA,TUA}.

2) z‘k“) divides neither term of g(kH) Then g(k) = glﬁkH) and the second
equality in Proposition 3.8 implies that

(k) k+1) _(k+1 k+1 k+1) _k+1)
VS (g, 2D gDy = vz KFD g (gD g D),

After expanding via Proposition 6.6, we may reduce this expression to zero by some
combination of Zt‘k"'l’gj(\kH) for Ae{I’\(T'NA),A\(TNA),TNA,TUA}.
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(3) z%+D divides exactly one term, hence the leading term, of g(k"'l). Then

giﬂ‘) = g‘k *D "and the third equality of Proposition 3.8 implies that

(k) k+1) _(k+1) k+1) k+1) (k+1) k+1 _k+1D
V(g zI D g D) =y S (gt ZIAD g D) =y S (gD gl D).

Also, our assumptions to this point mean that z¥*1 is internal to neither T nor A.
Therefore, we are in the same situation as Case 3 of Lemma 6.7, in which we have
already established that we may reduce to zero by generators already contained in G'. O

Lemma 7.4 Let I', A C G and assume that gp € G'. Then S(vg‘k),gA) i 0 in
Ek+1[v]-

Proof For the most part, the argument here is parallel to the proof of Lemma 6.7.
However, the leading terms in the results of these S—polynomials are determined
by the presence of v in exactly one of the terms, so it is not clear that the same
reductions are always possible. Applying the third equality in Proposition 3.8, we
have S(vg ' 8A) = S(g ,&A). Note that our assumption that go € G’ implies
that Z(k 'H’ is not internal to A and that g(k) = g(AkH) We consider the following

cases, which parallel those in Lemma 6.7:

(D z<k+1’ is internal to T".

(2) Z‘k +D divides exactly one term, hence the leading term of g(k +th

3) Z(k-H) divides neither term of g(k+1)

Case1 If zk+D jsinternal to T, then g(k) = Z(k+1’g(k+1) We know that z(k+D
does not divide the trailing term of g , so it does not divide the leading term of g .
Applying the second equality in Prop0s1t10n 3.8, we have

~ k -
S(g(k) gA) _ S(Z(k+1) ( +1)’gA)

(k+1)S(g(k+1) g )

(k+1)S(LT(g(k+1)) TT(g(k-i-l)) UTT(g(k-i-l)) LT(ggc—i_l))).
Let d = gcd(LM(g(k‘H)) TM(g‘k'H))). Note that z*+D does not divide d. Then

we expand and reduce the S—polynomial above, assuming that coefficients are all +1,
to obtain

5 (g(k-l-l)) (g(k+1))
S(g(k) gA) :Z.(Ek+1)(1) y TT( (k+1)) y LT( (k+1)))

pzk+D_ k4D (g(k+1)) k (g(k+1>) .
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The term order in the last expression is unknown. The expression inside the parentheses
may be expanded in terms of g(k +1 using Proposition 6.6, for

Ae{T\(CNA),A\(TNA),TNA,TUA}
. . . k+1
Since the factor of z**1 is available out front, we may then reduce by z&+D gy

for the appropriate combination of A. All such generators are contained in G’.

In Cases 2 and 3, z(k D s not internal to T, and we continue to assume that it is not

internal to A. Then g(k ) = glik D 50 we expand the S—polynomial as in Case 1, but
do not obtain a factor of zk*+1 in front:
(1) S(gp.ga)=S(er " 2n)
TT k+1 k+1)
= (gd )TT( (k+1)) (gd )LT( (k+1))

Case 2 Since we have assumed that Z(k+1) divides LT(g(k)) but not TT(g (k)) we
have gr € G’. We may use it to reduce line (7-2) above:

—> (g(k+1)) (g(k-l-l))
d

d LT( (k+1))

S(g(k) fod LT( (k+1))

LT(g(k_H)) &+1D
-

Since z‘k“) is not internal to A, it does not divide TT(g(k +1)) which means it
also does not divide . Our assumption that z** 1 divides LT(g(k D) then 1mp11es

that we may reduce further by z&+1 g(k *tD ' So we have shown that S(vg! g ). ZA)
reduces to zero via

gr and Z(k+l)g(Ak+1),

both of which are in G.

Case 3 Here we have assumed that z(k“’ is not incident to I, and we continue
to assume that it divides only the leading term of g(k) = g‘Ak‘H) We would like to
reduce the expression in line (7-2). Since Z(k+l) is not incident to I', we do not
have gr available in G’ in this case. Instead, we must expand line (7-2) using Propo-
sitions 6.3, 6.4 and 6.5, keeping careful track of which term retains the factor of v.
Since zt(k 1 is not incident to ', we know that T is out-led. The computation will
depend on whether A is in-led or out-led.

Suppose first that A is in-led. Then Z,(k"'l) goes from G\ (I"UA) to A\ (' N A).
We use the first statement in each of Propositions 6.3, 6.4 and 6.5 to expand. We use
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gA\(rna) to reduce the resulting expression. It is available in G’ because Z.ék_H) is
incident but not internal to A\ (I' N A).

) _ k+1 k+1
S(gr» &a) = XG\(rna), TNAZG\(TNA),TNAZB.TNA
k—+1,out _k+1),in k—+1,out _k+1),in
(VgA\(mA)gr\(mA) gF\(FﬂA)gA\(FmA))

~ k+1 k+1,
(reduce by —gA\(rna) - XG\(T'naA), FﬂAZG\(mA) FﬂAZ/(3 Fﬂ)AgF\(FﬂmA))

<k+1> k+D,in _k+1
= XG\('nA), FﬂAZG\(mA) rnaZB a8 A\TnA)ET\(TNA):

k+1D divi (k+1),in : k+1) ,k+D
As z; divides g we may reduce the expression to zero by z; gr\(rna)

A\(TNA)°
which is in G’.

Suppose instead that A is out-led. Then zék D goes from A\ (I'NA) to G\ (FTUA).
We use the third statement in each of Propositions 6.3, 6.4 and 6.5, with the roles of T’
and A reversed. We will use grua to reduce the resulting expression. It is available
in G’ because zék *+D s incident but not internal to T U A.

k k
S(gr’. &a) = Xa\(na), F\(FHA)Z(A\_EII‘)HA) I\(TNA)

k—+1),in _¢k+1),in k+1),0ut _k+1),out
“(vgroa " grna " — 8rua " &ThaA )

~ k 1 7.
(reduce by —g&rua 'xA\(FﬂA),F\(FﬂA)Z(A\(F)ﬂA) F\(I‘ﬂA)g(FrTA) m)

_ k+D,out _k+1
= XA\('NnA), F\(FﬂA)ZA\(mA) r\@na)8rua  8rna-

As z+D divides glﬂkUJrAl)’out we may reduce the expression to zero by zK+D glﬁkmzl) ,

which is in G’. m|

8 Extending to non-blackboard framings

We adopted the blackboard framing assumption in Section 4.2 when setting up the
starting basis for Buchberger’s algorithm. We now pick up from there to describe the
modifications necessary to generalize to arbitrary framings. Refer to Section 8.2 to see
how these modifications change the setup of the small example in Section 5.

8.1 Setup

In non-blackboard-framed graphs, the weight of " as a subset in G depends on i .
As we close strands of the braid, non-blackboard-framed boundary edges may become
internal to I', and therefore contribute to its weight. Let w;(I") denote the weight of T’
as a subset in G . That is, w; (T") is the sum of the framings on edges that are internal
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to T in G . Recall that the generator of N; associated to a set [' was defined to be
,out — VT,in-

When we pass to the edge ring, the monomial yr;, picks up a coefficient as each y; is
replaced by t~tix;, where £; denotes the framing on the edge labeled by x; and y;.
Let w; ;,(T") denote the sum of the framings on edges incoming to I in G® from
its complement or from the bottom boundary. There is a dependence on i because
edges that were incoming to I" from the bottom boundary may become internal to I"
as we close braid strands. It will be convenient to clear denominators in our standard
generators for NV; before beginning Buchberger’s algorithm, so we multiply the usual
generators by ¢%in. Using the more detailed notation of Section 4.1, we let

k) _ D)+wy (T k) k) 03] k)
8-1) hy = Wk DF Wil )xF,G\FZr,G\rZF,r_XG\F,FZG\r,rZﬂ,F

be the new standard form of a generator of Ny and

k+1) _ w1 (D)+ (T k+1) _(k+1) (k+1) _(k+1)
(8'2) gF _tw1\+l( ) Wp+1, ( )XF,G\FZF’G\FZF,‘[ _XG\F:FZG\F,FZﬂ,F

be the new standard form of a generator of Ny, . Compare to (4-3) and (4-4).

Applying 7 to iy’ may also cause it to pick up a new factor of 7. Recall that r;
is the quotient map & — &4 with kernel Z; 4y = (z¢+D — tai+lzl(3i+1)), where
aj+1 is the framing on the top edge of the (i+1)% strand of G. Recall also that 7;
retains the label zt(i D So applying 7y produces a factor of ™9 +! whenever z EkH)

appears. Let

k)
r

apqq if z(ﬁkH) is incoming to T in G®,
wk,r(r) = .
0 otherwise.
Then we have
&y _ D) t+wg i (T k+1 _k+Dsek+1
i (hP) = kD Fwiin )XF,G\FZF,G\FZF,t {r

k+1 &+, —wy (T)sk+1D
—XG\I,TZG\rrigr | T,

where &1 is defined as in (4-5) to be z 41 if 2K+ s internal to T in G *+D
and 1 otherwise. The collection of sz (h fk ’), taken over all subsets I' in G, is a basis
for 7y (Ny) just as it was in the blackboard-framed case. We will clear denominators
to arrive at a more convenient starting basis for Buchberger’s algorithm. Define

(8-3) g1 =t O ().

The collection of glik) is also a basis for 7y (Ng).
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The advantage of clearing denominators is that gl(-k > and gl(-k D now have the same

relationship as in the blackboard-framed case, that is

k) _ sk+1 _(k+1)
8&r =¢r 8r .

just as in Equation (4-6). The equality follows from the fact that
Wi (I) + wpein(T) + wpe o (1) = wiep 1 (T) + Wi 1,in (1)
for any I". With the new notation of this section, we may again say that
Go = {vglik) IT CG}U {vzék"H) —Zt(k+l)}

is our starting basis for Buchberger’s algorithm. Compare to (4-1).

8.2 Modifications for the Section 5 example

rl1+43

Figure 7: Modification of Figure 6 for arbitrary framings. Left: GV ; right: G .

wi(D)=4 wi(A)=0 wi(TUA) =L+

wiin(T) =4 wiin(A) =43+ L5 wyin(CUA) =43+ L5

w (D=0 wy(A)=4 w(TUA)=£;

wy(I) =4  w2(A)=0 wy(TUA)=Lo+ 4 +E+ 43

wy (D) =4 wain(A) =41 +l3+Ls wypn(TUA) =5
Table 3: Weights for the graphs in Figure 7
Refer to Figure 7. The various weights associated to I, A and I' U A are shown in
Table 3. The generators associated to I', A, and I'U A are as follows. Observe that the

generators of N7 and N, are related exactly as they were in the blackboard framing
case after we have modified their coefficients as described in the previous section.

hij) — twl,in(r)(twl(r)xl _t—fz)(z) — teo-i-fle — X,
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gl = 01e @y (pP) = fbotlay, —xy,

g}?) _ th,m(F)(th(F)xl —t_Esz) = IZOMZM — X2,

hg) — twl,in(A)(twl(A)x2x4 _t—€3—€5x3x5) =155 x4 — x3x5,

g = e @) D) = b (B ey Uy ) = (B s,
gg) _ th,in(A)(th(A)xzx4 _t—€1—€3—€5xlx5) — t€1+53+€5x2x4 —X1Xs,

hi'l‘)UA = twl’i"(FUA)(Zwl(FUA)x1X4 - l‘_e3_£5X3X5) = [60+£2+£3+65x1x4 — X3Xs,

o)) TUA M L1 lo+Lr+l3+L —L
giya =10 T8 () ) = b lor et bt s gy, — 7 x )
— l€0+51+52+€3+€5x1x4 — X1Xs,
gi'?)UA _ th,in(FUA)(sz(FUA)x“ —t_€5x5) — t€o+€1+ﬁz+€3+€5x4 — Xs.

8.3 Buchberger’s algorithm

We still use the monomial order on & from Definition 4.1. Coefficients play no role
in the definition or application of a monomial order, so our analysis of the leading
terms of standard generators of N(G ®) and Zj, in Sections 4.1 and 4.2 goes through
unchanged for arbitrary framings.

The propositions in which S—polynomials are computed also change very little, since
analysis of greatest common divisors and least common multiples of leading monomials
is not affected by the presence of coefficients. We merely have to check that the
exponents on the factors of r work out correctly. They do, because both w; + w; in
and wy . are additive under disjoint union. Define a total weight W by

W () = wg(I) + wg,in(T) + wg, () = w41 (I) + wpep1,in ().
Note that W is also additive under disjoint union.

Analyses involving the monomial order are also unaffected by the presence of co-
efficients, so reduction arguments generally proceed in the same way as before. In
particular, Observation 4.2 carries through unchanged.

One technical note is in order before we check through Sections 6 and 7: We will clear
denominators before adding any new generator to our working basis. This does not
affect the progress of the algorithm. If f, g, € F[x] and a € F, then

Staf.g)=5(f.g) and g
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if and only if
g i h.

That is, multiplying a generator in the working basis by an element of the ground field
does not affect its properties with respect to S—polynomials or the division algorithm,
which means that it does not affect its role in Buchberger’s algorithm.

Reprise of Section 6.1

Proposition 6.1 is already stated in sufficient generality for arbitrary framings. After
clearing denominators, the application of Proposition 6.1 goes through as explained
in the blackboard case. In particular, it remains true that if z K+ does not divide

both terms of glik) , then glik) = gI(‘k D So, if z+D fails to divide the leading

term of glik ’, then we apply Proposition 6.1(1) and add z*+1 glik D o the working
basis G'.

Let gf‘k)’out, gf‘k)’m, glﬂk-"l)’(’m, and glﬁk-"l)’m be monomials defined exactly as in the

blackboard case (ie all with coefficient 1). Define the tilde generators to be

N {vg{f)’in — tW(F)g{f)’OM if T is out-led,

gr = i
e @ gt _ g ®uin e 1 g in-fed.

If z%+D divides the leading term of glﬁk ), then we apply Proposition 6.1(4) to see that
the S—polynomial between vz*+D — 7%+ ang vglﬁk) still produces gr, possibly
after clearing denominators. If zr(k D also divides the trailing term of glik ), then we

have the same reduction to z+D glﬁk+1) as in the blackboard case.

Overall, then, S—polynomials between vz*+D — z*+D and generators of the form

v glik ) yield the working basis G’ defined at the end of Section 6.1.

Reprise of Section 6.2

Propositions 6.2, 6.3, 6.4 and 6.5 are not specific to the blackboard case. We may
still use these as building blocks to describe the outcome of S—polynomials among
generators of the form v gr(‘k ’ for arbitrary framings — that is, to prove the following

analogue of Proposition 6.6.

Proposition 8.1 (Analogue of Proposition 6.6) Let I'y A C G. After clearing de-
nominators, the following statements hold in £, up to multiplication by non-zero
elements of the ground field:
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(1) If T" and A are both out-led, then
*k+1D _k+Dy _ *k+D *k+D
S(er "7 8A ) = XG\(TUA).TNAZG\(TUA).FNAZBTNA

.(tW(A\(FmA)) k+D,out _k+1,in _ZW(F\(FnA)) k+D,out _k+1,in )
EA\(NA)ET\(TNA) Er\(rna)&A\(rna)

(k+1) (k+1)
ET\(rna)y A\ NA)

(2) If T and A are both in-led, then
k k k k
S(gr i g(AH)) = xFﬂA,G\(FuA)Zi“rTAl),G\(ruA)Zi“r;LAl),r

_(ZW(I‘\(I‘mA)) k+1D,in (k+1),0ut_tW(A\(FﬂA)) k+1,in (k+1),0ut)
EA\TNnA)ET\(TNA) Er\(rna)8 A\(rna)

k+1) k+1)
Er\(rna)y AT NA)

(3) If T isin-led and A is out-led, then

k+D _k+Dy _ *k+1
S(er " 8A ) = XT\(TNA),A\TNA)ZT\(FNA), A\(TNA)

W (TUA)+W (I'NA) k+D,out _k+1),out k+1,in_k+1),in
(1 groa '8 g )

'nA T 8TUA r'nA
k+1) _(+1D
grua 8rna
0.
k+1 k+1)

Proof Apply Propositions 6.2, 6.3, 6.4 and 6.5 to the definitions of g, and g
given in (8-2), then multiply by appropriate powers of ¢ to clear any negative exponents.
The reduction statements follow from Proposition 3.9. a

Lemma 6.7 remains true as stated. We follow through the details of the proof just to
be careful.

Proof of Lemma 6.7 for arbitrary framings We established at the beginning of

Section 8 that
k) k+1) _(k+1)

r =Sr &r
holds for arbitrary framings. We have also seen that Proposition 3.9 and Observation 4.2
carry through unchanged, so the division into cases in the proof of Lemma 6.7 remains
valid. Proposition 8.1 (the analogue of Proposition 6.6) immediately allows us to reduce
the S—polynomials in Cases 1 and 2(a) to zero using generators in the working basis.

The analysis of Case 2(b) proceeds as before, establishing that Z.ék D goes between
'NAand T\(I'NA). If Zr(k-H) is outgoing from ' N A, then Proposition 8.1
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says that

vS(ETY g8 = vxr\(rna). A\TNA) Z G A) A\FNA)

. (IW(FUA)—{—W(FDA) (k+1) out _(k+1),out k+1D,in _k+1), m)
&rna ~8rua &rna

with the term order shown. As in the original proof, we may reduce by vz &+ —zk+D
to obtain

&+ _k+1 vzik-H) gy
vS(gr " 8 )—>Xr\(rnA)A\(ranr\(mA)A\(mA)

e+1,in _k+1D,in _ (W (TUA)+W(TNA) (e+1D,out _(k+1),0ut
("gruA 8rna’ 8rua 8rna’ ).

and then by

(k+1),in W (TNA) _ (k+1),out
groa =vgfnn =t TR gy

to produce

W (@TNA) _(k+1),0ut_(k+1)

k+1)
xF\(FﬂA),A\(FﬂA)Zl(“\(mA),A\(mA)Z &rna  8rua >

and finally by zt(k“)gr(‘kUJrAl) to get zero. There is a similar argument for the reduction

if z&+D is incoming to TN A.

In the analysis of Case 3, the initial argument remains the same, so we may assume
without loss of generality that Zf(k D goes from A\ (I'NA) to T\ (I'NA). We may
likewise assume that the working basis contains tilde generators for I' and A with
the forms

gr = U,W(F)g<k+1),out (k+1),in
- r

(k+1),in W A) _(k+1),0ut
gr and gA =vg, ( )gA .

The appropriate refactoring of Proposition 8.1(3) is then
VS(g(kH), fﬂ)) = UZW(A)XA\(rnA),G\(FUA)xmA G\A

(k+1> w (T (k+1)ot
CZA\TNA),G\TUA)TTNA,G\AZA TP (D g !

k+1 k+D,in

— VXG\(TUA),I\(I'NA)XG\I,TNAZG\(TUA),T'\(TNA)ZG\I,TNAZg 1 &A )

with unknown term order. As in the argument for blackboard framings, this expression
is reducible by either gr or g depending on its term order, and then by whichever of
the tilde generators was not already used. For the sake of illustration, we reduce by gr
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and then g as follows:

k k
US(g( +1)’g(A+D)

&r *k+1) _k+1),in
—> VXG\(TUA),I\(T'NA)XG\I',TNAZG\(TUA),I\(I'NA)ZG\I,TNAZg 1 8 A
w k+1 _k+1,in
— W& )XA\(FmA) G\(TUA)XTNA,G\AZA\(T'NA),G\(TUA)ZTNA,G\AZA ¢ &T '
N4 k+1 _k+D,i
=5 Y B A\(PNA)Y,G\TUA) XTNA.G\AZA\(TNA),G\(TUA) ZTNA,G\AZ A - g
_ W) *k+1D &+, out.

XG\(TUA),I\(T'NA)XG\T,TNAZG\(TUA),T\(T'NA)ZG\T,TNAZg T &

The final expression can be seen to be zero by refactoring exactly as in the original
proof. O

This completes our reprise of Section 6. We are left with the same working basis G’
as in the blackboard case, given the changes to notation described at the beginning of
Section 8.

Reprise of Section 7

As in the blackboard case, we must confirm that S—polynomials involving the generators
added to the working basis in Round 1 may be reduced to zero within the working basis.
The arguments generalize easily to arbitrary framings, but we verify them line-by-line
for the sake of completeness.

Applying Proposition 6.1(6) to S(vz&+D — zk+D ;d+D gl(qk D) produces a multi-

ple of the blackboard result by 1/LC(gy- k +1)) That result can be reduced to zero in
the same way as before just by multiplying each step of the computation by the same
factor of 1/LC(g(k+1)) So, as before,

vzék—H) (k+1) Z(k-l—l)g(k-‘rl)

4T
S(v2<k+1) _Z(k+1) Z<k+1>g<k+1>) r 0.

’TT

Propositions 3.8 and 8.1 may be applied to S(z (k“)g(kﬂ) Z(k+1’g(k+1)) to see that
it reduces by some combination of z(k+1)g(k+l) for Ae{T'\(I'NA), A\(T'NA),
I'NA, T'UA}, all of which are in G’.

Lemma 7.1 holds as stated for arbitrary framings. The proof is the same, except that the
computations must be multiplied by 1 /LC(g(k+1))TC(g ke le)) where TC denotes
the coefficient on the trailing term. These factors do not affect any analysis about
leading terms or the availability of the generators needed to reduce the S—polynomial
to zero, so the argument for reduction to zero is unchanged.

Algebraic & Geometric Topology, Volume 15 (2015)



1300 Allison Gilmore

Lemma 7.2 also holds as stated for arbitrary framings. The expression that must
be reduced in the proof for arbitrary framings is the product of the expression in
Line (7-1) of the blackboard case with 1/ TC(glik +h )TC(g(Ak DY) The method of
reduction then depends on how this expression expands in terms of gl(\k"'“ for A €
{T\NTNA),A\NT NA), I'NA,TUA}. Just as the possible cases paralleled
Proposition 6.6 in the blackboard setting, they parallel Proposition 8.1 in the non-
blackboard setting. In each case, the arguments about term order and reduction to zero
by generators in G’ are identical in the blackboard and non-blackboard settings.

The proof of Lemma 7.3 relies entirely on results that we have already generalized to
arbitrary framings, so we may conclude that the proposition holds as stated for arbitrary
framings.

Finally, Lemma 7.4 holds as stated. Since its proof involves some explicit calculations,
we check it line by line.

Proof of Lemma 7.4 for arbitrary framings The breakdown into cases is unaffected
by the presence of coefficients. In Cases 1 and 2, the expanded S—polynomials for
arbitrary framings are the product of the expressions in the blackboard case by a factor
of 1/ LC(glik+1))TC(g(Al€+l)). Multiplying through by that factor while reducing
makes the reduction by vz +D —zk+D apnd zt(k“)gj(\kﬂ) or gr and zt(k“)g(AkH)
possible, just as before.

Case 3 breaks into subcases as in the blackboard case. When Z,‘k‘H) goes from
G\(TUA) to A\(I'NA), the expanded S—polynomial expression with coefficients is

& =\ _ *k+1 k+1
S(gr L8A) = XG\(I'NA),TNAZG\(TNA),TNAZB,TNA

.(WW(A\(I‘HA)) k+D,out _k+1,in

W (\(I'NA)) k+D,out ¢c+D,in
8A\(rna)8T\(Tha) ~! \ ).

Er\(rna)8 A\(rna)

This expression reduces by ga\(rna) and then Zr(k-H) gf‘k\J(rrlr)1 A) 38 before. When

zk+D goes from A\ (I'NA) to G\ (I'U A), the expanded S—polynomial is

k) ~ k+1
S(gr’+ &a) = XA\(TNA),P\TNA)Y 2 A\ (PNA).T\(TNA)

k+D,in _k+1),in W (TUA) k+D,out, W (I'NA) &+ D,out
(verga "graa "t 8rua ! graa’™)s

which reduces by grua and then zt‘k +b gl(,karAl) , as before. O

This completes the analysis of S—polynomials and reductions parallel to Section 7,
along with the proof of Lemma 4.3 for arbitrary framings. Since all of the necessary
reductions to zero can be accomplished without expanding the working basis, Buch-
berger’s algorithm terminates with the working basis G’ described above. The proof
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of Theorem 1.1 from Lemma 4.3 is identical to that in Section 4.4. Intersecting with
Ek+1. then dividing each of the remaining generators by Z.f,k D we produce the set

as a basis for the ideal quotient 7 (Ny) : (z¥* D). Therefore, we have

established Theorem 1.1 in the full generality that it was stated.
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