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Deformations of noncompact projective manifolds

SAMUEL A BALLAS

In this paper, we demonstrate that the complete hyperbolic structures of various two-
bridge knots and links cannot be deformed to inequivalent strictly convex projective
structures. We also prove a complementary result showing that under certain rigidity
hypotheses, branched covers of amphicheiral knots admit nontrivial, strictly convex
deformations near their complete hyperbolic structure.

57M50; 57M60

1 Introduction

Mostow rigidity for hyperbolic manifolds is a crucial tool for understanding the de-
formation theory of lattices in Isom.Hn/. Specifically, it tells us that the fundamental
groups of finite-volume hyperbolic manifolds of dimension n � 3 admit a unique
conjugacy class of discrete, faithful representations into Isom.Hn/.

Recent work of Cooper, Long and Tillmann [10] and Benoist [3; 4; 5] has revealed
several parallels between the geometry of hyperbolic n–space and the geometry of
strictly convex domains in RPn . For example, the classification and interaction of
isometries of strictly convex domains is analogous to the situation in hyperbolic geom-
etry. Additionally, if the isometry group of the domain is sufficiently large then the
strictly convex domain equipped with the Hilbert metric is known to be ı–hyperbolic.
Despite the many parallels between these two types of geometry, there is no analogue
of Mostow rigidity for strictly convex domains. This observation prompts the following
question: When is it possible to nontrivially deform the complete hyperbolic structure
on a finite-volume hyperbolic manifold inside the category of strictly convex projective
structures?

Currently, the answer is known only in certain special cases. For example, when the
manifold contains a totally geodesic hypersurface there exist nontrivial deformations
at the level of representations coming from the bending construction of Johnson and
Millson [16]. In the closed case, work of Koszul [19] shows that these new projective
structures arising from bending remain properly convex. Further work of Benoist [4]
shows that these structures are actually strictly convex. In the noncompact case, recent
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work of Marquis [20] has shown that the projective structures arising from bending
remain properly convex in this setting as well.

In contrast to the previous results, there are examples of closed 3–manifolds for which
no such deformations exist (see Cooper, Long and Thistlethwaite [9]). Additionally,
there exist 3–manifolds that contain no totally geodesic surfaces, that nevertheless admit
deformations (see Cooper, Long and Thistlethwaite [8]). Following the terminology
in [9] we refer to deformations that do not arise from the bending construction as flexing
deformations.

Prompted by these results, a natural question is whether or not there exist strictly convex
flexing deformations for noncompact finite-volume 3–manifolds. Two-bridge knots
and links provide a good place to begin exploring because they have particularly simple
presentations for their fundamental groups, which makes analyzing their representations
a more tractable problem. Additionally, work of Hatcher and Thurston [13] has shown
that they contain no closed totally geodesic embedded surfaces.

If M is a manifold, the theory of .G;X / structures tells us that each projective structure
on M gives rise to a conjugacy class of representations �W �1.M /! PGLnC1.R/,
called the holonomy of the structure (see Goldman [12] for details). In general, proper-
ties of the structure manifest themselves as properties of the holonomy representation.
In particular, we will see that there are strong restrictions placed on the holonomy of a
strictly convex projective structure.

While Mostow rigidity guarantees the uniqueness of complete structures on finite-
volume 3–manifolds, work of Thurston [28, Chapter 5] shows that if we remove the
completeness hypothesis then there is an interesting deformation theory for cusped,
hyperbolic 3–manifolds. However, these incomplete hyperbolic structures are never
strictly (or even properly) convex projective structures. For example, when the com-
pletion of the deformed structure corresponds to Dehn filling then the image of the
developing map will miss a countable collection of geodesics.

In order to obtain a complete hyperbolic structure we must insist that the holonomy of
the peripheral subgroup be parabolic. In [10], a notion of parabolicity is introduced
for automorphisms preserving a properly convex domain. In the strictly convex setting
we show that parabolicity of peripheral subgroups is a necessary condition on the
holonomy of a strictly convex projective structure (see Lemma 2.5).

Using normal form techniques developed in Section 4 we are able to prove that for
several two-bridge knot and link complements the holonomy of their complete hyper-
bolic structure is, locally and up to conjugacy, the only representation with parabolic
peripheral holonomy. As a result we are able to prove the following theorem.
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Theorem 1.1 Let M be the complement in S3 of 41 (the figure-eight knot), 52 , 61

or 52
1

(the Whitehead link). Then M does not admit strictly convex deformations of its
complete hyperbolic structure.1

It should be mentioned that an infinitesimal analogue of this theorem is proven by
Heusener and Porti in [14] for the figure-eight knot and the Whitehead link. In light of
Theorem 1.1 we ask the following:

Question 1 Does any hyperbolic two-bridge knot or link admit a strictly convex
deformation of its complete hyperbolic structure?

In [14] it is shown that there is a strong relationship between deformations of a
cusped hyperbolic 3–manifold and deformations of surgeries on that manifold. In
particular, the authors of [14] use the fact that the figure-eight knot is infinitesimally
projectively rigid relative to the boundary to deduce that there are deformations of
certain orbifold surgeries of the figure-eight knot. We are able to extend these results
to other amphicheiral knot complements that enjoy a certain rigidity property in the
following theorem; see Sections 3 and 6 for the relevant definitions.

Theorem 1.2 Let M be the complement of a hyperbolic amphicheiral knot, and
suppose that M is infinitesimally projectively rigid relative to the boundary and the
longitude is a rigid slope. Then for sufficiently large n, there is a one-dimensional
family of strictly convex deformations of the complete hyperbolic structure on M.n=0/.

Here M.n=0/ is the orbifold obtained by surgering a solid torus with longitudinal
singular locus of cone angle 2�=n along the meridian of M . Other than the figure-
eight knot, we cannot yet prove that there exist other knots satisfying the hypotheses of
Theorem 1.2. However, there is evidence that there should be many situations in which
Theorem 1.2 applies. First, there is numerical evidence that the two-bridge knot 63

satisfies the hypotheses of Theorem 1.2. Furthermore, the authors of [9] examined
approximately 4500 closed hyperbolic 3–manifolds and found that only about 1%
of them admit strictly convex deformations of their hyperbolic structure. Combined
with Theorem 1.1 this suggests that strictly convex deformations of hyperbolic 3–
manifolds are somewhat rare. As a result, two-bridge knots that are infinitesimally rigid
relative to the boundary may be quite abundant. Additionally, there are infinitely many
amphicheiral two-bridge knots, and so there is hope that there are many situations in
which Theorem 1.2 applies.

1The notation for these knots and links comes from Rolfsen’s table of knots and links [27].
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The organization of the paper is as follows: Section 2 discusses some basics of projective
geometry and projective isometries, while Section 3 discusses local and infinitesimal
deformations with a focus on bending and its effects on peripheral subgroups. Section 4
discusses some normal forms into which parabolic isometries can be placed. In Section 5
we use the techniques of the previous section to give a thorough discussion of deforma-
tions of the figure-eight knot (Section 5.1) and the Whitehead link (Section 5.2), which
along with computations by the author in [2], proves Theorem 1.1. Finally, in Section 6
we discuss some special properties of amphicheiral knots and their representations and
prove Theorem 1.2.
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2 Projective geometry and convex projective structures

Let V be a finite-dimensional real vector space. We form the projectivization of V ,
denoted P .V /, by dividing V nf0g by the action of R� by scaling. When V D Rn

we denote P .Rn/ by RPn . If we take GL.V / and divide by the action of R� , acting
by multiplication by central linear transformations, we get PGL.V /. It is easy to
verify that the action of GL.V / on V descends to an action of PGL.V / on P .V /. If
W � V is a subspace, then we call P .W / a projective subspace of P .V /. Note that
the codimension of P .W / in P .V / is the same as the codimension of W in V and
the dimension of P .W / is one less than the dimension of W . A projective line is a
1–dimensional projective subspace.

Let � be a subset of P .V /. Then � is convex if its intersection with any projective
line is connected. An affine patch is the complement in P .V / of a codimension-1
subspace. A convex subset �� P .V / is properly convex if its closure x� is contained
in some affine patch. A properly convex � of P .V / is strictly convex if @� does
not contain a line segment of positive length in @� (here length is measured in the
Euclidean metric in some affine patch that contains x�).
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We now take a moment to review some examples. An affine patch is a convex
subset of P .V /, however it is not properly convex as its closure is all of P .V /.
Let S D f.x1; : : : ;xnC1/ 2 RnC1 j xi > 0g; then the P .S/ is a disjoint from the
projectivization of the hyperplane

˚
.x1; : : : ;xnC1/ 2RnC1

ˇ̌ PnC1
iD1 xi D�1

	
and is

thus properly convex. It is straightforward to see that P .S/ is a simplex in RPn and
is thus not strictly convex.

Next consider the cone C D f.x1; : : : ;xnC1/ 2RnC1 j x2
1
C� � �Cx2

n�x2
nC1

< 0g. We
can identify P .C / with n–dimensional hyperbolic space (this is the Klein model; see
Ratcliffe [25] for more details). When viewed in an appropriate affine patch, P .C / is
a disk in RPn and is thus strictly convex.

A projective space P .V / admits a double cover � W S.V /! P .V /, where S.V / is
the quotient of V nf0g by the action of RC . In the case where V D Rn we denote
S.V / by Sn . The automorphisms of S.V / are SL˙.V /, which consists of linear
transformations of V with determinant ˙1. Let ŒT � 2 PGL.V / be an equivalence
class of linear transformations. By scaling T we can arrange that T 2 SL˙.V /.
Additionally, we see that T 2 SL˙.V / if and only if �T 2 SL˙.V /. As a result, there
is a two-to-one map, which by abuse of notation we also call � W SL˙.V /! PGL.V /
given by �.T / D ŒT �. If we let SL˙.�/ and PGL.�/ be subsets of SL˙.V / and
PGL.V / preserving ��1.�/ and �, respectively, then we see that � restricts to a
two-to-one map from SL˙.�/ to PGL.�/.

When � is properly convex we can construct a section of � that is a homomorphism. If
��P .V / is properly convex, the preimage of � under � will consist of two connected
components. Every element of SL˙.�) either preserves both of these components
or interchanges them. Furthermore, T 2 SL˙.�/ preserves both components if and
only if �T interchanges them. As a result we see that if ŒT � 2 PGL.�/ then there is a
unique lift of ŒT � to SL˙.�/ that preserves both components of ��1.�/. Mapping ŒT �
to this lift yields the desired section. Additionally, by using this section we are able to
identify PGL.�/ with a subgroup of SL˙.�/. As a result we will regard elements of
PGL.�/ as linear transformations when convenient.

We now describe a classification of elements of PGL.�/ given in [10]. Let � be
a properly convex and open subset of PGL.�/ and let T 2 PGL.�/. If T fixes a
point in �, then A is called elliptic. If T acts freely on �, and all of its eigenvalues
have modulus 1, then T is parabolic. Otherwise, T is hyperbolic. Since � is
properly convex, we can realize x� as a compact, convex subset of Rn . As a result the
Brouwer fixed point theorem tells us that every element of PGL.�/ will fix a point
in x�. Furthermore, when � is strictly convex, parabolic elements will have a unique
fixed point in @� and hyperbolic elements will have exactly two fixed points in @�
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(see [10, Proposition 2.8]). As a result we see that when �DHn this classification
agrees with the standard classification of isometries of hyperbolic space.

Understanding parabolic elements of PGL.�/ is an important aspect of the proof of
Theorem 1.1 and we make crucial use of the following theorem from [10], which
demonstrates that parabolic elements of PGL.�/ are subject to certain linear algebraic
constraints.

Theorem 2.1 [10, Proposition 2.9] Suppose that � is a properly convex domain and
that T 2PGL.�/ is parabolic. Then one of largest Jordan blocks of T has eigenvalue 1.
Additionally, the size of this Jordan block is odd and at least 3. If � is strictly convex
then this is the only Jordan block of this size.

This theorem is particularly useful in small dimensions. For example, in dimensions 2
or 3 the matrix representing any parabolic element that preserves a properly convex
subset is conjugate to either

0@1 1 0

0 1 1

0 0 1

1A or

0BB@
1 0 0 0

0 1 1 0

0 0 1 1

0 0 0 1

1CCA
respectively. This theorem also tells us that in these small-dimensional cases, 1 is the
only possible eigenvalue of a parabolic that preserves a properly convex domain.

When � is properly convex we can also gain more insight into the structure of PGL.�/
by considering a PGL.�/–invariant metric on �. Given x1;x2 2 � we define the
Hilbert metric as follows: Let ` be the line segment in � between x1 and x2 . Proper
convexity tells us that ` intersects @� in two points y and z , where y is the point
on ` closer to x1 and z is the point on ` closer to x2 . We define dH.x1;x2/ D

log.Œy W x1 W x2 W z�/, where Œy W x1 W x2 W z�D .jx2�yjjz�x1j/=.jx1�yjjz�x2j/ is
the cross ratio. Since the cross ratio is invariant under projective automorphisms this
metric is invariant under PGL.�/. Furthermore, projective lines are geodesics for this
metric. The Hilbert metric gives rise to a Finsler structure on �, and in the case that �
is an ellipsoid it coincides with twice the standard hyperbolic metric.

We now use this metric to understand certain subsets of PGL.�/.

Lemma 2.2 Let � be a properly convex domain and let x be a point in the interior
of �. Then the set PGL.�/Kx D fT 2 PGL.�/ j dH.x;T x/�Kg is compact.
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Deformations of noncompact projective manifolds 2601

Proof Let B D fx0; : : : ;xng be a projective basis (ie a set of nC 1 points, no n of
which live in a common projective hyperplane) that is a subset of � and such that
x0 D x . The group PGLnC1.R/ acts simply transitively on the set of projective bases,
and the orbit of a fixed projective basis provides a homeomorphism from PGLnC1.R/
to a subset .RPn/nC1 .

Next, let 
i be a sequence of elements of PGL.�/Kx . The elements 
ix0 all live in
the compact ball of radius K centered at x and so by passing to a subsequence we can
assume that 
ix0! x1

0
2 �. Next, we claim that by passing to a subsequence we

can assume that 
ixj ! x1j 2� for 1� j � n. To see this, observe that

dH.x
1
0 ; 
ixj /� dH.x

1
0 ; 
ix0/C dH.
ix0; 
ixj /D dH.x

1
0 ; 
ix0/C dH.x0;xj /;

and so all of the 
ixj live in a compact ball centered at x1
0

. The proof will be complete
if we can show that the set fx1

0
; : : : ;x1n g is a projective basis. Suppose that this set

is not a projective basis; then without loss of generality we can assume that the set
fx1

0
; : : : ;x1

n�1
g is contained in a projective hyperplane. Thus x1

0
is contained in the

projective plane spanned by fx1
1
; : : : ;x1

n�1
g. As a result, we can find a point, y , in

the projective hyperplane spanned by fx1; : : : ;xn�1g such that 
iy! x1
0

. However,
since B is a projective basis we see that

0< dH.x0;y/D dH.
ix0; 
iy/ but dH.
ix0; 
iy/! 0;

which is a contradiction.

As we mentioned previously, isometries of a strictly convex domain interact in ways
similar to hyperbolic isometries. As an example of this phenomenon, recall that if
�; 2 SO.n; 1/, with � hyperbolic, then � and  cannot generate a discrete subgroup
of SO.n; 1/ if they share exactly one fixed point. In particular, parabolic and hyperbolic
automorphisms cannot share fixed points in a discrete group. A similar phenomenon
occurs for PGL.�/ when � is strictly convex.

Proposition 2.3 Let � be a strictly convex domain and �; 2 PGL.�/ with �

hyperbolic. If � and  have exactly one fixed point in common, then the subgroup
generated by � and  is not discrete.

Proof Notice the similarity between this proof and the proof in [25, Theorem 5.5.4].
Suppose for contradiction that the subgroup generated by � and  is discrete. Since �
is strictly convex, � has exactly two fixed points (see [10, Proposition 2.8]), x1

and x2 . Without loss of generality we can assume that they correspond to the eigen-
values of smallest and largest modulus, respectively, and that  fixes x1 but not x2 .
From [10, Proposition 4.6] we know that x1 is a C 1 point of @�, and hence there is a
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unique supporting hyperplane to � at x1 and both � and  preserve it. This means
that there are coordinates with respect to which both � and  are affine. In particular
we can assume that

�.x/DAx;  .x/D BxC c

with c ¤ 0. We now examine the result of conjugating  by powers of � :

�n ��n.x/DAnBA�nxCAnc:

The fixed point x2 (which had the largest eigenvalue) has now been moved to the
origin and � has been projectively scaled so that x2 has eigenvalue 1. Since � is
strictly convex, x2 is the unique attracting fixed point, and so after possibly passing to a
subsequence we can assume that fAncg is a sequence of distinct vectors that converge
to the origin. Since AncD�n ��n.0/ we see that f�n ��ng is a sequence of distinct
automorphisms. The elements of f�n ��ng all move points on the line between the
fixed points of � a fixed bounded distance, and so by Lemma 2.2 this sequence has
a convergent subsequence, which by construction, is not eventually constant. The
existence of such a sequence contradicts discreteness.

The next lemma describes subgroups of PGL.�/ that preserve a common geodesic.

Lemma 2.4 Let � be a strictly convex domain and let � � PGL.�/ be a discrete
torsion free subgroup of elements that all preserve a common geodesic in �. Then �
is infinite cyclic and generated by a hyperbolic element.

Proof Since the elements of � all preserve a common geodesic, ` � �, there is a
homomorphism from �`W � ! R that assigns to each element its translation length
(in the Hilbert metric) along `. Since � is torsion free it acts freely on � and thus
this map has trivial kernel. The image of � under �` is a discrete subgroup of R
and is thus � is infinite cyclic. Since � is torsion free, every element of � is either
hyperbolic or parabolic. However, parabolic elements have unique fixed points and
thus cannot preserve a geodesic. Thus we conclude that the generator of � must be
hyperbolic.

A peripheral subgroup of a finite-volume hyperbolic 3–manifold is isomorphic to a
free Abelian group of rank 2. In the following lemma we analyze how such a group
can act on a strictly convex domain.

Lemma 2.5 Let � be strictly convex and let � � PGL.�/ be a discrete free Abelian
subgroup of rank at least 2. If 1¤ 
 2 � then 
 is parabolic.
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Proof Since � is discrete and torsion free we see that 
 is either parabolic or
hyperbolic. Suppose for contradiction that 
 is hyperbolic. Since � is Abelian we see
that � has a global fixed point on @�. By Proposition 2.3 we see that every element
of � must have the same fixed point set as 
 , and thus we see that � preserves the
geodesic connecting the two fixed points of 
 . Lemma 2.4 tells us that � must be
cyclic, but that contradicts the fact that � has rank at least 2.

To close this section we briefly describe convex real projective structures on manifolds.
For more details about real projective structures and more general .G;X / structures
see [25; 28; 12]. A real projective structure on an n–manifold M is an atlas of
charts U ! RPn such that the transition functions are elements of PGLnC1.R/.
When equipped with a real projective structure, we call M a real projective manifold.
We can globalize the data of an atlas by selecting a chart and constructing a local
diffeomorphism DW �M ! RPn using analytic continuation. This construction also
yields a representation �W �1.M / ! PGLnC1.R/ that is equivariant with respect
to D . The map and representation are known as a developing map and holonomy
representation, respectively. The only ambiguity in this construction is the choice
of initial chart, and different choices of initial charts will result in developing maps
which differ by post composing by an element of g 2 PGLnC1.R/. Additionally, the
holonomy representations will differ by conjugation by g .

When the map D is a diffeomorphism onto a properly (resp. strictly) convex set, �, we
say that the real projective structure is properly (resp. strictly) convex. In this case the
holonomy representation is both discrete and faithful and M Š�=�.�/, where � is
the holonomy representation. A key example to keep in mind are complete hyperbolic
structures.

3 Local and infinitesimal deformations

Unless explicitly mentioned, � will henceforth denote the fundamental group of a
finite-volume hyperbolic 3–manifold. By Mostow rigidity, there is a unique conjugacy
class of representations of � that is faithful and has discrete image in SO.3; 1/. We
call this class the geometric representation of � and denote it Œ�geo�. From the previous
section we know that real projective structures on a manifold give rise to conjugacy
classes of representations of its fundamental group into PGL4.R/. As we shall see, if
we want to study real projective structures near the complete hyperbolic structure it
suffices to study conjugacy classes of representations near Œ�geo�.

We now set some notation. Let R.�;PGL4.R// be the PGL4.R/ representation variety
of � . The group PGL4.R/ acts on R.�;PGL4.R// by conjugation, and the quotient
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by this action is the character variety, which we denote X .�;PGL4.R//. The character
variety is not globally a variety because of pathologies of the action by conjugation,
however at �geo the action is nice enough to guarantee that X .�;PGL4.R// has the
local structure of a variety.

Next, we define a refinement of X .�;PGL4.R// that better controls the representations
on the boundary. Recall that by Theorem 2.1 the only conjugacy class of parabolic
element that is capable of preserving a properly convex domain is

(3-1)

0BB@
1 0 0 0

0 1 1 0

0 0 1 1

0 0 0 1

1CCA :
Because this is the conjugacy class of a parabolic element of SO.3; 1/ we will call para-
bolic elements conjugate to (3-1) SO.3; 1/–parabolic. Let R.�;PGL4.R//p be the el-
ements of R.�;PGL4.R// such that peripheral elements of � are mapped to SO.3; 1/–
parabolic elements, and let the relative character variety, denoted X .�;PGL4.R//p ,
be the corresponding quotient by the action PGL4.R/.

If � is a representation, then a deformation of � is a smooth map, �.t/W .�"; "/!
R.�;PGL4.R// such that �.0/ D � . Often times we will denote �.t/ by �t . If a
class Œ� � is an isolated point of the X .�;PGL4.R// then we say that � is locally
projectively rigid at � . Similarly, we say that � is locally projectively rigid relative to
the boundary at � when Œ� � is isolated in X .�;PGL4.R//p .

We now relate these varieties to projective structures. For more details about geometric
structures on manifolds, see [12, Sections 2 and 3]. Let M be a 3–manifold with
� D �1.M /. We define the space of projective structures on M , denoted D.M / as
the set of equivalence classes

f.f;N / j N is a real projective manifold and f W M !N is a diffeomorphismg=�;

where .f;N / � .f 0;N 0/ if there exists a projective transformation g defined on
the complement of a collar neighborhood of @N onto the complement of a collar
neighborhood of @N 0 such that g ıf is isotopic to f 0 . The set D.M / consists of the
different projective structures on M and a continuous path in D.M / is a projective
deformation of M .

As we have seen, a projective manifold N diffeomorphic to M gives rise to an element
Œ�N � 2 X .�;PGL4.R// via its holonomy representation. As a result we have a map
holW D.M /! X .�;PGL4.R// given by hol.Œ.f;N /�/ D Œ�N ı f��. The following
specific instance of a much more general theorem allows us to understand projective
deformations in terms of representations.

Algebraic & Geometric Topology, Volume 14 (2014)
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Theorem 3.1 [12, Section 3] The map hol is a local homeomorphism.

Let Dsc.M / be the set of classes Œ.f;N /� 2D.M / such that N is a strictly convex
projective manifold. This set is comprised of the different strictly convex projective
structures on M and a continuous path in Dsc.M / is a strictly convex deformation
of M . When M is a finite-volume hyperbolic 3–manifold then its peripheral subgroups
are all free Abelian groups of rank 2. Thus, as a consequence of Lemma 2.5 we have
the following proposition about the restriction of hol to Dsc.M /.

Proposition 3.2 If M is a finite-volume hyperbolic 3–manifold then hol.Dsc.M //�

X .�;PGL4.R//p .

As a consequence of Theorem 3.1 and Proposition 3.2 we have the following corollary.

Corollary 3.3 Let M be a finite-volume hyperbolic 3–manifold. If � is locally
projectively rigid relative to the boundary at Œ�geo� then there are no strictly convex
deformations near the complete hyperbolic structure on M .

3.1 Twisted cohomology and infinitesimal deformations

We now review how the cohomology of � with a certain system of local coefficients
helps to infinitesimally parameterize conjugacy classes of deformations of representa-
tions. For more details on cohomology see Brown [7, Chapter III].

Let �0W � ! PGL4.R/ be a representation; then we can define the cochain com-
plex, C n.�; sl.4/�0

/ to be the set of all functions from �n to sl.4/. The chain
complex is equipped with a differential, dnW C n.�; sl.4/�0

/ ! C nC1.�; sl.4/�0
/,

where dn�.
1; : : : ; 
nC1/ is given by


1 ��.
2; : : : ; 
nC1/C

nX
iD1

.�1/i�.
1; : : : ; 
i�1; 
i
iC1; : : : ; 
nC1/

C .�1/nC1�.
1; : : : ; 
n/;

where 
 2 � acts via the adjoint action of �0 , given by 
 �M D �0.
 /M�0.
 /
�1 .

Letting Zn.�; sl.4/�0
/ and Bn.�; sl.4/�0

/ be the kernel of dn and image of dn�1 ,
respectively, we can form the cohomology groups H�.�; sl.4/�0

/. When no confusion
will arise we often omit the superscript and just write d for the boundary map.

To see how this construction is related to deformations, let �t be a deformation of �0 .
Then since PGL4.R/ is a Lie group we can use a series expansion and write �t .
 / as

(3-2) �t .
 /D .I C z.
 /t CO.t2//�0.
 /;
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where 
 2 � and z is a map from � into sl.4/, which we call an infinitesimal
deformation of �0 . The above construction would have worked for any smooth function
from R to PGL4.R/, but the fact that �t is a homomorphism for each t puts strong
restrictions on z . Let 
 and 
 0 be elements of � ; then

�t .


0/D .I C z.

 0/t CO.t2//�0.



0/;(3-3)

�t .
 /�t .

0/D .I C z.
 /t CO.t2//�0.
 /.I C z.
 0/CO.t2//�0.


0/

D .I C .z.
 /C 
 � z.
 0//t CO.t2//�0.


0/:

By focusing on the linear terms of the two power series in (3-3), we find that z.

 0/D

z.
 /C
 �z.
 0/, and so z 2Z1.�; sl.4/�0
/, the set of 1–cocycles twisted by the action

of �0 .

Since we think of deformations coming from conjugation as uninteresting, we now
analyze which elements in Z1.�; sl.4/�0

/ arise from these types of deformations.
Let ct be a smooth curve in PGL4.R/ such that c0 D I , and consider the deformation
�t .
 /D c�1

t �0.
 /ct . Again, when we write �t .
 / as a power series we find that

c�1
t �0.
 /ct D .I � zc t CO.t2//�0.
 /.I C zc t CO.t2//(3-4)

D .I C .zc � 
 � zc/t CO.t2//�0.
 /;

and again by looking at linear terms we learn z.
 / D zc � 
 � zc and so z is a 1–
coboundary.

We therefore conclude that studying infinitesimal deformations near �0 up to conjugacy
boils down to studying H 1.�; sl.4/�0

/. When H 1.�; sl.4/�0
/ D 0 we say that �

is infinitesimally projectively rigid at Œ�0�, and when the map ��W H 1.�; sl.4/�0
/!

H 1.�1.M /; sl.4/�0
/ induced by the inclusion �W @M !M is injective we say � is

infinitesimally projectively rigid relative to the boundary at Œ�0�. The following theorem
of Weil shows the strong relationship between infinitesimal and local rigidity.

Theorem 3.4 (Weil [29]) If � is infinitesimally projectively rigid at Œ� � then � is
locally projectively rigid at Œ� �.

More generally the dimension of H 1.�; sl.4/�geo/ is an upper bound for the dimension
of X .�;PGL4.R// at Œ�geo� (see [16, Section 2]). However, it is important to remember
that in general the character variety need not be a smooth manifold. When this occurs
this bound is not sharp and so the converse to Theorem 3.4 is in general false.
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3.2 Decomposing H 1.�; sl.4/�0
/

In order to simplify the study of H 1.�; sl.4/�0
/ we will decompose it into two factors

using a decomposition of sl.4/. Consider the symmetric matrix

J D

0BB@
1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 �1

1CCA :
Following [14; 16] we see that this matrix gives rise to the following decomposition
of sl.4/ as PSO.3; 1/–modules:

(3-5) sl.4/D so.3; 1/˚ v;

where so.3; 1/D fa 2 sl.4/ j atJ D�Jag and vD fa 2 sl.4/ j atJ D Jag. These two
spaces are the ˙1–eigenspaces of the involution a 7! �JatJ . This splitting of sl.4/
gives rise to a splitting of the cohomology groups, namely

(3-6) H�.�; sl.4/�0
/DH�.�; so.3; 1/�0

/˚H�.�; v�0
/:

If �geo is the geometric representation then the first factor of (3-6) is well understood.
By work of Garland [11], H 1.M; so.3; 1/�geo/ injects into H 1.@M; so.3; 1/�geo/. Fur-
thermore, we have dim H 1.M; so.3; 1/�geo/ D 2k , where k is the number of cusps
of M (for more details see Porti [24] or Kapovich [17, Section 8.8]).

Now that we understand the structure of H 1.�; so.3; 1/�0
/ we turn our attention to the

other factor of (3-6). The inclusion �W @M!M induces a map ��W H 1.M; sl.4/�geo/!

H 1.@M; sl.4/�geo/ on cohomology. We will refer to the kernel of this map as the
sl.4/�geo –cuspidal cohomology. In [14], Porti and Heusener analyze the image of this
map. The portion that we will use can be summarized by the following theorem, which
can be thought of as a twisted cohomology analogue of the classical half lives/half dies
theorem.

Theorem 3.5 [14, Lemmas 5.3 and 5.8] Let �geo be the geometric representation of
a finite-volume hyperbolic 3–manifold with k cusps. Then dim.��.H 1.�; v�geo///D k .
Furthermore, if @M D

Fk
iD1@Mi , then there exists 
 D

Fk
iD1
i with 
i � @Mi , such

that ��.H 1.�; v�geo// injects into
Lk

iD1H 1.
i ; v�geo/.

3.3 Bending

Now that we have some upper bounds on the dimensions of our deformations spaces
we want to begin to understand what types of deformations exist near the geometric
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representation. The most well-known construction of such deformations is bending
along a totally geodesic hypersurface. The goal of this section is to explain the bending
construction and prove the following theorem about the effects of bending on the
peripheral subgroups.

Theorem 3.6 Let M be a finite-volume hyperbolic manifold, let S be a totally
geodesic hypersurface, and let Œ�t �2X .�;PGLnC1.R//, obtained by bending along S .
Then Œ�t � is contained in X .�;PGLnC1.R//p if and only if S is closed or each curve
dual to the intersection of @M and S has zero signed intersection with S .

Following [16], let M be a finite-volume hyperbolic manifold of dimension n � 3

and �geo be its geometric representation. Next, let S be a properly embedded to-
tally geodesic hypersurface. Such a hypersurface gives rise to a nontrivial curve in
X .�;PGLŒnC 1�R/ passing through �0 as follows. We begin with a lemma showing
that the hypersurface S gives rise to an element of sl.nC 1/ that is invariant under
�D �1.S/ but not all of � D �1.M /.

Lemma 3.7 Let M and S as above. Then there exists a unique 1–dimensional
subspace of sl.nC1/ that is invariant under the adjoint action of �geo.�/. Furthermore
this subspace is generated by a conjugate in PGLnC1.R/ of�

�n 0

0 I

�
;

where I is the n� n identity matrix.

Proof We have that �geo.�/ is a subgroup of PO.n; 1/ (the projective orthogonal
group of the form x2

1
C x2

2
C � � � C x2

n � x2
nC1

). Since S is totally geodesic we can
assume, after conjugation, that �geo.�/ preserves both the hyperplane where x1D0 and
its orthogonal complement which is generated by .1; 0; : : : ; 0/. Hence if A 2 �geo.�/

then

AD

�
1 0T

0 zA

�
;

where zA 2 PO.n� 1; 1/ (the projective orthogonal group of the form x2
2
Cx2

3
C � � �C

x2
n�x2

nC1
) and 02Rn . If x 2 sl.nC1/ is invariant under the adjoint action of �geo.�/

then we know that B.t/D exp .tx/ commutes with every A 2 �geo.�/. If we write

B.t/D

�
b11 b12

b21 b22

�
;
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where b11 2R, bT
12
; b21 2Rn , and b22 2 SLn.R/. Then�

b11 b12

zAb21
zAb22

�
D

�
1 0

0 zA

��
b11 b12

b21 b22

�
D

�
b11 b12

b21 b22

��
1 0

0 zA

�
D

�
b11 b12

zA

b21 b22
zA

�
:

From this computation we learn that the vectors b12 and b21 are invariant under
�geo.�/ and that b22 is in the centralizer of �geo.�/ in SLn.R/. However, �geo.�/ is
an irreducible subgroup of PO.n� 1; 1/, and so the only matrices that commute with
every element of �geo.�/ are scalar matrices and the only invariant vector of �geo.�/

is 0, and so

B D

�
e�n�t 0

0 e�tI

�
;

where I is the identity matrix. Differentiating B.t/ at t D 0 we find that

x D

�
�n� 0

0 �I

�
and the result follows.

A generator of the �geo.�/–invariant subspace of sl.nC 1/ constructed in Lemma 3.7
will be called a bending cocycle. We choose such a generator once and for all and
denote it xS . We can now define a family of deformations of �geo . The construction
breaks into two cases depending on whether or not S is separating.

If S is separating then � splits as the amalgamated free product

� Š �1 �� �2;

where �i are the fundamental groups of the components of the complement of S in M .
Since �geo.�/ is irreducible we know that xS is not invariant under all of �geo.�/ and
so we can assume without loss of generality that it is not invariant under �2 . So let
�t j�1

D �geo and �t j�2
DAd.exp .txS // ��geo . Since these two maps agree on � they

give a well-defined family of homomorphisms of � , such that �0 D �geo .

If S is nonseparating, then � is realized as the HNN extension

� Š � 0��;

where � 0 is the fundamental group of M nS . If we let ˛ be a curve dual to S

then we can define a family of homomorphisms through �geo by �t j� 0 D �geo and
�t .˛/Dexp .txS /�geo.˛/. Since xS is invariant under �geo.�/ the values of �t .�1.�//

do not depend on t , where �1 is the inclusion of the positive boundary component of a
regular neighborhood of S into M nS , and so we have well-defined homomorphisms
of the HNN extension.

Algebraic & Geometric Topology, Volume 14 (2014)



2610 Samuel A Ballas

In both cases �t gives rise to a nontrivial curve of representations and by examining
the class of Œ�t � 2 H 1.�; sl.nC 1/�geo/, Johnson and Millson [16] showed that Œ�t �

actually defines a nontrivial path in X .�;PGLnC1.R//.

Proof of Theorem 3.6 In the case that S is closed and separating a peripheral element,

 2 � , is contained in either �1 or �2 since it is disjoint from S . In this case �t .
 /

is either �.
 / or some conjugate of �.
 /. In either case we have not changed the
conjugacy class of any peripheral elements and so Œ�t � is a curve in X .�;PGLnC1.R//p .
Similarly if S is closed and nonseparating then if 
 2 � is peripheral we see that

 2 �1.M nS/, and so its conjugacy class does not depend on t .

In the case that S is noncompact we need to analyze its intersection with the boundary
of M more carefully. First, let M 0 be a finite-sheeted cover of M and S 0 a lift of S

in M 0 . If bending along S preserves the peripheral structure of M then bending
along S 0 will preserve the peripheral structure of M 0 . Therefore, without loss of
generality we may pass to a finite-sheeted cover of M such that @M 0 D

Fk
iD1 Ti ,

where each of the Ti is a torus (this is possible by work of McReynolds, Reid and
Stover [21]). By looking in the universal cover, it is easy to see that since S is properly
embedded and totally geodesic that for any boundary component Ti , Ti\S D

Fl
jD1 tj ,

where the tj are parallel .n�2/–dimensional tori. The result of the bending deformation
on the boundary will be to simultaneously bend along all of these parallel tori, however
some of the parallel tori may bend in opposite directions and can sometimes cancel
with one another. In fact, if we look at a curve ˛ 2 Ti dual to one (hence all) of the
parallel tori, then intersection points of ˛ with S are in bijective correspondence with
the tj , and the direction of the bending corresponds to the signed intersection number
of ˛ with S .

When S is separating the signed intersection number of ˛ with S is always zero, and
so bending along S has no effect on the boundary. When S is nonseparating the signed
intersection can be either zero or nonzero. In the case where the intersection number is
nonzero the boundary becomes nonparabolic after bending. This can be seen easily by
looking at the eigenvalues of peripheral elements after they have been bent.

Remark 3.8 The Whitehead link is an example where bending along a nonseparat-
ing totally geodesic surface has no effect on the peripheral subgroup of one of the
components (see Section 5.2).

Corollary 3.9 Let M be a finite-volume hyperbolic 3–manifold. If M is locally
projectively rigid relative the boundary near the geometric representation then M

contains no closed embedded totally geodesic surfaces or finite-volume embedded
separating totally geodesic surfaces.

Algebraic & Geometric Topology, Volume 14 (2014)



Deformations of noncompact projective manifolds 2611

The Menasco–Reid conjecture [22] asserts that hyperbolic knot complements do not
contain closed, totally geodesic surfaces. As a consequence of Corollary 3.9 we see
that any hyperbolic knot complement that is locally projectively rigid relative to the
boundary near the geometric representation will satisfy the Menasco–Reid conjecture.

4 Some normal forms

The goal of this section will be to examine various normal forms into which two non-
commuting SO.3; 1/–parabolic elements can be placed. In [26], Riley shows how two
noncommuting parabolic elements a and b inside of PSL2.C/ can be simultaneously
conjugated into the form

(4-1) aD

�
1 1

0 1

�
; b D

�
1 0

! 1

�
:

In this same spirit we would like to take two SO.3; 1/–parabolic elements A and B

that are sufficiently close to the SO.3; 1/–parabolic elements A0 and B0 in the same
copy of SO.3; 1/ and show that A and B can be simultaneously conjugated into the
following normal form, similar to (4-1):

(4-2) AD

0BB@
1 0 2 1C a14

0 1 2 1

0 0 1 1

0 0 0 1

1CCA ; B D

0BB@
1 0 0 0

b21 1 0 0

b31C b21b32 2b32 1 0

b21C b41 2 0 1

1CCA :
Our goal will be to build a homomorphism from PSL2.C/ to PGL4.R/ that maps
a pair of parabolic elements of PSL2.C/ of the form (4-1) to a pair of elements of
PGL4.R/ of the form (4-2).

Let b32 and b21 be real numbers, let d D b21�4b2
32

, and let .x;y; z; t/ be coordinates
for R4 . Let Herm2 be the real vector space of 2�2 Hermitian matrices. Then there is
a linear isomorphism from R4 to Herm2 given by

(4-3) .x;y; z; t/ 7!

�
x �

� dt

�
;

where

� D x�yC 2b32z� 2b2
32t C i.

p
dz� b32

p
dt/;

� D x�yC 2b32z� 2b2
32t � i.

p
dz� b32

p
dt/:

Furthermore there is an action of SL2.C/ on Herm2 (and thus on R4 ) by a linear
automorphism given by M �N DMNM � , where M 2 SL2.C/, N 2 Herm2 , and �
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denotes the conjugate transpose operator. It is easy to see that the kernel of this action
is f˙Ig and as a result we get a homomorphism �0W PSL2.C/! PGL4.R/.

The function �Det gives us a quadratic form on Herm2 which when regarded as a
quadratic form on R4 via (4-3) is induced by the matrix

(4-4) X D

0BB@
1 �1 2b32 �b21=2

�1 1 �2b32 2b2
32

2b32 �2b32 b21 �b21b32

�b21=2 2b2
32
�b21b32 b21b2

32

1CCA :
By construction, the image of �0 preserves this form and when d > 0 we see that this
form has signature .3; 1/. A simple computation shows that

�0
��

1 i
p

d

0 1

��
D

0BB@
1 0 2 1� 2b32

0 1 2 1

0 0 1 1

0 0 0 1

1CCA :
By precomposing with conjugation by an appropriate diagonal element in PSL2.C/
we get a new homomorphism �W PSL2.C/! PGL4.R/ such that

�

��
1 1

0 1

��
D

0BB@
1 0 2 1� 2b32

0 1 2 1

0 0 1 1

0 0 0 1

1CCA :
When b21 D j!j

2 and b32 D Re.!/=2 we see that � will take pairs of the form (4-1)
to pairs of the form (4-2) (in this case a13 D�Re.!/, b31 D 0 and b41 D�2).

With these assumptions on b21 and b32 we see that

d D b21� 4b2
32 D j!j

2
�Re.!/2 D Im.!/2:

Thus as long as Im.!/¤ 0, �.a/ and �.b/ will preserve a common form of signa-
ture .3; 1/.

Let F2 D h˛; ˇi be the free group on two letters and let R.F2;PGL4.R//p be the set
of homomorphisms, f , from F2 to PGL4.R/ such that f .˛/ and f .ˇ/ are SO.3; 1/–
parabolic elements. The topology of R.F2;PGL4.R//p is induced by convergence
of the generators. There is a natural action of PGL4.R/ on R.F2;PGL4.R//p by
conjugation, and we denote the quotient of this action by X .F2;PGL4.R//p . We have
the following lemma about the local structure of X .F2;PGL4.R//p .
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Lemma 4.1 Let f0 2R.F2;PGL4.R//p satisfy the following conditions:

(1) hf0.˛/; f0.ˇ/i is irreducible and conjugate into SO.3; 1/.

(2) hf0.˛/; f0.ˇ/i is not conjugate into SO.2; 1/.

Then for f 2 R.F2;PGL4.R//p sufficiently close to f0 there exists a unique (up
to ˙I ) element Gf 2 PGL4.R/ such that

G�1
f f .˛/GfD

0BB@
1 0 2 1Ca14

0 1 2 1

0 0 1 1

0 0 0 1

1CCA ; G�1
f f .ˇ/GfD

0BB@
1 0 0 0

b21 1 0 0

b31Cb21b32 2b32 1 0

b21Cb41 2 0 1

1CCA :
Additionally, the map from R.F2;PGL4.R//p to itself given by f 7! G�1

f
fGf is

continuous.

Proof The previous argument combined with properties 1 and 2 ensures that f0.˛/

and f0.ˇ/ can be put into the form (4-2). Let A D f .˛/ and B D f .ˇ/. Let EA

and EB be the 1–eigenspaces of A and B , respectively. Since both A and B are
SO.3; 1/–parabolics both of these spaces are 2–dimensional. Irreducibility is an open
condition, and so we can assume that f is also irreducible and so EA and EB have
trivial intersection. Therefore R4 DEA˚EB . If we select a basis with respect to this
decomposition then our matrices will be of the block form�

I AU

0 AL

�
;

�
BU 0

BL I

�
:

Observe that 1 is the only eigenvalue of AL (resp. BU ) and that neither of these
matrices is diagonalizable (otherwise .A� I/2 D 0 (resp. .B � I/2 D 0) and so A

(resp. B) would not have the right Jordan form). Thus we can further conjugate EA

and EB so that

AL D

�
1 a34

0 1

�
; BU D

�
1 0

b21 1

�
;

where a34 ¤ 0¤ b21 . Conjugacies that preserve this block form are all of the form0BB@
u11 0 0 0

u21 u22 0 0

0 0 u33 u34

0 0 0 u44

1CCA :
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Finally, a tedious computation2 allows us to determine that there exist unique values
of the uij that will finish putting our matrices in the desired normal form. Note that
the existence of solutions depends on the fact that the entries of A and B are close to
the entries of f0.˛/ and f0.ˇ/, which live in SO.3; 1/. Finally, the entries of all the
conjugating matrices are continuous functions of the entries of A and B and so the
map f 7!G�1

f
fGf is also continuous.

Using Lemma 4.1, we get us the following information about the local dimension of
X .F2;PGL4.R//p .

Corollary 4.2 If � 2R.F2;PGL4.R//p satisfies the hypotheses of Lemma 4.1 then
the space X .F2;PGL4.R//p is locally 5–dimensional at Œ� �.

We conclude this section by introducing another normal form for SO.3; 1/–parabolics.
If we begin with A and B in form (4-2) then we can conjugate by the matrix

V D

0BB@
1 0 0 0

1
4
.2� b21� b42/

1
4
.2C b21C b41/ 0 0

0 0 1
2

1
2
.2b32C b21b32C b32b41� 1/

0 0 0 1
2
.2C b21C b41/

1CCA
and the resulting form will be

(4-5) AD

0BB@
1 0 1 a14

0 1 1 a24

0 0 1 a34

0 0 0 1

1CCA ; B D

0BB@
1 0 0 0

b21 1 0 0

b31 1 1 0

1 1 0 1

1CCA :
Conjugation by V makes sense because near f0 , 2C b21 C b41 ¤ 0, and so V is
nonsingular.

5 Two bridge examples

In this section we will examine the deformations of various two-bridge knots and links.
Two bridge knots and links always admit presentations of a particularly nice form. A
two-bridge knot or link, K , is determined by a rational number p=q , where q is odd,
relatively prime to p and 0< q < p . There is always a presentation of the form

(5-1) �1.S
3
nK/D hA;B jAW DWBi;

2This computation is greatly expedited by using Mathematica.
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where A and B are meridians of the knot. The word W can be determined explicitly
from the rational number, p=q ; see Murasugi [23] for details. We now wish to
examine deformations of �D�1.S

3nK/ that give rise to elements of sl.4/�geo –cuspidal
cohomology. Such a deformation must preserve the conjugacy class of both of the
meridians of � , and so we can assume that throughout the deformation our meridian
matrices, A and B , are of the form (4-5). Therefore we can find deformations by
solving the matrix equation

(5-2) AW �WB D 0

over R.

5.1 Figure-eight knot

The figure-eight knot has rational number 5=3, and so W D BA�1B�1A. Solving
(5-2) we find that

(5-3) AD

0BB@
1 0 1 .3� t/=.t � 2/

0 1 1 1=.t � 2/

0 0 1 t=.2.t � 2//

0 0 0 1

1CCA and B D

0BB@
1 0 0 0

t 1 0 0

2 1 1 0

1 1 0 1

1CCA
and so we have found a 1 parameter family of deformations. However, this family does
not preserve the conjugacy class of any nonmeridional peripheral element. A longitude
of the figure-eight is given by LDBA�1B�1A2B�1A�1B , and a simple computation
shows that if (5-3) is satisfied then tr.L/D .48C .t � 2/4/=.8.t � 2//. This curve of
representations corresponds to the cohomology classes guaranteed by Theorem 3.5,
where 
1 can be taken to be the longitude. If we want the entire peripheral subgroup
to be parabolic we must add the equation tr.L/D 4 to (5-2). When we solve this new
set of equations over R, we find that the only solution occurs when t D 4. Along with
Corollary 3.3 this concludes the proof of Theorem 1.1 for the figure-eight knot.

5.2 The Whitehead link

The Whitehead link has rational number 8=3, so W D BAB�1A�1B�1AB . If we
again solve (5-2) we see that

(5-4) AD

0BB@
1 0 1 0

0 1 1 �2

0 0 1 2

0 0 0 1

1CCA and B D

0BB@
1 0 0 0

4 1 0 0

�1 1 1 0

1 1 0 1

1CCA
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and we find that the Whitehead link has no deformations preserving the conjugacy
classes of the boundary elements near the geometric representation. We conclude the
proof of Theorem 1.1 for the Whitehead link by applying Corollary 3.3.

This time it was not necessary to place any restriction on the trace of a longitude in
order to get a unique solution. Theorem 3.5 tells us that there are still 2 dimensions of
infinitesimal deformations of � that we have not yet accounted for. However, we can
find deformations that give rise to these extra cohomology classes. To see this, notice
that there is a totally geodesic surface that intersects one component of the Whitehead
link in a longitude that we can bend along. With reference to Figure 1, we denote the
totally geodesic surface S , and the two cusps of the Whitehead link by C1 and C2 .
If we bend along this surface the effect on C1 will be to deform the meridian (or any
nonlongitudinal, peripheral curve) and leave the longitude fixed. This bending has no
effect on C2 , since C2 intersects S in two oppositely oriented copies of the meridian,
and the bending along these two meridians cancel one another (see Theorem 3.6).
This picture is symmetric and so there is another totally geodesic surface bounding
the longitude of C2 and the same argument shows that we can find another family of
deformations.

C2

S
C1

Figure 1: The Whitehead link and its totally geodesic, thrice punctured sphere

Remark 5.1 Similar computations have been done for the two-bridge knots 52 and 61 .
However in these two examples it is not known if the cohomology classes coming from
Theorem 3.5 are integrable. The details of these computations can be found in [2] and
serve to complete the proof of Theorem 1.1.
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6 Rigidity and flexibility after surgery

In this section we examine the relationship between deformations of a cusped hyperbolic
manifold and deformations of manifolds resulting from surgery. The overall idea is as
follows: Suppose that M is a 1–cusped hyperbolic 3–manifold of finite volume, ˛ is
a slope on @M , and M.˛/ is the manifold resulting from surgery along ˛ . Let M.˛/

be hyperbolic with geometric representation �geo and �t is a nontrivial family of
deformations of �geo into PGL4.R/. Since �1.M.˛// is a quotient of �1.M / we
can pull �t back to a nontrivial family of representations, z�t , such that z�t .˛/D 1 for
all t (it is important to remember that z�0 is not the geometric representation for M ).
In terms of cohomology, we find that the image of the element ! 2H 1.M; sl.4/z�0

/

corresponding to z�t has trivial image in H 1.˛; sl.4/z�0
/. With this in mind we will

call slope ˛–rigid if the map H 1.M; v�geo/!H 1.˛; v�geo/ is nontrivial. Roughly the
idea is that if a slope is rigid then we can find deformations that do not infinitesimally
fix ˛ . The calculations from Section 5.2 show that either meridian of the Whitehead
link is a rigid slope.

6.1 The cohomology of @M

Before proceeding we need to understand the structure of the cohomology of the
boundary. For details of the facts in this section see [14, Section 5]. Let T be a
component of @M and let 
1 and 
2 be generators of �1.T /. Then �geo.
1/ and
�geo.
2/ are both parabolic and can thus be realized as Euclidean translations (along a
horosphere). These two translations are determined by vectors v
1

; v
2
2R2 . When

the Euclidean angle between v
1
and v
2

is not an integral multiple of �=3, then we
have an injection,

(6-1) H 1.T; v�0
/
��
1
˚��
2

�����!H 1.
1; v�0
/˚H 1.
2; v�0

/;

where ��
i
is the map induced on cohomology by the inclusion 
i ,! T . Additionally,

if �u is the holonomy of an incomplete hyperbolic structure, then

(6-2) H�.@M; v�u
/ŠH�.@M;R/˝ v�u.�1.@M //;

where v�u.�1.@M // are the elements of v invariant under �u.�1.@M //. Additionally,
for all such representations the image of H 1.M; v�u

/ under �� in H 1.@M; v�u
/ is

1–dimensional.

6.2 Deformations coming from symmetries

From the previous section we know that the map H 1.M; v�/ ! H 1.@M; v�/ has
rank 1 whenever � is the holonomy of an incomplete hyperbolic structure, and we
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would like to know how its image sits inside H 1.@M; v�/. Additionally, we would
like to know when infinitesimal deformations coming from cohomology classes can be
integrated to actual deformations. Certain symmetries of M can help us to answer this
question.

Suppose that M is the complement of a hyperbolic amphicheiral knot complement.
Then M admits an orientation reversing symmetry, � , that sends the longitude to
itself and the meridian to its inverse. The existence of such a symmetry places strong
restrictions on the shape of the cusp. Since � is the holonomy of a hyperbolic structure,
it will factor through a representation into PSL2.C/ and we wish to examine the image
of a peripheral subgroup inside this group. Let m and l be the meridian and longitude
of M . Then it is always possible to conjugate in PSL2.C/ so that

�.m/D

�
ea=2 1

0 e�a=2

�
and �.l/D

�
eb=2 ��

0 e�b=2

�
:

The value �� is easily seen to be an invariant of the conjugacy class of � and we will
henceforth refer to it as the � invariant (see also Boileau and Porti [6, Appendix B]).
When � is the geometric representation this coincides with the cusp shape.

Suppose that Œ�� is a representation such that the metric completion of H3=�.�1.M //

is the cone manifold M.˛=0/ (resp. M.0=˛//, where M.˛=0/ (resp. M.0=˛// is the
cone manifolds obtained by Dehn filling along the meridian (resp. longitude) with
a solid torus with singular longitude of cone angle 2�=˛ . Using the � invariant we
can show that the holonomy of the singular locus of these cone manifolds is a pure
translation.

Lemma 6.1 Let M be a hyperbolic amphicheiral knot complement and let ˛ � 2.
If M.˛=0/ is hyperbolic then the holonomy of the longitude is a pure translation.
Similarly, if M.0=˛/ is hyperbolic then the holonomy around the meridian is a pure
translation.

Proof We prove the result for M.˛=0/. Provided that M.˛=0/ is hyperbolic and
˛ � 2, rigidity results for cone manifolds from Kojima [18] and Hodgson and Kerck-
hoff [15] provides the existence of an element A� 2 PSL2.C/ such that

�.�.
 //DA��.
 /A
�1
�
;

where x
 is complex conjugation of the entries of the matrix 
 . Thus we see that ��ı�
is x�� . On the other hand � preserves l and sends m to its inverse and so we see that
the ��ı� is also equal to ��� , and so we see that �� is purely imaginary.
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That �.m/ and �.l/ commute gives the following relationship between a; b , and �� :

(6-3) �� sinh.a=2/D sinh.b=2/:

Using that tr.�.m//=2D cosh.a=2/ and the analogous relationship for tr.�.l// we can
rewrite (6-3) as

(6-4) �2
� .tr

2.�.m//� 4/C 4D tr2.�.l//:

For the cone manifold M.˛=0/, �.m/ is elliptic and so tr2.�.m// 2 .0; 4/. As a result
we see that tr2.�.l// 2 .4;1/, and as a result �.l/ is a pure translation. The proof for
M.0=˛/ is identical with the roles of m and l being exchanged.

With this in mind we can prove the following generalization of [14, Lemma 8.2], which
lets us know that � induces maps on cohomology that act as we would expect.

Lemma 6.2 Let M be the complement of a hyperbolic, amphicheiral knot with
geometric representation �geo , and let �u be the holonomy of an incomplete, hyperbolic
structure whose completion is M.˛=0/ or M.0=˛/, where ˛ � 2. Then:

(1) H�.@M; v�u
/ Š H�.@M;R/˝ v�u.�1.@M // and ��u D �

�˝ Id, where ��u is
the map induced by � on H�.@M; v�u

/ and �� is the map induced by � on
H�.@M;R/.

(2) ��
l
ı ��

0
D ��

l
and ��m ı �

�
0
D ���m , where ��

0
is the map induced by � on

H 1.@M; v�geo/.

Proof The proof that H�.@M; v�u
/ Š H�.@M;R/ ˝ v�u.�1.@M // can be found

in [14, Lemma 5.3]. For the first part we will prove the result for M.˛=0/ (the
other case can be treated identically). By Lemma 6.1 we know that �u.m/ is elliptic
and that �u.l/ is a pure translation. Once we have made this observation our proof is
identical to the proof given in [14].

For the second part, we begin by observing that by Mostow rigidity there is a matrix
A02PO.3; 1/ such that �0.�.
 //DA0 ��0.
 /, where the action here is by conjugation.
The fact that our knot is amphicheiral tells us that the cusp shape of M is imaginary,
and so in PSL2.C/ we can assume that

�0.m/D

�
1 1

0 1

�
and �0.l/D

�
1 ic

0 1

�
;

where c is a positive real number. Under the standard embedding of PSL2.C/ into
PGL4.R/ (as the copy of SO.3; 1/ that preserves the form x2

1
Cx2

2
Cx2

3
�x2

4
) we see
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that

�0.m/D exp

0BB@
0 0 0 0

0 0 �1 1

0 1 0 0

0 1 0 0

1CCA and �0.l/D exp

0BB@
0 0 �c c

0 0 0 0

c 0 0 0

c 0 0 0

1CCA :
Thus we see that

A0 D T

0BB@
1 0 0 0

0 �1 0 0

0 0 1 0

0 0 0 1

1CCA ;
where T is some parabolic isometry that fixing the vector .0; 0; 1; 1/, which corresponds
to 1 in the upper half-space model of H3 . Such a T will be of the form

T D exp

0BB@
0 0 �a a

0 0 �b b

a b 0 0

a b 0 0

1CCA ;
where a and b are the real and imaginary parts of the complex number that determines
the parabolic translation, T . Since the cusp shape is imaginary the angle between m

and l is �=2 and we know from [14, Lemma 5.5] that the cohomology classes given
by the cocycles zm and zl generate H 1.@M; v�0

/. Here zm is given by zm.l/ D 0

and zm.m/D al , where

al D

0BB@
�1 0 0 0

0 3 0 0

0 0 �1 0

0 0 0 �1

1CCA
and zl given by zl.m/D 0 and zl.l/D am , where

am D

0BB@
3 0 0 0

0 �1 0 0

0 0 �1 0

0 0 0 �1

1CCA :
Observe that ��

0
zl.m/D 0D zl.m/ and that

��0 zm.m/DA�1
0 � zm.m

�1/D�A�1
0 � �0.m

�1/ � al :

In [14] it is shown how the cup product associated to the Killing form on v gives rise
to a nondegenerate pairing. We can now use this cup product to see that ��m�

�
0

zm.m/
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and ���mzm.m/ are cohomologous. The cup product yields a map H 1.m; v�0
/˝

H 0.m; v�0
/! H 1.m;R/ Š R given by .a [ b/.m/ D B.a.m/; b/ WD 8 tr.a.m/b/

(where we are thinking of H 1.m;R/ as homomorphisms from Z to R). Observe that

.��m�
�
0 zm[ am/.m/D B.��0 zm.m/; am/D 32D�B.al ; am/D�.�

�
mzm[ am/.m/:

Since this pairing is nondegenerate and Œ��m�
�
0

zm� and Œ���mzm� both live in the same
1–dimensional vector space, we see they must be equal. Thus we see ��m ı�

�
0
D���m .

After observing that

.��l �
�
0 zl [ al/.l/D B.��0 zl.l/; al/D�32D B.am; al/D .�

�
l zl [ ll/.l/;

a similar argument shows that ��
l
ı��

0
D ��

l
.

This lemma immediately helps us answer the question of how the image of H 1.M; v�0
/

sits inside of H 1.@M; v�0
/. Since � maps @M to itself, we see that the image of

H 1.M; v�0
/ is invariant under the involution �� , and so the image will be either

the ˙1 eigenspace of �� . In light of Lemma 6.2 we see that these eigenspaces sit
inside H 1.l; v�0

/ and H 1.m; v�0
/, respectively. Under the hypotheses of Theorem 1.2

the previous fact is enough to show that certain infinitesimal deformations are integrable.

Proof of Theorem 1.2 In this proof O D M.n=0/ and N will denote a regular
neighborhood of the singular locus of M.n=0/. Hence we can realize O as M tN .
By using a Taylor expansion we see that given a smooth family of representations �t

of �orb
1 .O/ into SL4.R/, it is possible to write

(6-5) �t .
 /D .I Cu1.
 /t Cu2.
 /t
2
C � � � /�0.
 /;

where the uk are 1–cochains in C 1.�orb
1 .O/; gl.4/�0

/. The fact that each �t is a
homomorphism is satisfied if and only if for each k ,

(6-6) duk C

k�1X
iD1

ui [uk�i D 0;

where a[b is the 2–cochain given by .a[b/.c; d/D a.c/c �b.d/, and the action is by
conjugation. Conversely, if we are given a cocycle u1 and a collection fukg

1
kD2

such
that (6-6) is satisfied for each k , we can apply a deep theorem of Artin [1, Theorem 1.2]
to show we can find an actual deformation z�t in GL4.R/ such that the resulting
infinitesimal deformation is equal to u1 (here we are using the natural embedding of
sl.4/ into gl.4/ Š R˚ sl.4/). We can project this curve to PGL4.R/ to find a new
curve �t with infinitesimal deformation u1 . In this way we construct deformations at
the level of representations by finding a sequence of 1–cochains satisfying (6-6).
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We first claim we may assume that for i D 1; 2, H i.O; gl.4/�n
/ŠH i.O; v�n

/, where
�n is the holonomy of the incomplete structure whose completion is the orbifold
M.n=0/. Using the splitting of gl.4/ŠR˚sl.4/ we get a splitting of H i.O; gl.4/�n

/Š

H i.O;R/ ˚ H i.O; sl.4/�n
/. The group �orb

1 .O/ has finite abelianization and so
H 1.O;R/ D 0. By duality, H 2.O;R/ D 0 as well. Using Weil rigidity and the
splitting (3-6), H 1.M.n=0/; sl.4/�n

/ Š H 1.M.n=0/; v�n
/. Finally, duality tells us

H 2.O; sl.4/�n
/ŠH 2.O; v�n

/.

To simplify notation, H�.�; gl.4/�n
/ is denoted H�.�/. The orbifold O is finitely

covered by an aspherical manifold, and so by combining a transfer argument [14]
with the fact that CW–cohomology with twisted coefficients and group cohomology
with twisted coefficients coincide for aspherical manifolds (see Whitehead [30]), we
conclude that group cohomology with twisted coefficients for �orb

1 .O/ is the same as
twisted CW–cohomology with twisted coefficients for the orbifold, O . Thus, we use
a Mayer–Vietoris sequence to analyze cohomology. Consider the following section
of the sequence:

(6-7) H 0.M /˚H 0.N /!H 0.@M /!H 1.O/!H 1.M /˚H 1.N /!H 1.@M /:

Next, we will determine the cohomology of N . Since N has the homotopy type of S1

it will only have cohomology in dimension 0 and 1. Since �n.@M /D �n.N / we see
that H 0.N /ŠH 0.@M / (both are 1–dimensional). By duality we see that H 1.N / is
also 1–dimensional. Additionally, H 0.O/ is trivial since �n is irreducible. Combining
these facts, we see that the first arrow of (6-7) is an isomorphism and thus the penultimate
arrow of (6-7) is injective. We also learn that H 1.O/ injects into H 1.M /, since if a co-
homology class from H 1.O/ dies in H 1.M / then exactness tells us that it must also die
when mapped into H 1.N / (since H 1.N / injects into H 1.@M /). However, this contra-
dicts the fact that H 1.O/ injects into H 1.M /˚H 1.N /. Using the fact that the longi-
tude is a rigid slope, Lemma 6.2, and [14, Corollary 6.6] we see that �� acts as the iden-
tity on H 1.O/. Since H 1.M / and H 1.N / have the 1–eigenspace of �� as their image
in H 1.@M /, the last arrow of (6-7) is not a surjection, and so H 1.O/ is 1–dimensional.

Duality tells us H 2.O/ is 1–dimensional and we will now show �� acts as multipli-
cation by �1. Again, by duality we see H 3.O/D 0, so the Mayer–Vietoris sequence
contains the piece

(6-8) H 1.M /˚H 1.N /!H 1.@M /

!H 2.O/!H 2.M /˚H 2.N /!H 2.@M /! 0:

Since H 2.O/ is 1–dimensional, the second arrow of (6-8) is either trivial or surjective.
If this arrow is trivial then the third arrow is an injection and thus an isomorphism
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for dimensional reasons. However, this is a contradiction since the penultimate arrow
is a surjection and H 2.@M / is nontrivial. Since the first arrow of (6-8) has the 1–
eigenspace of �� as its image we see that the �1–eigenspace of �� surjects H 2.O/.
However, since the Mayer–Vietoris sequence is natural and � respects the splitting
of O into M [N we see that �� acts on H 2.O/ as �1.

We can now construct the sequence fukg
1
kD2

satisfying (6-6). Let Œu1� be a generator
of H 1.O/ (we know this is one-dimensional by the previous paragraph). Since � is an
isometry of a finite-volume hyperbolic manifold we know that it has finite order when
viewed as an element of Out.�1.M // [28], and so there exists a finite-order map  
that is conjugate to � . Because the maps � and  are conjugate, they act in the same
way on cohomology [7]. Let L be the order of  . Since  acts as the identity on
H 1.O/, the cocycle

u�1 D
1

L
.u1C .u1/C � � �C 

L�1.ui//

is both invariant under  and cohomologous to u1 . By replacing u1 with u�
1

we can
assume that u1 is invariant under  . Next observe that

�u1[u1 �  .u1[u1/D  .u1/[ .u1/D u1[u1;

so we see that u1[u1 is cohomologous to 0, and so there exists a 1–cochain u2 such that
du2Cu1[u1D 0. Using the same averaging trick as before we can replace u2 by the
 –invariant cochain u�

2
. By invariance of u1 we see that u�

2
has the same boundary as

u2 so this replacement does not affect the first part of our construction. Again we see that

�.u1[u2Cu2[u1/�  .u1[u2Cu2[u1/D u1[u2Cu2[u1;

and so there exists an u3 such that (6-6) is satisfied. Repeating this process indefi-
nitely, we can find the sequence fukg satisfying (6-6), and thus by Artin’s theorem [1,
Theorem 1.2] we can find our desired deformation.

Let �t be the family of representations that we have just constructed. By work of
Koszul [19] and Benoist [4] we see each of these representations will be discrete and
faithful. Additionally, for each t we can find a properly convex domain, �t , that is
preserved by �t and such that O Š �t=�t .�/. Furthermore, the group �orb

1 .O/ is
word hyperbolic and thus by work of Benoist [3] we see that the �t are actually strictly
convex. We have thus found the desired family of strictly convex deformations of the
complete hyperbolic structure on O .
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