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Fixed point adjunctions for equivariant module spectra

J P C GREENLEES

BROOKE SHIPLEY

We consider the Quillen adjunction between fixed points and inflation in the context of
equivariant module spectra over equivariant ring spectra, and give numerous examples
including some based on geometric fixed points and some on the Eilenberg–Moore
spectral sequence.

55P42; 55N91, 55P91

1 Introduction

1.1 Motivation

We can view the present paper in two ways. On the one hand we can view it as
an investigation of the formal properties of a basic change of groups adjunction in
equivariant topology. On the other hand we can view it as giving a powerful context for
proving two well-known general results. These are of course two sides of the same coin.

The change of groups adjunction is that between fixed points and inflation, placed in
the more general context of modules over ring spectra, and will be introduced in the
Section 1.2 below.

The two well-known results are usually considered in rather different contexts. The
first (Sections 3 and 7) is the fact that the category of G–spectra lying over a normal
subgroup N is equivalent to the category of G=N–spectra. The second (Section 8) is
the Eilenberg–Moore spectral sequence which states that (under suitable hypotheses)
if X is a free G–space, then H�.X / can be calculated from H�.X=G/ as an H�.BG/–
module. Our versions of these results are both expressed as Quillen equivalences of
model categories, and it is striking that these two things are rather formal consequences
of a single formal statement together with the cellularization principle [15] (restated
here as Theorem 2.1). We give a variety of other interesting specializations of the
general results.

Particular instances of our general result are central ingredients in our work [12; 13]
giving algebraic models for categories of rational equivariant spectra.
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1780 J P C Greenlees and Brooke Shipley

1.2 Context

When group actions are under consideration there is often a valuable adjunction between
passage to fixed points under a normal subgroup N of the ambient group G and inflation
from the quotient group G=N .

As a first example, if we are considering vector spaces we obtain an adjunction in
representation theory,

G–Hom.inf G
G=N X;Y /ŠG=N –Hom=N –Hom.X;Y N /;

where Y is a vector space with G action, and X is a vector space with G=N action.
The fixed-point functor . � /N and the inflation functor inf G

G=N require no further
explanation in this case, but we will use this terminology in other cases where the
functors may be less familiar. The adjunction extends to graded vector spaces, and
to graded vector spaces with a differential (chain complexes). If we replace vector
spaces by topological spaces the adjunction is an elementary statement in equivariant
topology.

In these cases, we may choose model structures so that the adjunction is a Quillen
adjunction, so there is an induced adjunction between homotopy categories

Œinf G
G=N X;Y �G Š ŒX;Y N �G=N :

Moving towards cases of concern to us here, we consider categories of equivariant
orthogonal spectra (Mandell and May [21]) as our model. The Lewis–May fixed-point
adjunction [19]

. � /N W G–spectra // G=N –spectra W inf G
G=N

oo

applies to orthogonal spectra [21, V.3.4], and it is a Quillen adjunction.

The principal purpose of the present paper is to consider a variation of this adjunction
with categories of module spectra over ring spectra.

1.3 The case at hand

The Lewis–May categorical fixed-point functor on orthogonal spectra is lax symmetric
monoidal (preserves smash products precisely, but not units) [21, V.3.8], so that if R

is a ring G–spectrum, RN is a ring G=N–spectrum.

The purpose of this paper is to consider the Quillen adjunction

‰N W R–mod–G–spectra // RN –mod–G=N –spectra WR˝inf RN . � /
oo
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(here and elsewhere we follow Quillen in putting the left adjoint arrow on top when
describing adjunctions). The existence of this follows from the general discussion on
the interaction of model categories and monoidal structures of Schwede and the second
author [23]. Indeed, in our case inflation is strong symmetric monoidal [21, V.1.5(v)],
and where the left adjoint has this property, the functors on spectra induce a Quillen pair
relating the categories of modules. We have used the notation ‰N for the Lewis–May
fixed points to highlight the change of ambient ring from R to RN .

It turns out that this is rather a rich context, and we make explicit a number of examples
where the adjunction gives a very close relationship between the categories in a number
of interesting cases. The key to this is the cellularization principle [15], which gives a
language to describe the deviation from equivalence. The examples include spectra and
modules concentrated over N (giving the classical geometric fixed point equivalence) in
Sections 3 and 7, Eilenberg–Mac Lane spectra in Section 5, sphere spectra in Section 6
and cochains on a free G–space (giving the Eilenberg–Moore theorem) in Section 8.

1.4 Relationship to other results

We proved these results during our work on algebraic models for rational torus-
equivariant spectra, and special cases appeared in the preprint [13]. Since they are of
wider interest, we present them separately here and refer to [12] and [14] for these
applications.

Acknowledgements The first author is grateful for support under EPSRC grant num-
ber EP/H040692/1. This material is based upon work by the second author supported
by the National Science Foundation under grant number DMS-1104396.

2 Preliminaries

2.1 The cellularization principle

A key ingredient in applications is the cellularization principle of [15], which states
that a Quillen adjunction induces a Quillen equivalence between cellularized stable
model categories in the sense of Hirschhorn [17] provided the cells are small and the
unit and counit are equivalences on cells. This is analogous to the statement that a
natural transformation of cohomology theories that induces an isomorphism on spheres
is an equivalence.

Theorem 2.1 (The cellularization principle [15, Theorem 2.7]) Let M and N be
right proper, stable, cellular model categories and F W M!N a left Quillen functor
with right adjoint U . Let Q be a cofibrant replacement functor in M and R a fibrant
replacement functor in N .
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(1) Let KD fA˛g be a set of objects in M with FQKD fFQA˛g the corresponding
set in N . Then F and U induce a Quillen adjunction

F W K–cell–M // FQK–cell–N WUoo

between the K–cellularization of M and the FQK–cellularization of N .

(2) If K D fA˛g is a stable set of small objects in M such that for each A in K
the object FQA is small in N and the derived unit QA! URFQA is a weak
equivalence in M, then F and U induce a Quillen equivalence between the
cellularizations

K–cell–M'Q FQK–cell–N:

(3) If L D fBˇg is a stable set of small objects in N such that for each B in L
the object URB is small in M and the derived counit FQURB! RB is a weak
equivalence in N , then F and U induce a Quillen equivalence between the
cellularizations

URL–cell–M'Q L–cell–N:

2.2 Universal G–spaces

If K is a family of subgroups (ie, a set of subgroups closed under conjugation and
passage to smaller subgroups), there is a universal space EK , characterized up to
equivalence by the fact that .EK/H is empty if H 62K and is contractible if H 2K .
We write zEK for the unreduced suspension S0�EK , so that there is a cofibre sequence

EKC �! S0
�! zEK:

For normal subgroups N we define certain spaces EhN i by the cofibre sequence

EŒ�N �C �!EŒ�N �C �!EhN i:

We note that in fact EhN i ' EG=NC ^ zEŒ6�N �.

2.3 Geometric isotropy

Recall that the geometric fixed-point functor extends the fixed-point space functor in the
sense that for based G–spaces Y there is a G=N–equivalence ˆN†1Y '†1.Y N /.
The isotropy groups of a based G–space are the subgroups so that the fixed points
are nontrivial, so it is natural to consider a stable, homotopy invariant version: the
geometric isotropy of a G–spectrum X is defined by

GI.X / WD fK jˆK X 6' �g:
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Certain G–spaces are useful in picking out isotropy information. The geometric isotropy
of EFC is F and the geometric isotropy of zEF is Fc , the complement of F .

2.4 Geometric fixed points

We say that X lies over N if every subgroup in GI.X / contains N . It is obvious
for spaces X that the inclusion X N !X induces an equivalence X N ^ zEŒ 6�N �'

X ^ zEŒ 6�N � and with a little care there is a generalization to the case when X is a
spectrum.

The relationship between categorical fixed points and geometric points is described
in [19, II.9]. It follows from the geometric fixed-point Whitehead theorem that X lies
over N if and only if

X 'X ^ zEŒ 6�N �;

and that if Y lies over N then

ŒX;Y �G Š ŒˆN X; ˆN Y �G=N :

3 Models of spectra over N

Some of the results in this section are well known, and we record them here partly to
prepare the way for their module counterparts in Section 7.

3.1 Models via localization

We recall two models for the homotopy category of spectra over N and their equiva-
lence.

Choose a G–space zEŒ 6� N �, and without change in notation we take a bifibrant
replacement of its suspension spectrum. We consider the class ˆN –equiv of morphisms
f W X!Y so that zEŒ 6�N �^f is an equivalence; these are called equivalences over N .

Construction 3.1 [21, IV.6] We form the local model as the (left) Bousfield local-
ization

G–spectra=N WDLˆN –equivG–spectra:

The weak equivalences are the equivalences over N and the cofibrations are those in
the underlying category of G–spectra.

The inflation functor and its right adjoint, the Lewis–May fixed-point functor, are
familiar in this context.
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Proposition 3.2 [21, VI.5.3] Composing the Quillen adjunction

. � /N W G–spectra // G=N –spectra W infoo

with localization, we obtain a Quillen equivalence

G–spectra=N 'G=N –spectra:

3.2 Models via modules

There is a tempting approach to the category of spectra over N by viewing them as
modules over a ring. However, there is some need for caution.

First note that zEŒ 6� N � is a ring spectrum up to homotopy. A G–spectrum is an
zEŒ 6�N �–module up to homotopy if and only if it lies over N . Similarly, any map of
G–spectra over N is compatible up to homotopy with the homotopy multiplication of
zEŒ 6� N �. Thus the category of zEŒ 6� N �–modules looks like another model for the

category of G–spectra over N . The homotopy category of this category of modules is
not obviously triangulated.

However we can tighten up the structure. To begin, construct zEŒ 6�N � as a localization
of the ring spectrum S0 . Accordingly, it admits the structure of an associative ring G–
spectrum (Elmendorf, Kriz, Mandell and May [5]) and we may consider its category of
modules. Denote restriction of scalars along the map of ring spectra l W S0! zEŒ 6�N �

by l� . Its right adjoint is the coextension of scalars functor

l!.M /D F. zEŒ 6�N �;M /:

Together these give a Quillen adjunction

l�W zEŒ 6�N �–mod–G–spectra //
S0–mod–G–spectra W l!oo

of module categories. This provides another model for G–spectra over N .

Proposition 3.3 The restriction and coextension of scalars functors induce a Quillen
equivalence

zEŒ 6�N �–mod–G–spectra'G–spectra=N:

Proof Since the left Quillen functors are in the right order to be composed, we need
only check that for any cofibrant zEŒ 6�N �–module C and any G–spectrum L, fibrant
in G–spectra over N , that a map C ! l!L is an equivalence in zEŒ 6�N �–modules if
and only if C !L is an equivalence over N . Decoding this, we need to show that, in
the ambient category of G–spectra, C ! F. zEŒ 6�N �;L/ is an equivalence if and only
if C ^ zEŒ 6�N �!L^ zEŒ 6�N � is an equivalence.
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Consider the following diagram:

C ^ zEŒ 6�N � // L^ zEŒ 6�N �

F.S0;L/

OO

C

OO

// F. zEŒ 6�N �;L/

OO

Since C is a cofibrant zEŒ 6� N �–module, the left hand vertical is an equivalence.
Since L is fibrant, [21, IV.6.13] shows the right hand verticals are both equivalences.
This gives the desired statement that the top horizontal is an equivalence if and only if
the bottom horizontal is an equivalence.

The disappointment is that although zEŒ 6�N � is a commutative ring up to homotopy,
no model for it is a strictly commutative ring for reasons described by McClure [22]
(or because it is incompatible with the existence of multiplicative norm maps). These
phenomena are studied systematically by Hill and Hopkins in [16].

4 Fixed point equivalences

In this section we explain how to apply the cellularization principle to obtain interesting
equivalences from the fixed-point adjunction

‰N W R–mod–G–spectra // RN –mod–G=N –spectra WR˝inf RN . � /
oo

on module categories.

4.1 Towards Quillen equivalences

In somewhat simplified notation, consider the unit and counit of the derived adjunction

�W Y �! .R˝inf RN inf Y /N and �W R˝inf RN .inf X N / �!X:

We see that � is an equivalence for Y DRN and that � is an equivalence for X DR,
so that by the cellularization principle we always have an equivalence

R–cell–R–mod–G–spectra'RN –cell–RN –mod–G=N –spectra:

If G is trivial, R generates the category of R–modules, but if G is not trivial, R is
not usually a generator of the category of equivariant R–modules since we also need
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the modules of the form R^G=HC for proper subgroups H . Similar remarks apply
to RN –modules when G=N is nontrivial.

4.2 Thick category arguments

Having established the interest in when categories of equivariant modules are generated
by the ring, we need some more terminology.

If R does build every R–module, we refer to the module category as monogenic. There
are surprisingly many examples of monogenic equivariant module categories, and in
practice the process of building the modules R^G=HC is of a simple form.

Definition 4.1 (i) Two G–spectra X and Y are R–equivalent (X �R Y ) if there is
an equivalence R^X 'R^Y of R–modules.

(ii) A G–spectrum X is an R–retract of Y if R ^ X is a retract of R ^ Y as
R–modules.

(iii) A collection C of G–spectra is closed under R–triangles if whenever there is
a cofibre sequence R^X ! R^ Y ! R^Z of R–modules then if two of X;Y

and Z lie in C , so does the third.

(iv) A class C of G–spectra is R–thick if it is closed under R–equivalence, R–retracts
and completing R–triangles. We say that X finitely R–builds Y (X ˆR Y ) if Y is
in the R–thick subcategory generated by X .

(v) A class C of G–spectra is R–localizing if it is R–thick and closed under arbitrary
coproducts. We say that X R–builds Y (X `R Y ) if Y is in the R–localizing
subcategory generated by X .

(vi) We say that the category of R–modules is strongly monogenic if the R–localizing
subcategory generated by S0 is the entire category of G–spectra.

We note that to show the category of R–modules is strongly monogenic, we need only
show that G=HC is R–built by S0 for all subgroups H . The following observation
explains the purpose of the definitions.

Lemma 4.2 If the category of R–modules is strongly monogenic, then R–cellulariza-
tion has no effect on R–mod–G–spectra, and we have a Quillen equivalence

R–cell–R–mod–G–spectra'R–mod–G–spectra:
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Proof By the work of Schwede and the second author [24, 2.2.1], the category of
R–modules is strongly monogenic if and only if R detects weak equivalences. Thus,
here the R–cellular equivalences and the underlying equivalences agree.

Combining this with the fixed-point R–module Quillen adjunction from Section 4.1,
we obtain a statement we will use repeatedly.

Corollary 4.3 If the category of R–modules is strongly monogenic

R–mod–G–spectra'RN –cell–RN –mod–G=N –spectra;

and if in addition RN is strongly monogenic (for example if N DG ), then

R–mod–G–spectra'RN –mod–G=N –spectra:

4.3 Strongly monogenic examples

Perhaps the first important example of R–equivalence is given by Thom isomorphisms:
if R is complex orientable then it is complex stable, that is, for any complex represen-
tation V , we have R^SV ' R^S jV j . So, in particular, SV �R S jV j , where jV j
denotes the underlying vector space of V with trivial G–action.

Lemma 4.4 If G is a torus and R is complex stable then the category of R–modules
is strongly monogenic.

Proof It suffices to show S0 R–builds all spectra G=HC .

The proof is built from one cofibre sequence for the circle group and the Thom isomor-
phism for R. Suppose first that ˛W G! U.1/ is a nontrivial representation, and write
xG DG=K where K D ker.˛/ for the relevant circle quotient, noting that there is an
equivariant homeomorphism S.˛/D xG . The important cofibre sequence is

xGC D S.˛/C �! S0
�! S˛:

The Thom isomorphism shows S˛ �R S2 , and the cofibre sequence shows xGC is in
the R–thick subcategory generated by S0 .

The subgroups occurring as kernels K as in the previous paragraph are precisely those
of the form K D H �C , where H is a rank-.r � 1/ torus and C is a finite cyclic
group. Finally we note that for an arbitrary subgroup L we have

G=LDG=K1 �G=K2 � � � � �G=Kr

for suitable Ki occurring as kernels.

Using the above argument up to r times we see G=LC is in the R–thick subcategory
generated by S0 .
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When G is not a torus we need additional restrictions to permit a similar argument. The
flavour is that the group acts trivially on the coefficients, and there are many examples
starting with mod p Borel cohomology when G is a p–group.

Lemma 4.5 If G is a 2–group and for all subgroups H of G , RH
� . � / has Thom

isomorphisms for all real representations, then the category of R–modules is strongly
monogenic.

Proof The essential ingredients in the proof are a cofibre sequence for the group of
order 2 and the Thom isomorphism for R.

We argue by induction on the order of G . The statement is immediate for the group of
order 1, and we may suppose by induction that the statement has been proved for all
proper subgroups of G .

Now consider G itself. We must show that for all subgroups L of G , the G–
space G=LC is R–built from R. This is immediate if L D G , and in other cases
we may choose a maximal subgroup K of G so that L�K � G . First we observe
that by induction G=LC is R–built from G=KC . Indeed, G=LC 'GC ^K K=LC ;
by induction K=LC is K–equivariantly R–built from S0 , and inducing up to G we
see G=LC is G–equivariantly R–built from G=KC . It remains to show that G=KC
is G–equivariantly built from S0 .

Let �W G ! O.1/ be the representation with kernel K . Write xG D G=K for the
quotient of order 2 and note that there is an equivariant homeomorphism S.�/D xG .
The important cofibre sequence is

xGC D S.�/C �! S0
�! S� :

The Thom isomorphism shows S� �R S1 , and the first cofibre sequence shows xGC
is in the R–thick subcategory generated by S0 . This shows xGC is in the R–thick
category generated by S0 as required.

Lemma 4.6 If G is a p–group, and for all subgroups H of G , R�
H
. � / is complex

stable, and NG.H / acts trivially on R�
H

then the category of R–modules is strongly
monogenic.

Proof The structure of the proof is precisely the same as for Lemma 4.5, and precisely
as in that case, it suffices to show that G=KC is R–built from S0 for a maximal
subgroup K .
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The difference is that we now need two cofibre sequences rather than just one. Suppose
that ˛W G!U.1/ is a representation with kernel K . Write xG DG=K for the quotient
of order p . The first important cofibre sequence is

S.˛/C �! S0
�! S˛;

and the second is the stable cofibre sequence

xGC
1�g
���! xGC �! S.˛/C;

where g is a suitable generator of xG . The Thom isomorphism shows S˛ �R S2 ,
and the first cofibre sequence shows S.˛/C is in the R–thick subcategory generated
by S0 . Now since xG acts trivially on RK

� , we obtain a short exact sequence

0 �!RK
� �!RG

� .S.˛/C/ �!†RK
� �! 0:

Since the quotient is free over RK
� , there is a splitting map †R^G=KC!R^S.˛/C

of R–modules, and

R^S.˛/C 'R^ xGC _†R^ xGC:

This shows xGC is in the R–thick category as required.

Remark 4.7 The action condition can be weakened somewhat, first since it is only
necessary for elements of order p in WG.K/ to act trivially, and secondly we need
only require 1�g to act nilpotently.

5 Eilenberg–Mac Lane spectra

In this section we consider the special case where the ambient ring spectrum represents
ordinary cohomology, for which we need to recall some terminology. It is worth
bearing in mind that for finite groups and rational coefficients this is the general case;
see [24, 5.1.2] and the work of the first author and May [11, A.1].

5.1 Mackey functors

We recall that a G–Mackey functor is a contravariant additive functor M W SOG !

AbGp on the stable orbit category SOG . For brevity, we write M.H / for the value
on G=HC . When G is finite, this is equivalent [19, V.9.9] to the classical definition of
a collection of abelian groups M.H / related by restrictions and transfers satisfying
the Mackey formula; see Dress [3].
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Evidently any G–equivariant cohomology theory F gives rise to a graded Mackey
functor F�G whose value at H is F�H . Equivalently the homotopy groups of F give a
Mackey functor �G

� .F /D Œ � ;F �
G
� whose value at H is �H

� .F /D ŒG=HC;F �
G
� . A

cohomology theory whose value on all homogeneous spaces is concentrated in degree 0
is called ordinary or Bredon. For any Mackey functor M , up to equivalence there is
a unique cohomology theory with coefficient functor M , and we write HM for the
representing G–spectrum. Thus

H�G.X IM /D HM�G.X /D ŒX;HM��G :

The category of G–Mackey functors has a symmetric monoidal product which can be
swiftly defined by

M �N D �G
0 .HM^HN/;

but this can be made categorically explicit using the Day coend construction; see
Day [2] and Lewis [18].

A monoid in the category of Mackey functors is called a Green functor. If R is
a Green functor HR is a ring spectrum, and if the Green functor is commutative,
the ring spectrum can also be taken to be commutative; see Ullman [25]. A prime
example is the representable Mackey functor AT , where T is a disjoint union of orbits,
with AT .H / D ŒG=HC;TC�

G
0

. In particular the Burnside functor itself is the case
when T is a point and has AD �G

0
.S0/, so that A.H / is the Burnside ring A.H / of

virtual H –sets.

5.2 Modules over an Eilenberg–Mac Lane spectrum

We are now ready to discuss RDHR, where R is a Green functor, and we take N DG

so we can concentrate on the new features. In this case the fixed-point spectrum is also
an Eilenberg–Mac Lane spectrum RG D .HR/G D H.R.G//. We are considering
the following adjunction:

‰G W HR–mod–G–spectra // HR.G/–mod–spectra WHR˝H R.G/ . � /
oo

We can be a little more explicit. First note that for any connective nonequivariant
spectrum X we have �G

0
.inf X / D �0.X /˝ A, where A is the Burnside functor.

Indeed since Burnside rings are free over Z, both sides are (Mackey functor valued,
nonequivariant) homology theories of X ; the universal property of A gives a natural
transformation, and it is an isomorphism for X D S0 . Next, note that when X is
connective,

Œinf X;HR�G DHR0
G.inf X /D Hom.�0.X /;R.G//:
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First note that both sides depend only on the 1–skeleton of X , and now it suffices to
note that there is a natural comparison map which is an isomorphism for a wedge of
copies of S0 , and both sides are left exact. It therefore follows that the counit of the
adjunction

inf RG
D inf HR.G/ �!HRDR

is determined up to homotopy by being the scalar extension of the identity map in �G
0

.

Note that if G is finite HRK
� .YC/ is concentrated in degree 0 for any subgroup K

and any finite K–set Y . Accordingly, HR–module maps between the generators
G=HC^HR of the category of HR–modules are concentrated in degree 0 and Morita
theory [24, 5.1.1] shows that we have a purely algebraic description of the categories
concerned:

HR–mod–G–spectra'R–mod–G–Mackey;

where ‘mod’ in the algebraic setting refers to differential graded modules. Thus we are
considering

evG W R–mod–G–Mackey // R.G/–mod–Abgrps WR˝R.G/ . � /:
oo

This is a Green ring analogue of one of the adjoints of evaluation, see the first author
and May [10], and it would be interesting to give a more systematic account of the
case N ¤G .

Remark 5.1 An instructive nonexample is to take the ring R D QŒG�, so that
RN D QŒG=N �. This is not an equivariant ring spectrum since, with the implied
action of G on R by left translation, the multiplication on R is not G–equivariant,
and the unit map is not G–equivariant.

The alternative to this is to consider the conjugation action on G , and then we obtain a
genuine equivariant ring. Of course this applies equally to the group ring RD kŒGc �D

k ^Gc
C for any commutative ring spectrum k .

6 The sphere spectrum

Perhaps the first naturally occurring example has RDS0 and N DG . We first observe
that by the Segal–tom Dieck splitting we have

RG
D .S0/G '

_
.H /

BWG.H /L.H /;

where L.H / is the representation on the tangent space to the identity coset of G=H .
This is rather a complicated spectrum, and utterly different from the sphere.
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For simplicity we restrict attention to the rational case.

6.1 Finite groups

When G is finite, and we work rationally, the sphere is the Eilenberg–Mac Lane
spectrum for the rationalized Burnside functor A: S0 'Q HA, and this is a special
case of the material in Section 5.2. In particular RG (which is a product of rational
spheres) is more naturally described as the Eilenberg–Mac Lane spectrum for the
rationalization of the Burnside ring A.G/ D �G

0
.S0/ D �0..S

0/G/. Thus we are
considering the usual fixed-point adjunction and the adjunction between the Quillen
equivalent algebraic categories from Section 5.2:

S0
Q–module–G–spectra

'

��

// .S0
Q/

G–module–spectra

'

��

oo

AQ–module–G–Mackey // A.G/Q–modulesoo

It is simplest to discuss the lower purely algebraic adjunction, but of course the discus-
sion has a complete topological counterpart.

The mark homomorphism A.G/!
Q
.H /Z is a rational isomorphism, so we have a

complete set of idempotents eH 2A.G/Q , and we may split both sides. On the right,
by definition of the idempotents, eH A.G/Q Š Q. On the left, evaluation at G=H

gives an isomorphism [11, Theorem A.9]

eH AQ–modules
Š
�!QWG.H /–modules:

Picking one subgroup H and considering just the H th factor by applying the idem-
potent eH to the four categories in the above diagram gives the top two lines in the
next diagram. For the bottom line we then use the computations from this paragraph to
simplify the algebraic categories:

eH S0
Q–module–G–spectra

'

��

// eH .S
0
Q/

G–module–spectra

'

��

oo

eH AQ–module–G–Mackey

'

��

// eH A.G/Q–modules

'

��

oo

QWG.H /–modules // Q–modulesoo

The right adjoint at the top is G–fixed points, in the middle it is evaluation at G=G

and at the bottom it WG.H /–fixed points.
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If WG.H / is nontrivial, there is more than one simple QWG.H /–module, so the H th

factors on the left and right of the bottom row are inequivalent for most subgroups H .
Indeed, in the bottom row the right adjoint takes WG.H /–fixed points, so that on the
right we have just the part corresponding to the trivial module. In model-theoretic
terms, the cellularization principle shows that the category of QWG.H /–modules with
trivial action (equivalent to the category of Q–modules) is the cellularization of the
category of all QWG.H /–modules with respect to Q.

Reassembling the pieces by considering the product categories, we reach the conclusion
that for RD S0

Q , the fixed-point inflation adjunction is

RW
Q
.H /QWG.H /–mod //

Q
.H /Q–mod WL;oo

which is only an equivalence when G is trivial.

6.2 The circle group

When G is the circle group, the ring �G
� .S

0/ has trivial multiplication, so most
information is captured in nonzero homological degree. In any case, the fixed-point-
inflation adjunction is not a Quillen equivalence either (by connectivity the counit is
not an equivalence for a free cell GC ). To get a Quillen equivalence with a category of
modules over a nonequivariant ring spectrum it is more effective to use a Koszul dual
approach as in Example 8.3 below, and as given in detail by the first author in [8] and
by both authors in [13].

7 Models of categories of modules over N

A very satisfying class of examples is a generalization of the basic property of geometric
fixed-point spectra. This takes the results in Section 3 into the context of modules over
a ring spectrum.

To start we consider an arbitrary ring G–spectrum R and introduce the notation

C0 DR–module–G–spectra:

Now we may consider a model of R–module G–spectra over N , just as for the sphere
in Section 3,

C1 DLˆN .R–module–G–spectra/:

Now the G=N–spectrum xR D ˆN R is the N–fixed points of the associative ring
spectrum R0DR^ zEŒ 6�N �, and hence it is an associative ring with a module category

C2 Dˆ
N R–module–G=N –spectra:
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If xR admits the structure of a commutative ring, then the module category admits
a symmetric monoidal tensor product. Note also that there is a map R ! R0 of
associative ring spectra. If R is concentrated over N then this is a weak equivalence,
and the module categories are Quillen equivalent.

If we assume that R is a ring G–spectrum over N , then we obtain a ring G=N–spectrum
RN ' .R0/N 'ˆN R which is strictly commutative if R is, and R' infˆN R^ zEŒ 6�

N �. One way to reach this setting is to start with a ring G=N–spectrum xR and then
define RD inf xR^ zEŒ 6�N �, noting that R'R0 in this case (and that R need not be
strictly commutative).

Theorem 7.1 If R is a ring G–spectrum concentrated over N then the fixed-point
adjunction gives a Quillen equivalence

C0 DR–mod–G–spectra'RN –mod–G=N –spectra'C2

and these are also Quillen equivalent to C1 DLˆN .R–module–G–spectra/.

Remark 7.2 (i) If X is an R–module, then X is a retract of R^X , so that if R

lies over N so too do its modules.

(ii) If X lies over N then X N 'ˆN X . Accordingly RN 'ˆN R and Lewis–May
fixed points may be replaced by geometric fixed points throughout.

Proof By the discussion in Section 4.1 we need only check that the cells generating
the two module categories correspond.

Indicating the image of a subgroup in G=N by a bar, we need only remark that the
extensions of the cells RN ^ xG= xHC which generate the category of RN –module xG –
spectra generate R–module G–spectra. This is because the cells G=HC ^R with H

not containing N are contractible.

For the final statement we note that since R is concentrated over N , R'R^ zEŒ 6�N �

so that weak equivalences coincide with weak equivalences over N . This means that the
zEŒ 6�N �–Bousfield localization of R–module–G–spectra is a Quillen equivalence.

8 Eilenberg–Moore examples

An example of rather a different character is given by taking a G=N–equivariant ring
spectrum xR and an N–free G–space E and then taking RD F.EC; inf xR/, so that
RN D F.E=NC; xR/. We shall concentrate on N D G with E D EG. Our focus is
on the case xRDHk for a commutative ring k , but we also comment on xRD S0 .
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Turning to the first example of the above type we take N DG and

RD F.EGC; inf Hk/' F.EGC;Hk/ so that RG
D F.BGC;Hk/;

where k is the Mackey functor constant at k . In general we write C �.X I k/ D

F.X;Hk/ since this is a spectrum whose homotopy is H�.X I k/. Thus R D

C �.EGI k/ and RG D C �.BGI k/; we will usually not mention the coefficients
explicitly.

Omitting the coefficients k from the notation, we consider the following adjunction:

‰G W C �.EG/–mod–G–spectra // C �.BG/–mod–spectra WC �.EG/˝C�.BG/. � /
oo

Because of existing machinery, we will not use the methods of Section 4.3, but instead
discuss directly for which G–spaces X the unit of the adjunction is an equivalence for
the C �.EG/–module C �.EG�X /. Since C �.EG�X /'C �.EG/^D.XC/ when X

is a finite complex, discussion of modules of this form will in particular include the
generators C �.EG/^G=HC . Note that if Y is a free G–space (such as EG�X ), we
have C �.Y /G ' C �.Y=G/ so that the counit here,

C �.EG/˝C�.BG/ C �.Y=G/! C �.Y /;

is an embodiment of the Eilenberg–Moore spectral sequence for the fibration

X �! EG�G X �! EG�G � D BG:

When the Eilenberg–Moore spectral sequence converges, k ˝C�.BG/ C �.Y=G/ '

C �.Y /, so the counit is an equivalence.

Corollary 8.1 If G is connected or if �0G is a p–group and pN D 0 on k then we
have a Quillen equivalence

C �.EG/–mod–G–spectra' C �.BG/–mod–spectra:

Proof Under the given hypotheses, the Eilenberg–Moore spectral sequence is conver-
gent, so that k˝C�.BG/ C �.Y=G/' C �.Y / for any free G–space Y ; see Dwyer [4]
and Mandell [20]. Alternatively, since we have Thom isomorphisms, we may argue by
Lemmas 4.5 and 4.6 that the category of R–modules is strongly monogenic.

In either case, the counit is an equivalence for a set of small generators, so it follows
from the cellularization principle that the adjunction is a Quillen equivalence.

To highlight the significance of this result we give two examples where we do not
obtain an equivalence.
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Example 8.2 If G is finite and we take rational coefficients, then the cofibration
EGC! S0! zEG splits and we have a rational equivalence C �.EG/ ' EGC . Ac-
cordingly, C �.EG/ is free and

C �.EG/–mod–G–spectra'G–free–S0
Q–mod–G–spectra'QG–mod:

On the other hand,
S0

Q–mod–spectra'Q–mod:

Note that the same conclusion was reached in Section 6.1. In any case, the category of
QG–modules is not equivalent to the category of Q–modules unless G is trivial.

Example 8.3 Despite the truth of the Segal conjecture, the case with coefficients in a
sphere is not so well behaved. Here we take RDDEGCDF.EGC;S0/ with N DG

and RG D DBGC D F.BGC;S0/. The adjunction then takes the form

‰G W DEGC–mod–G–spectra // DBGC–mod–spectra WDEGC˝DBGC . � /:
oo

Again this is sometimes a Quillen equivalence and sometimes not. If we have rational
coefficients, then S0!HQ is a nonequivariant equivalence, so we are back in the
Eilenberg–Moore situation, where we know it is a Quillen equivalence if G is a torus,
but not if G is a nontrivial finite group.

Carlsson’s Theorem [1] implies (see work by the first author in [6] and jointly with
May in [9]) that when X is a based finite complex, D.EGC ^X /' .DX /^

I
where I

is the augmentation ideal of the Burnside ring. In particular, if G is a p–group and we
take coefficients in the p–adic sphere we have

RD F.EGC; .S0/^p /' ..S
0/^p /

^
I ' .S

0/^p

since some power of I lies in the ideal .p/. Accordingly this puts us back in the
situation of Section 6.

Note that since rationalization commutes with tensor products, we have

.R˝RG M /Q 'RQ˝.RQ/G
MQ:

From our analysis of the rational case in Section 6 we see that we do not obtain a
Quillen equivalence when RD F.EGC; .S0/^p /.

9 The ring spectrum DEFC

In this section we work rationally, and consider the special case when G is a torus.
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One example of importance in the study of rational spectra is the counterpart of the
Eilenberg–Moore example for almost free spaces (ie, spaces whose isotropy groups are
all finite). Thus we let F denote the family of finite subgroups of G , and we recall the
splitting theorem from the first author [7]

EFC '
Y
F

EhFi;

where the product is over finite subgroups F .

Taking rational duals, we find

RDDEFC '
Y
F

DEhFi and RG
DD.EFC/G '

Y
F2F

D.B.G=F /C/:

Accordingly, this is really a question of assembling the information from the different
finite subgroups. Since G is abelian we have EhH i D EG=HC ^ zEŒ6� H �, so the
difference between EG=HC and EhH i is easy to describe. When H is also finite and
coefficients are rational, this simplifies further.

Lemma 9.1 With RDDEFC , provided G is a torus and we use rational coefficients,
the spheres of complex representations are R–built from S0 .

Proof We show that for any complex representation V the suspension SV ^DEFC
is a finite wedge of retracts of integer suspensions of DEFC .

Since SV ^DEFC 'D.S�V ^EFC/, it suffices to deal with the undualized form.

Now suppose we are given a complex representation V . Since we are working over
the rationals, the classical Thom isomorphism gives an equivalence

SV
^EhFi ' S jV

F j
^EhFi

for each finite subgroup F .

Finally, we divide the finite subgroups into sets according to dimC.V
F /. Of course

there are only finitely many of these, and we may apply the corresponding orthogonal
idempotents to consider the sets separately. For subgroups F with dimC.V

F /D k ,
the suspension is the same in each case, so that taking products over these subgroups,
we find Y

F

D.EhFi ^SV
^X /' S�k

^

Y
F

D.EhFi ^X /;

as required.
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The argument of Lemma 4.4 shows that the category of DEFC–modules is strongly
monogenic.

Corollary 9.2 With R D DEFC , G a torus and rational coefficients we have an
equivalence

DEFC–mod–G–spectra'
Y
F

C �.BG=F /–mod–spectra:

Remark 9.3 We note that we can apply idempotents to take the factor with F D 1

and recover the Eilenberg–Moore example of Section 8 in the case that the ambient
group is a torus and the coefficients are rational.
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