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On the autonomous metric on the group of
area-preserving diffeomorphisms of the 2–disc

MICHAEL BRANDENBURSKY

JAREK KĘDRA

Let D2 be the open unit disc in the Euclidean plane and let G WD Diff.D2; area/ be
the group of smooth compactly supported area-preserving diffeomorphisms of D2 .
For every natural number k we construct an injective homomorphism Z k ! G ,
which is bi-Lipschitz with respect to the word metric on Z k and the autonomous
metric on G . We also show that the space of homogeneous quasimorphisms vanishing
on all autonomous diffeomorphisms in the above group is infinite-dimensional.

57S05

1 Introduction

1A The main result

Let D2 � R2 be the open unit disc and let H W D2 ! R be a smooth compactly
supported function. It defines a vector field

XH .x;y/D�
@H

@y
@xC

@H

@x
@y

that is tangent to the level sets of H . Let h be the time-one map of the flow ht

generated by XH . The diffeomorphism h is area-preserving and every diffeomorphism
arising in this way is called autonomous. Such a diffeomorphism is relatively easy to
understand in terms of its generating function.

It is a well known fact that every smooth compactly supported and area-preserving
diffeomorphism of the disc D2 is a composition of finitely many autonomous dif-
feomorphisms; see Banyaga [2]. How many? In the present paper we are interested
in the geometry of this question. More precisely, we define the autonomous norm
on the group G WD Diff.D2; area/ of smooth compactly supported area-preserving
diffeomorphisms of the disc by

kf kAut WDminfm 2N j f D h1 � � � hm; where each hi is autonomousg:
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The associated metric is defined by dAut.f;g/ WD kfg�1kAut . Since the set of au-
tonomous diffeomorphisms is invariant under conjugation the autonomous metric is
bi-invariant.

Theorem 1 For every natural number k 2N there exists an injective homomorphism
Zk ! Diff.D2; area/ which is bi-Lipschitz with respect to the word metric on Zk

and the autonomous metric on Diff.D2; area/.

1B Remarks

(1) We show in the proof of Theorem 1 that the embedding of Zk is constructed to be
in the kernel of the Calabi homomorphism CW G !R (see Remark 2.2 for a definition
and Banyaga [2], Calabi [10] and McDuff and Salamon [19] for more information).

(2) Gambaudo and Ghys defined in [13, Section 6.3] the autonomous metric on the
group of area-preserving diffeomorphisms of the 2–sphere and showed that its diameter
is infinite.

(3) For each p 2 Œ1;1/ the group G may be equipped with the right-invariant Lp –
metric; see Arnol’d–Khesin [1] for a detailed exposition. Results similar to ours with
respect to the Lp –metric were obtained by Benaim–Gambaudo in [3] and by the first
named author in [7].

(4) In a greater generality, the autonomous metric is defined on the group Ham.M; !/

of compactly supported Hamiltonian diffeomorphisms of a symplectic manifold. It
would be interesting to know if such a metric is always unbounded.

(5) Even more generally the autonomous metric can be defined as follows. A compactly
supported diffeomorphism h of a manifold M is called autonomous if it is the time-one
map of a time-independent compactly supported flow ht . The group Diff.D2/ of all
smooth compactly supported diffeomorphisms of the disc is generated by autonomous
diffeomorphisms and hence the autonomous metric can be defined as above. However,
it is known due to Burago, Ivanov and Polterovich [9], that the autonomous metric is
bounded in this case.

(6) Since the autonomous metric is bi-invariant, investigating geometric properties
of embeddings of nonabelian groups has to be done with respect to some bi-invariant
metrics. At the time of writing this paper such metrics are not well understood. In
Section 4 we prove an algebraic result which may indicate some good geometric
properties. More precisely, for a nonabelian free group of rank two we construct
an injective homomorphism F2 ! G and prove that the image of the induced ho-
momorphism Q.G / ! Q.F2/ on the spaces of homogeneous quasimorphisms is
infinite-dimensional.
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1C Comments on the proof of Theorem 1

Let us start with a definition. A function  W �! R from a group � to the reals is
called a quasimorphism if there exists a real number A� 0 such that

j .gh/� .g/� .h/j �A

for all g; h 2 � . The infimum of such numbers A is called the defect of  and is
denoted by D . If  .gn/ D n .g/ for all n 2 Z and all g 2 � then  is called
homogeneous. Any quasimorphism  can be homogenized by setting

 .g/ WD lim
p!C1

 .gp/

p
:

The vector space of homogeneous quasimorphisms on � is denoted by Q.�/. For
more details about quasimorphisms, see eg Calegari [11].

The first part of the proof is to show that the space Q.G ;Aut/ of homogeneous quasi-
morphisms on Diff.D2; area/ that are trivial on the set of autonomous diffeomorphisms
is infinite-dimensional. This is done by constructing (for n� 3) an injective linear map

GnW Q.Bn;An/ �!Q.G ;Aut/;

where Bn denotes the braid group on n–strings and An � Bn is a certain abelian
subgroup defined in Section 2.

Remark 1.1 Notice that the existence of a nontrivial homogeneous quasimorphism
 W G !R that is trivial on Aut�G implies that the autonomous norm is unbounded.
Indeed, for every f 2G we have that j .f /j D j .h1 � � � hm/j �mD and hence for
every natural number n we get kf nkAut � .j .f /j=D /n> 0, provided  .f /¤ 0.

The map Gn is defined in Section 2 and is induced from the construction due to
Gambaudo and Ghys [13]. The fact that the quasimorphism Gn.'/ is trivial on the set
of autonomous diffeomorphisms provided ' is trivial on An is proved in Section 3. The
latter proof consists of two steps. First, we show that Gn.'/ is trivial on autonomous
diffeomorphisms generated by certain Morse-type functions (Theorem 3.2). Secondly,
the set of Morse-type functions is dense in the set of all functions with respect to the
C 1 –topology, and

Gn.'/W G �!R

is a continuous function; see Theorem 3.4.

It is known that the space Q.Bn;An/ is infinite-dimensional (see Section 3C) and hence
we obtain that Q.G ;Aut/ is infinite-dimensional. Let 'i W B3!R be homogeneous
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quasimorphisms comprising a set of k linearly independent elements of Q.B3/. It
follows that the map ˆW G !Rk defined by

ˆ.f /D .G3.'1/.f /; : : : ;G3.'k/.f //;

is Lipschitz and its image is quasi-isometric to the whole of Rk .

The second part of the proof is a construction of a homomorphism Zk !G with the
required properties. It is in fact a section of the map ˆW G !Rk mentioned above. It
is defined by constructing k diffeomorphisms fj 2G with disjoint supports (hence
commuting) such that G3.'i/.fj /D ıij , where ıij is the Kronecker delta.

Remark 1.2 The above map ˆ is a quasimorphism, if one defines an Rk valued
quasimorphism analogously to the real valued one using an Lp –norm. Observe that
there exists a nontrivial homogeneous quasimorphism F2!Rk on the free group of
rank two with the image quasi-isometric to Rk for every k 2N . This follows from
the fact that Q.F2/ is infinite-dimensional. However, none of such quasimorphisms
admits a homomorphic section over Zk for k � 2.

2 The Gambaudo–Ghys construction

Let us recall a construction, due to Gambaudo and Ghys [13, Section 5.2], which
produces a quasimorphism on G from a quasimorphism on the pure braid group Pn .

Let gt 2G be an isotopy from the identity to g 2G and let z 2D2 be a basepoint.
For y 2D2 we define a loop 
y;z W Œ0; 1�!D2 by


y;z.t/ WD

8̂<̂
:
.1� 3t/zC 3ty for t 2

�
0; 1

3

�
;

g3t�1.y/ for t 2
�

1
3
; 2

3

�
;

.3� 3t/g.y/C .3t � 2/z for t 2
�

2
3
; 1
�
:

Let Xn.D
2/ be the configuration space of all ordered n–tuples of pairwise distinct

points in the disc D2 . It’s fundamental group �1.Xn.D
2// is identified with the

pure braid group Pn . Let z D .z1; : : : ; zn/ in Xn.D/ be a base point. For almost
every xD .x1; : : : ;xn/2Xn.D

2/ the n–tuple of loops .
x1;z1
; : : : ; 
xn;zn

/ is a based
loop in the configuration space Xn.D

2/. Since the group G is contractible (see eg
[22, Corollary 2.6]), the based homotopy class of this loop does not depend on the
choice of the isotopy gt . Let 
 .g;x/2PnD�1.Xn.D

2/; z/ be an element represented
by this loop.
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Let 'W Pn ! R be a homogeneous quasimorphism. Define the quasimorphism
ˆnW G !R and its homogenization ˆnW G !R by

(1) ˆn.g/ WD

Z
Xn.D2/

'.
 .gIx// dx and ˆn.g/ WD lim
p!C1

ˆn.g
p/

p
:

Remark 2.1 The assertion that both the above functions are well defined quasimor-
phisms is proved in [6, Lemma 4.1]. Using the family of signature quasimorphisms on
Pn (one for each n), Gambaudo–Ghys showed that dim.Q.G //D1. This fact was
also proved in [5].

Remark 2.2 The Calabi homomorphism CW G !R may be defined as follows:

C.g/D
Z 1

0

Z
D2

H.x; t/ dxdt;

where H.x; t/ defines a flow whose time-one map is g , see eg [19, Lemma 10.27]. The
group P2 is infinite cyclic, hence every homogeneous quasimorphism '2W P2!R

is a homomorphism. Since the kernel of the Calabi homomorphism C is a simple
group [2], we have that ˆ2.g/DC �C.g/ for every g 2G , where C is a real constant
independent of g . A proof of this equality which does not rely on the theorem of
Banyaga can be found in [12].

The above construction defines a linear map Q.Pn/!Q.G /. Let

GnW Q.Bn/ �!Q.G /

be its composition with the homomorphism Q.�/W Q.Bn/!Q.Pn/ induced by the
inclusion �W Pn!Bn . Let An�Bn be an abelian group generated by braids �i;n shown
in Figure 1. Recall that Q.Bn;An/ denotes the space of homogeneous quasimorphisms
on Bn that are trivial on An and that Q.G ;Aut/ denotes the space of homogeneous
quasimorphisms on G that are trivial on autonomous diffeomorphisms.

i � 1 i

Figure 1: Braid �i;n
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Theorem 2.3 Let n� 3. The image of the linear map

GnW Q.Bn;An/ �!Q.G ;Aut/

is infinite-dimensional. In particular, the diameter of .G ;dAut/ is infinite.

Remark 2.4 Theorem 2.3 answers the following question posed to the first author by
L Polterovich:

Does there exist a quasimorphism on G , given by the Gambaudo–Ghys construction,
which vanishes on all autonomous diffeomorphisms in G? In other words, does there
exist a nontrivial element in Im.Gn/ which vanishes on all autonomous diffeomor-
phisms?

3 Proofs

3A Evaluation of the map Gn on autonomous diffeomorphisms

Denote the space of autonomous compactly supported Hamiltonians H W D2 ! R

by H .

Definition 3.1 We say that a function H 2H is of Morse-type if:

(1) The boundary of the support of H is a simple closed curve.

(2) The function H has no degenerate critical points in the interior of its support.

(3) If x;y are two distinct nondegenerate critical points of H then H.x/¤H.y/.

Theorem 3.2 If 'n 2Q.Bn;An/ then ˆn.h/D 0 for every autonomous diffeomor-
phism h generated by a Morse-type function H .

Proof The statement follows from [6, Theorem 4.5]. More precisely, it is shown there
that

ˆn.h/ WD Gn.'n/.h/D

Z
T

„
0d�;

where T is the Reeb graph of H , „0W T !R is a function induced by H and d� is a
measure on T . All the objects above are defined in [6, Section 4.2]. In particular, it
follows from the definition of the measure d� that it is trivial if 'n.�i;n/D 0 for each
i . Hence ˆn.h/D 0, and the proof follows.

Remark 3.3 The idea of the proof relies on the fact that n points on different level
curves trace a braid conjugate to a braid in An .
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3B The continuity of the Gambaudo–Ghys quasimorphisms

The aim of this section is to prove the following result which will be used in the proof
of Theorem 2.3.

Theorem 3.4 Let H 2 H and fHkg
1
kD1

be a sequence of functions such that each
Hk 2H and Hk !H in C 1 –topology. Let h1 and h1;k be the time-one maps of the
Hamiltonian flows generated by H and Hk , respectively. Then

lim
k!1

ˆn.h1;k/Dˆn.h1/:

The proof is presented below as a sequence of assertions and the theorem follows
immediately from Proposition 3.8.

Let g 2G and fgtg
1
tD0
2G such that g0 D Id and g1 D g . We denote

G.fgtg/ WD

Z
D2�D2

1

2�

Z 1

0





 @@t
�

gt .x/�gt .y/

kgt .x/�gt .y/k

�



dtdxdy;

where k � k is the Euclidean norm. G.fgtg/ is well defined by [14, Lemma 1]. Denote

G.g/ WD inf
gt

G.fgtg/;

where the infimum is taken over all isotopies gt 2G joining the identity with g . By
[14, Lemma 2] we have for all g and h in G that

G.gh/�G.g/CG.h/:

Thus the following limit exists:

L.g/D lim
n!1

G.gn/

n
:

Proposition 3.5 Let g 2G , and let 'nW Bn!R be a homogeneous quasimorphism.
Then ˇ̌

ˆn.g/
ˇ̌
� C1L.g/;

where C1 > 0 is independent of g .

Proof The proof of this proposition is very similar to the proof of [3, Lemma 4].
Let x D .x1; : : : ;xn/ 2 Xn.D

2/ and gt 2G joining the identity with g . Following
[3, Section 4.1], to every t 2 Œ0; 1� and 1� i; j � n we associate the unit vector

u.t;xi ;xj /D
gt .xi/�gt .xj /

kgt .xi/�gt .xj /k
:

Algebraic & Geometric Topology, Volume 13 (2013)
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Consider a map uxi ;xj
W Œ0; 1�! S 1 , where t ! u.t;xi ;xj /. The change of variables

induced by the map uxi ;xj
leads to the equality

(2) G.fgtg/D

Z
D2�D2

1

2�

Z
S 1

#fu�1
xi ;xj

.!/g d! dxi dxj ;

where # stands for cardinality. Consider the braid 
 .gIx/ defined by the isotopy gt .
Let S � S 1 be the set of all points ! in the circle for which the projection onto the
line orthogonal to ! is injective on the set fx1; : : : ;xng. The number of times the i –th
strand overcrosses the j –th strand is bounded by #fu�1

xi ;xj
.!/gC4, where ! 2S 1nS .

The constant 4 comes from the fact that we close a path gt .x/. Let l.
 .gIx// denote
the length of the braid 
 .gIx/ with respect to the Artin generators f�ig

n�1
iD1

of Bn .
Note that the measure of the set S is zero. It follows that for a generic ! 2 S 1 , ie for
! 2 S 1 nS , we have

l.
 .gIx//�

nX
i¤j

.#fu�1
xi ;xj

.!/gC 4/I

see also the proof of [3, Lemma 4]. Consequently, we have that

(3) l.
 .gIx//�

nX
i¤j

Z
S 1

.#fu�1
xi ;xj

.!/gC 4/ d!:

Note that since 'n is a homogeneous quasimorphism there exists a positive constant
A such that j'n.˛/j � A � l.˛/ for each ˛ 2Bn . Let up;xi ;xj

be the above function
corresponding to the diffeomorphism gp . It follows from (2) and (3) thatˇ̌̌

ˆn.g/
ˇ̌̌
�A lim

p!1

Z
Xn.D2/

l.
 .gpIx//

p
dx

�A lim
p!1

Z
Xn.D2/

Pn
i¤j

R
S 1.#fu�1

p;xi ;xj
.!/gC 4/d!

p
dx

� .2�/n�2A lim
p!1

1

p

nX
i¤j

Z
D2�D2

Z
S 1

.#fu�1
p;xi ;xj

.!/gC 4/ d!dxi dxj

� .2�/n�2A lim
p!1

1

p

nX
i¤j

2�G.fgt;pg/;

where gt;p is any isotopy from the identity to gp . Since the above inequalities hold
for any isotopy between the identity and gp we haveˇ̌

ˆn.g/
ˇ̌
� .2�/n�1n.n� 1/A lim

p!1

G.gp/

p
� .2�/n�1n.n� 1/L.g/

and the proof follows.
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Now we will recall a definition of the right-invariant L2 –metric on G . It is defined as
follows. Let

L2fgtg WD

Z 1

0

dt

�Z
D2

k Pgt .x/k
2 dx

� 1
2

be the L2 –length of a smooth isotopy fgtgt2Œ0;1� � G , where k Pgt .x/k denotes the
Euclidean length of the tangent vector Pgt .x/ 2 TxD2 . Observe that this length is
right-invariant, that is, L2fgt ıf gDL2fgtg for any f 2G . It defines a nondegenerate
right-invariant metric on G by

d2.g0;g1/ WD inf
gt

L2fgtg;

where the infimum is taken over all paths from g0 to g1 . See Arnol’d–Khesin [1] for
a detailed discussion.

Corollary 3.6 Let g 2 G , and let 'W Bn ! R be a homogeneous quasimorphism.
Then ˇ̌

ˆn.g/
ˇ̌
� C3 d2.Id;g/;

where C3 > 0 does not depend on g .

Proof It follows from [14, Theorem 1] that for any g 2 G there exists a universal
constant C > 0, such that L.g/ � C d2.Id;g/. Now take C3 D C � C1 , then the
statement follows from Proposition 3.5.

Lemma 3.7 Let F 2H . Then for any " > 0 and p 2N there exists ıp > 0, such that
if H 2H is ıp –close to F in C 1 –topology, then

d2.f
p

1
; h

p
1
/ < ";

where ft and ht are the Hamiltonian flows generated by F and H .

Proof For the convenience we normalize the area of D2 to be 1. It is enough to show
that for all p 2N there exists ıp > 0 such that

max
x2D2

krF.x/�rH.x/k< ıp ) d2.f
p

1
; h

p
1
/ <

"

2
:

Note that d2.f
p

1
; h

p
1
/D d2.Id; f

p
1

h
�p
1
/�L2.ff

p
t h
�p
t g/. It follows from [21, Propo-

sition 1.4.D] that

@.f
p
t h
�p
t /

@t
.x/D p �

�
XF �X.Hf �p

t /

�
.f

p
t h
�p
t .x//

:
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Thus 



@.f p
t h
�p
t /

@t
.x/





D p �



�XF �X.Hf �p

t /

�
.f

p
t h
�p
t .x//





D p �




�rF �r.Hf
�p
t /

�
.f

p
t h
�p
t .x//




;
Note that ft is an autonomous Hamiltonian flow. Thus Fft .x/DF.x/ for all x 2D2

and t 2R . It follows that for all x 2D2 and all p 2Z ,

rF.h�p
t .x//.Df

�p
t /.f p

t h
�p
t .x// DrF.f p

t h
�p
t .x//:

We get the following inequality:

d2.f
p

1
; h

p
1
/

� p

Z 1

0

�Z
D2

k.Df
�p
t /.f p

t h
�p
t .x//k

2
M � krF.h�p

t .x//�rH.h
�p
t .x//k

2 dx

�1
2

dt;

where k � kM is a matrix norm. Denote

MDft
WD max

x2D2;t2Œ0;1�
k.Df �1

t /.x/kM and ıp WD
"

2p.MDft
/p
:

We get the following inequality:

d2.f
p

1
; h

p
1
/� p.MDft

/p max
x2D2

krF.x/�rH.x/k �
"

2
:

It follows that if H is ıp –close to F in C 1 –topology, then d2.f
p

1
; h

p
1
/ < ".

Proposition 3.8 Let F 2H . Then for any "> 0 there exists ı > 0, such that if H 2H
is ı–close to F in C 1 –topology, then:ˇ̌

ˆn.f /�ˆn.h/
ˇ̌
� ";

where f and h are time-one maps of flows generated by F and H .

Proof Fix some " > 0. Let Dˆn
be the defect of the homogeneous quasimorphism

ˆnW G ! R , and let C3 be the constant which was defined in Corollary 3.6. Take
p 2 N such that .Dˆn

CC3/=p < ". It follows from Lemma 3.7 that there exists
ıp > 0, such that if H is ıp –close to F in C 1 –topology, then d2.f

p; hp/ < 1. Thus
we obtainˇ̌

ˆn.f /�ˆn.h/
ˇ̌
D

1

p

ˇ̌
ˆn.f

p/�ˆn.h
p/
ˇ̌
�

Dˆn
C
ˇ̌
ˆn.f

ph�p/
ˇ̌

p
:

Algebraic & Geometric Topology, Volume 13 (2013)
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It follows from Corollary 3.6 thatˇ̌
ˆn.f

ph�p/
ˇ̌
� C3 d2.Id; f ph�p/D C3 d2.f

p; hp/ < C3:

Thus ˇ̌
ˆn.f /�ˆn.h/

ˇ̌
<

Dˆn
CC3

p
< ":

3C Proof of Theorem 2.3

Let n� 3 and denote by
An WD h�i;n j 2� i � ni

the abelian subgroup of Pn generated by braids �i;n shown in Figure 1. Let Q.Bn;An/

be the space of homogeneous quasimorphisms on Bn which are identically zero on
the group An . It follows from [4, Theorem 12] that the space Q.Bn/ is infinite-
dimensional. The restriction of every homogeneous quasimorphism on an abelian
group is a homomorphism, hence the space Q.Bn;An/ is also infinite-dimensional.
The following theorem was proved by Ishida; see [16, Theorem 1.2].

Theorem 3.9 The map GnW Q.Bn/!Q.G / is injective.

In particular the map GnW Q.Bn;An/ ! Q.G / is also injective. It follows from
[20, Theorem 2.7] that Morse-type Hamiltonians form a C 1 –dense subset of H , hence
Theorem 3.2 and Theorem 3.4 imply that the image of Q.Bn;An/ under the map Gn

lies in Q.G ;Aut/ and the proof follows.

3D Proof of Theorem 1

Let us start with the following basic result, which is interesting in its own right.

Lemma 3.10 Let � be a group and let V � Q.�/ be a k –dimensional subspace,
where k 2N . There exist elements g1; : : : ;gk 2 � and  1; : : : ;  k 2 V such that

 i.gj /D ıij;

where ıij is the Kronecker delta.

Proof We prove the statement by induction on the dimension. For k D 1 it is
clearly true. Let V �Q.�/ be a k –dimensional subspace. According to the induction
hypothesis there exist 'i 2V and gj 2� such that 'i.gj /D ıij , where 1� i; j �k�1.

Algebraic & Geometric Topology, Volume 13 (2013)
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Let 'k 2 V be such that the vectors '1; : : : ; 'k are linearly independent. Denote
 k WD 'k �

Pk�1
iD1'k.gi/'i . We get that  k.gj /D 0 for j D 1; : : : ; k�1. The above

linear independence implies (possibly after multiplying  k by a nonzero constant) that
there exists gk 2 � such that  k.gk/D 1.

Let  i D 'i � 'i.gk/ k , where 1 � i � k � 1. We obtain that  i.gk/ D 0 and
 i.gj /D ıij for each 1� i; j � k�1. Thus the k –tuples  1; : : : ;  k and g1; : : : ;gk

satisfy the statement of the lemma.

Now we start proving the theorem. Let r D 1=k . Denote by Dr an open disc in the
Euclidean plane of radius r centered at zero. Let

Gr WD Diff.Dr ; area/

be the group of smooth compactly supported area-preserving diffeomorphisms of Dr .
Gambaudo–Ghys construction is valid in the case of Gr as well, ie every homogeneous
quasimorphism 'nW Bn! R defines a homogeneous quasimorphism ˆn;r W Gr !R .
This construction defines a homomorphism Gn;r W Q.Bn/!Q.Gr /.

The vector space
Im
�
Gn;r jQ.Bn;An/

�
�Q.Gr ;Aut/

is infinite-dimensional for n � 3. The proof of this fact is identical to the proof of
Theorem 2.3. As an immediate consequence of Lemma 3.10 we have the following fact:
for each n � 3 there exist fgi;ng

k
iD1
2 Gr and fˆi;n;r g

k
iD1
2 Im

�
Gn;r jQ.Bn;An/

�
�

Q.Gr ;Aut/ such that
ˆi;n;r .gj ;n/D ıij;

where ıij is the Kronecker delta.

We extend every diffeomorphism in Gr by identity on the unit disc D2 and get an
injective homomorphism ir W Gr !G .

Lemma 3.11 The following identity holds on the space Q.B3;A3/:

G3;r DQ.ir / ıG3:

Equivalently, for each ˆ3;r 2 Im
�
G3;r jQ.B3;A3/

�
�Q.G ;Aut/ and g 2 Gr we have

ˆ3;r .g/Dˆ3.ir .g//;

where ˆ3 is defined using the same quasimorphism '3 in Q.B3;A3/.
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Proof Denote by X3.Dr / the space of all ordered 3–tuples of distinct points in Dr .
It follows that

ˆ3.ir .g//D lim
p!C1

�Z
X3.Dr /

'3.
 .g
pIx//

p
dxC

Z
X3.D2/nX3.Dr /

'3.
 .g
pIx//

p
dx

�
Dˆ3;r .g/C

Z
X3.D2/nX3.Dr /

lim
p!C1

'3.
 .g
pIx//

p
dx:

By definition, ir .g/D Id on D2 nDr . It follows that for x 2 X3.D
2/ nX3.Dr / the

braid

 .gp

Ix/D ˛1;p;x ı p̌;x ı �
mx;p

2;3
ıˇ�1

p;x ı˛2;p;x;

where the length of the braids ˛1;p;x and ˛2;p;x is bounded for all p and x . It follows
that for all x 2 X3.D

2/ nX3.Dr / we have

lim
p!C1

'3.
 .g
pIx//

p
D lim

p!C1

'3. p̌;x ı �
mx;p

2;3
ıˇ�1

p;x//

p
D 0;

where the last equality follows from the fact that homogeneous quasimorphisms are
invariant under conjugation and that '3.�2;3/D 0, because '3 2Q.B3;A3/. HenceZ

X3.D2/nX3.Dr /

lim
p!C1

'3.
 .g
pIx//

p
dx D 0;

and the proof of the lemma follows.

Remark 3.12 Let incW Bn�1 ! Bn be the standard inclusion of braid groups. A
homogeneous quasimorphism 'n2Q.Bn/ is called kernel quasimorphism if 'n.˛/D0

for each ˛ 2 Im.inc/. In the proof of Lemma 3.11 we used the fact that the space
of kernel quasimorphisms on B3 contains the space Q.B3;A3/, ie we used the
fact that '3.�2;3/ D 0. If we replace the space Q.Bn;An/ by the space of kernel
quasimorphisms on Bn , then Lemma 3.11 will hold for n> 3. In what follows we use
the fact that the space Q.B3;A3/ is infinite-dimensional, and it is not known what
is the dimension of the space of kernel quasimorphisms on Bn for n > 3 (for more
information about kernel quasimorphisms, see [18]), hence we restrict ourselves to the
case nD 3.

Let us proceed with the proof of Theorem 1. For 1� j � k , denote gj WD ir .gj ;3/2G .
It follows from Lemma 3.11 that

(4) ˆi;3.gj /D ıij;

where ˆi;3 2Q.G ;Aut/ is defined using the same quasimorphism in Q.B3;A3/ as
ˆi;3;r 2Q.Gr ;Aut/. Recall that the support of each gj is contained inside the disc
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Dr . Since r D 1=k , there exists a family of diffeomorphisms fhj g
k
jD1

in G , such that
hj ıgj ıh�1

j and hi ıgi ıh�1
i have disjoint supports for all different i and j between

1 and k . It follows from the definition of Calabi homomorphism, see Remark 2.2, that
there exists a family fg0ig

k
iD1

of autonomous diffeomorphisms in G such that:

� The diffeomorphisms g0i and g0j have disjoint supports for i ¤ j , and the
diffeomorphisms g0i and hj ıgj ıh

�1
j have disjoint supports for all 1� i; j � k .

� For each 1� i � k we have C.g0i/D C.hi ıgi ı h�1
i /.

Denote fi WD hi ıgi ı h�1
i ı .g

0
i/
�1 and let K WD ker C . Note that all of the fi have

disjoint supports, C.fi/D 0, each fi lies in K and they generate a free abelian group
of rank k . Let

‰W Zk
�!G ;

where ‰.d1; : : : ; dk/ D f
d1

1
ı � � � ı f

dk

k
. It is obvious that ‰ is a monomorphism

whose image lies in K . In order to complete the proof of the theorem it is left to show
that ‰ is a bi-Lipschitz map, ie we are going to show that there exists a constant A� 1

such that

A�1
kX

iD1

jdi j � kf
d1

1
ı � � � ıf

dk

k
kAut �A

kX
iD1

jdi j:

We have the following equalities:

ˆi;3.fj /Dˆi;3.hj ıgj ıh�1
j ı .g

0
j /
�1/Dˆi;3.gj /Cˆi;3..g

0
j /
�1/Dˆi;3.gj /D ıij:

The second equality follows from the fact that every homogeneous quasimorphism
is invariant under conjugation and it behaves as a homomorphism on every pair of
commuting elements. The third equality follows from the fact that .g0j /

�1 is an
autonomous diffeomorphism and ˆi;3 2 Q.G ;Aut/, and the forth equality is (4).
Since all fi commute with each other and ˆi;3.fj /D ıij , we obtain

kf
d1

1
ı � � � ıf

dk

k
kAut �

ˇ̌
ˆi;3.f

d1

1
ı � � � ıf

dk

k
/
ˇ̌

Dˆi;3

D
jdi j

Dˆi;3

;

where Dˆi;3
is the defect of the quasimorphism ˆi;3 . The defect Dˆi;3

¤ 0, because
each ˆi;32Q.G ;Aut/ and hence it is not a homomorphism. We set Dk WDmaxi Dˆi;3

and obtain the following inequality:

(5) kf
d1

1
ı � � � ıf

dk

k
kAut � .k �Dk/

�1
kX

iD1

jdi j:
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Denote Mf WDmaxi kfikAut . Now we have the following inequality:

(6) kf
d1

1
ı � � � ıf

dk

k
kAut �

kX
iD1

jdi j � kfikAut �Mf �

kX
iD1

jdi j:

Inequalities (5) and (6) conclude the proof of the theorem.

Remark 3.13 In fact, the proof of Theorem 1 shows that for each k 2 N there
exists a bi-Lipschitz embedding of Zk into .G ;dAut/ with the image contained in a
C 0 –neighborhood of the identity diffeomorphism in G .

4 A relation between Q.G / and Q.F2/

Let F2 denote the free group on two generators, and let �1 and �2 denote the Artin
generators of B3 . The center of both B3 and P3 is a cyclic group generated by
an element � D �2;3 � �3;3 . One can show that P3 is generated by �2

1
, �2

2
, � and

P3ŠF2�Z.P3/, where F2Dh�
2
1
; �2

2
i. In what follows we describe a monomorphism

from F2 to G and study the induced map from Q.G / to Q.F2/, which is infinite-
dimensional by the theorem of Brooks [8].

Let U1 , U2 , U3 � D2 be open subsets each diffeomorphic to a disc, such that
area.Ui/� �=4. We also require that zi 2Ui , where zD .z1; z2; z3/ is a basepoint for
�1.X3.D

2//ŠP3 . For pairs .U1;U2/ and .U2;U3/ let W12�V12 and W23�V23 be
pairs of two open subsets of D2 , each diffeomorphic to a disc, such that U1[U2�W12 ,
U2[U3 �W23 , V12\U3 D∅ and V23\U1 D∅. Let fhtg be a path in G which
rotates W12 once, and is identity on the outside of V12 and on a small neighborhood
of @V12 . Similarly, let fh0tg be a path in G which rotates W23 once, and is identity
on the outside of V23 and on a small neighborhood of @V23 .

Let U WD U1[U2[U3 and let GU be the subgroup of G which consists of diffeo-
morphisms that preserve pointwise the set U . Let

TrW GU �!P3;

where Tr.g/ is the homotopy class of the loop .gt .z1/;gt .z2/;gt .z3// in X3.D
2/.

Here fgtg
1
tD0

is any isotopy from the identity map to g . Since the map Tr is a
homomorphism, which sends h1 to �2

1
and h0

1
to �2

2
, the diffeomorphisms h1 and h0

1

generate a free group in G . Let

sU W F2 �!G

be a monomorphism, where sU .�
2
1
/D h1 and sU .�

2
2
/D h0

1
. Denote ai D area.Ui/

and aD area.U /.
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Theorem 4.1 Let Q.sU /W Q.G ;Aut/! Q.F2/ be the map induced by the homo-
morphism sU . Then

lim
a!�

dim.Im.Q.sU ///D1:

Proof Let N 2N . We are going to show that there exists " > 0 such that whenever
ja��j<" we have dim.Im.Q.sU ///�N . Notice that every ' 2Q.B3;A3/ vanishes
on �. Since dim.Q.B3;A3// D1 and P3 is a subgroup of finite index in B3 , it
follows from Lemma 3.10 that there exists a family of quasimorphisms f'ig

N
iD1

in
Q.B3;A3/ and a family of braids fˇig

N
iD1

which are words in �2
1

, �2
2

, such that
'i. ǰ / D ıij . Denote gU;i WD sU .ˇi/, ie each gU;i is a time-one map of an isotopy
gt;i which is a composition of a number of isotopies ht and h0t that twist the Uj in
the form of the braid ˇi . We are going to show that there exists " > 0, such that if
ja��j< " then the matrix

MN�N WD
�
G3.'i/.gU;j /

�
1�i�j�N

is nonsingular, where G3W Q.B3;A3/!Q.G ;Aut/. This will imply that the vectors
fQ.sU /.G3.'i//g

N
iD1

are linearly independent in Q.F2/.

It is easy to show that there exists "0 > 0, such that each N �N matrix with entries
mij is nonsingular provided that 1 <mii < 12 and jmijj < "

0 for all i ¤ j . Denote
X3.U / WD X3.

S3
iD1Ui/. Since each 'i 2Q.B3;A3/ is invariant under conjugation

in B3 and vanishes on the braid �3;3 we haveZ
X3.U /

lim
p!C1

'i.
 .g
p
U;j
Ix//

p
dx D

�
0 if i ¤ j ;

6a1 � a2 � a3 if i D j:

It follows that

(7) G3.'i/.gU;j /

D

8̂̂̂<̂
ˆ̂:
Z

X3.D2/nX3.U /

lim
p!C1

'i.
 .g
p
U;j
Ix//

p
dx if i ¤ j ;

6a1 � a2 � a3C

Z
X3.D2/nX3.U /

lim
p!C1

'i.
 .g
p
U;i
Ix//

p
dx otherwise.

For x 2 X3.D
2/ denote by cr.gp

U;i
Ix/ the length of the word in generators �1; �2 ,

which represents the braid 
 .gp
U;i
Ix/ and is given by p concatenations of flows gt;i .

Let

cr.ˇi/ WD cr.gU;i I z/ and Mcr WD max
1�i�N

cr.ˇi/;
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where z D .z1; z2; z3/. It follows from the construction of diffeomorphisms gU;i , that
for each x 2 X3.D

2/ and 1� i �N we have

lim
p!C1

cr.
 .gp
U;i
Ix//

p
�Mcr:

For each 
 2B3 denote by l.
 / the word length of 
 with respect to the generating
set �1; �2 . Since each 'i is a homogenous quasimorphism that vanishes on �1; �2 , we
obtain

j'i.
 /j �D'i
� l.
 /:

Denote
MD WD max

1�i�N
D'i

:

It follows that for each x 2 X3.D
2/ and 1� i; j �N we have

lim
p!C1

j'i.
 .g
p
U;j
Ix//j

p
�MD lim

p!C1

jl.
 .g
p
U;j
Ix//j

p

�MD lim
p!C1

cr.
 .gp
U;j
Ix//

p
�MD �Mcr:

Take " > 0, such that

MD �Mcr � area
�
X3.D

2/ nX3.U /
�
<min

˚
1

10
; "0
	
:

Equality (7) yields

jG3.'i/.gU;j /j � "
0 if i ¤ j and 1� G3.'i/.gU;i/� 12;

hence the matrix MN�N is nonsingular and the proof follows.

5 Comparison of bi-invariant metrics on G and other com-
ments

5A The Hofer metric

The most famous metric on the group of Hamiltonian diffeomorphisms of a symplectic
manifold .M; !/ is the Hofer metric; see Hofer [15] and Lalonde and McDuff [17].
The associated norm is defined by

kf kHofer WD inf
Ft

Z 1

0

osc.Ft / dt;
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where Ft is a compactly supported Hamiltonian function generating the Hamiltonian
flow ft from the identity to f D f1 . The oscillation norm is defined by

osc.F /Dmax
M

F �min
M

F:

Example 5.1 Let f 2G be a diffeomorphism generated by a time independent and
nonnegative Hamiltonian function F . This implies that all powers of f are also
autonomous and hence kf nkAut D 1 for all n 2 Z . On the other hand, the Calabi
homomorphism is positive on f and hence kf nkHofer � const jnjC.f /, for some
positive constant.

Also, kf 1=nkAut D 1 but limn!1 kf
1=nkHofer D 0. Here f 1=n is the unique diffeo-

morphism in the flow generated by F such that its n–th power is equal to f . This
shows that the identity homomorphism between the autonomous metric and the Hofer
metric is not Lipschitz in neither direction.

5B The restricted autonomous metric

Let Sr � Ham.M; !/ be the set of autonomous diffeomorphisms generated by Hamil-
tonian functions with the L1–norm bounded by r > 0. This set is invariant under
conjugations and hence the corresponding word metric is bi-invariant. We call it the
restricted autonomous metric and denote the corresponding norm by kf kr . For all r

these metrics are Lipschitz equivalent. Indeed, it is easy to check that if r �R then

kf kR � kf kr � dR=rekf kR

for all f 2 Ham.M; !/. Moreover, we have that kf kAut � kf kr for every r . This
trivially implies that the main results of the paper hold for the restricted autonomous
metric.

Let f 2G be such that f D h1 ı � � � ı hk with each hi is autonomous generated by a
Hamiltonian Hi of the oscillation norm smaller than r . We have

C.f /D
Z 1

0

dt

Z
D2

Ft! D

Z 1

0

dt

Z
D2

kX
iD1

Hi

�
.h1;t ı � � � ı hi�1;t /

�1
�
!

�

kX
iD1

osc Hi � kr:

We thus obtain the following estimate:

C.f /=r � kf kr ;

which proves that the restricted autonomous norm is not equivalent to the autonomous
norm for there are autonomous diffeomorphisms with arbitrarily big Calabi invariant.
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5C Fragmentation metrics

Let U � M be a set with nonempty interior. The fragmentation metric dU is a
word metric defined with respect to the generating set consisting of diffeomorphisms
conjugated to ones supported in U . Such a set is invariant under conjugations by
construction and hence the fragmentation metric is bi-invariant.

It follows from the proof of Theorem 1 that there is a diffeomorphism f supported in
the set U such that f has arbitrarily big autonomous norm. Clearly, the fragmentation
norm of f is equal to one.

Example 5.2 Suppose that U �D2 is a disc of radius 1=2. According to Biran, Entov
and Polterovich [5], the space of homogeneous Calabi quasimorphisms on Ham.D2/ is
infinite-dimensional. The Calabi property means that the restriction of a quasimorphism
to the subgroup of diffeomorphisms supported on a displaceable subset is equal to the
Calabi homomorphism.

Consider the subgroup K D ker C �G . It is generated up to conjugation by diffeomor-
phisms supported in U and hence the fragmentation metric is defined on K . (In the
next section we explain that this metric is equal to the autonomous metric induced from
G .) Let qW K !R be a Calabi quasimorphism. Since it is trivial on the generators it
is Lipschitz with respect to the fragmentation norm.

It follows from the proof of [5, Theorem 2.3] that there is an autonomous diffeo-
morphism f 2K and a homogeneous Calabi quasimorphism qW K !R such that
q.f / > 0. This implies that f n can have arbitrarily big fragmentation norm. Its
autonomous norm is equal to one.

5D The kernel of the Calabi homomorphism

This is a remark on the geometry of the inclusion ker C D K ! G with respect
to the autonomous metric. Observe that the kernel of the Calabi homomorphism is
generated by autonomous diffeomorphisms and let kgkAut0 denotes the corresponding
autonomous norm of g 2K .

Lemma 5.3 Let i W K !G be the inclusion. Then

kgkAut0 D ki.g/kAut

for every g 2K .
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Proof By definition for each g 2K we have ki.g/kAut � kgkAut0 . Let g ¤ Id and
suppose that ki.g/kAut Dm. It means that the diffeomorphism g D h1 ı � � � ı hm for
some autonomous diffeomorphisms hi . It is straightforward to construct autonomous
diffeomorphisms f1; : : : ; fm�1 such that:

� The diffeomorphisms fi and fj have disjoint supports for i ¤ j , and the
diffeomorphisms fi and hj have disjoint supports for all 1 � i � m� 1 and
1� j �m.

� C.f1/D C.h1/ and C.fi/D C.fi�1 ı hi/ for 2� i �m� 1.

For example, we can take autonomous diffeomorphisms fi disjointly supported away
from the union of the supports of the hj and with appropriate values of the Calabi
homomorphism. We can write g as follows:

g D .h1 ıf
�1

1 / ı .f1 ı h2 ıf
�1

2 / ı � � � ı .fm�2 ı hm�2 ıf
�1

m�1/ ı .fm�1 ı hm/:

Note that
C.h1 ıf

�1
1 /D C.fi�1 ı hi ıf

�1
i /D 0

for 2� i �m�1, and C.fm�1 ıhm/D 0 because C.g/D 0. Since each hi commutes
with each fj and each fi commutes with each fj , the diffeomorphisms h1 ı f

�1
1

,
fi�1 ı hi ıf

�1
i for 2� i �m� 1, and fm�1 ı hm are autonomous diffeomorphisms,

which finishes the proof.
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