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Group completion and units in Z—spaces

STEFFEN SAGAVE
CHRISTIAN SCHLICHTKRULL

The category of Z—spaces is the diagram category of spaces indexed by finite sets
and injections. This is a symmetric monoidal category whose commutative monoids
model all E—spaces. Working in the category of Z—spaces enables us to simplify
and strengthen previous work on group completion and units of E,—spaces. As an
application we clarify the relation to I'-spaces and show how the spectrum of units
associated with a commutative symmetric ring spectrum arises through a chain of
Quillen adjunctions.

55P48; 55P43

1 Introduction

In homotopy theory, an Es,—space is a space equipped with a multiplicative structure
arising from the action of an E, operad. Such an operad action encodes all higher
coherence homotopies between iterated multiplications in the space. For the purpose
of homotopy theory, this is often the right way to express commutativity. In contrast,
the notion of a strictly commutative monoid in spaces is usually too rigid since it does
not model enough homotopy types.

However, there is a different way to get at a notion of commutativity suitable for doing
homotopy theory: Instead of changing the meaning of “commutative” to “ E,”, one
may change the meaning of “space”. Specifically, working in the category of Z—spaces
studied by the authors in [22], one obtains a setting in which the commutative monoids
do model all E,,—spaces.

In more detail, let Z be the category with objects the finite sets n = {1, ..., n}, including
the empty set 0, and morphisms the injective maps. By definition, an Z—space is a
functor from Z to the category of (unbased) spaces S. As it is generally the case for a
category of diagrams in spaces indexed by a small symmetric monoidal index category,
the resulting category ST of Z—spaces inherits a symmetric monoidal structure from
the concatenation of finite sets in Z. A commutative monoid with respect to this
structure will be called a commutative T—space monoid, and we write CST for the
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category of such commutative monoids. The statement that commutative Z—space
monoids model all E,—spaces is made precise in [22], where it is shown that the
category CS”T has a model structure, called the positive T—-model structure, which
makes it Quillen equivalent to the category of E,—spaces. The weak equivalences
in the positive Z-model structure are the Z—equivalences, that is, the maps 4 — B
that induce a weak equivalence A7 — Bz of the associated homotopy colimits. For
an Z—space monoid A4, the homotopy colimit A7 inherits a monoid structure which
extends to an E, structure provided that A is commutative. Based on this we think of
the homotopy colimit functor from S% to S as a forgetful functor taking commutative
T —space monoids to Es,—spaces. The simple and explicit combinatorics underlying
the category CST often makes it profitable to translate questions about E,—spaces to
questions about commutative Z—space monoids. Examples of this appear in the work
of Blumberg, Cohen and the second author on the topological Hochschild homology of
Thom spectra [4], in Rognes’s work on topological logarithmic structures [21], in the
second author’s work on algebraic K—theory [24], on symmetric Thom spectra [26]
and on the higher topological Hochschild homology of Thom spectra [27] and in the
present paper, where the focus is on questions related to group completion and units.

The category CSZ is related to the category CSp™ of commutative symmetric ring
spectra through a Quillen adjunction

(1-1) sT. ¢St 2z csp* 0t

with respect to the positive Z-model structure on CS* and the positive model structure
on CSpZ introduced by Mandell, May, Schwede and Shipley [18] (see [22, Propo-
sition 3.19] for details). The right adjoint Q7 sends a commutative symmetric ring
spectrum R to the commutative Z—space monoid QZ(R) with QZ(R)(n) = Q"(R,)
and a monoid structure induced by the multiplication in R.

1.1 Group completion

Recall that a (simplicial or topological) monoid M is grouplike if the monoid of
connected components 77o(M ) is a group. We say that a map of homotopy commutative
(simplicial or topological) monoids M — N is a group completion if N is grouplike
and the map of classifying spaces B(M) — B(N) is a weak homotopy equivalence.
This implies that N is equivalent to Q2(B(M)) (with an implicit fibrant replacement of
B(M) in the simplicial setting and the extra assumption that M and N be well-based
in the topological setting).

A commutative Z—space monoid A is said to be grouplike if the underlying E,—space
Ay is grouplike, that is, if the commutative monoid (A7) is a group. While there
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Group completion and units in ZT—spaces 627

are well-known constructions of group completions within E,—spaces (eg by May [20,
Theorem 2.3] and Basterra—Mandell [3, Theorem 6.5]), one aim of the present paper is
to show that the process of group completion can be conveniently lifted to the category
of commutative Z-space monoids.

Our first approach to group completion uses the bar construction. For a commuta-
tive Z—space monoid A, we write B(A) for the bar construction formed in CS”.
This construction is left adjoint to the loop functor  on CST and the unit for the
adjunction is a natural map A — Q(B(A)). Composing with a functorial fibrant
replacement B(A) — B(A)Z-f1® in the positive Z—model structure, we get a natural
map of commutative Z—space monoids

g A— Q(B(A)1™).

The next theorem implies that this models a group completion of A provided the latter
is cofibrant.

Theorem 1.2 Let A be a cofibrant commutative Z—space monoid. Then the induced
map of homotopy colimits (nﬁ)hI: Apr — Q(B(A)1-1),7 is a group completion of
the Esc—space Ayz.

In the statement of the theorem we have included the Z—fibrant replacement of B(A4)
in order not to make additional assumption on 4. However, we show in Section 4
that under a mild “semistability” condition on A4, the Z—fibrant replacement can be
dropped. Furthermore, the cofibrancy condition on 4 can be weakened to a “flatness”
condition on the underlying Z—-space. Thus, under these assumptions the theorem says
that the usual group completion for homotopy commutative simplicial or topological
monoids in terms of the bar construction lifts to commutative Z—space monoids. This
use of the bar construction is analogous to the suspension of E,—spaces considered
by Basterra and Mandell in [3, Theorem 6.5], but has the advantage of an explicit
description in terms of the underlying symmetric monoidal structure. The approach
to group completion developed here is used by Rognes in his work on topological
logarithmic structures [21, Section 6].

Our second approach to group completion is model categorical. We define a group
completion model structure CS‘;) on the category of commutative Z—space monoids
as the left Bousfield localization of CS? with respect to a certain universal group
completion map. Here and elsewhere, the notation CS” indicates the category of
commutative Z—space monoids equipped with the positive Z—model structure, and
a decoration on CS? means that we have kept the underlying category but changed
the model structure to something else. The next theorem shows that this localization
process has the expected effect on weak equivalences and fibrant objects.

Algebraic & Geometric Topology, Volume 13 (2013)



628 S Sagave and C Schlichtkrull

Theorem 1.3 A map A — A’ is a weak equivalence in CSng if and only if the induced
map of bar constructions B(Az) — B(A)) is a weak homotopy equivalence. The
fibrant objects in CSng are the fibrant objects in CST which are grouplike, and a fibrant
replacement A — A®P in C‘S';) induces a group completion Az — (A®P),1 of Apt.

Thus, the weak equivalences in CSng are the maps A — A’ for which the underlying
map of Eo—spaces A,z — Aj7 becomes a weak equivalence after group completion.
One advantage of the model category approach is that it gives a functorial group
completion for all objects without further assumptions. Although group completion in
the E, context has been known for a long time, we do not know of a reference where
it is constructed as a fibrant replacement.

It is a formal consequence of the definition that the identity functor is both the left and
right adjoint in a Quillen adjunction

(1-2) Lgpy: CS* 2 CSL: Ryp.

Passing to the total derived functors, this induces an adjunction (Lg“p, R]};}) on the
level of homotopy categories that restricts to an equivalence between Ho(CSng) and
the full subcategory of grouplike objects in Ho(CS?). Under this identification, Lg“p
becomes left adjoint to the inclusion of the grouplike objects, just as the group comple-
tion of commutative monoids is left adjoint to the forgetful functor from commutative

groups to commutative monoids.

The fibrations in CSng form an interesting class of maps and we show in Section 5.10
that they generalize the notion of replete maps used by Rognes [21] in his definition of
logarithmic topological Hochschild homology.

1.4 The relation to '-spaces

The recognition principle introduced by Boardman—Vogt [5] and May [19] is a classical
result in homotopy theory. It states that the homotopy theory of grouplike E~,—spaces
is equivalent to the homotopy theory of infinite loop spaces, hence also to the homotopy
theory of connective spectra. On the other hand, the work of Segal [32] and Bousfield—
Friedlander [8] shows that Segal’s category of I'=spaces I'°PS, provides a convenient
model for the homotopy theory of connective spectra. Our next result bypasses the
theory of operads and establishes a direct equivalence between the homotopy category
of I'—spaces and the homotopy category of grouplike commutative Z—space monoids.

Theorem 1.5 There is a Quillen equivalence

(1-3) A: TPS, 2 csgfp L0

Algebraic & Geometric Topology, Volume 13 (2013)



Group completion and units in ZT—spaces 629

between the categories of I'-spaces with the stable Q —model structure and commutative
T —space monoids with the group completion model structure.

The stable Q —model structure on I'°PS,. was introduced by Schwede [29] and is Quillen
equivalent to the stable model structure considered by Bousfield and Friedlander. A
description of a direct Quillen equivalence between grouplike E,—spaces and I'—
spaces does not seem to be covered in the literature. One of its advantages is that it
not only gives an isomorphism between morphism sets in the respective homotopy
categories, but also an equivalence between the derived mapping spaces.

The spectrum B°°(A) associated to a commutative Z—space monoid A4 has the fol-
lowing explicit description: it’s n—th space is the based homotopy colimit B”(A)y+1
of the n—fold iterated bar construction B"”(A). This construction is formally very
similar to the usual definition of the Eilenberg—Mac Lane spectrum associated to an
abelian group. In Section 6.24 we show how to deduce the following corollary from
Theorem 1.5.

Corollary 1.6 The homotopy category of grouplike commutative Z —space monoids is
equivalent to the homotopy category of connective spectra via the functor sending A to
the connective spectrum B*°(A’) defined by a cofibrant replacement A’ of A.

1.7 Units

Recall that an E,—space X has a subspace of (homotopy) units X > defined as the
union of those path components that represent units in the commutative monoid 7y (X).
This construction lifts to CS? in the sense that a commutative Z—space monoid A
has a submonoid A of (homotopy) units such that the inclusion A* — A4 induces an
isomorphism (A4™);7 == (A7) . An important example is the construction of the units
of a commutative symmetric ring spectrum R as the commutative Z—space monoid
GL;(R) = Q%(R)*. This model of the units is useful, for instance, in the second
author’s study of algebraic K —theory [24] and in work on Thom spectra by Blumberg
and Cohen and the second author [4; 26].

The construction of units in CST also has a model categorical interpretation. We define
the units model structure CSZ as the right Bousfield localization of CST with respect
to the inclusions A — A. The next theorem shows that this localization process has
the expected effect on weak equivalences and cofibrant objects.

Theorem 1.8 A map A — A’ is a weak equivalence in CSZ if and only if the induced
map AZI — A;lxz is a weak homotopy equivalence. The cofibrant objects in CSL%l
are the cofibrant objects in CST which are grouplike, and if A" — A is a cofibrant
replacement in CS”, then there is a canonical Z-equivalence A" — A
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As for the group completion model structure, the identity functor participates both as
the left and right adjoint in a Quillen adjunction

(1-4) Lun: CSE 2 ST Ry

The induced adjunction (LE;,, Rflfn) of homotopy categories restricts to an equivalence
between Ho(CSZ)) and the full subcategory of grouplike objects in Ho(CS?). Under
this identification, R]}}n becomes right adjoint to the inclusion of the grouplike objects,
just as forming the units of a commutative monoid is right adjoint to the forgetful

functor from commutative groups to commutative monoids.

One may argue that there is little use in replacing the simple and explicit construction
of the units by a cofibrant replacement in a complicated model category. However, we
illustrate below that this is useful for analyzing spectra of units. For this we need the
following result which is an immediate consequence of the fact that the cofibrant-fibrant
objects in CSL, and CSgIP coincide.

Proposition 1.9 The composite of (1-4) and (1-2) is a Quillen equivalence

(1-5) Lun/ep: CSip 2 CSpt: Run/gp-

1.10 Spectra of units

Assembling the Quillen adjunctions and Quillen equivalences (1-1)—(1-5) considered
so far, we get a diagram

Sl’
cs? CSp*™
QI
(1-6) Ly %p ]\N
A Lun/gp
oS, — CST cST
d gp Run/gp

in which the two bottom horizontal Quillen adjunctions are Quillen equivalences.
Although all the functors in the triangle are identity functors, the same does of course
not hold for their derived functors because the model structures differ.

For a commutative symmetric ring spectrum R, the spectrum of units gl; (R) can be
defined as the I'-space which the functor ® of (1-3) associates with the grouplike
commutative Z—space monoid GL{(R) considered above. In terms of the derived
functors of the Quillen functors in (1-6), the spectrum of units is the functor

(1-7) gly = (P®) (Ll (RN (QR): Ho(CSp™) —> Ho(I'Sx).

Algebraic & Geometric Topology, Volume 13 (2013)



Group completion and units in ZT—spaces 631

Since (Lun/gp, Runsgp) 18 a Quillen equivalence, it induces an equivalence of homotopy
categories. So the total derived functor L]lI;n/gp is both a left and a right adjoint, and we
get the following corollary.

Corollary 1.11 Passing to total derived functors, the adjunctions in (1-6) exhibit the
spectrum of units as the right adjoint in an adjunction Ho(I'Sy) 2 Ho(CSp~).

The last corollary gives an independent proof of a result by Ando, Blumberg, Gepner,
Hopkins and Rezk [1, Theorem 3.2] in the language of diagram spaces and diagram
spectra. We also show that the right adjoint of the adjunction is represented by the
explicit I'-space model of the units defined by the second author in [24].

1.12 Conventions regarding spaces

For the results stated in the introduction, the category of spaces S may be interpreted
either as the category of compactly generated weak Hausdorff topological spaces or as
the category of simplicial sets. However, starting from Section 2 we stipulate that S
be the category of simplicial sets and the body of the paper is written in the simplicial
context. This is mainly for the sake of the exposition: Working in a simplicial context
there is an occasional need for fibrant replacement, while working topologically we
would sometimes have to impose cofibrancy conditions and require base points to
be nondegenerate. We show how to obtain the topological version of our results in
Appendix C.

1.13 Organization

In Section 2, we recall and develop some foundational material on Z-spaces, and
Section 3 collects some results about commutative Z—space monoids. Section 4
features the bar construction for commutative Z—space monoids and the proof of
Theorem 1.2. In Section 5, we construct the group completion model structure and
prove Theorem 1.3. We study the relation to I'-spaces and prove Theorem 1.5 in
Section 6. The final Section 7 is about units and contains the proof of Theorem 1.8.
In Appendix A we verify that the positive Z—model structure on CS7T is cellular,
Appendix B is about bi- I'=spaces and in Appendix C we derive the topological version
of our results
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2 Preliminaries on Z—spaces

We begin by recalling some basic facts about Z—spaces. Let Z be the category with
objects the finite sets n = {1, ..., n}, including the empty set 0, and with morphisms
the injective maps. The concatenation m LIn defined by letting m correspond to
the first m and n to the last n elements of {1,...,m + n} gives Z the structure of
a symmetric monoidal category with unit 0. The symmetry isomorphisms are the
obvious (m,n)—shuffles 7, ,: mUn —>nUm.

By definition, an Z—space is a functor from Z to the category S of unbased simplicial
sets, and we write ST for the (functor) category of Z—spaces. We will frequently
consider the Bousfield—Kan homotopy colimit of an Z—space X (as defined in [9]) and
abbreviate it by Xj7,

X7 = hocolimz X = diag([s] —> ]_[ X(ns)),

no<—<ng

where diag denotes the diagonal of a bisimplicial set (which is one of the isomorphic
incarnations of the realization functor from bisimplicial sets to simplicial sets, as for
example proven by Hirschhorn in [12, Theorem 15.11.6]).

Given Z—-spaces X and Y, the product X X Y is the Z—space defined by the left Kan
extension of the (Z x Z)—diagram (ny,n,) — X(n{) x Y (n,) along the concatenation
U: ZxZ — 7, that is,

(XXY)(n) = colim X(ny)xY(ny),
nilny—n

with the colimit taken over the comma category (U | n). This defines a symmetric
monoidal structure on ST with the constant Z—space Z(0, —) as the monoidal unit.

2.1 The positive Z-model structure on S

A map of Z—spaces A — B is said to be an Z—equivalence if the induced map of
homotopy colimits A7 — By7 is a weak equivalence. This is the fundamental notion
of equivalence for Z—spaces and participates as the weak equivalences in several model
structure on ST. Since we shall eventually consider commutative monoids in S7, it
will be appropriate for our purposes to consider a “positive” model structure on SZ.
We say that a map of Z—spaces X — Y isa
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e positive T—fibration if for all n > 1 the map X (n) — Y (n) is a fibration and the
inclusion n — n + 1 induces a homotopy Cartesian square

X(n) — X(n+1)

! !

Y(n) — Y(n+1);

e positive T—cofibration if it has the left lifting property with respect to maps of
Z—spaces U — V such that U(n) — V(n) is an acyclic fibration for n > 1.

Proposition 2.2 [22, Proposition 3.2] The Z—equivalences, positive Z—fibrations
and positive 7 —cofibrations comprise a model structure on S*. a

We refer to this model structure as the positive Z—model structure (omitting the ad-
ditional attribute “projective” used for it by the authors in [22]). By definition, an
Z—space X is positive Z—fibrant if and only if for all » > 1 the spaces X(n) are
Kan complexes and the maps X(n) — X (n+ 1) weak equivalences. The positive
T —cofibrant objects have an explicit description in terms of latching spaces: The n—th
latching space of an Z—space X is defined by Lp(X) = colimn—n)ey(zin) X (m),
where 0(Z | n) is the full subcategory of the comma category (Z | n) with objects the
nonisomorphisms. It follows from [22, Proposition 6.8] that X is positive Z—cofibrant
if and only if X' (0) = &, the canonical map L,(X) — X(n) is a cofibration for n > 1,
and the symmetric group X, acts freely on the complement of the image of this map.

Remark 2.3 There also is an “absolute” Z—model structure on ST in which the weak
equivalences are again the Z—equivalences, but where the requirement for a map to be
a fibration has been strengthened to hold at all levels (see [22, Section 3]). This model
structure is Quillen equivalent to the positive Z—model structure, but contrary to the
latter, it does not lift to a model structure on commutative monoids.

It is proved in [22, Theorem 3.3] that the adjunction colimz: ST 2 S:constr defines
a Quillen equivalence with respect to the positive Z—model structure on S* and the
standard model structure on . The homotopy colimit of an Z—space X represents
the “derived” colimit, and we view X7 as the underlying space of X .

Lemma 2.4 If the Z—space X is positive Z—fibrant, then the map X(k) — X1
(induced by {k} — T) is a weak equivalence for k > 1.

Proof Let Z>; be the full subcategory of Z with objects {n | n > 1}. It is easy to see
that the inclusion ¢: 7> — T is homotopy cofinal so that (t* X),7. , — Xj7 is a weak
equivalence. Because BZ>; is contractible, [11, Lemma IV.5.7] implies the claim. O

Algebraic & Geometric Topology, Volume 13 (2013)



634 S Sagave and C Schlichtkrull

2.5 Semistable Z-spaces

Let NV be the subcategory of Z whose morphisms are the subset inclusions. Thus, N
may be identified with the ordered set of nonnegative integers. We say that X — Y is
an MN-equivalence if the induced map X — Yjas 1s a weak homotopy equivalence,
where (— ) is the homotopy colimit over A/. The following important observation
is due to J Smith and first appeared in a paper by Shipley [33, Proposition 2.2.9].

Proposition 2.6 A map of Z—spaces which is an N—equivalence is also an 7 —equiva-
lence.

Proof Let w be the set of natural numbers and let Z,, be the category Z adjoint the
additional object @ and with morphisms the injective maps. We write M = Z,(w, w)
for the endomorphism monoid of @ and view it as a full subcategory of Z,,.

For an Z—space X, let L X be its homotopy left Kan extension along the inclusion
T —T1,. Then M acts on Lj X (w) and the homotopy cofinality arguments given in
the proof of [33, Proposition 2.2.9] imply that there are natural weak equivalences

Xnz = (LpX)nz, = (LpX(@))pp and  (LpX) (@) = Xy
Soif X —Y is an N—equivalence, then (L, X)(w) — (LY )(w) is a weak equivalence

and hence X;7 — Y7 is a weak equivalence. m|

Definition 2.7 An Z-space X is semistable if any Z—equivalence X — X’ with X’
positive Z—fibrant is an N—equivalence.

Remark 2.8 The AN -—equivalences can be viewed as the Z—space analogues of the
1« —isomorphisms of symmetric spectra. From this point of view, the above definition
is the Z—space analogue of semistability for symmetric spectrum introduced by Hovey,
Shipley and Smith in [15, Section 5.6].

As we shall see below, there are several equivalent formulations of semistability.
Consider the functor 1 U (—): Z — Z that takes n to 1 U n, and let R be the induced
functor

(2-1) R: ST 8%, RX=X(1u(-)).

This is analogous of the functor R for symmetric spectra from [15, Section 3.1].

Lemma 2.9 The functor R: ST — ST preserves N—equivalences.
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Proof The restriction of RX to an N —diagram may be identified with the restriction
of X to the category N> of positive integers. By cofinality we therefore have a weak
homotopy equivalence RXpx — Xpas which is natural when we view both sides as
functors from S to S. This implies the result. a

The weak equivalence RXjnr — Xjpas in the above proof is not induced by a map of
T -spaces; hence it does not follow that RX and X are N—equivalent in general.

Let jxy: X — RX be the map of Z—spaces induced from the morphisms n — 1 U n
and let R* X be the homotopy colimit of the sequence of Z—spaces

R(ix)

. Rk.
x 25 Ry RO gy o phyxy BU0)

Rty ...,
Explicitly, Rk X (n) = X(k Un) and the level maps of Rk( Jjx) are the maps
R¥(jx)(n): X(kun)— X(1Uk Un)

induced by the morphisms k LUn — 1 Uk Un.

Proposition 2.10 The following conditions on an Z—space X are equivalent.

(i) The canonical map Xy — Xp7 is a weak equivalence.
(ii) X is semistable.
(iii) The map jx: X — RX is an N—equivalence.

(iv) The map X — R*°X is an N—equivalence and the structure maps of R® X are
weak equivalences.

Proof To see that (i) implies (ii), suppose that X — X’ is an Z—equivalence with X"’
positive Z—fibrant and consider the commutative diagram

Xpny — Xz

! !

/ !
XhN—>XhI.

The upper horizontal map is a weak equivalence by assumption. The bottom horizontal
map is a weak equivalence since the fibrancy condition on X’ implies that both spaces
are weakly equivalent to X’(1). Therefore the vertical map on the left is a weak
equivalence if and only if the map on the right is.
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Next we show that (ii) implies (iii). Choose an Z—equivalence X — X’ with X’
positive Z—fibrant (a fibrant replacement) and consider the diagram

th\/_> RXhN

! !

/ !
XhN—>RXhN.

Here the vertical maps are weak equivalences since X is assumed to be semistable
and R preserves N—equivalences. The horizontal map on the bottom is induced by
a positive level-wise weak equivalence, hence is itself a weak equivalence and (iii)
follows.

In order to show that (iii) implies (iv) we first observe that there are commutative
diagrams in Z of the form

i i i
n—np+1—n4+2——---

O'nl Un+1l Gn+2l
j .

n—-n+1—n+2——--

where i denote the subset inclusions, the maps j are defined by s — s + 1 and oy
is the permutation of & that maps s to k + 1 —s. By definition, (R" X )/ is the
homotopy colimit of the N —diagram obtained by evaluating X on the upper sequence
and (R*° X)(n) is the homotopy colimit of the N —diagram obtained by evaluating X
on the bottom sequence. It follows that there is a commutative diagram of spaces for
each n,

(R"X)pyw ——— (R®X)(n)
il li
(R™1 X ) —— (R®X)(n+ 1),
where the horizontal maps are isomorphisms. The condition in (iii) therefore implies that
the structure maps of R°°X are weak equivalences. We also observe that (R X)),/
may be identified with the homotopy colimit of the N"x N —diagram (m, n) — R™ X (n).

Evaluating the homotopy colimits in the n—variable first we get the N/ —diagram m >
(R™X ) and there is a commutative diagram of spaces

/ XhN
hocolimy, R™ X s ————— R® Xj,x,

where the horizontal map is an isomorphism. The assumption in (iii) implies that
m— (R™X), s is a diagram of weak homotopy equivalences and (iv) follows.
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Finally, assuming (iv) there is a commutative diagram

Xpy — Xz

! !

RooXhN — RooXhI,

where the vertical maps are weak equivalences by assumption and the bottom horizontal
map is a weak equivalence since the structure maps of R°°X are weak equivalences.
Therefore, (iv) implies (i). m|

Remark 2.11 Referring to the “absolute” Z—model structure discussed in Remark 2.3,
one will get an equivalent definition of semistability and the same conclusions as
in Proposition 2.10 if one requires the Z—space X’ in Definition 2.7 to be absolute
T —fibrant instead of merely positive Z—fibrant.

The previous proposition allows us to give a quick proof of Bokstedt’s approximation
lemma for homotopy colimits over Z.

Corollary 2.12 Let X be an Z—space and suppose that there exists an unbounded,
nondecreasing sequence of integers {A; | kK > 0} such that any morphism m — n in
7T with m > k induces a A —connected map X (m) — X (n). Then the canonical map
X (n) - Xpz is Ay—connected for all n > 0.

Proof The stated conditions on X implies that X satisfies the criterion (iii) in
Proposition 2.10, hence is semistable. By the same proposition this in turn implies that
Xy — Xz is a weak equivalence. The corollary follows from this since X (n) — Xpnr
is clearly A,—connected. a

Remark 2.13 An Z-space satisfying the condition in the above corollary is said to be
convergent. This condition played an important role in Bokstedt’s original definition of
topological Hochschild homology [6]. The fact that X s — X7 is a weak equivalence
for X semistable can be viewed as a generalization of Bokstedt’s approximation lemma.
One of the reasons why the semistability condition is convenient is that it is preserved
under many standard operations on Z—spaces. We shall see some examples of this in
the following.

If X, is a simplicial Z—space, we define its realization |X| to be the Z—space with
| X |(n) = diag Xe(n).

Proposition 2.14 Let X, be a simplicial Z—space which is semistable in each simpli-
cial degree. Then the realization | X.| is also semistable.
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Proof Since the Bousfield-Kan map hocolimae Xe — | X | is a level equivalence of
T—spaces by [12, Corollary 18.7.5], this follows by commuting homotopy colimits
using Proposition 2.10(i). O

2.15 Flat Z-spaces

Recall the latching maps L, (X)— X (n) from Section 2.1 associated with an Z—space X.
The below flatness condition is the Z—space analogue of the .S —cofibrant symmetric
spectra introduced by Hovey, Shipley and Smith [15, Definition 5.3.6]. (These are
called flat symmetric spectra by Schwede [28].)

Definition 2.16 An Z-space X is flat if the map L,(X) — X(n) is a cofibration of
the underlying (nonequivariant) spaces for every n > 0.

It is clear from the definition that every positive Z—cofibrant Z—space is flat.

Remark 2.17 It is a consequence of [22, Proposition 3.10] that the flat Z—spaces are
the cofibrant objects in a flat model structure on ST whose weak equivalences are the
Z—equivalences. Although some results from [22] proven using the flat model structure
are crucial ingredients for the present paper, we only need to consider the flat Z—spaces
here and refer to [22] for details about the flat model structure.

The following explicit flatness criterion from [22] is often convenient.

Proposition 2.18 [22, Proposition 3.11] An Z—space X is flat if and only if each
morphism m — n induces a cofibration X (m) — X (n) and for each diagram of the
following form (with maps induced by the evident order preserving morphisms)

X(m) —— X(m Un)

(2-2) ! !

X Um)— X(IUmUn)

the intersection of the images of X (I LUm) and X (m Un) in X(I Um U n) equals the
image of X (m). a

There is a further characterization of flat Z—spaces which is analogous to the character-
ization of flat symmetric spectra in [28]. We say that a map of Z—spaces X — Y isa
level cofibration it X (n) — Y (n) is a cofibration for every object n.

Lemma 2.19 An Z-space X is flat if and only if the functor X &K (—) preserves level
cofibrations of Z —spaces.
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Proof Let G,{,: S¥m — ST be the left adjoint of the functor that evaluates an Z—space
at m. By definition (see [22, Section 6]), a flat cell complex is a transfinite composition
of a sequence of maps with initial term @ and maps obtained by cobase changes from
maps of the form GZ (K — L) with K — L a map of ,,—spaces whose underlying
map of spaces is a cofibration. As a consequence of the flat model structure [22,
Proposition 6.7], we know that every flat Z—space is a retract of a flat cell complex.
For a ¥,,—space L, [22, Lemma 5.6] implies that there is a canonical isomorphism

(GE(LYBY)(m Un) = Sy X(5,0x50) (L X Y (1)),

and that (GL(L)RY)(k) = @ if k <m. It follows that GZ (L) R (—) preserves
level cofibrations.

Next suppose that W is an Z—space such that W K (—) preserves level cofibrations,
let K — L be a map of X,,—spaces whose underlying map of spaces is a cofibration,
and let G,%, (K) — W be a map of Z—spaces. Analyzing the pushout of the diagram

GL(LRY « GL(K)RY - WRY

using the above description, we see that (GZ, (L) U Gz (k) W)X (—) preserves level
cofibrations. Now it follows from an inductive argument that X X (—) preserves
level cofibrations whenever X is a flat cell complex and since level cofibrations are
preserved under retracts, the same holds for all flat Z—spaces.

For the other implication, assume that X is an Z—space such that X X (—) preserves
level cofibrations. Let Z(0, — ) be the monoidal unit in Z—spaces (it equals the terminal
Z-space since 0 is initial) and let Z(0, — ) be Z-space obtained by replacing the value
of Z(0,—) at 0 by the empty space. Then Z(0,—) — Z(0,—) is a level cofibration
and evaluating the induced map X XZ(0,—) — X KZ(0,—) at n we get the map
L, (X)— X(n) which is therefore a cofibration. a

We record some useful properties of flat Z—spaces.

Proposition 2.20 If X is a flat 7—space, then the functor X X (—) preserves Z—
equivalences and N—equivalences.

Proof The statement for Z—equivalences is [22, Proposition 8.2]. For the statement
about N—equivalences, one proceeds as in the proof of Lemma 2.19 and considers
first a flat Z—space of the form GZ (L) for a ¥,,—space L. Using the description
from the proof of that lemma, one sees that the N—space underlying GZ,(L) X Y
decomposes as a coproduct of AV/—spaces with summands isomorphic to L x Y after
appropriate shifts. Hence GZ (L)X (—) preserves N—equivalences. By an inductive
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argument, using the N—analogue of [22, Proposition 7.1], this implies that X X (—)
preserves N—equivalences whenever X is a flat cell complex. Since N—equivalences
are preserved under retracts, this in turn implies the result for all flat Z—spaces. a

Proposition 2.21 If X and Y are flat 7 —spaces, then so are X XY and X x Y .

Proof Assuming that X and Y are flat, the pushout-product axiom for the flat model
structure [22, Proposition 3.10] implies that X X Y is also flat. The statement for
X x Y is an immediate consequence of Proposition 2.18. a

Next we study how the functor R introduced in (2-1) and the natural transformation
Jj: X — RX behave with respect to the X—product. First one checks that the maps

1U U1
X(kum)xY(IUn)— (XRY)(kUm Ul Un) —2"" " (XRY)(k Ul UmUn)
induce a natural map of Z—spaces

gl (RFX)YR(R'Y) — RFHI (X RY).
Lemma 2.22 Let X and Y be Z—spaces. Then there is a pushout square

XXjy
XXY — XXRY
(2-3) ngyl lgo.l
£1.0
(RX)KY — R(XXY)

and the composite X XY — R(X X Y) equals jyxy -
Proof This can be checked by decomposing the colimit defining R(X X Y). |

Proposition 2.23 If X and Y are flat and semistable 7 —spaces, then X XY is also
semistable.

Proof This is similar to the corresponding statement about symmetric spectra [28].
Since X and Y are flat, jx and jy are level cofibrations. Hence the maps X X jy
and jy XY in (2-3) are level cofibrations by Lemma 2.19 and N—equivalences by
Proposition 2.20. Since the homotopy colimit functor over N takes level cofibrations
to cofibrations and N/—equivalences to weak equivalences, the cobase changes of these
maps are also N—equivalences. The claim therefore follows from Lemma 2.22. a
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2.24 Comparison of the Cartesian and X products

Let X and Y be Z-spaces and consider the natural transformation
1x,y: Xpzx Yz —> (X XY )paxz) — (U =) (X RY)pzxz) —> (X BY )1,

where the second map is induced by the universal natural transformation of 7 x Z—
diagrams X' (m) x Y (n) - (X ®Y)(m Un). As explained by the second author in [26,
Proposition 4.17], these maps gives rise to a monoidal structure on the functor (—)zz.

Lemma 2.25 Ifone of X and Y is flat, then py y is a weak equivalence.

Proof We may assume without loss of generality that Y is flat. As functors of
X, both the domain and the codomain of py y then take Z—equivalences to weak
equivalences by Proposition 2.20. Choosing a cofibrant replacement of X in the
positive Z—model structure, it therefore suffices to prove the proposition when X
is cofibrant. Furthermore, since a cofibrant Z—space is also flat, we may repeat the
argument and thereby reduce to the case where both X and Y are cofibrant. Then
X XY is also cofibrant because the positive Z—model structure on S* is monoidal by
[22, Proposition 3.2]. It is proved in [22, Lemma 6.22] that for a cofibrant Z—space Z,
the natural map hocolimz Z — colimz Z is a weak equivalence. Hence the claim in
the lemma follows because the colimit version of the map py y is an isomorphism
(that is, the colimit functor is strong symmetric monoidal, cf [4, Lemma 8.8] and the
discussion following that lemma). a

Lemma 2.26 Let X and Y be semistable T—spaces. Then the diagonal functor
T — I x 7 induces a weak equivalence (X X Y )7 — Xpr X Yp1.

Proof The assumption that X and Y are semistable implies that X x Y is semistable
and consequently that the horizontal maps in the diagram

(XX Y)pnv — (X XY )z

! !

Xnn X Y — Xpz X Yz

are weak equivalences. The vertical map on the left is a weak equivalence since the
diagonal inclusion ' — N x N is homotopy cofinal and the conclusion follows. 0

Since the terminal object * of S7 is also the monoidal unit for X, the projections
X —xand Y — * induce amap py,y: X XY — X xY.
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Proposition 2.27 If X and Y are semistable and one of X and Y is flat, then
px,y: X XY — X xY isan T—equivalence.

Proof The monoidal structure map jy,y fits into a commutative diagram

Xpr X BL «—— Xpr XYyt —— BI X Y1

MX,Yl

M X, (X X Y)hz MY
(PX,Y)hIl
X X xY)pzg — Yiz

in which the horizontal maps are induced by X — * and ¥ — *. Since the diagonal
composite in both outer squares is homotopic to the respective projection,

(ox.¥)nz

MX.Y
(2-4) Xz XY ——> (X RY)pr ——— (X XY)pz = Xpz X Ypz

is homotopic to the identity. The claim now follows by Lemmas 2.25 and 2.26. O

Remark 2.28 The statement in Proposition 2.27 does not remain true in general
without the semistability hypothesis. For instance, given a based space X, there is
an associated Z—space X* with X*(n) = X". This is flat but usually not semistable,
and in fact it follows from the second author’s results in [25] that for a pair of based
connected spaces X and Y there are weak equivalences

(X*RY*)r ~QPI®(XVY) and (X°*xY*)yr ~ QPI®(X x Y).

That Proposition 2.27 does not hold in general is related to the fact that a Cartesian
product of Z—equivalences is not necessarily an Z—equivalence.

Finally we observe that the argument in the proof of Proposition 2.27 shows that the
composition of the last two maps in (2-4) is a homotopy left inverse of wy,y . Hence

Lemma 2.25 has the following corollary.

Corollary 2.29 Ifone of X and Y is flat, then the map (X R Y)pr — Xpz X Y1
induced by the projections is a weak equivalence. |

3 Commutative Z-space monoids

By definition, a commutative T—space monoid is a commutative monoid in ST with
respect to the X—product. We write CS” for the category of commutative Z—space
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monoids. Unraveling the definitions, a commutative Z—space monoid A is an Z—space
A together with a unit element in 4(0) and a natural transformation of (Z x Z)—
diagrams A(m) x A(n) — A(m + n) that is associative and unital in the appropriate
sense and which makes the diagrams

A(m)x A(n) — A(m Un)

l Lt

Am)x A(m) — A(nUm)

commutative. The next result is the main reason for considering the positive Z—model
structure on S,

Proposition 3.1 [22, Proposition 3.5] The positive T-model structure on S lifts to
a proper model structure on CS* in which a map is a weak equivalence or fibration if
and only if the underlying map of Z—spaces is. a

We shall also refer to this as the positive T—model structure on CS”. It is proved in [22,
Theorem 3.6] that this model structure makes CST Quillen equivalent to the category
of Es—spaces (for any choice of E,, operad) and one may think of commutative
T —space monoids as strictly commutative models of E,—spaces.

Together with Proposition 2.20, the next result ensures that cofibrant commutative
T —space monoids are homotopically well-behaved with respect to the X—product.

Proposition 3.2 If a commutative Z—space monoid A is cofibrant in the positive
7 -model structure, then its underlying 7 —space is flat. a

Proof In [22, Proposition 3.15(i)] we establish a positive flat T—-model structure on
CSZ. 1t follows from [22, Proposition 6.20] that A is also cofibrant in this model
structure. Hence its underlying Z—space is flat by [22, Proposition 3.15(ii)]. a

3.3 The simplicial structure on CS%

The category of Z—spaces is enriched, tensored and cotensored over simplicial sets.
The simplicial mapping spaces are defined by

Map(X,Y) = / EIMap(X(n), Y (n)) = {[k] > ST(X x A¥, )},

while for an Z—space X and a simplicial set K, the tensor X x K and cotensor X X
are the Z—spaces defined by

(X xK)(n)=X(n)x K and XK(n)=Map(K,X(n)).
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By [22, Proposition 3.2], the positive Z—model structure on ST makes the latter a
simplicial model category

The category CS? is again enriched, tensored and cotensored over simplicial sets.
While the cotensor is defined on the underlying Z—spaces, the tensor and simplicial
mapping spaces are defined respectively by

AR K = ‘[m] — A'xK’"‘ and Map(4, B) = {[k] —CST(A® AF, B)}

for A and B in CS%, K in S and | — | the usual restriction to the simplicial diagonal.
Since the condition for being a simplicial model category can be expressed in terms
of the cotensor structure (see eg Hovey [13, Lemma 4.2.2]), the fact that the positive
model structure on S? is simplicial implies that the same holds for CST.

Proposition 3.4 The category CS” is enriched, tensored and cotensored over S, and
the positive Z—model structure is a simplicial model structure. a

We next observe that the monoidal unit for the X—product can be identified with both
the initial object and the terminal object * in CSZ, so that the latter is a based category.
Hence the simplicial mapping spaces Map(4, B) are canonically based and CS7 is a
category enriched over the category Sy of based simplicial sets. Given a commutative
Z—space monoid A and a based simplicial set (K, v), define the tensor 4 ® (K, v)
to be the pushout (in CST) of the diagram * < 4 ® {v} — A ® K, and the cotensor
AKV) 16 be the pullback of the diagram % — A « AKX Thus, A&V (n) is the
space of based maps Map, (K, A(n)). We claim that this structure makes CST a based
simplicial model category. This means that given a cofibration 4 — B in CST and a
cofibration (K, v) — (L, w) in Sk, the pushout-product

SOg: AR (L, w)Mygk v BR(K,v) — B® (L, w)

is a cofibration in CS? which is acyclic if either f or g is acyclic. By adjointness
(see [13, Lemma 4.2.2]), this condition can be reformulated in terms of the mapping
spaces Map(A4, B) so the claim that CS” is a based simplicial model category follows
from the fact that it is a simplicial model category, cf [13, Proposition 4.2.19]. We
summarize the above discussion in the next proposition.

Proposition 3.5 The category CS” is enriched, tensored and cotensored over Sy, and
the positive Z—model structure is a based simplicial model structure. a
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3.6 The monoid of path components

Recall that for a (not necessarily fibrant) simplicial set K, the set of path components
7o(K) is defined to be the coequalizer of the maps dy, d;: K1 = Ky.

If A is a commutative Z—space monoid, then A7 is an associative and homotopy
commutative simplicial monoid. The multiplication on A7 is induced from that of
A by means of the monoidal structure map p of Lemma 2.25. One can check the
homotopy commutativity directly or deduce it from [26, Section 6.1], where it is shown
that Ax7 is an Eo—space over the Barratt—Eccles operad. It follows in particular
that 7y(Ap7) is a commutative monoid. Given vertices xg € A(m)g and yg € A(n)g
representing classes [xg] and [yg] in 7o(Apz), their product [xg][yo] is represented by

u(xo, yo) € A(mUn)g.

Example 3.7 Let FZ: S — S7 be the left adjoint of the functor that takes an Z—space
X to X(n), and let C: ST — CS? be the left adjoint of the forgetful functor. We
define C; to be the free commutative Z—space monoid on a point in Z—space degree
one, that is,

G =CF®) =[] F{)™/ 2.

n=0

It follows from the definition of the X —product that F II ()% is isomorphic to FX (%) =
Z(n,—), and hence that

(FL (™) Zn)yz = (FT(0™),7)/ Sn = B(n | T)/ Za.

Since B(n | 7) is X,—free and contractible, this in turn implies that the simplicial
monoid (Cy ),z associated with C; is weakly equivalent to [ [~ BX,. In particular,
ithas o ((Cy)pz) = Np. Given a commutative Z—space monoid 4, it follows from the
definitions that vertices in A(1) correspond to maps of commutative Z—space monoids
Ci — A. Furthermore, if A is positive Z—fibrant, then we know from Lemma 2.4 that
every class in 7o(A4y7) can be represented by a vertex a in A(1) such that the induced
map 79 ((Cy)pz) = mo(Apz) sends the generator for 7o ((Cy)yz) to the class [a].

Definition 3.8 A commutative Z—space monoid A is grouplike if the monoid 7o (A7)
is a group.

It is clear that if A — B is an Z—equivalence of commutative Z-space monoids,
then A is grouplike if and only if B is. We shall later define a “group completion”
Cy — C{P with the property that a positive Z—fibrant commutative Z-space monoid
A is grouplike if and only if every map Cy — A extends to C;P (see Lemma 5.2).
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4 Group completion via the bar construction

4.1 The bar construction in Z—spaces

In this section we examine the bar construction of Z—space monoids and its relationship
to the usual space-level bar construction. It is illuminating to consider the general
setting of a monoid A in a monoidal category (A, O, 1 4) with monoidal structure [
and unit 1 4. Given aright A-module M and a left A—-module N in A, the two-sided
bar construction is the simplicial object

Bo(M,A,N): [k]> MOAO---O0AON
————
k

with structure maps as for the usual space level bar construction (see May [19]). Here
we suppress an implicit choice of placement of the parenthesis in the iterated monoidal
product. Now let ®: A — B be a monoidal functor relating the monoidal categories
(A,0,14) and (B, A, 15). By definition (see Mac Lane [17, XI.Section 2]), this
means that @ is a functor equipped with a morphism 1z — ®(14) and a natural
transformation of functors on A x A,

u: ®(A41) A D(A;) — P(4, 0 4,).

satisfying the usual unitality and associativity conditions (this is what is sometimes
called lax monoidal). It follows from the definition, that if A4 is a monoid in A, then
®(A) inherits the structure of a monoid in B. If M is a right A-module in A4, then
® (M) inherits the structure of a right ®(A4)—module in B and similarly for left A—
modules. Applying the functor ® degree-wise to Be(M, A, N) we get a simplicial
object in B and the monoidal structure maps give rise to a simplicial map

(12 Be(D(M), D(A), D(N)) —> ®Bo(M, A, N).

Now we specialize to the monoidal category ST of Z—spaces. Let A be an T—space
monoid and notice that the augmentation 4 — * makes the final object * a left and
right A—module. We write Bo(A) for the simplicial bar construction Be(*, A, * ) and
B(A) for its realization. As proven in [26, Proposition 4.17], the homotopy colimit
functor (—)pz: ST — S canonically has the structure of a monoidal functor, where
the natural transformation p is the monoidal structure map of Lemma 2.25. Its value
on the final object * is the classifying space BZ which is contractible since Z has an
initial object. Implementing the above discussion in the case at hand we get a chain of
simplicial maps

Be(A)pz <— Be(BL, Apz, BI) —> Be(Ap7),
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where the right hand map is induced by the projection BZ — x. (There is no simplicial
map relating Be(Ap7) and Be(A)y7 directly.)

Proposition 4.2 If A is an Z—space monoid with underlying flat 7 —space, then the
induced maps of realizations

B(A)pz <— B(BZ, Apz. BI) —> B(Az)

are weak equivalences.

Proof The right hand map is the realization of a map of bisimplicial sets which is a
weak equivalence at each simplicial degree of the bar construction and is therefore a
weak equivalence. Lemma 2.25 enables us to apply the same argument to the left hand
map. O

We also note the following corollary of Propositions 2.14, 2.21 and 2.23.

Corollary 4.3 If A is an Z—-space monoid with underlying flat and semistable 7 —
space, then B(A) is semistable. a

4.4 The loop functor

Given a based space X, we write Q(X) for the based simplicial mapping space
Map, (S', X), where S! denotes the simplicial circle A'/dA!. In order for this to
represent the correct homotopy type we should of course stipulate that X be fibrant, or
otherwise choose a fibrant replacement. For definiteness, we write X 1® = Sing|X| for
the fibrant replacement obtained by evaluating the singular complex of the geometric
realization.

Our next aim is to understand how the loop functor €2 interacts with the formation
of homotopy colimits over Z. In general, given a small category K and a functor
X: K — S« to based spaces, we write Xy« for the based homotopy colimit over
IC. This can be defined as the quotient of the unbased homotopy colimit X}, by the
subspace BX specified by the inclusion of the base point in X (for a full discussion,
see Hirschhorn [12, Proposition 18.8.4]). If BK is contractible then the projection
X — Xp=x is a weak equivalence. This applies in particular to the categories N
and 7.

Now assume that X: L — Sy is level-wise fibrant in positive degrees. The advantage of
the based homotopy colimit for our purpose is that the evaluation maps S'AQ(X (k)) —
X (k) induce a based map

SUAQX)pec — (STA QX)) jperc — Xprre —> (Xppepe)®
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with adjoint (QX)xx — Q((Xp+x)P). The level-wise fibrancy assumption and the
fibrant replacement ensure that the constructions are homotopically meaningful.

Lemma 4.5 Let X: T — S, be a based T —space that is level-wise fibrant in positive
degrees. Then the canonical map Q(X )y — Q((Xpxar)®) is a weak equivalence.

Proof Consider the filtration of A/ by the subcategories N}, of natural numbers less
than or equal to k. This gives a filtration of Xy« by the subspaces Xy, and it
follows from the definition of the homotopy colimit that the inclusions give rise to an
isomorphism colimy Xp«x; — Xp+pr. Applying this to X and Q2(X') and using that
Q commutes with sequential colimits of inclusions, we get a commutative diagram

colimy Q(X )+ p; — colimy Q((Xh*/\/k)ﬁb)

gl lg

QUX) e —— QU(Xpa)™),

where the vertical maps are isomorphisms. Since N has a terminal object it is clear
that the map in the upper row is a weak equivalence for each fixed positive k, hence
the map of colimits is also a weak equivalence. a

We say that a based Z—space is semistable if the underlying Z—space (forgetting the
base point) is semistable.

Proposition 4.6 Let X be a semistable based 7 —space that is level-wise fibrant in
positive degrees. Then Q2(X) is also semistable and there is a natural weak equivalence

QX ) ez —> QUXpr)™).

Proof In order for (X)) to be semistable it suffices that j: Q(X)— RQ(X) induces
a weak equivalence of based homotopy colimits over N . Since RQ(X) is the same as
Q(RX), there is a commutative diagram
Q(X)h*/\/ E— RQ(X)/I*N
QUXnxA)™) — QURXpxp)™),
where the vertical maps are the weak equivalences from Lemma 4.5. The lower

horizontal map is a weak equivalence by assumption and the result follows. Using this
the second statement in the proposition follows from the commutative diagram

QUX) e — QU(Xpr ) ™)

| l

QUX)pez — Q((Xp+1)™),
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where the vertical maps are weak equivalences since X and Q(X) are semistable and
the upper horizontal map is a weak equivalence by Lemma 4.5. a

4.7 Group completion in Z-spaces

In this section we show that the usual procedure for group completing a simplicial
monoid lifts to Z—space monoids and we use this to prove Theorem 1.2 from the
introduction.

Consider in general a simplicial monoid M , and recall that the classifying space B(M)
is isomorphic to the coend of the diagram ([k],[I]) — M *¥ x Al (see eg Goerss and
Jardine [11, Chapter IV.1]). The canonical map M x A[1] - B(M) induces a based
map M AS' — B(M) and composing with the fibrant replacement B(M ) — B(M )fi®
we get a based map M A S' — B(M ). We define the group completion map

s M — Q(B(M)®)

to be the adjoint of this map. Likewise, given an Z—space monoid A, the canonical
map A x A! = B(A) induces a map of based Z—spaces A AS! — B(A) and applying
the fibrant replacement functor (— ) level-wise to B(A) we get a map of based
T-spaces AAS! — B(A). We define the group completion map

(4-1) na: A — Q(B(A4)™)

to be the adjoint of this map. The underlying map (77,4)57 can be compared to 74, as
we now show.

Proposition 4.8 If A is an Z—space monoid with underlying flat and semistable 7 —
space, then there is a chain of natural weak equivalences relating Q(B(A)™®);,7 and
Q(B(Apz)™) such that the diagram

(n/:)y Ant \”/‘ﬁz

~

Q(B(A)™)jz —— QB(450)™)
is commutative in the homotopy category.

Proof We first consider a reduced version of the equivalences relating B(A);,7 and
B(Ap7) in Proposition 4.2. Notice that B(A)y«7 is the quotient of B(A4),z by the
subspace Bo(A)yz = BZ. We similarly define a reduced version of B(BZ, Az, BT)
by letting B (BZ, Az, BI) be the quotient by the subspace BZ x BZ. It follows from
Proposition 4.2 that there are weak equivalences

B(A)p+7 <<~ B(BT. Apr. BT) => B(Aj7)
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that give rise to weak equivalences of the associated loop spaces of their fibrant
replacements. The conclusion then follows from the commutativity of the diagram

Mz NApz

Q (B(A)™), . Anz Q (B(457)™)

[ R

Q (B(A)™),, 5@ (((B(A)ﬁb) h*I)ﬁb) = Q(B(BL. A7 BD)™)

where the vertical equivalence on the left is the canonical projection from the unbased
to the based homotopy colimit and the first map in the bottom row is the equivalence
from Proposition 4.6. Here we use that B(A4) is semistable by Corollary 4.3. a

For the rest of this section we specialize to the category CST of commutative Z-space
monoids. Since CS? is a based simplicial category, the functors B and Q admit a
categorical description when applied to a commutative Z—space monoid A4: They are
given by the tensor and cotensor of A with the based simplicial set S'. The next result
is therefore an immediate consequence of Proposition 3.5.

Corollary 4.9 The functors B and 2 define a Quillen adjunction
B: ¢Stz cst:q. O

The unit of the adjunction is a map 4 — Q2(B(A4)) of commutative Z—space monoids
which may be identified with the explicit map considered above for general Z—space
monoids. Notice, that since the space-level fibrant replacement (— ) is symmetric
monoidal, the group completion map 74 in (4-1) is a map of commutative Z—space
monoids when A is commutative. However, 14 admits a variant which is more natural
from the point of view of the positive Z—model structure on CS” and which is the
map figuring in Theorem 1.2. Let B(A) — B(A)*~™® be a fibrant replacement in the
positive Z—-model structure on CST and let nfi be the composite map of commutative
Z—space monoids

(4-2) gt A—> QUB(A) — Q (B(AT™).

We shall refer to this as the derived unit of the (B, €2)—adjunction with respect to
the positive Z—model structure. A priori, ’7,%1 is more difficult to understand than 74
since it involves a fibrant replacement in CSZ. However, nfl has the advantage that it
provides a group completion for objects that are not necessarily semistable as we show
in the next proposition.
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Proposition 4.10 If A is a commutative I —space monoid with underlying flat 7—
space, then there is a chain of natural weak equivalences relating Q(B(A)%~1°),; and
Q(B(Apz)) such that the diagram

(”fl)'h/ Ant %I

~

Q(B(A)F )y ——— Q(B(40)™)
is commutative in the homotopy category.
Proof Using B(A)Z- instead of B(A4)® and ni instead of 74, the proof is com-

pletely analogous to the proof of Proposition 4.8. The point is that the semistability
condition on A4 can be dropped since B(A4)Z~ is semistable by definition. a

Example 4.11 As in Example 3.7, let C; be the free commutative Z—space monoid
on a point in degree one and recall that the underlying simplicial monoid (Cy)p7 is
equivalent to [[,-, BX,. By the previous proposition, 7%1: C; — Q(B(Cp)*iv)
lifts the group completion of (C;)zz to a map in CST, so the commutative Z—space
monoid Q(B(C;)*®) is a model of Q(S?) by the Barratt—Priddy—Quillen theorem.

We record some useful consequences of the proposition.

Lemma 4.12 If A is a cofibrant and grouplike commutative 7 —space monoid, then
nﬁ: A—Q (B(A)I‘ﬁb) is an Z—equivalence.

Proof This follows from Proposition 4.10 since the group completion of the underlying
simplicial monoid Aj7 — Q(B(A7)) is a weak equivalence if Az is grouplike. O

Lemma 4.13 Let A be a cofibrant commutative 7 —space monoid, and let
(4-3) Ar—— C —5» Q (B(4)*)

be a factorization of ni into a positive Z —cofibration followed by an acyclic positive
T -fibration. Then the bar construction B(—) maps A — C to an ZT—equivalence.

Proof Since the spaces B(A),r >~ B(Ay7) and B(C)yz >~ B(Cyz) are connected, it
suffices by Proposition 4.10 to show that B(A4) — B(C) becomes an Z—equivalence
after applying the functor Q((—)Z-f®). Applying B(—) to the second map in (4-3)
and composing with the counit of the (B, 2)—adjunction, we get a map

(4-4) B(C) — BQ(B(A)T™™) — B(4)T™
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such that the composition with B(A) — B(C) is the Z—fibrant replacement of B(A).
By the above and the two out of three property for Z—equivalences, it remains to
prove that the composite map in (4-4) becomes an Z—equivalence after applying
Q((—)%-fib). Composing with the group completion map r;%: C — Q(B(C)L-fiby,
the map so obtained can be identified with the composition

C — Q(B(A)T ™) — Q((B(4)T-1*)*™)

which is an Z—equivalence by assumption. The result now follows from Lemma 4.12
which implies that r]% is an Z—equivalence since C is grouplike. a

Proof of Theorem 1.2 Since the underlying Z—space of a cofibrant commutative
T-space monoid is flat by Proposition 3.2, the previous lemma and Proposition 4.2
imply that (nﬁ) »z induces a weak equivalence when applying the bar construction.
This verifies that ’7,24 is a group completion in the sense of Section 1.1. a

S The group completion model structure

To set up the group completion model structure on CS”, we use the description of group
completion for commutative Z—space monoids provided by Proposition 4.10. Given
a commutative Z—space monoid A4, we write I'(A4) for the commutative Z—space
monoid © (B(4)*~™) and n%: A — I'(A4) for the group completion map introduced
in (4-2).

5.1 Group completion as a fibrant replacement

Let C; =CF II (*) be the free commutative Z—space monoid on a point in degree one,
cf Example 3.7. We begin by choosing a factorization

(5-1) Ci—s CB 5 T(Cy)

of the group completion map na as a cofibration £ followed by an acyclic fibration in
the positive Z—-model structure. The next lemma justifies thinking of &: C; — C§P as
a “group completion in the universal example”.

Lemma 5.2 Let A be a commutative Z—space monoid which is positive Z—fibrant.
Then A is grouplike if and only if every map C; — A extends to a map C{? — A.

Proof Suppose first that every map C; — A extends to CP and let [a] be a class
in wo(Apz) represented by a vertex « in A(1). As explained in Example 3.7, we
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can represent a by a map C; — A. Extending this map to C§? and identifying
o ((C§P)pz) = Z with the group completion of 7o((C1)sz), we see that [a] is indeed
invertible.

Next assume that A4 is grouplike and consider a map C; — A. Choosing a cofibrant
replacement of 4, we may assume that A4 is cofibrant as well as positive Z—fibrant.
We now proceed as in (5-1) by considering a factorization of the group completion
map nflz A — I'(A) as a cofibration 4 — A#P followed by an acyclic Z—fibration
A& — T'(A). From this we obtain a commutative diagram

C1—>A

L

CEP — gep,

Since nﬁ is an Z—equivalence by Lemma 4.12, it follows that also 4 — A®P is an 7—
equivalence as indicated in the diagram. The assumption that A be positive Z—fibrant
therefore implies that the latter map admits a left inverse and the composition with the
bottom map in the diagram gives the required extension. |

The group completion model structure will be defined as the left Bousfield localization
(see Hirschhorn [12, Chapter 3]) of the positive Z—model structure on CST with
respect to the map &. Following [12], we say that a commutative Z—space monoid W
is £E—local if it is positive Z—fibrant and the induced map

£*: Map(CEP, W) — Map(Cy, W)

is a weak equivalence. A map 4 — B in CSI is said to be a &—local equivalence if
after choosing a cofibrant replacement f A—> B (see [12, Chapter 8]) the induced
map

/*: Map(B, W) —> Map(A4, W)

is a weak equivalence for all £-local objects W . Notice, that any Z—equivalence is a
&-local equivalence.

Proposition 5.3 There exists a model structure on the category CS* such that

e the weak equivalences are the & —local equivalences,
e the cofibrations are the same as for the positive Z—model structure, and

e the fibrations are the maps that have the right lifting property with respect to the
cofibrations that are also & —local equivalences.
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Proof The existence of a model structure with the stated properties follows from
Hirschhorn’s existence theorem for left Bousfield localizations [12, Theorem 4.1.1].
This uses that CS? is cellular, which we verify in Proposition A.1. a

We shall refer to the model structure in the above proposition as the group completion
model structure. Tt will be convenient to adapt the notation CS” and CSng for the cate-
gory of commutative Z—space monoids equipped with the positive Z—model structure
and the group completion model structure, respectively. With this notation, the identity
functor defines a Quillen adjunction

. oL T .
Lgp: CS™ 2 CSyp i Ryp
and the fact that CS& is defined as a left Bousfield localization implies that it has the
following universal property: Given a model category M and a left Quillen functor

F: CST — M such that F(£) is a weak equivalence in M, then F is also a left
Quillen functor when viewed as a functor on CSng.

We record some further formal consequences of the definitions.

Proposition 5.4 The group completion model structure CSng is a cofibrantly generated,
left proper and simplicial model structure.

Proof This all follows from [12, Theorem 4.1.1]. O

Proposition 5.5 The (B, 2)—adjunction defines a Quillen adjunction
B: CSL 2 CS":Q.

Proof Since B(§): B(C1) — B(C{P) is an I—equivalence by Lemma 4.13, this
follows from the universal property of CS& as a left Bousfield localization. a

Lemma 5.6 A commutative Z—space monoid is fibrant in CSgZp if and only if it is
positive Z—fibrant and grouplike.

Proof Since CS? is left proper by [22, Proposition 3.2], it follows from [12, Proposi-
tion 3.4.1] that the fibrant objects in CSng are the objects that are £—local. Suppose
first that A is £-local. This means that £ induces an acyclic fibration of the simplicial
mapping spaces

£*: Map(C§P, A) —> Map(Cy, A)

and in particular that the map of vertices CSZ(C £ A) — CST(Cy, A) is surjective.
By Lemma 5.2 this is equivalent to A being grouplike.

Algebraic & Geometric Topology, Volume 13 (2013)



Group completion and units in ZT—spaces 655

Next, assuming that A4 is positive Z—fibrant and grouplike, we must show that A is
&-local. Choosing a cofibrant replacement, we may assume without loss of generality
that A is also cofibrant. Then 77114: A — T'(A) is an Z—equivalence by Lemma 4.12 so
that it suffices to show that the upper horizontal map in the diagram

Map(C{?, T'(A)) ——— Map(Cy, I'(4))

lg lg

Map(B(C§?), B(4)*~") — Map(B(C}), B(4)*~1)

is a weak equivalence. Here the vertical isomorphisms are induced by the (B, 2)—
adjunction. It follows from Lemma 4.13 that the induced map B(C;) — B(C{P) is
an Z—equivalence which in turn implies that the horizontal map in the bottom of the
diagram is a weak equivalence. This gives the statement of the lemma. a

In general, given a commutative Z—space monoid A4, we write A — A®P for a fibrant
replacement in CSng (that is, A*P is fibrant in CSng and the map is both a cofibration
and a £-local equivalence). The terminology is justified by the next lemma.

Lemma 5.7 Fibrant replacement A — A®P in CSng models the group completion.

Proof Let A be a commutative Z—space monoid and let C — A be a cofibrant
replacement in the positive Z—model structure. Applying the functor I' to a fibrant
replacement C — C#P in CSZ , we get a commutative diagram

gp’

A C I'(C)

| ] |
AgP cep r(Ce)

in which C® — AP is an Z—equivalence by [12, Theorem 3.2.18] and C& — I'(C*P)
is an Z—equivalence by Lemma 4.12. Furthermore, since the map B(C) — B(C#P)
is an Z—equivalence by Proposition 5.5, it follows that also I'(C) — I'(C®P) is an
T—equivalence. In conclusion, A% is Z—equivalent to the group completion of a
cofibrant replacement of 4. |

Remark 5.8 While the group completion 74: A — Q(B(A)™®) in (4-1) needed the
underlying Z—-space of A to be flat and semistable and the group completion nﬁ: A—
Q(B(A)T ) in (4-2) needed A to be cofibrant, the fibrant replacement 4 — AP
gives a functorial group completion on all commutative Z—-space monoids.

Having identified the fibrant objects in CSng, we can describe the weak equivalences
more explicitly.

Algebraic & Geometric Topology, Volume 13 (2013)



656 S Sagave and C Schlichtkrull

Lemma 5.9 A map of commutative Z—space monoids C — D is a weak equivalence
in CSng if and only if the induced map of group completions

Q(B(Cp)™) — QB(Dpr)™)

is a weak equivalence.

Proof It follows from [12, Theorem 3.2.18] that C — D is a £-local equivalence if
and only if the induced map of fibrant replacements C&P — D#P is an Z—equivalence.
Choosing cofibrant replacements, it suffices to prove the statement in the lemma under
the additional hypothesis that C and D be cofibrant. By Lemma 5.7 and its proof,
the map C& — D®P can then be identified with the map I'(C) — ['(D) up to Z—
equivalence, hence the result follows from Proposition 4.10. a
Proof of Theorem 1.3 The characterization of the weak equivalences in CSng
vided by Lemma 5.9 can easily be translated to give the characterization in the theorem.
The remaining statements follow from Lemmas 5.6 and 5.9. a

pro-

5.10 Group completion and repletion

In this section, we study the fibrations in CSng and relate them to the replete maps
introduced by Rognes [21].

Right properness is a desirable feature of a model category. In general, a model structure
that arises through a left Bousfield localization may or may not be right proper. In the
case of CSgZp, it is not:
Example 5.11 We employ an example by Bousfield and Friedlander [8, Section 5.7]
to show that the group completion model structure CSgZp is not right proper. Let
M = Ny U {0} be the commutative monoid with 0’ + 0" =0, 0 +0" = 0’ and
0’4+ n =n for n > 1. Its group completion is Z. Viewing the pullback diagram of
commutative monoids
{0,07} — {0}

Lol

M —7Z

as a pullback diagram of constant commutative Z—space monoids, we see that CSng is
not right proper: The map M — Z is a group completion and hence a weak equivalence
in CSé), while the map 0 — Z is a (positive) Z—fibration of grouplike commutative
monoids, hence a fibration in CS&. However, {0,0"} — {0} is not a weak equivalence
in CSng.
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The following definition enables us to state and prove a weakened form of right
properness.

Definition 5.12 [21, Definition 8.1] A map 4 — B in CST is virtual surjective if
the induced map of commutative monoids 7y (A7) — 7o(Byz) becomes surjective
after group completion.

Proposition 5.13 Consider a pullback square of commutative L —space monoids

A—C

L

B — D,

with B — D a weak equivalence in CSgZp and C — D a virtual surjective fibration in
CSng. Then A — C is a weak equivalence in CSng.

Proof Our argument is similar to that used in the proof of [21, Proposition 8.3], but
we make explicit some fibrancy conditions suppressed there. Arguing as in the proof
of [7, Lemma 9.4], we may assume without loss of generality that C and D are fibrant
in CSng and that q(Cp7) — mo(Dyz) is surjective. Furthermore, since the vertical
maps in the diagram are positive Z—fibrations, it follows from [22, Corollary 11.4] that
the diagram of simplicial monoids

Apz — Cpz

oo

By — Dp1

is a homotopy pullback. We know from Theorem 1.3 that in the latter diagram the
bottom horizontal map becomes a weak equivalence after applying the bar construction
and we must show that the same holds for the upper horizontal map. For this we shall
use the Bousfield—Friedlander Theorem [8, Theorem B.4] to show that the diagram
obtained by applying the bar construction to each of the simplicial monoids is again a
homotopy pullback. It is clear that we have a homotopy pullback for each fixed degree
of the bar construction. We also observe that in general, given a grouplike simplicial
monoid M, an argument similar to proving that the bar construction on a group is a
Kan complex shows that the bar construction on M satisfy the m«—Kan condition [8,
B.3]. This applies in particular to the grouplike simplicial monoids Cj7 and Dy7.
Finally, since o(Cpz) — mo(Dy1) is a surjective group homomorphism, it induces
a Kan fibration after applying the bar construction. This is all we need to apply the
Bousfield—Friedlander Theorem. a
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Definition 5.14 [21, Definition 8.1] Let f/: A — B be a map in CSZ.
(i) The map f is exact if the commutative square

A — A%

o

B — B#®P
is a homotopy pullback in the positive Z-model structure.

(i) The map f is replete if it is exact and virtual surjective.

Remark 5.15 For a virtual surjective map A — B, its repletion A™P — B is defined
to be the homotopy pullback of the diagram B — BfP « A& compare with [21,
Definition 8.2]. By [21, Proposition 8.3] or the next proposition, A™ — B is indeed
replete.

Proposition 5.16 Let f: A — B be amap in CST.

(1) If f is exact and a positive Z—fibration, then f is a fibration in CS;,

(ii) If f is a fibration in C‘S’g’ and virtual surjective, then [ is replete.

Proof Part (i) is a formal consequence of [12, Proposition 3.4.7] and the right proper-
ness of CSZ. For (ii) we build a commutative diagram

A—— A%
N\ [~
flP—C

/ 4

B—— B®

by factoring A%? — B#P into an acyclic cofibration followed by a fibration in the
positive Z-model structure and forming the pullback P. By [12, Proposition 3.3.16],
C — B#P is fibration in CSng, hence Proposition 5.13 implies that P — C is a weak
equivalence in CS;. By the 2-out-of-3 property for weak equivalences, A — P is
therefore a weak equivalence in CSgZp. Since A — B and P — B are fibrations in
CSng, it follows by [12, Proposition 3.3.5] that A — P is an Z—equivalence. O
Remark 5.17 We may summarize the situation as follows: Exactness is a desirable
property for a map of commutative Z—space monoids, and one wants to have an
“exactification”. The pullback construction of Remark 5.15 gives an “exactification’
A"™P — B for virtual surjective maps A — B. For a general map, A™P — B may fail to

)

be exact because 4 — A™P does not induce an Z—equivalence after group completion.
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However, given any map A — B, a factorization A——s A’ — B into an acyclic
cofibration followed by a fibration in CSng gives a commutative Z—space monoid A’
with maps from A and to B such that A" is well defined up to Z—equivalence (see
[12, Proposition 3.3.5]) and A — A’ induces an Z—equivalence after group completion.
Furthermore, if 4 — B is virtual surjective, then A" — B coincides with the repletion
A™ — B up to Z—equivalence. In this way the fibrations in CSgZp generalize the

replete maps, and the above factorization in CSgI generalizes repletion.

P

6 The Quillen equivalence to I' —spaces

In this section we set up the Quillen equivalence relating I'-spaces to the group
completion model structure on commutative Z—space monoids. We also discuss various
ways to explicitly realize the induced equivalence of homotopy categories.

6.1 Reminder on I' —spaces

Let I'°P be the category of based finite sets (this is the opposite of the category I'
considered by Segal [32]) and let us write k™t for the set {0, ..., k} with basepoint
0. Following Bousfield and Friedlander [8], a ['=space is a functor X: I'P — S,
such that X (07) = . We write ['°PS, for the category of I'-spaces. Since the full
subcategory of I'°P generated by the objects kT is skeletal, we often define functors
out of I'°P only on the sets k.

It will be convenient to work with the Q-model structures on ['°PS, established
by Schwede [29]. In the level Q-model structure, a map of I'-spaces is a weak
equivalence (or fibration) if its evaluation at every object in I'°P is a weak equivalence
(or fibration) in Sx. The existence of such a model structure is a special case of a
general construction for based diagram categories which we recall in Proposition 6.9.
The category I'PS, also has a stable Q—model structure with the key feature that its
homotopy category is equivalent to the homotopy category of connective spectra: We
say that a map of ['-spaces X — Y is a stable Q—equivalence if the induced map of
spectra (see [8, Section 4]) is a stable equivalence. A map is a stable Q—cofibration
if it is a cofibration in the level Q-—model structure and a stable Q—fibration if it has
the right lifting property with respect to maps that are both stable J—equivalences and
stable Q—cofibrations. Recall from [8] that a ['-space X is special if the canonical
map X (kT VvIT) = X(kt)x X(I") is a weak equivalence for all k,/ > 0, and very
special if in addition the induced monoid structure on (X (11)) is a group structure.
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Theorem 6.2 [29, Theorem 1.5] The stable Q —equivalences, Q —fibrations and Q —
cofibrations specity a model structure on I'°PS in which a I'=space X is fibrant if and
only if it is very special and X (k) is a fibrant simplicial set for all k > 0. o

Remark 6.3 The letter Q refers to Quillen and emphasizes that this is not the same
as the model structure on I'-spaces introduced by Bousfield—Friedlander [8]. As noted
in [29, Remark 1.6], the identity functor on I'°PS, defines a left Quillen functor from
the stable Q-model structure to the stable Bousfield—Friedlander structure and this
is a Quillen equivalence. Hence it follows from [8, Theorem 5.8] that the homotopy
category associated to the stable J-model structure is equivalent to the homotopy
category of connective spectra. Our reason for working with the stable Q-model
structure is very simple: It has more fibrant objects, so it is easier for a right adjoint
functor mapping into I'-spaces to be a right Quillen functor.

Next we recall from [29] how the stable Q-model structure is built from the level
0 -model structure. For this, we write ['¥ for the I—space I'°P(k T, —) and recall that
S =T'! plays the role of the sphere spectrum in I'-spaces. The projection maps

pi: (k+Dt — kT and py: (k+DT —1IT
induce maps of I'-spaces
pivV Py rkvr! — rk+l,

Similarly, the fold map V: 2t — 17 (given by 1 + 1,2 > 1) and the projection
p1: 27 — 17 induce a map

pivveTivr! —r2
Consider the set S of maps in I'°PS, defined by
1) S={ptvpr:rhvr! > k=13 u{prvveTlvr! -T2,
The statement of the next proposition is implicit in the proof of [29, Theorem 1.5].

Proposition 6.4 [29] The stable Q —model structure on I'PS,. is the left Bousfield
localization of the level Q —model structure with respect to the maps in S . a

In effect, the first type of maps in .S ensure that fibrant objects in the stable Q-model
structure are special I'-spaces, and adding the map p} v V* forces the very special
condition.
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6.5 Construction of the adjunction

We first discuss a general principle for constructing left Quillen functors out of ['°PS,.
Let C be a based simplicial category with base object x. We write Map(—, —) for
the based mapping spaces and C ® K for the tensor of an object C in C with a based
simplicial set K. Suppose that we are given a functor F: I' — C with F(0) = x.
From this we get a pair of adjoint functors

(6-2) Ap: T?S, 2C:df
defined by

kterop
Ap(X) = / F(H)® X(k™) and  ®p(4) = Map(F(~ ), A).

It is easy to see that the left adjoint A r preserves tensors with based simplicial sets
and that there is a natural isomorphism A g(I'K) = F(k1). Conversely, any functor
A: TPS, — C that preserves colimits and tensors becomes naturally isomorphic to
A g when we define the functor F by F(kT) = A(I'¥). (This is a consequence of
the fact that a '—space X can be written as the coend of the (I" x I'°P)—diagram
kt, 1) >TkA X))

Lemma 6.6 The (A g, ®r)-adjunction is a Quillen adjunction with respect to the
level Q-model structure on T'°PS, if and only if F(k™) is cofibrant in C for k > 0.

Proof The assumption that C be a simplicial model category implies that the functor
Map(F(k™),—) preserves fibrations and acyclic fibrations provided that F(k™) is
cofibrant. i

Given an object £ in C, the above discussion shows how to set up an adjunction
['°PS, 2 C taking S to the prescribed value E: letting F(k+) = E** the (A, ®F)-
adjunction has this property.

Example 6.7 Let C be the category of spectra (in the sense of [8]), let S be the
sphere spectrum, and let F be the functor defined by F(kt) = S**. In this case
the adjunction (6-2) is the one used by Segal [32] and Bousfield—Friedlander [8] to
establish an equivalence between the stable homotopy category of I'—spaces and the
homotopy category of connective spectra.

Example 6.8 Let C be the category of simplicial abelian groups and let F' be the
functor defined by F(kT) = Z*k, where we think of Z as a constant simplicial group.
In this case the functor @y can be identified with the usual Eilenberg—Mac Lane
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functor that takes a simplicial abelian group M to the I'-space k++— M*K. The
resulting adjunction (6-2) has been analyzed by Schwede [29].

Now let C be the based simplicial category CSZ, and let C§P be the commutative
Z-space monoid considered in Section 5.1. We know from Example 4.11 that C?
represents the infinite loop space Q(S?) and the idea is to consider the adjunction (6-2)
associated to the functor k* +— (C lgP)Xk . However, this adjunction fails to be a Quillen
adjunction since the Cartesian products (C lgp)Xk are not cofibrant in CSZ. In order to
overcome this difficulty we appeal to the following general result on based diagram
categories whose proof is analogous to the unbased case considered for instance in [12,
Section 11.6].

Proposition 6.9 Let K be a based small category and let C be a based cofibrantly
generated model category. Then there is a cofibrantly generated model structure
on the category of based K —diagrams in C such that a map of diagrams is a weak
equivalence (respectively a fibration) if and only if it is an object-wise weak equivalence
(respectively fibration) in C. In this model structure the cofibrant diagrams are object-
wise cofibrant. a

This proposition applies in particular to the category of based I'—diagrams in CSZ,
and we use the model structure to choose a cofibrant replacement of the diagram
(CsP)™: kT (C lgp)Xk. This means that we have a cofibrant I"'—diagram C together
with a natural transformation C — (C§P)™ such that C (kt) = (C igp)Xk is an acyclic
fibration in CS? for k > 0 (hence a positive level equivalence). By Lemma 6.6, the
diagram C gives rise to a Quillen adjunction

(6-3) A=Ac:T®S, 2 CST:d = o,

with respect to the level Q—-model structure on I'°PS,., sending S to the object C(17).

Lemma 6.10 The left adjoint A in (6-3) sends all maps in the set S defined in (6-1)
to Z—-equivalences.

Proof It follows from the discussion at the beginning of Section 6.5 that A maps
PV D5 'k v 1! — Tk (o the top horizontal map in the commutative square

CkHRCIT) — C((k+17F)

! !

(Clgp)xk X (Cigp)xl N (Clgp)x(k-l—l)'
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Here the right hand vertical map is an Z—equivalence as noted above. The left hand
vertical map is an Z—equivalence by Propositions 2.20, 2.21 and 3.2. The bottom
map is an instance of the map studied in Proposition 2.27. It is an Z—equivalence
because it follows from Propositions 3.2, 2.21 and 2.10(iii) that Cartesian powers of
C£P have underlying flat and semistable Z—spaces. Hence A sends p{ V pJ to an
T—equivalence.

For the second type of map in S, notice that A sends p} v V*: T VIl — T2 to the
map C(1T)RC(1*) — C(27) induced by p} and V*. As above, showing that this
is an Z—equivalence is equivalent to showing that the map C{? X CfP — CPP x C§P
induced by pi" and V* is an Z—equivalence. Applying homotopy colimits over Z
and composing with the monoidal structure map and the map induced by the diagonal
7T — 1 xZ, we get a chain of maps

(CP)nz X (CPInz — (CPP R CP)pz —> (CFP X CPP)nz —> (CP)az X (CFP)iz-

Here Lemma 2.25 and Lemma 2.26 imply that the first and the last map in the composite
are Z—equivalences, so it is sufficient to show the composite is an Z—equivalence. It
follows from the proof of Proposition 2.27 that the composite is homotopic to the map
given by (x, y) — (x, u(x, y)) and the claim follows because the simplicial monoid
(C§P)pz is grouplike. a

The last lemma and the universal property of the stable Q—model structure on ['°PS,
as a left Bousfield localization (see [12, Proposition 3.3.18]) has the following conse-
quence.

Proposition 6.11 The adjunction (6-3) is a Quillen adjunction with respect to the
stable Q —model structure on T'°PS, and the positive T—-model structure on CST. 0O

Composing with the canonical Quillen adjunction CS* 2 CS:gZp,
adjunction

(6-4) A: TPS, = csgfp - ®,

we get the Quillen

again with respect to the stable Q—model structure on ['PS;.

Remark 6.12 If in the definition of the adjunction (A, @), we had used the positive Z—
fibrant replacement C lz‘ﬁb instead of C£P, the first part of the argument in Lemma 6.10
would apply to give a Quillen adjunction between CS? with the positive Z—model
structure and I'°PS, with a different model structure in which the fibrant objects are
the special (and not necessarily very special) ['-spaces. The latter model category of
I'—spaces is compared to E,—spaces by Santhanam [23].

Algebraic & Geometric Topology, Volume 13 (2013)



664 S Sagave and C Schlichtkrull

6.13 Comparison of I' —spaces built from commutative Z-space monoids

Let A be a fibrant object in CS;,. Being a right Quillen functor, ® takes A to a very
special I'-space ®(A) and there is a chain of weak equivalences

(6-5) ®(A)(1T) =Map(C(17T), 4) <= Map(CE, 4) —> Map(C, 4) = A(1)

induced by the Z—equivalence C(1T) =c £P and the weak equivalence Cy =c &
in CSng. The last isomorphism exists because the involved free/forgetful adjunctions
are compatible with the simplicial structure.

A priori, we do not know if the I'-space ®(A4) captures the “correct” infinite loop
space structure associated to A. To see this, we shall compare ®(A4) to the ['—space
constructed from A by the second author in [24].

We first review some definitions from [24, Section 5.2]. For a finite based set S,
let S be the unbased set obtained by removing the basepoint and let P(S) be the
category of subsets and inclusions in S. A map a: S — T of based finite sets induces
a functor a*: P(T) — P(S) with «*(U) = a1 (U). The category D(S) of S—
indexed sum diagrams in Z is defined to be the full subcategory of the functor category
Fun(P(S), Z), whose objects are functors @ that take disjoint unions to coproducts of
finite sets, ie if U NV = &, then 8y — Oyyuy < Oy exhibits Oy as a coproduct of
finite sets. An object 8 in D(S) is determined by its values 5 for s € S and a choice
of an injection 6y — Oy whenever s € U, such that the induced map | |y 65 — 0
(with any ordering of the summands) is an isomorphism in Z.

The construction of the category D(.S) is functorial in ['P: A map «: S — T induces a
functor ax: D(S) — D(T') with ax(8) = 6™ . Notice, that the restriction to one-point
subsets induces an equivalence of categories D(S) — 7S . The reason for using D(S)
instead of Z* is that the latter is not functorial in S .

Next we define a functor C Fs: D(S)® — CS* by C Fg(9) = R, _gC(Fy (+)). This
uses that C (F,% (%)) is contravariantly functorial with respect to the object n in Z. A
map «: S — T in I"°P induces a natural transformation M,: C Fyp oax — CFg. To
see this, fix an object 6 of D(S) and observe that (ax0); = 0,1 for 1 € T.1tis

enough to give a map
C(Fg _, , () = By () C(F7 ()

for every ¢ € T, and to give such a map is equivalent to specifying a point in the
evaluation of the codomain at 6,1 (¢). Choosing an ordering of the set ™! (), the
isomorphism | |;cq—1(¢) 05 — Op—1(;) coming from 6 together with the canonical
points 1g, in (C(FGIs (*))(0s) (defined as the image of 14, € FQIs (*)(6s) under the
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canonical map F z (*) — C(F, z (*)) of T—spaces) represent the desired element in
the iterated IX—product Itis easy to see that this is independent of the ordering and
natural in 8. Moreover, if 8: T — U is another map in I'°P, then we have the equality
Mpy = My o (Mpox).

Now let A be a commutative Z-space monoid. We use the previous construction to
define a I'-space A;p by

Ahpi FOP—>S*, AhD(S) =Map((CF5,A)hD(S).

The map Ap(S) — App(T) induced by a morphism «: S — T is defined by

My
Map(C Fg, A)pp(s) —> Map(C Fr o ax, A)pp(s) —> Map(C Fr, A)np(1).
Returning to the construction in [24], we write A(S) for the D(S)—-diagram
(6-6) AS): D(S) — 8. AS)(®) = [1,e5 A6y,

and observe that A(S) is naturally isomorphic to the D(S)—-diagram Map(C Fg, 4).
Under this isomorphism, the natural transformation M can be identified with the
natural transformation A(S) — A(T) o ax defined in [24, Section 5.2]. This implies
the statement of the next lemma.

Lemma 6.14 The I"'-space Ajp is canonically isomorphic to the I'-space Ay intro-
duced in [24, Section 5.2]. O

The point of defining Ajp in terms of the mapping spaces Map(C Fg, A) is to facilitate
the comparison to ®(A4) in the next proposition.

Proposition 6.15 Let A be a commutative Z—space monoid and suppose that A is
grouplike and positive Z—fibrant. Then there is a zig-zag chain of level equivalences
between I'-spaces relating App and ®(A4).

Proof Viewing D(S) as the value of a functor D(—): '? — Cat, we form the
Grothendieck construction I'°? [D(—); see [34]. The objects of this category are
pairs (S, 6) given by an object S in I'°? and an object € in D(S). A morphism
(o, ): (S,0) — (T,w) is given by a pair of morphisms «: S — T in '’ and
[ ax(0) = w in D(T). The functors C Fg considered above assemble to a functor
CF: (I [D(—))°® — CST that sends (S, 0) to CFs () and (e, f) to

CFr(@) L5 CFr(as(6) 2% CFg(6).
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Using Proposition 6.9, we choose a fibrant replacement C F#P of this diagram in
the projective model structure on (I'°P [D(—))°P—diagrams inherited from the group
completion model structure CSé). Thus, we have a map of diagrams C F — C F¢P,
such that C FEP(0) is fibrant and C Fg(0) — CFgP(0) is an acyclic cofibration in
CSng for all objects (S, ). We create a second ['-space direction by defining

(CF&)*: (T [D(—))® x T —> CST,

where (C F&)*(S,60,kT) = (C F$(0)) >k This is a based diagram in each variable
in the sense that for a fixed object (S, 6) in (I'°P [D(—))°P it defines a based I'—
diagram in CST and for a fixed object k¥ in T it defines a based (TP [D(—))°P—
diagram in CS%. Since (C F®#)* does not take values in cofibrant commutative
T-space monoids, we need to replace it by a diagram with cofibrant values while
maintaining the property of being based in each variable. For this purpose we apply
Proposition 6.9 with C the category of based I'—diagrams in CS”. By adjointness, we
may view (C F&)* as a based (I'°P [D(—))°P—diagram in C and choosing a cofibrant
replacement C — (C FP)* we geta (I"°P [D(—))°?xT diagram C with the required
properties.

Now we are in a position to apply the results about bi- '—spaces from Appendix B. The
commutative Z—-space monoid A gives rise to a bi-I'—space X with

X(S,kT) =Map(C(S,—, k™), A)rp(s)-
Fixing the second variable k™ = 17, the chain of weak equivalences
Map(C (S, —, 1), A)up(sy <— Map(C F§, A)pp(sy —> Map(C Fs, A)p(s)

defines a chain of level equivalences relating X(—, 17) and A;p. Next we fix the
first variable S = 17. An argument similar to that used in Example 3.7 shows
that the Z°°—diagram n + C(FZ(x)) is a diagram of Z—equivalences in positive
degrees. Identifying D(17) with Z, this implies that C(1*, —, k) is a diagram of
T—equivalences in positive degrees. Using that the cofibrant replacement C is an
object-wise cofibrant diagram, we obtain weak equivalences

Map(C(1F, — k1), A)pr <= Map(C(17,1,k™), A) —=> Map(C(k™), A),

where the first map is induced by the inclusion of {1} in Z, and the I"'—diagram C is
as in Section 6.5. These maps define a chain of level equivalences relating X (17, —)
and ®(A). Finally, having replaced C F' by C F*®P in the first step of the proof, we
can use Proposition 2.27 (as in the proof of Lemma 6.10) and [24, Proposition 5.3] to
show that X is bispecial. Since X (—, 17) is very special by [24, Proposition 5.3], we
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conclude from Lemma B.3 that X is bi-very special. Hence Proposition B.8 provides
a zig-zag chain of level equivalences between X(—, 1) and X(17,—). |

Anticipating the definition of the units model structure in Section 7, we deduce from
Proposition 6.15 the following consistency result for the definition of the spectrum of
units associated to a commutative symmetric ring spectrum.

Corollary 6.16 Let R be a commutative symmetric ring spectrum. The I'-space of
units gl; (R) defined in (1-7) is stably equivalent to the I'=space of units associated to
R in [24, Proposition 5.5]. O

Remark 6.17 The notion of units for a commutative symmetric ring spectra consid-
ered here has been compared by Lind [16] to the corresponding notion of units for
commutative S —algebras in the sense of Elmendorf, Kriz, Mandell and May [10].

Finally, we discuss another, conceptually simpler, way to associate a I'—space to a
commutative Z—space monoid 4. For this we view finite based sets as discrete based
spaces. Via the resulting functor '°P — S, the tensor defines a I'—object S > A® S
in CS. We define a I'-space Ar: I'°P — S, by evaluating the based homotopy colimit
over Z level-wise: Ar(S) = (A ® S)p+7. Here (—)p+7 denotes the based homotopy
colimit as in Section 4.4. It is necessary to pass to the based homotopy colimit in order
for Ar to be a based diagram. Notice, that Ap (k™) can be identified with (A%%)«7.

We wish to compare Ar with the I'-space Ajp considered above and for this purpose
we introduce an auxiliary I'-space Aj¢. The definition of the latter uses a modified
version £(S) of the categories D(S) used in the definition of A;p. The objects of £(S)
are pairs (m, M) consisting of an object m of Z and a functor M: P(S) — (Z|m)
such that the underlying functor Pg(m, M): P(S) — T, obtained by composing with
the projection (Z| m) — 7 that forgets the augmentation, is an object of D(S). A
morphism (m, M) — (n, N) is an injective map k: m — n together with a natural
transformation kx o M — N of functors P(S) — (Z | n). Notice that a choice of
ordering {si,...,s;} of S determines an equivalence of categories between £(S) and
the comma category (UK | 7). As in the case of the D(S), a map «: S — 7 in I'°P
induces a functor a*: P(T) — P(S) and hence a functor as: £(S) — £(T) sending
(m, M) to (m, M oa™). Writing Pg: £(S) — D(S) for the functor introduced above,
we have the equality ax Ps = Pro..

Let again A be a commutative Z—-space monoid and let us view the D(S)—diagram
A(S) in (6-6) as a diagram of based spaces with base points specified by the unit of
A. Hence we can form the ['—space Aj+p defined by the based homotopy colimits

Algebraic & Geometric Topology, Volume 13 (2013)



668 S Sagave and C Schlichtkrull

Ap+p(S) = A(S)p+p(s)- The canonical map of I'-spaces Ayp — Ap+p is a level-
wise equivalence since the categories D(S) have contractible classifying spaces. Using
the same notation A(S) for the £(S)—diagram obtained by composing with Pg, we
similarly define a I'-space Ap+g with Apg(S) = A(S)prg(s). As for Ap«p, the
structure map induced by a morphism «: S — 7" in I'°? is defined by

Apxe(S) = A(S)nre(s) — (A(T) oax)nre(sy —> AT )pre(ry = Apre(T).
Lemma 6.18 The functors Pgs induce a level equivalence of I'-spaces Apxg — Ap*p.

Proof The map A(S)p+g(s) = A(S)p+p(s) induced by Pg is natural in S'. To see
that it is a weak equivalence, we check that Pg is homotopy right cofinal in the sense
of [12, Theorem 19.6.13]. By the above equivalences of categories, it is enough to
prove this for the projection Py: (Uk | 7) — Z* . Given an object (nq,...,ng) in Tk,
the conclusion now follows from the fact that ((nq,...,ng)| Pi) has an initial object
and therefore a contractible classifying space. a

The point in defining Ay is that it admits a map of I'-spaces to Ar. For this we
let e5: £(S) — Z be the functor sending (m, M) to m and claim that there is a
natural transformation A(S) — (4 ® ) of functors £(S) — S. Indeed, writing
Ps(m, M) = 0, we define such a natural transformation by mapping an element
{ag € A(Bs)}ses in A(S) to the element of (4 ® S)(m) specified by the S—tuple
of objects {0s}ses in Z, the morphism | |, 505 — g — m, and the S—tuple of
elements {as}scs. Here the map 05 — m is part of the structure defining (m, M)
and the resulting element of (4 ® S)(m) does not depend on the ordering of S used
to define | |;c5 65. On homotopy colimits we obtain a map

Lemma 6.19 The above map induces a natural map of I'-spaces Ap«g — Ar. If the
underlying 7 —space of A is flat, then the I'—space Ar is special and Ap+g — Ar is a
level equivalence.

Proof Unraveling the definitions, we see that a morphism «: S — T in I'°P gives
rise to the commutative diagram

A(S) —— £5(A® S)

l l

a*(A(T)) — a* (e (A®T))
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of £(S)—spaces. From this it easily follows that Ay — Ar is a map of I'-spaces.
The I'-space Ap+¢ is special by Lemma 6.18 and the fact that Ay«p is special (see
[24, Proposition 5.3]). Furthermore, assuming that the underlying Z-space of A is
flat, it follows from Corollary 2.29 that Ar is also special. So it is enough to show
that A(1+)h*g(1+) — (A ® 11)«7 is a weak equivalence, and this follows from the
cofinality argument in the proof of Lemma 6.18. a

Combining the last two lemmas, we get the desired comparison of I'-spaces.

Proposition 6.20 For a flat commutative Z—space monoid A, there are level equiva-
lences App — Apxp < Apxg — Ar between special I'—spaces. a

Remark 6.21 Whereas the ['-space ®(A) requires A to be a fibrant object in CS;,
the I'-space Ar requires A to have an underlying flat Z—space in order to be homo-
topically well-behaved. In contrast, the I'-space Ajp represents the correct stable

homotopy type for all commutative Z—space monoids A.

We shall be particularly interested in the case where A is the commutative Z—space
monoid Cj. Recall from Example 3.7 that (Cy)y7 can be identified with the disjoint
union of the spaces B(n | 7)/ X,. Let S — (Cy)r be the map of I'-spaces specified
by the vertex idy in B(1 | 7).

Lemma 6.22 The map of I'=spaces S — (C1)r specified above is a stable equivalence.

Proof Consider in general a based simplicial set K. It follows from the universal
property of the tensor that C; ® K can be identified with the commutative Z—space
monoid K®: n+— K" (see [25]). Thus, the map K — (C; ® K)p+7 can be identified
with the map K — (K*)p+7 induced by the inclusion {1} — Z. The result now follows
from [25, Lemma 3.5] which states that this map is (2n —1)—connected for K = S". O

In the next corollary we consider the map of I'-spaces S — ®(C (1)) induced by the
map 17 — Map(C(17), C(17)) sending the nonbase point to the identity of C(17).

Corollary 6.23 The above map of I'—spaces S — ®(C(171)) is a stable equivalence.

Proof The acyclic Z—fibration C(1") — C§P induces a level equivalence of T-spaces
d(C(17)) — ®(C§P), so it suffices to show that the composite map S — ®(C{P) is
a stable equivalence. Combining Propositions 6.15 and 6.20, we get a zig-zag chain
of level equivalences relating the I'-spaces ®(C{P) and (C§P)r. Furthermore, it
follows from Lemma 4.13 that the map C; — C§P induces a stable equivalence of
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[=spaces (C1)r — (C§?)r. Thus, composing with the stable equivalence S — (Cy)r
in Lemma 6.22, we get a stable equivalence S — (C§P)r. Since by definition the map
S — ®(CP) takes the nonbase point in 1T to a generator for the infinite cyclic group
of components of ®(CEP)(1 1), this suffices to prove the result. a

6.24 Stabilization and the proof of Theorem 1.5

In this section we finish the proof of Theorem 1.5 by showing that the Quillen adjunction
(6-4) is in fact a Quillen equivalence with respect to the stable O —model structure on
PS,.

We begin by making some general remarks on Quillen adjunctions and derived units.
Thus, consider a Quillen adjunction F: C & D :G relating the model categories
C and D. For an object X of C, the adjoint of a functorial fibrant replacement
F(X) = F(X)f® in D is amap ex: X — G(F(X)). These maps assemble to a
natural transformation ¢ that we call the derived unit of the adjunction. It is often
interesting to know if € is a natural weak equivalence on the full subcategory of cofibrant
objects in C. This is equivalent to asking for the unit of the induced adjunction of
homotopy categories to be a natural isomorphism. Recall that the right adjoint G is
said to reflect weak equivalences between fibrant objects if a morphism f: Y — Y’
between fibrant objects in D is a weak equivalence provided that G(f) is a weak
equivalence in C. By Hovey [13, Corollary 1.3.16], a Quillen adjunction (F, G) as
above is a Quillen equivalence if and only if G reflects weak equivalences between
fibrant objects and the derived unit € is a weak equivalence on cofibrant objects. For
future reference, we analyze the derived unit of the composition of a pair a Quillen
adjunctions

F H
C—><TD—><T5.

Let again € be the derived unit of the (F, G)—adjunction, and let us write v for the
derived unit of the (H, K)-adjunction. Checking from the definitions, it is easy to
verify the statement in the next lemma. We will later use various 2-out-of-3 statements
derived from this.

Lemma 6.25 The derived unit of the composed Quillen adjunction (HF, GK) evalu-
ated at X is weakly equivalent to the map

VF(X)ﬁb

X 5 G(F(X)fby o : G(K(H(F(X)™)fiby). 0

Now let us return to the (A, ®)—adjunction in (6-4). It is easy to verify the first part of
the condition for this to be a Quillen equivalence.
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Lemma 6.26 The right adjoint ® in (6-4) reflects weak equivalences between fibrant
objects in CSng.

Proof Let f: A — B be a map between fibrant objects in CS;, and assume that
®( f) is a weak equivalence. Since ®(A4) and ®(B) are fibrant and hence very special,
the map ®(f)(17) is a weak equivalence of spaces. The weak equivalences in (6-5)
therefore imply that f'(1): A(1) — B(1) is also a weak equivalence. Hence f is an
T—equivalence since A and B are positive Z—fibrant. |

The next aim is to show that the derived unit of the adjunction is a weak equivalence on
cofibrant objects. For this we proceed as in Hovey [14] by forming the stabilizations of
the categories I'°PS, and CS” (with respect to the tensor with S1) to get the categories
of spectra SpN (I'°PS,) and Sp™N (CST). We equip these categories of spectra with the
stable model structures defined in [14, Section 3]. It is then an immediate consequence
of Lemma 4.13 that the suspension spectrum functor Fy: CST — SpN(CST) takes
the map £ in (5-1) to a stable equivalence. Hence Fy defines a left Quillen functor
Fy: CSng — SpN(CST) and we obtain a diagram of Quillen adjunctions

A
r®S, ———— Sk

[}
(6-7) Fo lTEVU Fo lTEvo
Ast

SpN(ors,) —— SpN(CST).
@Sl
The functors A% and ®* are the prolongations of A and ® to maps of spectra. For
At this uses that A preserves the tensor with S' and for ®*' we use the natural
transformation

P(A)RS! — PA(P(A) ®S) = PAPA) ®S) — DA S

defined by the unit and counit of the (A, ®)—adjunction. It follows from [14, Propo-
sition 5.5] that the (AS, ®*')—adjunction is a Quillen adjunction. We recall from
[13, Chapter 7] that the homotopy categories of Sp™N(I'°PSy) and Sp™ (CST) are
triangulated and that the total derived functors LA and R®* are exact.

Remark 6.27 There is a diagram analogous to that in (6-7) but with SpN (CSng)
instead of SpN (CSZ). Our preference for the latter category is that this makes it easier

to derive the compactness statement in Lemma 6.30 below.

Lemma 6.28 The derived units of the (Fy, Evg)—adjunctions in (6-7) are weak equiv-
alences on cofibrant objects.
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Proof Consider first the case of 'PS. Given a ['-space X we claim that a fibrant
replacement of Fo(X) in the level model structure on Sp™ (I'°PS) (see [14, Section 1])
is in fact an 2—spectrum, hence also a fibrant replacement in the stable model structure.
Assuming this, the derived unit of the adjunction can be identified with a fibrant
replacement in ['°PS, and is therefore a weak equivalence. To prove the claim, let
X — X be a fibrant replacement in I'°’S, and observe that by [8, Lemma 4.1], the
I-space kTt — X (k™A 8™ (where (— )M denotes fibrant replacement in Sy ) is a
fibrant replacement of X A S” for all n > 0. The claim made above now follows from
[8, Theorem 4.2].

Next consider the case of CS” and let A be a cofibrant commutative Z—space monoid.
Using Lemma 4.12 we see that a fibrant replacement of Fy(A) in the level model
structure on Sp™ (CST) is in fact an Q—spectrum in positive degrees. This implies that
the derived unit of the adjunction can be identified with a fibrant replacement in CSg),
hence is a weak equivalence. a

Lemma 6.29 The derived unit of the adjunction (A%, ®%) is a weak equivalence when
evaluated at Fy(S).

Proof Since A preserves tensors and A(S) = C(1"), we may identify AS(Fy(S))
with Fo(C(11)). Let V be a fibrant replacement of Fo(C (1)) in the level model
structure on Sp™ (CST). Then Lemma 4.12 implies that V is in fact an Q2—spectrum
and hence fibrant in the stable model structure on Sp™ (CS7). Consequently, Fo(S) —
®S(V) is a model of the derived unit and Corollary 6.23 shows it to be a weak
equivalence in spectrum degree 0. Now choose a fibrant replacement Fy(S) — U in
the level model structure on Sp™ (I'°PS,) and notice that U is an Q-spectrum. The
above map factors through U as a map of Q—spectra U — ®% (V) which is a weak
equivalence in spectrum degree 0. This implies the result since both spectra U and
@S (V') have the property that the very special I'-space X in spectrum degree n has
an (n — 1)—connected space X (17). a

Let us in general write [ —, —] for the abelian groups of morphisms in a triangulated
category. Recall that an object K in a triangulated category is said to be compact if for
any family of objects {X; :i € I'}, indexed by a set / and with coproduct [ [;c; X;,
the canonical map @, ;[K, X;] — [K.][;c; Xi] is an isomorphism.

Lemma 6.30 The suspension spectrum Fo(C(17)) is compact in Ho(Sp™ (CS7)).
Proof First observe that there are stable equivalences of spectra

Fo(C(1H)) =5 Fo(c) £ Fo(cy)
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so it suffices to show that Fo(C;) is compact. Let X be an object in Sp™ (CSZ). Using
that the positive Z—model structure on CS7 is finitely generated in the sense of [14,
Definition 4.1], we deduce from [14, Corollary 4.13] that [Fy(C;), X] is isomorphic
to the colimit of the morphism sets [C; ® S”, X,] in Ho(CS?). Thus, the result is a
consequence of the fact that the tensors C; ® S” are compact in the homotopy category
of CST by [13, Theorem 7.4.3]. O

Lemma 6.31 The derived unit of the adjunction (A, ®%) is a weak equivalence on
cofibrant objects.

Proof This argument uses Morita theory. It follows the proof of [31, Theorem 5.3].
The first thing to show is that R®% preserves infinite coproducts. We look at the
composition of Quillen adjunctions

SpN = SpN(Sy) 2 SpN (S, 2 SpN (cST).

The left hand adjunction is a Quillen equivalence, so it is enough to show that the
total derived functor of the composition @ of the two right adjoints preserves infinite
coproducts. Its left adjoint A sends S to Fo(C(1%)). Writing ( —)[n] for the n—fold
shift functor on spectra, this gives

Ta(R®(Y)) 2 [S[n). RO (V)PP ED = [Fo(C (1)), Y P C),

The object Fo(C(17)) is compact by Lemma 6.30 which implies that 7, (R%( -))
preserves infinite coproducts and the same therefore holds for R®.

Now consider the full subcategory 7~ of Ho(SpN (I'Sx)) on objects X for which the
unit of the derived adjunction X — (R®*)(LA%)(X) is an isomorphism. This is
a triangulated subcategory of Ho(Sp™ (I'S)) since both LA™ and R®™ are exact
functors of triangulated categories and it contains F(S) by Lemma 6.29. Furthermore,
since R preserves infinite coproducts, it follows that 7 is closed under infinite
coproducts. Because Fy(S) is a compact generator for Ho(Sp™ (I'Sk)), we deduce
that 7 is the whole category Ho(Sp™N(I'Sy)) |

Proposition 6.32 The derived unit of the (A, ®)—adjunction is a weak equivalence on
cofibrant objects.

Proof Notice first that there is a natural isomorphism A Fy 2 FyA since A preserves
tensors. We know from Lemmas 6.28 and 6.31 that the derived units of the adjunctions
(Fo,Evp) and (A, ®%) are weak equivalences on cofibrant objects. By Lemma 6.25
this implies that the same holds for the composite adjunction (FoA, ® Evy) and using
Lemma 6.25 once more we get the result. a
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Proof of Theorem 1.5 Using [13, Corollary 1.3.16], Lemma 6.26 together with the
last proposition show that the (A, ®)—adjunction is a Quillen equivalence. a

Proof of Corollary 1.6 By Theorem 1.5 and the equivalence between the homotopy
categories of I'-spaces and connective spectra defined in [8, Theorem 5.8], this is now
a consequence of Propositions 6.15 and 6.20. a

7 The units model structure

The aim of this section is to prove Theorem 1.8 from the introduction, which constructs
the units of a commutative Z—space monoid as a cofibrant replacement in a “units”
model structure CSZ on commutative Z-space monoids.

Construction 7.1 Let A be a commutative Z—space monoid. We define 4™ to be
the sub commutative Z—space monoid of invertible path components of A. That is,
A*(n) is the sub simplicial set consisting of all those path components of 4(n) whose
vertices represent units in the monoid 7g(Ayz). This construction is functorial in 4,
and the inclusion defines a natural map A™ — A of commutative Z—space monoids.

The definition of the units is clearly homotopy invariant in the sense that an Z-—
equivalence A — B of commutative Z—-space monoids induces an Z—equivalence
A* — B*. Recall that in Section 3.6 we defined a commutative Z—space monoid A
to be grouplike if the commutative monoid of path components (A7) is a group.
This condition is equivalent to the equality A* = A. Consequently, a map 4 — B
with A grouplike factors uniquely as A — B* — B.

7.2 Units and cobase change

For the construction of the units model structure, we need the following result about
how forming the units behaves with respect to cobase change:

Lemma 7.3 Let A and B’ be commutative Z—space monoids with B’ grouplike, let
A* — B’ be amap in CS*, and let B be the pushout of B’ < A* — A in CS”. Then
the induced map B’ — B is isomorphic to B* — B.

To prove the lemma, we need to analyze how a commutative Z—space monoid decom-
poses into its units and “nonunits”. It is convenient to use the following terminology
which is analogous to the terminology for nonunital S—algebras (‘“nucas”) studied by
Basterra [2].
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Definition 7.4 Let C be a commutative Z—space monoid. A nonunital commutative
C —algebra (C —nuca for short) is a nonunital commutative monoid in the category of
C —modules. We write C—N'S? for the category of C—nucas.

This definition uses that the category of modules Mod¢ over a commutative Z—space
monoid C inherits a symmetric monoidal product K¢, with E K¢ F being defined as
a coequalizer of the diagram EXC X F =% EX F defined by the C —actions on E and
F. A C-nucaisa C—module E with an associative and commutative multiplication
E Xc E — E. Equivalently, it is an algebra over the monad N in Mod¢ defined by
NX =[]0 X¥/2,.

For A a commutative Z—space monoid, we write A for the sub-T —space of A given
by the complement of A*. In other words, 4 consists of the noninvertible path
components of 4.

Lemma 7.5 The multiplication of A induces the structure of an A* —nuca on A.

Proof The product of an element of A4 with a nonunit is a nonunit, so A X A — A
restricts to an A—module structure on A. This in turn restricts to an A*-module
structure and induces a map A 4% A— A. The commutativity and associativity of
A imply that A is an A* —nuca. O

For a C—nuca E, we can equip the coproduct of the underlying Z-spaces C| [ E with
the structure of a commutative Z—space monoid by defining

(CIIE)R(C][E) = (CRCO)[(CRE)[(ERC)[(ERE)— CRE

using the monoid structure of C, the C —-module structure of £ and the composition
EXE—->ENXcE—E.

Lemma 7.6 If A is a commutative Z—space monoid, then A and AX]_[Z are isomor-
phic as commutative Z —space monoids. O

Contrary to the square-zero extensions in algebra or the corresponding constructions
for S—algebras by Basterra and Mandell [2], C]]E fails to be augmented over C
because Modc has no zero object. However, we can use the projection E — * to
the terminal Z—space to view C|[]E as an object in the category of commutative
C —algebras over C| [*.

Proof of Lemma 7.3 Using Lemma 7.6, we define a map of commutative Z—-space
monoids 4 =~ A*[ ][4 — B’[ [* by projecting A onto *. By the universal property of
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the pushout, this induces a map p: B — B’] [, so we may view B as a commutative
B’ -algebra augmented over B’ [*. Since p must map the units of B to B’, it therefore
suffices to show that the map B’ — B maps B’ isomorphically onto p~!(B’). For
this purpose we identify the underlying Z—space of B with the coequalizer B’ X 4x A
of the diagram B’'X A* X A = B’ A defined by the A*—actions on B’ and A. The
result now follows from the chain of isomorphisms

B'RyxA =~ B Kyx(A*][A) = (B' K< A)][(B' Ry~ A) = B'][(B' R~ A)

of Z—spaces over B'[ [x. |

7.7 The model structure

To prove the existence of the units model structure, we will use the method of “Q—
structures” introduced by Bousfield and Friedlander [8] and refined by Bousfield [7,
Section 9]. In the formulation of [7, Section 9], this method produces a left Bousfield
localization (that has fewer fibrant objects than the original model structure). However,
to prove Theorem 1.8 we need to construct a right Bousfield localization (with fewer
cofibrant objects than the original model structure). The key point here is that the
results of [7, Section 9] dualize to give right Bousfield localizations because they do not
make use of generating (acyclic) cofibrations. (We thank Jens Hornbostel for pointing
us to this.) This is not the case with most other localization techniques. For the readers
convenience, we formulate the dual version of Bousfield’s localization theorem [7,
Theorem 9.3] and the necessary prerequisites.

Let C be a model category, let P: C — C be a functor, and let 8: P — id¢ be a natural
transformation satisfying the following axioms:

(B1) If f: A — B is a weak equivalence, then so is P(f).

(B2) For every object A of C, the maps P(B8,4) and Bp(4) are weak equivalences.
(B3) For a pushout square

in C with f a cofibration of cofibrant objects and S¢, Bp and P(g) weak
equivalences, the map P (/) is also a weak equivalence.

We call a map f in C a P—equivalence if P(f) is a weak equivalence in C, a P-
fibration if it is a fibration in C, and a P—cofibration if it has the left lifting property
with respect to all maps that are P-fibrations and P-equivalences. Dualizing the
statement and the proof of [7, Theorem 9.3], we get the following result.
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Proposition 7.8 Let C be a proper model category with a functor P: C — C and a
natural transformation 8: P — id¢ satisfying (B1)—(B3). Then the P—equivalences, P—
cofibrations and P—fibrations form a proper model structure on C, andamap f: C — D
is a P—cofibration if and only if it is a cofibration in C and

P(C) ﬂc_} C

Pl

P(D)2— D

is a homotopy pushout square in C. a

Proposition 7.9 The category CS’ equipped with the functor (—)*: CST — CST
and the natural inclusion 84: A — A satisfies (B1)—(B3).

Proof The condition in (B1) is clearly satisfied and the maps in (B2) are even isomor-
phisms. For (B3) we first consider the outer pushout square in the diagram

!
D——B —=B.
Because B¢ and Bp are Z—equivalences, both C and D are grouplike. Hence C — A
factors through 4™ as indicated by the dotted arrow and we define B’ to be the pushout
of D < C — A. It follows that the pushout in the outer square is isomorphic to the
iterated pushouts defined by the two inner squares. By assumption, C = C* — A4 is
an Z—equivalence and as C — D is assumed to be a cofibration, left properness of the
positive Z-model structure implies that D — B’ is an Z—equivalence. Since B’ — B
is isomorphic to Sp by Lemma 7.3, this implies that D* — B> is an Z—equivalence
and (B3) is proved. m|

We write CSL, for the “units” model structure on commutative Z—space monoids
specified by Propositions 7.8 and 7.9. (Here we use that the positive Z—model structure
on CS7 is proper by [22, Proposition 3.5]).

The units model structure can also be characterized as a right Bousfield localization of
the positive Z—model structure. We refer the reader to Hirschhorn [12, Section 3.3] for
the definition and properties of right Bousfield localizations.

Proposition 7.10 The units model structure CSZ is the right Bousfield localization

of the positive T -model structure with respect to the class of maps A — A for A
positive 7 —fibrant.
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Proof of Proposition 7.10 We use the standard terminology (as in [12, Section 3])
concerning colocal objects and colocal equivalences with respect to the class of maps
specified in the proposition. If W is a cofibrant and grouplike object in CSZ, then the
inclusion 4 — A induces an isomorphism Map(W, 4*) — Map(W, A) for all 4,
which implies that W is colocal. For a general object 4, we consider the composition
A A< > A, where the first map is a functorial cofibrant replacement of 4> in the
positive Z-model structure. Since this is a functorial colocalization of 4, we conclude
from [12, Theorem 3.2.18] that a map A — B of commutative Z—space monoids is
a colocal equivalence if and only if the map of units A — B> is an Z—equivalence.

This implies the statement of the proposition. a

Proof of Theorem 1.8 It is clear that the natural inclusion 4* — A induces an
isomorphism (A4>),7 — (A7) which gives the description of the weak equivalences in
the theorem. The characterization of the cofibrant objects follows from Proposition 7.8
and this in turn implies the last statement in the theorem. a

Appendix A: Cellularity of the positive Z-model structure

In this section we verify that the positive Z—model structure on CS7 is cellular both
in the simplicial and in the topological setting. This is needed for the construction
of the group completion model structure as a left Bousfield localization. Recall from
Hirschhorn [12, Definition 12.1.1] that a cellular model category is a cofibrantly
generated model category C with generating cofibrations / and generating acyclic
cofibrations J such that the domains and codomains of the maps in / are compact
relative to I [12, Definition 10.8.1], the domains of the maps in J are small relative to
the subcategory of relative I —cell complexes [12, Definition 10.4.1] and the cofibrations
are effective monomorphisms [12, Definition 10.9.1].

Proposition A.1 Let S be either the category of simplicial sets or the category of
compactly generated weak Hausdorff topological spaces. Then the positive Z-model
structure on CS” is cellular.

The proof is based on the next lemma. Consider a map A — B of commutative Z—space
monoids and the diagram B <— A — B. We write B X4 B for the pushout of this as a
diagram in CS” and B[] 4 B for the pushout of the underlying diagram of Z—spaces.

Lemma A.2 If A — B is a cofibration in CST, then the canonical map of 7 —spaces
B|]4 B — BX, B is a monomorphism.
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Proof For the proof we need the (absolute) flat model structure on S7 introduced
in [22, Section 3]. This is a monoidal model structure which satisfies the monoid
axiom, so by [30, Theorem 4.1(2)] it lifts to a “flat” model structure on the category
of A-modules for the commutative Z—space monoid A. Furthermore, the flat model
structure on A-modules is monoidal with respect to the symmetric monoidal product
X4 inherited from the X—product. Arguing as in the proof of [22, Proposition 12.5],
one shows that the cofibrancy assumption on 4 — B as a map in CS? implies that it
is a cofibration as a map of A—modules with respect to the flat model structure. Now
observe that the map in the lemma can be identified with the pushout-product of the map
A — B with itself (with respect to the X 4—product as a map of 4-modules). Hence it
follows from the pushout-product axiom that the map in question is a cofibration in the
flat model structure on A-modules. An argument similar to that used in the proof of
[22, Proposition 12.7] shows it to be an s—cofibration in the sense of [22, Section 7],
which in turn implies that it is level-wise injective and hence a monomorphism. O

Proof of Proposition A.1 For the compactness and smallness assertions, we recall
from [22, Section 6] that the objects in question are obtained by applying free functors
(that is, left adjoints of evaluation functors) to compact objects in S. The assertions
therefore hold because sequential colimits in CS” are created in ST and cofibrations
in CST are h—cofibrations in ST by [22, Section 7].

By definition of an effective monomorphism, we have to show thatif 4 — B is a
cofibration in CSZ, then it is an equalizer of the canonical maps B = B X4 B. Since
equalizers are created in the underlying category SZ, it suffices to show that this holds
for the underlying maps of Z—spaces. As maps of Z—spaces we have the factorization
B = B[4 B— BXy4 B, where the second map is a monomorphism by the previous
lemma. It therefore suffices to show that A — B = B[], B is an equalizer diagram
and this again follows from the fact that the map of Z—spaces underlying 4 — B is an
h—cofibration by [22, Proposition 12.7]. O

Appendix B: Bi-I'-spaces

As in Section 6.1, let I'°P be the category of based finite sets, and let Sx denote the
category of based simplicial sets.

Definition B.1 A bi-T'-space is a functor I'P x 'P — S, with X (k*,07) = x and
X (0%, k™) = * for all objects k™t of I'°P,
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For i = 1,2, the projections (k| + k,)™ — ki+ and ([1 +1,)" — Il.+ induce a map
(B-1)  X((ki +k2)™, (1 +12)™)
— X(kF D) x X(kF ) < X (kS ) < X (k1)

Definition B.2 The bi-I'-space X is bispecial if the map (B-1) is a weak equivalence
for all kl,kz, 11, 12 > 0.

It is clear from the definition that X is bispecial if and only if the I'—spaces X (kT, —)
and X(—, k™) are special in the sense of Bousfield—Friedlander [8] for each k > 0. If
X is bispecial, then the two projections 2+ — 11 and the fold map 2* — 17 induce
a monoid structure on (X (17, 17)) via

To(X(AT, 1) x (X (11, 17)) <= 7o(X (2T, 17)) — 7mo(X (1T, 17)).

A second monoid structure arises from the induced maps in the second variable.
Lemma B.3 The two monoid structures on mo(X (1%, 17)) coincide.

Proof This follows by a version of the Eckmann—Hilton argument: The two ways to
multiply 4 elements coincide because they are both given by

mo(X (1T, 1)) <= 7o(X (2%, 27)) — mo(X(17F,17)),

where the first isomorphism is induced by the weak equivalence in (B-1). a

Definition B.4 A bi-I'—space X is bi-very special if it is bispecial and the monoid
mo(X (17, 17)) is a group.

Again the condition of being bi-very special is equivalent to each of the ['-spaces
X(k*,—) and X(—, k™) being very special in the sense of [8] for all kK > 0. The
following is the bi-I'-space analogue of the construction in [8, Section 4]. One can
prolong a bi-I'-space X to a functor on pairs of based (not necessarily finite) sets by a
left Kan extension. If K and L are based simplicial sets, we may then evaluate the
prolonged functor in each bisimplicial degree (K, L;). Forming the diagonal of the
resulting trisimplicial set X (K, L;),, we get a simplicial set X(K, L). As in the
case of I'-spaces, there are natural assembly maps

X(K,L)AP— X(KAP,L) and X(K.L)AQ — X(K,L A Q),

and similar assembly maps acting from the left. Setting X,,, = X(S™,S") for
m,n > 0, we get a bispectrum with structure maps

Xmn AS' = X1 and  Xopn AS' = Xppnt1
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induced by the assembly maps. Let us write (—)f1® for the fibrant replacement functor
on S, that takes a based simplicial set to the simplicial complex of its topological
realization.

Definition B.5 A bispectrum X is a bi-Q2—spectrum if the structure maps induce
weak equivalences

Xpo, — QX5

m—‘,—l,n) and Xrg?nHQ(Xrgl?n—i—l)

in all bidegrees (m,n).

Lemma B.6 If the bi-I'-space X is bi-very special, then the associated bispectrum is
a bi-Q2 —spectrum.

Proof The condition that X be bi-very special implies that the I'-spaces X (S”,—)
and X(—, S") are very special for all n > 0. By [8, Theorem 4.2] this implies the
statement of the lemma. |

Given a bi-T'—space X, we let X, be the I'-space with Xo(sT) = X(sT,17). We
define a new I'-space X by setting

Xi1(sT) = hocolim Q"(X(sT A S™, ™)),

(m,n)eN XN

where the category A is as in Section 2.5. The map from the initial vertex into the
homotopy colimit induces a map of I'-spaces Xy — X;. Similarly, we define a I'-space
X, by

X>(sT) = hocolim Q7 (st A X(S™, §™)fib

2(5%) = hocolim Q" (s A X(S™,5")™)

and notice that the assembly map for the left action defines a map of I'-spaces X, — X .

Lemma B.7 If X is bi-very special, then both maps Xy — X; and X, — X are
level equivalences.

Proof The condition that X be bi-very special implies that each of the bi- '-spaces
X(sTA—,—) is also bi-very special. Therefore Lemma B.6 implies that X is
the homotopy colimit of a sequence of level equivalences which gives the result for
Xo — X;. For X, — X1, the claim follows because the map of spectra induced by the
assembly map s A X (S, S") — X(sT A S™, S") is a stable equivalence for each
n >0 by [8, Lemma 4.1]. O

Since X, is symmetric in m and n, the last lemma and its dual version have the
following consequence.
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Proposition B.8 If the bi-I'-space X is bi-very special, then there is a zig-zag chain
of level equivalences of I'—spaces between X (—,17) and X (1", —). |

Appendix C: Group completion and units in the topological
context

In this section we show how to deduce the theorems from the introduction in the
topological context. Thus, let I/ denote the category of compactly generated weak
Hausdorff topological spaces, and consider the corresponding category of topological
T-spaces U, which was also studied in [22]. We continue to let S denote the category
of simplicial sets. The first observation is that geometric realization |—| and the
singular complex Sing define a pair of adjoint functors | — |: ST 2 U? :Sing, which
is a Quillen equivalence with respect to the positive Z—model structures on S* and
UT . Viewing these categories as symmetric monoidal categories under the K—product,
the functor | — | is strong symmetric monoidal and Sing is (lax) symmetric monoidal.
Since the unit and counit for the adjunction are monoidal natural transformations,
this implies that there is an induced Quillen equivalence between the categories of
commutative monoids | —|: CST 2 CU* :Sing, again with respect to the positive
Z-model structures.

C.1: Group completion in the topological context

The main technical difference encountered in the topological setting is that the geometric
realization functor | — | from simplicial spaces to spaces is homotopy invariant only
for simplicial spaces that are “good” in the sense of Segal [32]. Thus, when forming
the geometric realization we should either stipulate that the simplicial spaces be good,
or otherwise use the “fat” realization || —|| considered in [32, Appendix A]. For a
topological monoid M this means that when forming the bar construction we should
either require the unit of M to be a nondegenerate base point, or otherwise use the fat
realization of the usual simplicial bar construction Be(M ). On the other hand, since
all objects in I/ are fibrant, the level-wise fibrant replacement ( — ) used in Section 4
can be dropped in the topological setting.

For our results on group completion, the above discussion has the following implications.
The assumption that the commutative Z—space monoid 4 in Theorem 1.2 be cofibrant
implies that the underlying E«,—space Aj7 is nondegenerately based, and the statement
of the theorem therefore remains valid in the topological setting. Since Appendix A
about cellularity includes the topological case, the construction of the group completion

s

model structure CZ/{g proceeds as in the simplicial case. The topological version

P
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of Theorem 1.3 holds with the understanding that the notation B(A,z) — B(A4),7)
indicates the fat realization of the simplicial map Be(Aj7) — Be(A4}7). Consequently,
we have the Quillen equivalence

| —1: CSng <—_>CZ/Ing:Sing.

This in turn implies that the discussion of group completion and repletion in Section 5.10
carries over to the topological setting.

C.2: The relation to topological I' —spaces

It follows from Schwede [29, Theorem B1], that the category of topological I'-spaces
I'°PU, has a stable Q—model structure such that the geometric realization and singular
complex functors induce a Quillen equivalence | — |: ['°PSy 2 ['PUy :Sing. We wish
to relate the categories I'°PUfy and CUZ directly, and for this we observe that the
general criteria by Elmendorf, Kriz, Mandell and May [10, Proposition VII 2.10] and
Hovey [13, Proposition 4.2.19] imply that the category CUZ is enriched, tensored
and cotensored over the category of based spaces Uy, such that the positive Z-model
structure makes it a based topological model category (a Uy —category in the sense of
[13, Definition 4.2.18]). Thus, we can imitate the definition of the adjoint functor pair
(A, ®) in Section 6.5 to get a Quillen adjunction

(C-1) A: TPU, 2 CUL - ®.
This fits in a commutative diagram of Quillen adjunctions
A
| —

- |Hsmg i - Hsmg

LU, ——— CUE,
[
and it therefore follows from Theorem 1.5 and the 2-out-of-3 property for Quillen
equivalences that the (A, ®)—adjunction in (C-1) is a Quillen equivalence. Using this,
we also get a topological analogue of Corollary 1.6.

C.3: Units in the topological context

The units A of an object 4 in CUZ is defined as in the simplicial setting by let-
ting A*(n) be the union of the path components in A(n) that represent units in
the commutative monoid mo(A4y7). Thus, we have a natural inclusion 4% — A4 of
commutative Z—space monoids and A is grouplike if and only if this is an equality.
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Z , we define the units model structure CUZ to
be the right Bousfield localization of the positive Z—model structure with respect to
the inclusions A* — A for A positive Z—fibrant. The weak equivalences and the
cofibrant objects in CUZ can then be described as in Theorem 1.8 and we have the
Quillen equivalence | —|: CSZ 2 CUZ :Sing. However, since it is not clear that the
decomposition 4 = A ]| A in Lemma 7.6 holds topologically, an additional argument
is needed in order to see that Axiom (B3) required for using the Bousfield—Friedlander
localization principle in Proposition 7.8 is satisfied. The problem with the topological
decomposition of a commutative Z—space monoid in its units and nonunits is that this
is a decomposition in path components and these may not agree with the connected
components. However, it is clear that the analogue of Lemma 7.6 holds for an object
in CUZ that is obtained by geometric realization from an object in CSZ. Arguing as in
the proof of Proposition 7.9 it follows that Axiom (B3) is satisfied for such objects.
The general case of Axiom (B3) follows from this by considering the diagram

In analogy with the definition of CSZ

D C A
T: T~ T~
D’ <+ |Sing C| — |Sing 4|,

where the left hand square is defined by factoring the map |[SingC| - C — D as a
cofibration |Sing C| — D’ followed by an acyclic fibration D’ — D. (The objects
|Sing C| and D’ may not be cofibrant but this does not affect the proof.) Since (B3)
holds for the pushout defined by the bottom diagram, it follows from left properness
that it also holds for the pushout defined by the upper diagram.

Summarizing the above discussion, there is a topological analogue of the diagram of
Quillen equivalences in (1-6). From this we then get a spectrum of units functor which
to a topological commutative symmetric ring spectrum R associates the topological
I'-space gl;(R).
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