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Fractional Dehn twists in
knot theory and contact topology

WILLIAM H KAZEZ

RACHEL ROBERTS

Fractional Dehn twists give a measure of the difference between the relative isotopy
class of a homeomorphism of a bordered surface and the Thurston representative of
its free isotopy class. We show how to estimate and compute these invariants. We
discuss the relationship of our work to stabilization problems in classical knot theory,
general open book decompositions and contact topology. We include an elementary
characterization of overtwistedness for contact structures described by open book
decompositions.

57M50; 53D10

1 Introduction

Given an automorphism h of a bordered surface S that is the identity map on @S ,
the fractional Dehn twist coefficient of h with respect to a component C of @S is a
rational number. It measures the amount of rotation that takes place about C when
isotoping h to its Thurston representative. See Section 2 for precise definitions of c.h/.

This concept was first studied by Gabai and Oertel [10], who called it the degeneracy
slope, and was applied to problems related to Dehn fillings of manifolds containing
essential laminations. It is also used, with different coordinates, by Roberts [19; 20]
to describe surgeries on fibred knots in which she can construct taut foliations. Most
recently it was used by Honda, Kazez and Matić [14; 15] to quantify the concept of
right-veering that arises in contact topology.

Section 2 describes techniques for estimating and computing c.h/ and gives some
examples. We prove a general result, Theorem 2.24, that c.h/ 2 Œ0; 1

2
� if h is a

stabilization, and begin to develop properties of the important case when c.h/D 1
2

.

In Section 3 we construct a class of examples, motivated by an example of Gabai [8],
for which c.h/D 1

2
. The idea is to replace a fibred knot with its .2; 1/–cable. This

creates a fibred knot with reducible monodromy and fractional Dehn twist coefficient
1
2

. Following this with surgery on an unknotted curve in the fiber of the .2; 1/–cable
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can produce examples of fibred knots with pseudo-Anosov monodromy that also have
fractional Dehn twist coefficient 1

2
.

Our interest in producing examples of fibred knots in S3 with fractional Dehn twist
coefficient 1

2
arises from Conjecture 4.7. This conjecture states that a knot in S3 with

fractional Dehn twist coefficient 1
2

can not be destabilized. Section 4 includes a brief
history of this conjecture.

The relevance of Conjecture 4.7 in contact topology is discussed in Section 5. Denote
by � the contact structure compatible with a pair .S; h/. If true, this conjecture would
provide the simplest known counterexamples to a conjecture of Honda, Kazez and
Matić [14] by producing fibred knots in S3 that are not stabilizations, are right-veering,
yet are still overtwisted. The section includes some context for the conjecture of [14],
references to earlier counterexamples for links bounding planar surfaces by Lekili
[17], Lisca [18] and Ito and Kawamuro [16], and some remarks on work of Colin and
Honda [5]. The technique we use for recognizing that a contact structure is overtwisted
is completely elementary: we exhibit an overtwisted disk by finding an unknotted,
untwisted curve on the Seifert surface of the knot.

2 Computing fractional Dehn twist coefficients

We recall Thurston’s classification of surface automorphisms. Precise statements of
this theorem can be found in Thurston [26, page 425] and in Fathi, Laudenbach and
Poénaru [6, Section 4, Exposé 11]. A slightly weaker version can be found in Casson
and Bleiler [4].

Theorem 2.1 [26; 4; 6] Let S be an oriented hyperbolic surface with geodesic
boundary, and let h 2 Homeo.S; @S/. Then h is freely isotopic to either

(1) a pseudo-Anosov homeomorphism � ,

(2) a periodic homeomorphism � , in which case there is a hyperbolic metric for
which S has geodesic boundary and such that � is an isometry of S , or

(3) a reducible homeomorphism h0 that fixes, setwise, a maximal collection
of disjoint simple closed geodesic curves fCj g in S .

To avoid overlap in the cases, we refer to a map as reducible only if it is not peri-
odic. Given a reducible map, splitting S along

S
j Cj gives a collection of surfaces

S1; : : : ;Sn�S with geodesic boundary that are permuted by h0 . Choose an integer ni

so that .h0/ni maps Si to itself. Maximality of fCj g implies that applying Thurston’s
classification theorem to .h0/ni 2 Homeo.Si ; @Si/ produces either a pseudo-Anosov
or periodic representative.

Algebraic & Geometric Topology, Volume 13 (2013)
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Our primary focus will be in describing homeomorphisms from the point of view of
a single boundary component C � @S that is fixed pointwise by h. If such a map
is reducible, let S0 be the subsurface Si (as above) of S which contains C . Then
h0.S0/D S0 , and we let �0 be the pseudo-Anosov or periodic representative of h0jS0 .
With this notation, we make the following definition.

Definition 2.2 A map � 2 Homeo.S; @S/, freely isotopic to h, is called a Thurston
representative of h if it is pseudo-Anosov, periodic or reducible with �jS0

D �0 , where
in the reducible case we require that a preferred component C of @S has been specified.

Let S be a compact surface with nonempty boundary. A pair .S; h/, where h is
a homeomorphism that restricts to the identity map on @S , determines a closed 3–
manifold M D S � Œ0; 1�= �, where the equivalence relation � identifies .x; 1/ �
.h.x/; 0/ for all x 2S and .x; s/� .x; t/ for all x 2 @S and s; t 2 Œ0; 1�. The singular
fibration with pages S � ftg is called the open book determined by the data .S; h/.

Notice that if S is a disk, then necessarily h is isotopic rel boundary to the identity
map. If S is an annulus, then h is isotopic rel boundary to some power of the Dehn
twist about the core of S . Otherwise, S is hyperbolic.

We now restrict attention to the case that S is hyperbolic, and hence h has Thurston
representative � . Let l be the link in M given by @S � Œ0; 1�= � and let N.l/

be a regular neighborhood of l . Notice that the link complement M n int N.l/ is
homeomorphic to the mapping torus S � Œ0; 1�=.x; 1/� .h.x/; 0/ of h and also to the
mapping torus S � Œ0; 1�=.x; 1/� .�.x/; 0/ of � . In the discussions which follow, we
will typically identify M n int N.l/ with the mapping torus of � . We will also take
advantage of the flow ˆ, called the suspension flow of � , obtained by integrating the
vector field @=@t , where points of M n int N.l/ are given by Œ.x; t/�;x 2 S; t 2 Œ0; 1�.
Notice that the suspension flow ˆ is pseudo-Anosov (respectively, periodic) when �
is pseudo-Anosov (respectively, periodic). In particular, when � is periodic, all orbits
of ˆ are closed. When � is pseudo-Anosov, there are an even number of closed orbits
of ˆj@N.l/, half attracting and half repelling.

Therefore, fixing a component C of @S and restricting the flow ˆ to the component
of @N.l/ corresponding to C , ˆ necessarily has periodic orbits. Let 
 be one such,
and write


 D p�C q�;

where �D C , � is the meridian, and p; q are relatively prime integers. The fractional
Dehn twist coefficient of h with respect to a component C of @S [14] is given by

c.h/D p=q :

Algebraic & Geometric Topology, Volume 13 (2013)
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In the context of surgery on knots in S3 , the reciprocal quantity, q=p , is called the
degeneracy slope by Gabai [8]. See also [10] for motivating work describing the
location of cusps from the point of view of a toroidal boundary component in a 3–
manifold carrying an essential lamination. Fractional Dehn twists, though with different
coordinates, also play an important role in Roberts’ constructions of taut foliations [19;
20]. See [15] for a description of the change in coordinates.

An alternate description of the fractional Dehn twist coefficient, which is meant to
emphasize that h looks like a fraction of a Dehn twist has been applied to the boundary
of S is given as follows. First extend h by the identity map to a homeomorphism
of F D S [ .@S � I/ where the annuli added to the boundary of S are glued along
@S � f1g. Next, freely isotope h to its Thurston representative, � , on S , and extend
this representative across @S �I so that the resulting homeomorphism of F is isotopic
to id[ h relative to @F . The extension can be chosen to be a shearing map, that is, to
be a straight-line homotopy when lifted to the universal cover of @S � I thought of as
a subset of the plane.

The periodic orbit 
 determines a collection of points fx0; : : : ;xq�1g � C labelled
cyclically and ordered compatibly with the induced orientation on C . The shearing
homeomorphism that extends � across C � I maps x0 � I to an arc that may spiral
more than once around C in either direction. Lifting to the universal cover, zS , and
indexing with integers rather than working mod q , it must end at some xp � f1g 2 @ zS .
It then follows that c.h/D p=q .

We now describe how to compute c.h/ with respect to C by computing the action of h

on some arcs. Let ˛ be an essential oriented, properly embedded arc in S starting on
C . Define ih.˛/ to measure the number of intersections of ˛ and h.˛/ which occur
after their common initial point but in an annular neighborhood of C .

Topologically, this means first isotoping the arcs ˛ and h.˛/, relative to their boundaries,
so they intersect minimally. Then ih.˛/ is defined to be a signed count of the number
of points, x , in the intersection of the interiors of h.˛/ and ˛ with the property that
the union of the initial segments of these arcs, up to x , is contained in an annular
neighborhood of C .

It is also useful to define ih.˛/ geometrically by putting the arcs in a canonical position.
We can think of arcs as living in F D S [ .@S �I/, a hyperbolic surface with geodesic
boundary together with annuli extending the boundary components. Denote by ˛ the
unique geodesic arc in the free isotopy class of ˛ that is orthogonal to the initial and
terminal boundary components of S . Now let ˛0 and ˛1 be monotonically spiraling
arcs in @S � I such that ˛0 �˛ �˛1 is an arc isotopic, relative to its endpoints, to ˛ .
Write h.˛/0 � h.˛/� h.˛/1 for the canonical form of h.˛/.

Algebraic & Geometric Topology, Volume 13 (2013)



Fractional Dehn twists in knot theory and contact topology 3607

h.˛/

˛

Figure 1: In this example, ih.˛/D 1

The geometric description of ih.˛/ depends on properties of its Thurston representative,
� . In all cases �.˛/D h.˛/.

If � is pseudo-Anosov, it fixes no compact geodesic, and hence h.˛/ and ˛ intersect
minimally. It follows that ih.˛/ is the number of intersections of the interiors of h.˛/0
and ˛0 counted with sign; namely,

ih.˛/D hint h.˛/0; int˛0i :

The same formula for ih.˛/ applies when � is periodic, provided that h.˛/¤ ˛ . In
the case that h.˛/D ˛ , � is an orientation preserving isometry that agrees with the
identity map at a point of @S , and hence is the identity map. It follows that h is the
composition of Dehn twists along the boundary components of S .

In the case that � is reducible let h0; �0 and S0 be as in Definition 2.2. If ˛ � S0 ,
then the formulas given above can be applied to compute ih0.˛/D ih.˛/. Otherwise,
the geometric description breaks into cases. Although an analysis of these cases is
straightforward, it seems to yield little insight, and so we do not include this here.

Definition 2.3 [14] Let ˛ and ˇ be properly embedded oriented arcs in S with a
common initial point. Suppose, without changing notation, that they have been isotoped,
while fixing endpoints, to intersect transversely in the minimum possible number of
points. We say ˛ is to the right of ˇ if the frame consisting of the tangent vector to ˛
followed by the tangent vector to ˇ agrees with the orientation on S . Similarly, we
say ˛ is to the left of ˇ if the frame consisting of the tangent vector to ˇ followed by
the tangent vector to ˛ gives the orientation on S . This definition implies that every
arc is both to the left and right of itself.

Algebraic & Geometric Topology, Volume 13 (2013)
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See [14] for several equivalent definitions.

Definition 2.4 [14] A homeomorphism h that restricts to the identity map on @S is
called right-veering at C if for every embedded oriented arc ˛ with initial endpoint
on C , h.˛/ is to the right of ˛ . A map is right-veering if it is right-veering at every
boundary component of S . Similarly, a homeomorphism h that restricts to the identity
map on @S is called left-veering at C if for every embedded oriented arc ˛ with initial
endpoint on C , h.˛/ is to the left of ˛ . A map is left-veering if it is left-veering at all
components of the boundary of S .

The first step in using ih to compute c.h/ is the following proposition. We now return
our focus to a component C of @S . In what follows, c.h/ denotes the fractional Dehn
twist coefficient with respect to C and properly embedded oriented arcs have initial
point on C as necessary.

Proposition 2.5 [14] Let h 2 Homeo.S; @S/. Then h is right-veering at C if and
only if c.h/ > 0, and similarly h is left-veering at C if and only if c.h/ < 0.

Corollary 2.6 If ˛ is a properly embedded essential oriented arc in S , then h.˛/ is to
the right of ˛ implies c.h/� 0, and h.˛/ is to the left of ˛ implies c.h/� 0.

This gives a quick way to show that c.h/ D 0 by producing two essential arcs, one
moved to the right by h and the other moved to the left by h. See Example 2.8. If
c.h/D 0 it is always possible to find such a pair of arcs. Note that if � is periodic or
� is reducible with periodic �0 , then we can choose a single arc ˛ fixed by h (and
hence moved both to the left and to the right by h).

For h with c.h/ D p=q with p ¤ 0, the next proposition shows how to produce a
homeomorphism g for which computing c.g/D0 is equivalent to showing c.h/Dp=q .

Proposition 2.7 If g D �
�p
C
.hq/, then c.g/D qc.h/�p .

Propositions 2.7, 2.9 and 2.20 make it possible to estimate c.h/ experimentally.

Example 2.8 The knot 820 is fibred, with fiber as shown in Figure 2. This can be
deduced using the product disk techniques of Gabai [7]; in fact, the fiber shown can be
constructed by inductively summing together four Hopf bands. The knot 820 is known
to be hyperbolic (See, for example, Adams [1], Adams, Brock and Bugbee et al [2]
and [8].) Denote its pseudo-Anosov monodromy by h. The simple closed curve A

(respectively B ) in Figure 2 is the core of a left (respectively, right) Hopf band summand.
The properly embedded arc ˛ (respectively, ˇ ) is the dual to A (B respectively) and
hence is mapped to the right (respectively, left) by the monodromy h. By Corollary 2.6,
c.h/D 0.

Algebraic & Geometric Topology, Volume 13 (2013)
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Figure 2: The Seifert surface for 820

Proposition 2.9 Suppose h is right-veering at C and ˛ is a properly embedded
essential arc with initial point on C . Then either

� c.h/ … Z and ih.˛/D bc.h/c or

� c.h/ 2 Z and ih.˛/ 2 fc.h/� 1; c.h/g.

Proof Let � be the Thurston representative of h and let �C denote the restric-
tion of � to C . Let fx0;x1; : : : ;xq�1g be any periodic orbit of �C . We choose
fx0;x1; : : : ;xq�1g to be ordered cyclically about C , with order compatible with the
induced orientation on C .

Now consider the shearing homeomorphism (as described in the alternate description
of c.h/ found earlier in this section) that extends � across C � I to yield h, and,
in particular, maps the arc x0 � I to an arc connecting x0 � f0g to xp mod q � f1g.
Denote the lift of this homeomorphism to zC � I by f ; so, in particular, using the
earlier notation, f maps the arc x0�I to the straight line joining x0�f0g to xp�f1g.
Define gW zC ! zC by g.z/D z0 , where f maps the arc z � I to an arc connecting
z � f0g to z0 � f1g. (So g is a lift of �C .)

Set nD bc.h/c and notice that

�C .Œx0;x1//D Œxr ;x.rC1/ mod q/ and g.Œx0;x1//D Œxp;x.pC1//;

Algebraic & Geometric Topology, Volume 13 (2013)
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where r D p� nq , and therefore satisfies 0� r � q� 1. Also,

r D 0” c.h/ 2 Z :

Now recall that ih.˛/D hint h.˛/0; int˛0i, where ˛ has canonical form ˛0 �˛ �˛1

and h.˛/ has the canonical form h.˛/0 � h.˛/ � h.˛/1 . Let z D ˛.0/ 2 C . We may
assume that z 2 Œx0;x1/, since we may relabel the indices of the xi as necessary while
preserving their cyclic order. Therefore, by Lemma 2.10, h.˛/.0/ 2 Œxr ;x.rC1/ mod q/.
If r ¤ 0, then no lift of z lies in ŒxrCnq;xrC1Cnq/ and it follows that ih.˛/D bc.h/c.
If r D 0, then both �C .z/ and z have unique lifts in Œxnq;xnqC1/. Label these
lifts A�C .z/ and zz respectively. If A�C .z/ lies to the right of zz in Œxnq;xnqC1/, then
ih.˛/D c.h/. Otherwise, ih.˛/D c.h/� 1. This is illustrated in Figure 3.

˛ D ˛ h.˛/

z0 z0

x0 x1 xq x2q xnq

xnqCrC1

xnqCr x.nC1/q

Figure 3: The existence of the third circled intersection depends on r and
the position of z0

To conclude, therefore, it suffices to prove the following lemma.

Lemma 2.10 Suppose ˇ is a properly embedded geodesic arc orthogonal to the
boundary (thus ˇ D ˇ ) with ˇ.0/ 2 Œx0;x1/. Then �.ˇ/.0/ 2 Œxr ;x.rC1/ mod q/.

Proof Notice that if � is periodic or reducible with �0 periodic, then � , respectively
�0 , is an isometry. Hence, in either case, �.ˇ/.0/D �.ˇ/.0/. So we may assume that
� is pseudo-Anosov or reducible with �0 pseudo-Anosov.

Let �s and �u denote the stable and unstable geodesic laminations of � , if � is
pseudo-Anosov, or of �0 , if � is reducible with �0 pseudo-Anosov. Let Ls

1
; : : : ;Ls

n ,
n� 1, denote the leaves of �s bounding the complementary region of �s containing
C , ordered cyclically about C . Similarly, let Lu

1
; : : : ;Lu

n denote the leaves of �u

bounding the complementary region of �u containing C , ordered cyclically about C .

Algebraic & Geometric Topology, Volume 13 (2013)
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We shall call the geodesics perpendicular to C and extending between each consecutive
pair Lu

i ;L
u
iC1

the unstable prongs and the geodesics perpendicular to C and extending
between each consecutive pair Ls

i ;L
s
iC1

the stable prongs. See Figure 4. Notice
that � fixes the unstable and stable prongs since it fixes the stable and unstable
laminations. Notice also that the endpoints of the unstable (respectively, stable) prongs
coincide exactly with the repelling (respectively, attracting) periodic points of �C . In
particular, the periodic orbit fx0;x1; : : : ;xq�1g consists exactly of the endpoints of
some subset of prongs. Now consider �.ˇ/. Since the geodesic ˇ intersects the stable

Ls
i

Ls
iC1

Lu
i

Lu
iC1

x0 x1

Figure 4: The case q D 2 is shown with x0 and x1 as endpoints of two of
the stable prongs

and unstable laminations and prongs transversally and minimally, so does �.ˇ/. Thus
�.ˇ/.0/ 2 Œxr ;x.rC1/ mod q/ implies �.ˇ/.0/ 2 Œxr ;x.rC1/ mod q/.

This completes the proof of Proposition 2.9.

The proof of Proposition 2.9 also yields the following.

Proposition 2.11 Let �W S ! S be a Thurston representative, C a component of
@S , and ˇ a properly embedded geodesic arc orthogonal to @S with initial point in
C . Let P be any finite union of �–orbits in C and, and let I be a component of the
complement in C of P . Then �.ˇ/.0/ 2 I if and only if �.ˇ/.0/ 2 I .

We also have the following related results.

Algebraic & Geometric Topology, Volume 13 (2013)
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Lemma 2.12 [20, Lemma 5.1] Let �W S ! S be a Thurston representative which
is pseudo-Anosov or reducible with �0 pseudo-Anosov, and C a component of @S .
Let P be the set of periodic points of �jC in C , and let I be a component of the
complement in C of P . Then there is a properly embedded geodesic arc, ˇ , orthogonal
to @S with initial point in I . If � is reducible, with �0 pseudo-Anosov, then ˇ can be
chosen to lie in S0 .

S

˛ ˇ

D2

@S

Figure 5: A boundary trivial intersection

Definition 2.13 Let ˛ and ˇ be two properly embedded arcs in a compact surface
S . We call a point of intersection p 2 ˛\ˇ a boundary trivial intersection if there
is a disk in S bounded by three arcs: subarcs ˛1 of ˛ , ˇ1 of ˇ , and 
1 of @S , with
˛1\ˇ1 D fpg. This is illustrated in Figure 5.

Lemma 2.14 [20, Lemma 2.2] Let �W S ! S be a Thurston representative which is
pseudo-Anosov. Then if ˇ is a properly embedded geodesic arc orthogonal to @S , ˇ
and �.ˇ/ have no boundary trivial intersections.

Now let P D fx0;y0; : : : ;xk�1;yk�1g be the set of periodic points of pseudo-Anosov
�C , ordered cyclically about C , with order compatible with the induced orientation
on C . Suppose the xi , 0 � i � k � 1, are the attracting periodic points and the yi ,
0� i � k�1, are the repelling periodic points. Consider the oriented intervals .xi ;yi/

and .yi ;x.iC1/ mod k/, 0� i < k , with orientation induced by the orientation of C .

Definition 2.15 Each interval of the form .xi ;yi/ is called �–slow and each interval
of the form .yi ;x.iC1/ mod k/ is called �–fast.

Now suppose that m is any positive integer such that �m fixes P pointwise. Notice
that for points z in the �–fast intervals, �m.z/ > z whereas for points z in the �–slow
intervals, �m.z/ < z . See Figure 6. We therefore have the following.

Algebraic & Geometric Topology, Volume 13 (2013)
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x1

y1

x2

y2

x3

y3

Figure 6: The pseudo-Anosov action of �m , when k D 3

Proposition 2.16 Let �W S!S be a Thurston representative which is pseudo-Anosov
or reducible with �0 pseudo-Anosov, and C a component of @S . Let m be any positive
integer such that �m fixes the periodic points of �jC pointwise.

If .xi ;yi/ is a �–slow interval, and ˇ is a properly embedded geodesic arc ˇ orthogo-
nal to @S with initial point in .xi ;yi/, then �m.ˇ/.0/ < ˇ.0/, where the ordering is
given by the ordering on .xi ;yi/.

And if .yi ;x.iC1/ mod k/ is a �–fast interval, and ˇ is a properly embedded geodesic
arc ˇ orthogonal to @S with initial point in .yi ;x.iC1/ mod k/, then �m.ˇ/.0/ > ˇ.0/,
where the ordering is given by the ordering on .yi ;x.iC1/ mod k/.

Proof By symmetry, it suffices to consider the case that ˇ.0/ lies in a �–slow interval.
Since ˇ.0/ lies in a �–slow interval, �m.ˇ/.0/ < ˇ.0/, where the ordering < is
given by the ordering on .xi ;yi/. Since the cyclic ordering in C of endpoints of arcs
in S agrees with the cyclic ordering of their geodesic representatives, provided the
arcs have no boundary trivial intersections, it therefore follows from Lemma 2.14 that
�m.ˇ/.0/ < ˇ.0/.

Corollary 2.17 Let �W S ! S be a Thurston representative which is pseudo-Anosov
or reducible with �0 pseudo-Anosov, and C a component of @S . Let m be any positive
integer such that �m fixes the periodic points of �jC pointwise.

Then there is a properly embedded geodesic arc ˇ orthogonal to @S with initial point in
a �–slow interval of C such that �m.ˇ/.0/ < ˇ.0/. Symmetrically, there is a properly
embedded geodesic arc ˇ orthogonal to @S with initial point in a �–fast interval of C

such that �m.ˇ/.0/ > ˇ.0/.

Proof This follows immediately from Lemma 2.12 and Proposition 2.16.

Algebraic & Geometric Topology, Volume 13 (2013)
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Corollary 2.18 If h is right-veering at C and ˛ is a properly embedded essential arc
with initial point on C , then ih.˛/� c.h/� ih.˛/C 1.

Corollary 2.19 If h is right-veering at C and there exist essential arcs ˛ and ˇ with
ih.˛/ < ih.ˇ/, then c.h/D ih.ˇ/D ih.˛/C 1.

For completeness, we record the left-veering version of these results.

Proposition 2.20 Suppose h is left-veering at C and ˛ is a properly embedded
essential arc with initial point on C . Then either

� c.h/ … Z and ih.˛/D dc.h/e or
� c.h/ 2 Z and ih.˛/ 2 fc.h/; c.h/C 1g.

Corollary 2.21 If h is left-veering at C and ˛ is a properly embedded essential arc
with initial point on C , ih.˛/� 1� c.h/� ih.˛/.

Proposition 2.22 If h is neither right nor left-veering at C , that is c.h/D 0, then for
any ˛ , ih.˛/D 0.

Proof If h.˛/D ˛ , then ih.˛/D 0. So we may assume h.˛/¤ ˛ .

Let g D TC h where TC is a right Dehn twist about C . By Proposition 2.7,

c.g/D c.h/C 1D 1;

thus g is right-veering and by Proposition 2.9, ig.˛/� c.g/D 1. Since h.˛/¤ ˛ , it
follows that ih.˛/D ig.˛/� 1� 0.

Next let g0 D T �1
C

h. Then c.g0/ D c.h/� 1 D �1, thus g0 is left-veering and by
Proposition 2.20, �1D c.g0/� ig0.˛/. It follows that ih.˛/D i 0g.˛/C 1� 0.

Definition 2.23 Let g 2 Homeo.S 0; @S 0/ and let a be a properly embedded arc in
S 0 . Define S to be the union of S 0 and a band attached to @S 0 along neighborhoods
of the endpoints of a in S 0 so that the resulting surface is orientable. This presents S

as the union of S 0 and an annulus that intersect in a regular neighborhood of a. Let T

be a positive Dehn twist on the annulus. Let yg and yT be the extensions of g and T ,
respectively, to the portion of S where they are not already defined, by the identity
map. The positive stabilization of g along a is the homeomorphism hD yT ı ygW S!S .
Refer to a as the plumbing arc of the stabilization.

Theorem 2.24 If h is a positive stabilization, and S has connected boundary, then
0� c.h/� 1

2
.
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Proof A regular neighborhood of a can be thought of as a square with edges e and
w contained in the boundary of S 0 and edges n and s that are parallel to a in S 0 .
Figure 7 shows this plumbing square. Consider the arcs h.w/ and ˇ D h�1.w/. To
show that c.h/� 1

2
, it is enough, by Proposition 2.7, to show that c.h2/� 1. This in

turn will follow, by Proposition 2.9, if we show ih2.ˇ/D 0.

To see this, we follow the arc ˇ from its initial point, keep track of the edges labelled
n, e , w and s that it crosses, and argue that if it eventually intersects h2.ˇ/, the
intersection point will not contribute to ih2.ˇ/. The first edge that ˇ crosses is e .
From this point on, it never crosses either w or e . Thus if it intersects h2.ˇ/, it must
do so in the portion f of ˇ in the square bounded by n, e , w and s . If after hitting
e , ˇ intersects f , the initial segments of ˇ and f are not boundary parallel since
their union misses n. In this case, this point of ˇ\f contributes nothing to ih2.ˇ/,
subsequent intersections can not contribute either, and we conclude ih2.ˇ/D 0.

Now consider the case instead that ˇ first hits e , then s , and then s again. This forces
an intersection of ˇ\f , and for the same reason, we conclude ih2.ˇ/D 0.

This leaves the case that ˇ intersects e , s and n in order. At this point, either the
entire arc ˇ misses f , in which case there is nothing to prove, or ˇ intersects f . In
the latter case, the union of the initial segments of ˇ and f are a nonseparating curve
dual to n, and hence not boundary parallel.

n

s

e

w
f

S

S 0

h.w/D h2.ˇ/

ˇ D h�1.w/

Figure 7: The surface S is obtained from S 0 by adding a Hopf band, shown
horizontally, along the plumbing square bounded by n ,e ,w and s

Example 2.25 Let A be an annulus, and let TA be a positive Dehn twist about the
core of A. Let g D T k

A
with k � 5. Next let � � A be an arc that cuts A into

a disk, and let hW S ! S be the positive stabilization of h0 along � . Since S is
a punctured torus, a straightforward homology computation shows that h is pseudo-
Anosov. Since h is a product of positive Dehn twists, it is right-veering, hence c.h/> 0.
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By Theorem 2.24, c.h/� 1
2

. Since �.S/D�1 the stable lamination can have only 2

prongs, or equivalently cusps, about @S . From this it follows that c.h/ is a multiple of
1
2

. It now follows that c.h/D 1
2

.

Proposition 2.26 Let h be a homeomorphism of a surface S with connected boundary.
Suppose that h is a positive stabilization of a homeomorphism g of S 0 along a plumbing
arc a. Suppose c.h/ D 1

2
. If S 0 is an annulus, then g D T k

S 0 , where T k
S 0 is a right

Dehn twist about the core of S 0 and k � 5. Otherwise, ig.a/ � 1 and ig.a
�1/ � 1,

and so c.g/� 1 on each boundary component of S 0 .

Proof Suppose that c.h/D 1
2

. Recall from Definition 2.23 that hD yT ı ygW S ! S .

Let n, e , w and s be the properly embedded arcs introduced in the proof of
Theorem 2.24 and let � D h.w/. Notice that � D yT .w/ is the arc shown in the
first image of Figure 9. To simplify notation, we will isotope n, e , w , s and � so that
nD n, wD eD eDw , sD s and � D � in S . Notice that the cyclic ordering in C of
endpoints of arcs in S agrees with the cyclic ordering of their geodesic representatives,
provided the arcs have no boundary trivial intersections. In particular, therefore, the
cyclic ordering of the endpoints of n, s , w and � is as shown in Figure 9.

Notice that nD s if and only if S 0 is an annulus and in this case, c.h/D 1
2

if and only
if g D T k

S 0 , where T k
S 0 is a right Dehn twist about the core of S 0 and k � 5. So we

may restrict attention to the case that S 0 is not an annulus and n\ s D∅.

Step 1: Characterize twisting greater than 1 By symmetry, it suffices to show that
ig.a/� 1. Focus attention on n\ h.s/. If this is nonempty, follow the arc h.s/ from
its initial point s.0/ to its first intersection h.s/.t0/D n.t1/ with n. Computing ig.a/

requires consideration of geodesic representatives, a, of arcs, like a, in S 0 . Notice
that even though n¤ s , we have nD s D a. It follows that ig.a/ � 1 if and only if
n\ h.s/¤∅ with h.s/Œ0; t0�� nŒ0; t1� boundary parallel in S 0 . See Figure 8.

Step 2: Introduce reference points on the boundary C of S We next introduce
reference points x1;y1; : : : ;x2N ;y2N about the boundary C D @S . These are defined
below and shown in Figure 9. As usual, let � denote the Thurston representative of h.

First consider the case that � is periodic, or � is reducible with �0 periodic. Since
c.h/ D 1

2
, there are distinct periodic points x1 and y1 in C with the following

properties. First fx1;x2D �.x1/g; fy1;y2D �.y1/g are disjoint order two orbits of � .
Next w.0/2 .x1;y1/, and finally fx1;y1;x2;y2g is ordered cyclically and compatibly
with the induced orientation of C . This is shown in Figure 9 by setting N D 1.
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w e

n

s

a

S

h.s0/
S 0

Figure 8

Next consider the case that � is pseudo-Anosov, or � is reducible with �0 pseudo-
Anosov. Since c.h/ D 1

2
, there are an even number, 2N say, of attracting periodic

points and an even number, again 2N , of repelling critical points in C with respect
to � or �0 respectively. Let fx1;y1; : : : ;x2N ;y2N g be a listing of these, labelled
cyclically and ordered compatibly with the induced orientation of C . Cut C open
along these periodic points to obtain 4N pairwise disjoint intervals

.x1;y1/; .y1;x2/; : : : ; .x2N ;y2N /; .y2N ;x1/:

We may further assume that the periodic points are labelled so that w.0/ 2 .x1;y1/.
Since c.h/D 1

2
and h.w/D � , it follows from Proposition 2.11 that

�.0/ 2 .xNC1;yNC1/:

Next we show that necessarily w.1/2 .xNC1;yNC1/ and �.1/2 .x1;y1/. First notice
that w.0/; �.0/; w.1/; �.1/ are cyclically ordered about C , as shown in Figure 9. Since
c.h/D 1

2
, it therefore follows from Proposition 2.11 that w.1/ 2 .xNC1;yNC1/ and

�.1/ 2 .x1;y1/. This is illustrated in the second image of Figure 9.

Step 3: Choose a reference arc Using the fact that c.h/ D 1
2

, a reference arc 

satisfying ih2.
 /D 1, 
 D 
 , and 
 .0/ 2 .w.0/; �.0// can be chosen as follows.

If � is periodic, then let 
 be any properly embedded geodesic arc orthogonal to
@S and with initial point in .w.0/; �.0//. Since w and � admit no boundary trivial
intersections, such arcs exist. If � is reducible with �0 periodic, then let 
 be any
properly embedded geodesic arc in S0 orthogonal to @S and with initial point in
.w.0/; �.0//. Again, since w and � admit no boundary trivial intersections, such arcs
exist. In either case, �2.
 /D 
 and so h2.
 /D TC .
 /.
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w

w
w

e

y1

y1

yNC1

yNC1 x1
x1

xNC1xNC1

n

s

�

h.�/

� D h.w/

-

� D h.w/

h.�/
S

S

S 0

@S

Figure 9: Two views of @S

Consider next the case that � is pseudo-Anosov or reducible with �0 pseudo-Anosov.
If the intervals .x1;y1/ and .x2;y2/ are �–slow, necessarily .w.0/; �.0// contains
a �–fast interval I , and by Corollary 2.17, there is a properly embedded geodesic
arc 
 orthogonal to @S with initial point in I . Otherwise, the intervals .x1;y1/

and .x2;y2/ are �–fast, and hence I D .x2; �.0// lies in a �–fast interval. In this
case, the fact that � is in efficient position with respect to the unstable prong with
initial point x2 means that there is a properly embedded geodesic arc 
 orthogonal
to @S with initial point in I . In each case, the interval I is �–fast and hence, by
Proposition 2.16, �2.
 /.0/ > 
 .0/. It follows immediately that ih2.
 /D 1. This is
illustrated in Figure 10.

�



 


�2
 h2


Figure 10: The initial point of 
 is in a �–fast interval and ih2.
 /D 1

Step 4: Action on reference arc We now derive a contradiction to the assumption
that ig.a/ < 1 by computing �2.
 /.0/. Recall that hD yT ı ygW S! S and notice that
the points in

fw.0/; 
 .0/; �.0/; s.0/; n.0/; w.1/; �.1/; w.0/g
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are listed in cyclic order about C .

Since 
 .0/ 2 .w.0/; �.0// and � D �.w/,

�.
 /.0/ 2
�
�.w/.0/; �.�/.0/

�
D
�
�.0/; �.�/.0/

�
and hence

�2.
 /.0/ 2
�
�.�/.0/; �2.�/.0/

�
:

Now we notice that ig.a/ < 1 implies that �.s/.0/ 2 .s.0/; n.0// and so

�.�/.0/ 2 .�.0/; n.0//� .�.0/; w.1//:

But this means that

�2.
 /.0/ 2
�
�.�/.0/; �.w/.1/

�
D
�
�.�/.0/; �.1/

�
� .�.0/; �.1//:

So �2.
 /.0/ 2 .�.0/; �.1// and hence ih2.
 /D 0, a contradiction. This is illustrated
in Figure 11.



�

�

h2


ww

w

s

s

nn

� D �w

� D �w

�s

Figure 11: Endpoint ordering with the assumption ig.a/ < 1

3 Stallings’ twists applied to .2 ; 1/–cables.

Let S be a surface properly embedded in a 3–manifold M , and let C be an unknot
which is properly embedded in S . We say that C is untwisted relative to S if its
regular neighborhood in S is an untwisted annulus. This means, if D is an embedded
disk in M bounded by C , then C is untwisted relative to S if and only if D can be
isotoped relative to its boundary so that D and S are transverse along C . A Stallings’
twist [25] is a surgery along any such unknotted untwisted C .
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Stallings’ twists will be applied to .2; 1/–cables and exploited in Section 5. As a first
step we show in this section that the monodromies associated to the construction are
pseudo-Anosov and have fractional Dehn twist coefficient 1

2
.

Consider an open book S3D .F; h/, with connected binding k , such that h is isotopic
to a pseudo-Anosov map  and c.h/ D 0. (Recall that 820 is the binding of one
such open book. There are infinitely many such. Take as binding, for example, any
hyperbolic fibred knot which contains as summand the fiber of the figure-8 knot.) Let
N denote a regular neighborhood of k . Abuse notation and let F also denote the
compact fiber of the surface bundle S3n int N , and consider two copies of this compact
fiber: F0 D F � f0g and F1=2 D F � f1

2
g. Choose a hyperbolic metric with geodesic

boundary for F , and let F0 and F1=2 inherit this metric.

Let N0 � int N be a second smaller regular neighborhood of k and let K denote the
.2; 1/–cable of k , embedded in @N0 (see Rolfsen [21, page 112]). Letting �W S1�D2!

S3 be an embedding with image N0 , the image under � of the .2; 1/ torus knot (shown
in Figure 12) is what is standardly known as the .2; 1/–cable of k .

K

k

Figure 12: The .2; 1/–cable of k

Let P denote a pair of pants properly embedded in N n int N1 , with boundary compo-
nents @F0[ @F1=2 in @N and a third boundary component lying on @N1 , where N1

is a small regular neighborhood of K lying in the interior of N . See Figure 13.

Set S D F0[P [F1=2 . Extend the hyperbolic metric on F0[F1=2 over P to obtain
a hyperbolic metric on S with geodesic boundary. Notice that S can be thought of as
the union of two copies of F connected by a 1–handle. Let ˛D ˛ denote the geodesic
representative orthogonal to @S of a cocore of this 1–handle. We may choose this
hyperbolic metric on S so that there is an orientation preserving isometry, r W P ! P

say, which interchanges the two components of P n˛ .

Lemma 3.1 gives two slightly different formulas for the monodromy map S . Depending
on the context, it is enough to describe a representative of the free isotopy class, in
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˛

P

Figure 13

which case we use H0 and r . To compute fractional Dehn twist coefficients we need
to describe a representative of the relative isotopy class. This is done by adjusting r so
that it fixes @S pointwise. To accomplish this, add a collar neighborhood @S � I to
S , and let R be the homeomorphism of P [ .@S � I/ that extends r and is a shear to
the right by half a rotation on @S � I . For simplicity of notation, we incorporate the
collar into S and think of R as a homeomorphism of S .

Lemma 3.1 The surface S is a fiber of K in the fibred 3–manifold S3 nN1 . Repre-
sentatives of the free and relative isotopy classes of the monodromy classes are H0 and
H 0

0
W S ! S , respectively, which are given by

H0.z/D

8<:
.x; 1

2
/ if z D .x; 0/ lies in F0;

.h.x/; 0/ if z D .x; 1
2
/ lies in F1=2;

.T@F0
T@F1=2

/�1r.z/ if z lies in P;

H 00.z/D

�
H0.z/ if z … P;

.T@F0
T@F1=2

/�1R.z/ if z 2 P:

Proof As .S3nint N /nS inherits a product structure from the one on .S3nint N /nF ,
it suffices to understand a compatible product structure on .N n int N1/ nP .

A meridional flow line for S3 n int N is shown on the left of Figure 14. It splits into
two subarcs that are flow lines for the .2; 1/–cable of k . In the center of the figure
several, of an interval’s worth, of these upward flowing subarcs are shown. The initial
points of this collection of arcs form an interval that is mapped by the monodromy to
the terminal points. On the right an analogous collection of downward flowing subarcs
is shown.
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Figure 15 shows P flattened out, and it records the positions of the arcs constructed
above under the monodromy map. The monodromy, up to isotopy fixing @S , is deter-
mined by the action on these arcs. Direct computation shows that .T@F0

T@F1=2
/�1R.z/

agrees with the monodromy map on these arcs.

@F1=2

@F0

Figure 14: Each curve indicated with an arrow is a flow line of H 00W S ! S .
The monodromy is computed by comparing the locations of initial and termi-
nal points of an interval’s worth of flowlines.

@F1=2

@F0

Figure 15: Before and after images of two arcs in P under the flow

Choose a simple closed curve C in S with two properties. First, it intersects F0[F1=2

in two essential arcs, C0DC \F0 and C1=2DC \F1=2 . Second, Ci is nonseparating
in Fi for each i D 0; 1

2
. Now set H D TC ıH0 .

Theorem 3.2 Suppose that h has pseudo-Anosov Thurston representative and satisfies
c.h/D 0. Let H be the map obtained from the above construction applied to h. Then
the Thurston representative ‰ of H is pseudo-Anosov.

Proof To simplify the exposition, it helps to pass to a closed hyperbolic surface yS
naturally associated to S . Topologically, yS is defined by setting

yS D S [@ D2;
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the surface obtained from S by capping off @S with a disk. Notice that

yS D F0[
yP [F1=2 ;

where yP D P [@ D2 is an annulus. The homeomorphism H0 extends to a homeomor-
phism yH0W

yS ! yS given by

yH0.z/D

8<:
.x; 1

2
/ if z D .x; 0/ lies in F0;

.h.x/; 0/ if z D .x; 1
2
/ lies in F1=2;

.T@F0
T@F1=2

/�1yr.z/ if z lies in yP ;

where yr W yP ! yP is a homeomorphism, uniquely determined up to isotopy, extending
r W P ! P .

Now consider the closed hyperbolic surface F0[f F1=2 , obtained by gluing the hyper-
bolic surfaces F0 and F1=2 by the isometry f W @F0! @F1 given by f .x; 0/D .x; 1

2
/.

Choose a diffeomorphism from yS to F0[f F1=2 , and use this diffeomorphism to pull
back the hyperbolic metric on F0[f F1=2 to a hyperbolic metric on yS . Let A denote the
geodesic simple closed curve which is the pull back to yS of @F0D @F1=2�F0[f F1=2 .
Notice that

yH0.z/D

8<:
.x; 1

2
/ if z D .x; 0/ lies in F0;

.h.x/; 0/ if z D .x; 1
2
/ lies in F1=2;

T �2
A
yr.z/ if z lies in yP :

Set
yH D TC ı

yH0 :

The following characterization of periodic and reducible maps follows immediately
from Thurston’s classification of automorphisms of surfaces, Theorem 2.1.

Lemma 3.3 A homeomorphism h of a surface S has a periodic or reducible repre-
sentative if and only if there exists a possibly immersed multicurve 
 D �1[ � � � [ �n

where each �i is an essential, embedded, curve in S , and, up to isotopy, 
 is fixed
by h. In the periodic case, each �i may be assumed to be nonseparating, and in the
reducible case, 
 may be chosen to be embedded.

Corollary 3.4 If the Thurston representative y‰ of yH is pseudo-Anosov, then the
Thurston representative ‰ of H is also pseudo-Anosov.

Proof By contradiction, suppose that H is either periodic or reducible, and let 
 be
the multicurve guaranteed by Lemma 3.3. Since the curves 
 , H0.
 /, and T �1

C
.
 /

and the image of the isotopy between H0.
 / and T �1
C
.
 / all lie in S and therefore in
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yS , it follows that H.
 / is isotopic to 
 . Furthermore, no component of 
 is boundary
parallel in S . Thus applying Lemma 3.3 to 
 � yS shows that yH is either periodic or
reducible.

Theorem 3.2 therefore follows from the following theorem.

Theorem 3.5 The Thurston representative y‰ of yH is pseudo-Anosov.

Proof Suppose instead that y‰ is periodic or reducible. Choose 
 as guaranteed by
Lemma 3.3 so that it is either an embedded curve or is a union of nonseparating curves.
Necessarily yH0.
 / is isotopic to T �1

C
.
 /. We next establish notation for a sequence

of lemmas that will be used to derive a contradiction in Corollary 3.11.

Let �s and �u denote the stable and unstable geodesic laminations of  . Let
Ls

1
; : : : ;Ls

n , n � 1, denote the leaves of �s bounding the complementary region
of �s containing @F , ordered cyclically about @F . Similarly, let Lu

1
; : : : ;Lu

n denote
the leaves of �u bounding the complementary region of �u containing @F , ordered
cyclically about @F .

The unstable prongs, ie, the geodesics perpendicular to @F found between each consec-
utive pair Lu

i ;L
u
iC1

, canonically cut each Ls
i into two open intervals Ls

i� and Ls
iC .

Similarly, the stable prongs canonically cut each Lu
i into two open intervals Lu

i� and
Lu

iC . Since c.h/D 0, we may assume that both  and h fix the leaves Ls
i ;L

u
i ;L

s
i˙ ,

and Lu
i˙ , for 1� i � n.

To simplify the exposition and the notation, we now assume that A, C , and 
 have been
isotoped so that they are each geodesic in yS . Let � denote the geodesic representative
of yH0.
 /, and choose an isotopy representative of T �1

C
so that T �1

C
.
 / is a geodesic.

Let W denote the closed complementary region of �s � f0; 1
2
g which contains A.

Since 
 meets �s � f0; 1
2
g efficiently, so does yH0.
 /. It follows that we can isotope

yH0.
 / to be geodesic while preserving this efficient intersection with �s �f0; 1
2
g. The

following therefore holds.

Lemma 3.6 If a component of yH0.
 /\W is a path connecting Ls
i �f0g and Ls

j�f
1
2
g

for some i; j , 1� i; j � n, then the corresponding component of �\W is also a path
connecting Ls

i � f
1
2
g and Ls

j � f0g.

Lemma 3.7 Let O be a geodesic simple closed curve in yS , and for each integer l , let
Ol denote the geodesic representative of T l

A
.O/. If a component of O \W is a path

connecting Ls
i �f0g and Ls

j �f
1
2
g for some i; j , 1� i; j � n, then the corresponding

component of Ol \W is also a path connecting Ls
i � f

1
2
g and Ls

j � f0g.
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Proof The leaves Ls
i�f0g which intersect O are uniquely determined by the constraint

that the intersection O \ .Ls
i � f0g/ is efficient. This efficiency of intersection is

unaffected by composition with T l
A

.

Symmetric statements hold relative to the unstable lamination �u � f0; 1
2
g.

Lemma 3.8 Both 
 \C ¤∅ and 
 \A¤∅.

Proof If 
 \ C D ∅, then 
 is fixed by T �1
C

and hence, up to isotopy, also by
yH0 . Since  is pseudo-Anosov, yH0 fixes only A, up to isotopy, and it follows that

 \C ¤∅.

It follows that if 
 \ A D ∅, then necessarily T �1
C
.
 / \ A ¤ ∅. But we know

yH0.
 /D T �1
C
.
 / and hence

jT �1
C .
 /\Aj D j yH0.
 /\Aj D j yH0.
 /\ yH0.A/j D j
 \Aj D 0 :

So 
 \A¤∅ (and T �1
C
.
 /\A¤∅).

We now use C to get a measure of the amount of twisting of yH0.
 / and T �1
C
.
 /

respectively about A. We do this as follows. First consider the components of
yS n .
 [A [ C /. Call such a complementary region a triangular disk region if it
is a disk with piecewise geodesic boundary consisting of exactly three geodesic subarcs,
one contained in each of 
 , A and C respectively. Choose a regular neighborhood X

of A so that

(1) all such triangular disk regions are contained in the interior of X ,

(2) all intersections of @X with C , 
 , yH0.
 /, and T �1
C
.
 / are transverse,

(3) C \X consists of two essential embedded arcs: �1 and �2 ,

(4) 
 \X consists of a essential embedded arcs: 
1; : : : ; 
a , for some a� 2,

(5) �\X consists of a essential embedded arcs: �1; : : : ; �a ,

(6) T �1
C
.
 /\X consists of a essential embedded arcs: �1; : : : ; �a , and

(7) for 1� i�2 and 1�j �a, each of the arcs �i , 
j , �j , and �j has nonempty (nec-
essarily minimal) intersection with each of

S
Ls

i �f0g,
S

Ls
i �f

1
2
g,
S

Lu
i �f0g,

and
S

Lu
i � f

1
2
g.

In (4)–(6) we are using the fact that yH0.A/DA, thus

jT �1
C .
 /\Aj D j yH0.
 /\Aj D j
 \Aj D a :

Choose the indices j , 1� j � a, so that �j is the component corresponding to yH0.
j /.

Orient the arcs �1; �2 , 
i , �i , and �i , 1� i � a, so that they run from @X \ .F �f0g/

to @X \ .F � f1
2
g/.
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Lemma 3.9 For all i and j , 1� i � a and 1� j � 2, jh�i ; �j ij � 1.

Proof Since �i � T �1
C
.
 / and �j � C each component �i can meet each of �1 and

�2 at most once.

Lemma 3.10 For some i0 and j0 , 1� i0 � a and 1� j0 � 2, h
i0
; �j0
i< 0.

Proof Points of intersection 
 \C lie either in X or outside X . The condition that
all triangular disk regions lie in X guarantees that any point of intersection 
 \C

lying outside X results in increased geometric intersection of T �1
C
.
 / with A. And

any point of intersection 
 \C lying inside X and with positive intersection number
h
i ; �j i results in increased geometric intersection of T �1

C
.
 / with A. Since 
 \C

is nonempty, it follows that if all intersection numbers h
i ; �j i are nonnegative, then
necessarily jT �1

C
.
 /\Aj> j
 \Aj. This is impossible.

Rechoose indices as necessary so that

h
1; �1i< 0

and �1 is the component of � corresponding to yH0.
1/.

Corollary 3.11 The geodesic representative of yH0.
 /, �, and T �1
C
.
 / are not equal,

and therefore yH .
 / is not isotopic to 
 .

Proof Focus on 
1 and T 2
A
.�1/, the latter arc isotoped rel endpoints to be geodesic

and oriented so that it runs from @X \ .F � f0g/ to @X \ .F � f1
2
g/. The arc 
1\W

is a path from Ls
i � f0g to Ls

j � f
1
2
g for some i; j ; 1� i; j � n. Since yH0 switches

F �f0g and F �f1
2
g, and since c.h/D 0, it follows from Lemma 3.7 that both �1\W

and T 2
A
.�1/\W are paths from Ls

j � f0g to Ls
i � f

1
2
g. There are two possibilities:

either T 2
A
.�1/\ 
1 D∅ or T 2

A
.�1/\ 
1 ¤∅.

Consider first the case that T 2
A
.�1/\ 
1 D∅. In this case,

hT 2
A.�1/; �1i � 0:

Since �1 intersects A in a point, applying TA changes the intersection number by 1,
and we have

h�1; �1i � �2 :

It follows from Lemma 3.9 that �1 ¤ �m for all m; 1�m� a.

Next consider the case that T 2
A
.�1/\ 
1 ¤ ∅. Recall that �1 is the portion of the

geodesic, corresponding to 
1 , that is formed by applying yH0 to 
 . The action of yH0
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on W is T �2
A

, thus T 2
A
.�1/ corresponds to acting on 
1 by the map yr used in the

definition of yH0 . If i ¤ j , yr would force T 2
A
.�1/\ 
1 D ∅. It follows that i D j .

Moreover, h
1; �1i< 0 implies jhT 2
A
.�1/; �1ij � 1.

If hT 2
A
.�1/; �1i � 0, the argument of the first case applies. So we may assume

hT 2
A
.�1/; �1i D 1. This is possible only if 
1 , T 2

A
�1 and �1 are all paths connecting

Ls
i �f0g to Ls

i �f
1
2
g, pairwise isotopic through paths connecting Ls

i �f0g to Ls
i �f

1
2
g.

In other words, up to composition by T l
A

for some integer l , they must lie as shown in
Figure 16 (above). The arc �1 is added in Figure 16 (below).

Li � f0g

Li � f0g

Li � f
1
2
g

Li � f
1
2
g

�1

�1


1


1

T 2
A
.�1/

�1

Figure 16

The next step is to show there is a geodesic arc, ˇ , properly embedded and essential in
W , such that ˇ is disjoint from 
1[T 2

A
.�1/. When n> 1, choose ˇ to be a geodesic

path from Ls
p � f0g to Ls

p � f
1
2
g for some p ¤ i . When nD 1, we argue similarly

but work instead with the leaves Ls
1�

, � 2 f˙g. The arcs 
1 , T 2
A
�1 and �1 are all

paths connecting Ls
1�
� f0g to Ls

1�
� f

1
2
g, pairwise isotopic through paths connecting

Ls
1�
� f0g to Ls

1�
� f

1
2
g. We then choose ˇ to be a geodesic path from Ls

1ı
� f0g to

Ls
1ı
� f

1
2
g, where ı D�� .

Thus in either case, ˇ satisfies jˇ\�1j D 2, whereas jˇ\ �mj � 1 for all l; 1� l � a.
So again we may conclude �1 ¤ �m for all m; 1�m� a.

Theorem 3.5 now follows from Corollary 3.11
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Proposition 3.12 With H 0
0

as defined in Lemma 3.1, and H 0 D TC ıH 0
0

,

1
2
� c.H 0/� 1:

Proof Let ˛ � S be the arc fixed by the involution r W P ! P . To estimate c.H 0/,
we first compute iH 0.˛/. Loosely speaking, it is enough to compute just R and TC on
the initial portion of ˛ . More precisely, H 0.˛/D ˇ1 �ˇ2 , where ˇ1 is an arc ending
transversely on F �f0g, and ˇ2 is an arc which starts on F �f0g and has an essential
first return to F �f0g. Figure 17 shows ˇ1 which is computed by applying R and TC

to the initial portion of ˛ . Only the first intersection of ˇ1 and ˛ can contribute to
iH 0.˛/, but this does not yield a boundary parallel union of initial segments. It follows
that iH 0.˛/D 0, and thus by Proposition 2.9, 0� c.H 0/� 1.

˛
ˇ1ı1 
1

C
F �
f0g

Figure 17

The next step is to estimate c.H 02/ by computing H 0�1.˛/ and comparing it to H 0.˛/.
Towards this end, write T �1

C
.˛/D 
1�
2 , where 
1 is essentially truncated at F �f0g

as above. To compute H 0�1.˛/D ı1�ı2 , where ı1 is essentially truncated at F �f1
2
g

by applying the remaining portion of H 0�1 to ˇ1 . The single intersection of 
1 and
ˇ1 is enough to conclude that iH 02.H 0�1.˛//D 1. Thus by Proposition 2.9 we have
1� c.H 02/� 2 and it follows by Proposition 2.7 that 1

2
� c.H 0/� 1.

We show in the next section, Corollary 4.6, that in S3 , c.H 0/ can only be 1
2

.
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4 Stabilization in S 3

The first portion of this section is devoted to proving the result, Theorem 4.5, that the
only values fractional Dehn twist coefficients take on in S3 are 0 and 1=n, where n

is an integer satisfying jnj � 2.

This leads to the statement of Conjecture 4.7, or in light of Theorem 4.5, the equivalent
statement, Conjecture 4.8, either of which imply that a fibred knot in S3 with fractional
Dehn twist coefficient 1

2
can never be destabilized. This consequence, in the most

important case when the monodromy is pseudo-Anosov, was first stated, without proof,
by Gabai in [8].

Part of our interest in this result is that it appears to depend on deep facts about S3 ,
most likely Gabai’s thin position strategy, in an essential way. Indeed, very simple
examples, such as the examples of Proposition 4.9, show the result fails even in lens
spaces.

We begin by considering more closely the case that the Thurston representative � of
the monodromy h is either periodic or reducible with �0 periodic.

Proposition 4.1 (Seifert [24]) Let S3 D .S; h/ be an open book decomposition
which has connected binding k . If the Thurston representative of h is periodic, then
k is the unknot or a .p; q/–torus knot for some relatively prime integers p and q

satisfying jpj> 1.

Proposition 4.2 Let S3D .S; h/ be an open book decomposition which has connected
binding k . If the Thurston representative, � , of h is reducible with �0 periodic, then
k is a .p; q/–cable knot, for some relatively prime integers p and q satisfying jpj> 1,
and c.h/D 1=.pq/.

Proof Suppose � is reducible with �0W S0 ! S0 periodic. Denote the boundary
components of S0 by C D k D @S;C1; : : : ;Cn . Let Ti denote the torus in S3 that is
the union of flow lines of �0 intersecting Ci . Since �0 may permute the Ci , the Ti

are not necessarily distinct. By Alexander [3] and Schubert [22], each Ti bounds a
solid torus Vi in S3 .

Each Ti is essential in S3�k . To see this, notice that an infinite cyclic cover of S3�k

can be created by gluing copies of S3� k split along S . The inverse image of Ti in
this cover is an infinite cylinder which is incompressible since Ci is essential in S .

It follows that every Vi contains k . By connectivity of S0 there can be only one such
solid torus, thus V D V1 D � � � D Vn and T D T1 D � � � D Tn . Consider a closed orbit
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 of �0 that lies on the boundary of a regular neighborhood N.k/ of k . If this is a
meridian, then c.h/D 0. Otherwise the orbits of �0 , together with k , define a Seifert
fiber space structure on V .

A Seifert fiber space structure on V can have at most one singular fiber (Hatcher [12,
Theorem 2.3]). If k is a singular fiber, the leaf space of V �N.k/ is an annulus.
Moreover, this annulus is covered by S0 . It follows that S0 is itself an annulus, thereby
contradicting the choice of S0 as a reducing surface for � .

It follows that k is a nonsingular fibre and hence a .p; q/–cable of the core of V . Let
KV denote the knot which is the core of V , and let XV denote the complement of
V in S3 . Coordinates .p; q/ are chosen so that a .1; 0/ curve is a longitude for KV ,
and a .0; 1/ curve is a meridian for KV . A cabling annulus is an annulus in V such
that one boundary component is a .p; q/ curve on the boundary of V , the interior is
embedded in the interior of V , and the other boundary component is a p to one cover
of KV . Notice that c.h/D 1=.pq/ is the slope of the cabling annulus.

Let S 00 denote the subsurface S nint S0 of S . Notice that the orientation on S0 induces
a �0 –invariant orientation on the intersection T \S D C1 [ � � � [Cn . Equivalently,
the oriented complementary surface S 00 intersects @XV in n� 1 parallel consistently
oriented simple closed curves: C1; : : : ;Cn . Necessarily these curves are .1; 0/ curves
and S 00 has n connected components. Moreover, the complement of S 00 in XV is an
I –bundle. It follows that KV is fibred and S 00 consists of n copies of a fiber SV of
KV . It follows also that p D n. Moreover, since S0 cannot be an annulus, jpj> 1.

To compute c.h/, consider a periodic orbit 
 near C , and express it in (longitude,
meridian) coordinates with respect to C . The orbits of �0 define the Seifert fibration
on V , and since C is a nonsingular fiber, 
 is also a .p; q/ curve with respect to KV .
It follows that 
 intersects a meridian of C once. To compute the number of times 

intersects S , it is enough to compute the intersection between a .p; q/ curve and the
p .1; 0/ curves that are S \T . It follows that 
 is a .1;pq/ curve with respect to C ,
thus c.h/D 1=.pq/.

Corollary 4.3 Let S3 D .S; h/ be an open book decomposition which has connected
binding k . Suppose that the Thurston representative, � , of h is either periodic or
reducible with �0 periodic. Then either k is the unknot and c.h/D 0 or c.h/D 1=n,
where jnj � 2 is the slope of the cabling annulus.

Proof Since k is either a .p; q/–torus knot or a .p; q/–cable knot, it follows that either
k is the unknot, or the cabling annulus is incompressible and boundary incompressible
in S3� int N.k/. Since the cabling annulus has slope pq , it follows that either k is
the unknot and c.h/D 0 or k is not the unknot and c.h/D 1=.pq/.
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Theorem 4.4 [8] Let S3 D .S; h/ be an open book decomposition which has con-
nected binding k . Suppose that � is either pseudo-Anosov or reducible with �0

pseudo-Anosov. Then either c.h/D 0 or c.h/D 1=r , where 2� jr j � 4.genus.k//�2.

Proof [8, Theorem 8.8] states that the degeneracy, d.k/, of the complement of k has
one of the forms

(1) r.1=0/, with 1� r � 4.genus.k//� 2,

(2) r=1, with 2� jr j � 4.genus.k//� 2.

See [20] for a second proof of the lower bound in (2). As noted in Section 2, when
M D S3 , c.h/ is the reciprocal of the slope of d.k/. It follows that c.h/ is either 0

or 1=r for some integer r , 2� jr j � 4.genus.k//� 2.

Combining Corollary 4.3 and Theorem 4.4 proves the following.

Theorem 4.5 If .S; h/ is an open book decomposition of S3 with connected binding,
then c.h/ equals 0 or 1=n for some integer n, jnj � 2.

Theorem 4.4 and Proposition 3.12 immediately imply the following.

Corollary 4.6 Let H 0
0

be the monodromy of a (2,1)-cable of a knot in S3 with pseudo-
Anosov monodromy and fractional Dehn twist coefficient 0. Then H 0 D TC ıH 0

0
, as

constructed above, satisfies c.H 0/D 1
2

.

Among all the possible values of the fractional Dehn twist coefficient that arise in S3 ,
it is 1

2
that plays the most mysterious role in knot theory. The following was first stated

by Gabai in [8] along with a possible proof strategy.

Conjecture 4.7 Let S3 D .S; h/ be an open book decomposition which is stabilized
and has connected binding K . Then c.h/¤ 1

2
.

By Theorem 4.5, this conjecture can also be stated as follows.

Conjecture 4.8 Let S3 D .S; h/ be an open book decomposition which is stabilized
and has connected binding. Then either c.h/D 0 or c.h/D 1=n, where n� 3.
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An appealing aspect of these conjectures is that very simple examples show that they
are false outside of S3 . Specifically, Example 2.25 in Section 2 proves the following.

Proposition 4.9 Let p� 5 and qD 1. Then L.p; q/ has an open book decomposition
with connected binding which is stabilized and satisfies c.h/D 1

2
.

5 Applications

In this section, we give an application of our results in contact topology by associating
to each pair .S; h/ a contact structure � via the Giroux correspondence [11]. This
correspondence is many to one, and Giroux shows that the failure of injectivity is
generated by positive stabilization (see Definition 2.23). A natural goal is to try to
determine properties of � from a single pair .S; h/.

Some results in this direction are as follows [14]. If c.h/� 0 then � is overtwisted. If
c.h/� 1 then � is tight. Contrast this with the uncheckable theorem that � is tight if
and only if for every .S; h/ determining � , c.h/ > 0. This leads to the conjecture by
Honda, Kazez and Matić [14] that if a single representative is not destabilizable and
has c.h/ > 0 (or equivalently is right-veering) then � is tight.

Lekili [17] produced counterexamples to this conjecture with S a 4–times punctured
sphere. Lisca [18] constructed an infinite number of counterexamples for the same
surface. Ito and Kawamuro [16] have produced an even larger set of counterexamples
on the 4 times punctured sphere.

This should be contrasted with the work of Colin and Honda [5] in which they show that
if an open book has connected boundary, pseudo-Anosov monodromy, and fractional
Dehn twist coefficient k=n> 0, then k > 1 implies the associated contact structure is
not only tight, but universally tight, and the universal cover is R3.

Our examples show that it is often very easy to recognize an overtwisted contact
structure using essentially no technology. It is enough, by Proposition 5.3, to find a
nonseparating, untwisted, unknotted curve contained in S .

Our construction involves surgery on an unknotted curve in S , so the first step is to
record some results on different framings of the curve before and after surgery.

Let M D .S; h/ be an open book decomposition and let C be a simple closed curve
embedded in the interior of S which bounds an embedded disk in M . Let N be a
regular neighborhood of C . Note that although there is a unique canonical meridian
�, there are two natural choices of longitude in this setting:

(1) �D , the slope of the single curve D\ @N , and

(2) �S , the slope shared by the two curves S \ @N .
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Using the orientation convention that h�S ; �i D h�D ; �i D 1 with respect to the
outward pointing normal on @N , define the integer twC .S/, the twisting of S along C,
by writing �S D �D C twC .S/�.

If the orientation for �D is reversed, then � and hence �S also have their orientations
reversed. It follows that the sign of twC .S/ does not depend on the choice of orientation
of D . In particular, from the point of view of D , if the sign of twC .S/ is negative, an
annular neighborhood of C in S twists to the left, when traveling around @D . Thus
twC .S/ serves as a topological stand-in for the Thurston–Bennequin invariant.

Perform a p�C q�D surgery along C , for some relatively prime integers p and q ,
and let Y denote the manifold thus obtained from M .

Proposition 5.1 The manifold Y is homeomorphic to M if and only if p=qD˙1=q .

Proof Let B denote a regular neighborhood of D in M . Note that M DM ]S3

with summing sphere @B . So it suffices to consider the case that M D S3 . If pD˙1,
simply cut and twist around D to realize the homeomorphism between M and Y .
Computing �1.Y /D h� j p�i D Zp shows the converse is also true.

Proposition 5.2 If twC .S/D 0 and pD�1, then Y has an open book decomposition
given by .S;T q

C
h/. Moreover, the analogues of C , D and S exist in Y as embedded

objects, and in Y it remains the case that twC .S/D 0.

Proof Let A be an annular neighborhood of C in S and let N DA� Œ1
2
; 1�. Let b be

nonseparating embedded arc in A and let RD b� Œ1
2
; 1� be a rectangular compressing

disk for N .

To construct the desired homeomorphism from Y to the manifold built from .S;T
q
C

h/,
start with the identity map from .S � I/ � N ! .S � I/ � N . Next extend the
homeomorphism to A�f1g!A�f1g as follows. Let x;y 2A. At the quotient level,
we have .x; 1/� .h.x/; 0/ and .y; 1/� .T q

C
h.y/; 0/, thus we define .x; 1/ 7! .y; 1/

if h.x/D T
q
C

h.y/.

Next we compute the preimage of @R to compute the required filling of @N in the
domain. To be explicit about orientations, pick an orientation for C . Choose the
orientation on �S so that it is isotopic to C in N.C /. The orientation on �S determines
the orientation on �. See Figure 18. The only portion of @R not mapped by the identity
is the arc b � f1g. From the formula above, we see the preimage of b � f1g is an
arc a� f1g in A� f1g such that h.a/ D T

q
C

h.b/, or equivalently, a D h�1T
q
C

h.b/.
It follows that the preimage of @R in M is a �� q�S D �� q�D curve, thus the
homeomorphism on .S �I/�N extends to a homeomorphism defined on all of Y .
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a� f1g

S � f3
4
g

�

C �S

.S � I/�N 2 Y

Figure 18

Proposition 5.3 If C bounds an embedded disk D in M D .S; h/, twC .S/� 0, and
C is nonseparating in S , then the contact structure determined by .S; h/ is overtwisted.

Proof Since C is nonseparating, it is nonisolating. Thus by Honda’s Legendrian
realization principle [13], we may assume C is Legendrian. The Thurston–Bennequin
invariant of C D @D is equal to twC .S/, thus if twC .S/ D 0, D is an overtwisted
disk. In the remaining cases, C can be isotoped to decrease the Thurston–Bennequin
invariant and thereby produce an overtwisted disk.

Corollary 5.4 If C bounds an embedded disk D in M D .S; h/, twC .S/D 0, and C

is nonseparating in S , then the contact structure determined by .S;T q
C

h/ is overtwisted
for any integer q .

Proof The invariant twC .S/ has two possible interpretations depending on whether
it is computed in M D .S; h/ or in Y D .S;T

q
C

h/.

In M we have �S D �DC twC .S/�. By Proposition 5.2 we have in Y , �0D��q�D

and consequently, �S D�DC twC .S/.�
0Cq�D/D .1C twC .S/q/�DC.�

0 twC .S//.
When twC .S/D 0 in M , �S D �D . This formula is satisfied on just the boundary of
the regular neighborhood of C , thus it holds in Y as well.

Example 5.5 Let F be the Seifert surface for the knot 820 as described in Example 2.8.
Using the notation of Section 3, form the .2; 1/–cable of F , and denote its Seifert
surface by S DF0[P [F1

2
. This gives an open book decomposition .S;H 0

0
/ of S3 .

To produce the curve C used in the definition of H D TC ıH0 consider the curves A

and B that live on F as shown in Figure 2.
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Pick an arc a� F0 that runs from a point of A� f0g to the point where the twisted
band is added in the formation of the .2; 1/–cable. Choose an arc b � F1

2
similarly

corresponding to B � f1
2
g. In addition the arcs should be chosen so that A;B , and

the projections of a; b to F have no interior intersections. Define C to be the band
sum, in S , of A� f0g and B � f1

2
g along an arc consisting of a; b , and an arc that

runs across the twisted band.

Since A and B are nonseparating in F , C does not separate when restricted to
either F0 or F1

2
and Theorem 3.2 applies. Combining Theorem 3.2, Proposition 2.5,

Corollary 4.6, and Proposition 5.3 shows that H is pseudo-Anosov, right-veering with
fractional Dehn twist coefficient 1

2
, and the associated contact structure is overtwisted.

Theorem 5.6 There exists an infinite collection of fibred knots in S3 such that the
monodromy is pseudo-Anosov, right-veering with fractional Dehn twist coefficient 1

2
,

and the associated contact structure is overtwisted.

Proof It is enough, by the construction of Example 5.5, to produce knots with pseudo-
Anosov monodromy whose fibers contain two disjoint Hopf bands of opposite signs.
One such family of examples are the nontorus fibred 2–bridge knots of genus 2 and
higher. The fibers of such knots correspond to words in L and R that use both letters
and have even length; see [23] and Gabai and Kazez [9]. The letters correspond to
positive and negative Hopf bands plumbed together in a vertical stack. As long as the
surface has genus at least 2, the word will have length at least 4. The desired Hopf
bands correspond to a nonadjacent pair of letters L and R which necessarily exist.

If Conjecture 4.7 is true, then none of the examples of Theorem 5.6 and Example 5.5
can be destabilized, and thus they would all provide additional counterexamples to the
conjecture of [14].
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