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Topological invariants from
nonrestricted quantum groups

NATHAN GEER

BERTRAND PATUREAU-MIRAND

We introduce the notion of a relative spherical category. We prove that such a category
gives rise to the generalized Kashaev and Turaev–Viro-type 3–manifold invariants
defined in [12] and [17], respectively. In this case we show that these invariants
are equal and extend to what we call a relative homotopy quantum field theory,
which is a branch of the topological quantum field theory founded by E Witten and
M Atiyah. Our main examples of relative spherical categories are the categories of
finite-dimensional weight modules over nonrestricted quantum groups considered by
C De Concini, V Kac, C Procesi, N Reshetikhin and M Rosso. These categories are
not semisimple and have an infinite number of nonisomorphic irreducible modules
all having vanishing quantum dimensions. We also show that these categories have
associated ribbon categories which gives rise to renormalized link invariants. In
the case of sl2 these link invariants are the Alexander-type multivariable invariants
defined by Y Akutsu, T Deguchi and T Ohtsuki [1].

17B37, 57M25, 57M27

Introduction

A principal feature of quantum topology is its interplay between tensor categories and
low-dimensional topology. The fundamental example of such interplay is the modular
category formed from finite-dimensional representation of the restricted quantum group
Uq.sl2/ at a root of unity and the corresponding Reshetikhin–Turaev and Turaev–Viro
3–manifold invariants. Loosely speaking, this modular category is the category of
all representations over Uq.sl2/ quotiented by the ideal of representation with zero
quantum dimension. This category is semisimple with a finite number of isomorphism
classes of irreducible representations all having nonvanishing quantum dimensions.
Generalizations to other semisimple categories were done by several authors including
H Andersen, V Turaev, H Wenzl, J Barrett, B Westbury, A Ocneanu, S Gelfand,
D Kazhdan and others.
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Less progress has been made in categories which have simple objects with vanishing
quantum dimensions. This is true even though the Volume Conjecture naturally arises
in such a setting (see Murakami and Murakami [23]). In the case of sl2 , 3–manifold
invariants arising from representations with zero quantum dimensions have been studied
by two approaches: (1) R Kashaev’s geometric and physical construction in [20; 21],
which was extended by S Baseilhac and R Benedetti [2] and (2) the topological and
algebraic Turaev–Viro-type invariants of N Geer, B Patureau-Mirand and V Turaev [17].
In [12], Geer, Kashaev and Turaev used the notion of a y‰–system to generalize
Kashaev’s construction to a categorical setting.

This paper has five main results: First, we show that the nonrestricted quantum groups
associated to simple Lie algebras considered by C De Concini and V Kac, in [8],
admit Turaev–Viro-type invariants arising from representations with zero quantum
dimensions. Second, we prove that such quantum groups also lead to y‰–systems and
so from [12] admit generalized Kashaev invariants. Third, we show that in this situation
the generalized Kashaev and TV–type invariants are equal. Fourth, we extend the above
mentioned TV–type invariants to a kind of homotopy quantum field theory. Finally, we
prove that certain representations (with zero quantum dimensions) over nonrestricted
quantum groups give rise to renormalized Reshetikhin–Turaev link invariants. All
of these results are proved in a general categorical language which also contains
as examples the usual modular categories formed from representations of restricted
quantum groups.

This paper has two major components. The aim of first component is to introduce and
study “relative spherical categories”. These categories are generalizations of the usual
modular categories associated to restricted quantum groups (see Theorem 4). However,
in general they are not necessarily semisimple (only “generically” semisimple) and can
have an infinite number of nonisomorphic simple objects all having vanishing quantum
dimensions. In Section 3.4, we will show that a relative spherical category C leads to a
Turaev–Viro-type invariant TV of triples (a closed oriented 3–manifold M , a link in
M , a conjugacy class of homomorphisms �1.M /! G ), where G is a group which is
part of the data of the category. Then in Section 3.6 we will also show that C gives
rise to a y‰–system. Thus, the construction of [12] gives a Kashaev-type invariant K
and in Section 3.6 we prove that TV D K. The final piece of the first component of
this paper is to show that TV can be extended to what we call a “relative homotopy
quantum field theory” (relative HQFT); see Section 4. This relative HQFT is similar in
nature to Turaev’s [28] homotopy quantum field theory which is a branch of topological
quantum field theory founded by E Witten and M Atiyah. However, we have cobordism
with graphs inside. Our relative HQFT is also similar to the quantum hyperbolic field
theory coming from the Borel subalgebra of quantum sl2 defined in Baseilhac and
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Benedetti’s [3]. One can hope to make a precise relationship with these different field
theories.

The aim of the second component of this paper is to construct invariants of links and
3–manifolds from representations over nonrestricted quantum groups which are only
“generically” semisimple and have vanishing quantum dimensions. C De Concini,
V Kac, C Procesi, N Reshetikhin and M Rosso have established a deep body of work
pertaining to quantum groups and their representation theory, at odd ordered roots of
unity; see the series of papers [8], [9], [10] and [11]. In Section 5 we recall some of
their results and prove that the representations studied in these papers give rise to three
topological invariants: TV , K and a Reshetikhin–Turaev- or Akutsu–Deguchi–Ohtsuki-
type link invariant (see Theorem 8). The representations considered here have zero
quantum dimensions and so the usual associated topological invariants are trivial. To
overcome this difficultly we show that these representations are part of an ambidextrous
pair with modified dimension d. This modified dimension is used to renormalize the
usual link invariants and the quantum 6j –symbols. Let us be more precise. For an
odd ordered root of unity, let U and UH be the quantum groups associated to a fixed
simple Lie algebra, described in Section 5.1. We prove that the finite-dimensional
weight modules over UH contain a ribbon category which admits an ambidextrous
pair. Combining this with a direct calculation of the open Hopf link we prove that Geer,
Patureau-Mirand and Turaev’s results [16] can be applied and lead to link invariants
(see Theorem 8 and Proposition 45). Then incorporating all the results of Section 5
we show that the finite-dimensional weight modules over U form a relative spherical
category and so the results described in the previous paragraph can be applied. In
particular, this shows that the category of finite-dimensional weight modules over U
has several b‰ –systems (giving a positive answer to [12, Conjecture 42] for U ) and
proves that the corresponding generalized Kashaev and Turaev–Viro-type 3–manifold
invariants are equal.

The work of N Geer was partially supported by the NSF grants DMS-0706725 and
DMS-1007197. B Patureau-Mirand thanks Utah State University and the members of
its mathematics department for their generous hospitality.

1 Relative G–spherical categories and y‰ –systems

In this section we give the basic categorical definitions used in this paper. In Section 1.1
recall some fairly well-known notations involving tensor categories. In Sections 1.2
and 1.4 we discuss two less known notions: ambidextrous traces and y‰–systems. These
two notions will be used to construct nontrivial invariants when quantum dimensions
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are zero. In Section 1.3 we give the notion of relative G–spherical categories. Such
categories are used to deal with the fact that our categories are not necessarily semisimple
but only “generically” semisimple.

1.1 Linear tensor categories

A tensor category C is a category equipped with a covariant bifunctor ˝W C � C! C
called the tensor product, an associativity constraint, a unit object I , and left and
right unit constraints such that the Triangle and Pentagon Axioms hold. Let k be
an integral domain. A tensor category C is said to be k–linear if its hom-sets are
k–modules, the composition and tensor product of morphisms are k–bilinear, and
EndC.I/ is a free k–module of rank one. Then we identify kD EndC.I/, via the ring
isomorphism k! EndC.I/, k 7! k IdI and call k the ground ring of C . Let k� be
the set of invertible elements of k. An object V of C is simple if EndC.V /D k IdV .
An object which is a direct sum of simple objects is called semisimple. For any simple
object V and f 2 End.V /, there is a unique x 2 k such that f D x IdV . This x is
denoted hf i.

If C is an k–linear category and fVigi2I is a set of simple objects numerated by a set
I , for i , j , k 2 I we consider the following k–modules:

H ijk
D HomC.I, Vi ˝Vj ˝Vk/

H
ij

k
D HomC.Vk , Vi ˝Vj /

H k
ij D HomC.Vi ˝Vj , Vk/

A pivotal category is a tensor category with duality morphisms bV W I ! V ˝ V � ,
dV W V

�˝V ! I , b0
V
W I!V �˝V and d 0

V
W V ˝V �! I which satisfy compatibility

conditions (see for example [17]).

Let C be a pivotal category. A morphism f W V1˝ � � � ˝Vn!W1˝ � � � ˝Wm in C
can be represented by a box and arrows:

Wm���

��
W1
��
f

Vn���

��
V1

��

Boxes as above are called coupons. By a C–colored ribbon graph in an oriented surface
†, we mean a graph embedded in † whose edges are colored by objects of C and
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whose vertices lying in Int†D†n@† are thickened to coupons colored by morphisms
of C . Let GrC be the category of C–colored ribbon graphs in R� Œ0, 1� and GW GrC! C
be the Reshetikhin–Turaev k–linear functor preserving the duality morphism of C
(see [17]).

A ribbon category is a pivotal category with a braiding cV ,W W V ˝W !W ˝V and
twist �V W V ! V which are compatible with the pivotal structure (see [27, Chapter 1]).
If C is a ribbon category, the Reshetikhin–Turaev functor G extend as GW RibC! C ,
where RibC is the category of C–colored ribbon graphs in R2 � Œ0, 1�.

1.2 Ambidextrous pairs and traces

We recall the process of renormalizing colored ribbon graphs first used in [14; 15] then
generalized using the notion of ambidextrous entities in [13; 16; 17; 18].

Let C be a k–linear pivotal (resp. ribbon) category and let T � S2 (resp. T � S3 )
be a closed C–colored ribbon graph. Let e be an edge of T colored with a simple
object V of C . Cutting T at a point of e , we obtain a C–colored ribbon graph TV

in R� Œ0, 1� (resp. in R2 � Œ0, 1�), where G.TV / 2 End.V / D k IdV . We call TV a
cutting presentation of T and let hTV i 2 k denote the isotopy invariant of TV defined
from the equality G.TV /D hTV i IdV .

Let A be a class of simple objects of C and dW A ! k� be a mapping such that
d.V / D d.V �/ and d.V / D d.V 0/ if V is isomorphic to V 0 . Let T be a closed
C–colored ribbon graph which admit two cutting presentations TV and TV 0 with both
V and V 0 in A. Then we consider if the following equality holds:

(1) d.V /hTV i D d.V 0/hT 0V i.

First, suppose that C is a k–linear ribbon category and let LA be the class of C–colored
ribbon graphs in S3 with at least one edge colored by an element of A. Suppose that
Equation (1) holds for all T 2 LA . Then we say that .A, d/ is an ambidextrous pair or
ambi for short.

On the other hand, suppose that C is a k–linear pivotal category. In [17] a smaller
class of graphs is considered: A ribbon graph is trivalent if all its coupons are adjacent
to 3 half-edges. Let TA be the class of C–colored connected trivalent ribbon graphs
in S2 such that the colors of all edges belong to A. Suppose that Equation (1) holds
for all T 2 TA . Then we say that .A, d/ is a trivalent-ambidextrous pair or t-ambi for
short.
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If .A, d/ is ambi (resp. t-ambi) we define a function G0W LA! k (resp. G0W TA! k)
by

(2) G0.T /D d.V /hTV i,

where TV is any cutting presentation of T with V 2 A. The above definitions imply
that G0 is well defined. With Equation (2) in mind, we call d a modified quantum
dimension.

Let Proj be the full subcategory of C consisting of projective objects. A trace on Proj

is a family of k–linear functions t D ftV W EndC.V /! kgV 2Proj which is suitably
compatible with the tensor product and composition of morphisms (see [13; 18]). Let
AProj be the set of simple projective objects of C . A trace t D ftV gV 2Proj defines a
function dW AProj! k� given by d.V /D tV .IdV /. If d.V /D d.V �/ for all V 2 Proj

then .AProj, d/ is (t-)ambi and the corresponding isotopy invariant G0 is determined by
the trace:

G0.T /D d.V /hTV i D tV .hTV i IdV /D tV .TV /,

where TV is any cutting presentation of T (see [13; 18]).

1.3 Relative G–spherical categories

We now fix a group G .

Definition 1 A pivotal category is G–graded if for each g 2 G we have a nonempty
full subcategory Cg of C such that:

(i) C D
L

g2G Cg .

(ii) If V 2 Cg , then V � 2 Cg�1 .

(iii) If V 2 Cg , W 2 C and V is isomorphic to W , then W 2 Cg .

(iv) If V 2 Cg , V 0 2 Cg0 then V ˝V 0 2 Cgg0 .

(v) If V 2 Cg , V 0 2 Cg0 and HomC.V , V 0/¤ 0, then g D g0 .

Let X � G be a subset with the following properties:

(i) X is symmetric: X�1 D X .

(ii) G can not be covered by a finite number of translated copies of X , in other
words, for any g1, : : : , gn 2 G , we have

Sn
iD1.giX /¤ G .

Let us write G0 D G nX .
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Definition 2 Let C be a G–graded k–linear pivotal category. Let A be the class of
all simple objects in

S
g2G0 Cg . We say that C is .X , d/–relative G–spherical if

(i) for each g 2 G0 , Cg is semisimple (ie all objects of Cg are semisimple) with
finitely many isomorphism classes of simple objects,

(ii) there exists a map dW A! k� such that .A, d/ is a t-ambi pair,

(iii) there exists a map bW A! k such that b.V /D b.V �/, b.V /D b.V 0/ for any
isomorphic objects V , V 0 2 A and for any g1, g2, g1g2 2 G nX and V 2 Gg1g2

we have

b.V /D
X

V12irr.Cg1
/

V22irr.Cg2
/

b.V1/ b.V2/ dimk.HomC.V , V1˝V2//,

where irr.Cgi
/ denotes a representing set of the isomorphism classes of simple

objects of Dgi
.

If C is a category with the above data, for brevity we say C is a relative G–spherical
category.

The map b always exists when k is a field of characteristic 0 and C is a category
whose objects are finite-dimensional k–vector spaces. In particular, in [17] it is shown
that, for any g 2 G0 , the map

(3) b.V /D dimk.V /
ı� X

V 02irr.Cg/

dimk.V
0/2
�

is well defined and satisfies all the properties above.

A representative set for A is a family fVigi2I of simple objects of A numerated by
elements of a set I such that any element of A is isomorphic to a unique element of
fVigi2I . Let I ! I , i 7! i� be the involution determined by Vi� ' V �i . For each
g 2 G0 let Ig D fi 2 I W Vi 2 Cgg, then I D

S
g2G0 Ig . For i 2 Ig , we call zi D g the

degree of i .

By basic data in C we mean a representative set fVigi2I for A and a family of
isomorphisms fwi W Vi! V �i�gi2I such that

(4) dVi
.wi� ˝ IdVi

/D d 0Vi�
.IdVi�

˝wi/WVi� ˝Vi! I.

Lemma 3 If no object of A is isomorphic to its dual, then C contains a basic data. In
particular, basic data exists if X contains the set fg 2 G W g D g�1g.
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Proof Choose a representative for each isomorphism class of simple objects ofS
g2G0 Cg . Let these representatives fVigi2I be numerated by a set I . Then I is

a representative set for A. The hypothesis of the lemma imply that i� ¤ i for all
i 2 I . Hence, for any unordered pair .i , i�/, we can take an arbitrary isomorphism
Vi! .Vi�/

� for wi and choose wi� so that it satisfies Equation (4).

For the second statement, let g 2G0 and let V be a simple object of Cg . Since g�1¤g ,
the G–grading of C implies that V and V � are not isomorphic. Thus, we can apply
the above argument.

If C is a .X , d/–relative G–spherical category with basic data fVi ,wigi2I then the
functions dW A! k and bW A! k can and will be considered as functions from I to
k given by d.i/D d.Vi/ and b.i/D b.Vi/, respectively.

The following theorem shows that relative G–spherical categories are generalizations
of the usual modular categories associated to restricted quantum groups.

Theorem 4 Let zUq.g/ be the restricted quantum group associated to a simple Lie alge-
bra g of type A, B, C , D , at a primitive root of unity q of even order (see [27, XI.6.3]).
Let C be the modular category formed from finite-dimensional representations of
zUq.g/ modulo negligible morphisms (see [27, XI]). Then C is a .∅, qdim/–relative
G–spherical category with basic data, where qdim is the usual quantum dimension of
C and G D f1g is the trivial group of one element. Here the map b can be chosen to be
the map defined in (3) or the map defined by (3) where the dimension dimk is replaced
with the usual quantum dimension qdim.

Proof First, C is a C–linear pivotal category (see [27, XI]). We assign C1DC and then
by definition C is G–graded. Also, C is semisimple with finitely many isomorphism
classes of simple objects and so Property (i) of Definition 2 holds. Since qdim is
nonzero for each simple object of C then Equation (1) holds by definition of G and so
.A, qdim/ is a t-ambi pair. Finally, it is shown in [30] that basic data exists.

Remark 5 In Section 3.4 we show that a relative G–spherical category gives rise to a
modified Turaev–Viro invariant. Let C be the modular category of Theorem 4. The
original Turaev–Viro invariant is not equal to the modified invariant corresponding to
C where b is defined as in Equation (3). However, the original Turaev–Viro invariant
is equal to the modified invariant arising from C when b is taken to be the map given
by (3) where the dimension dimk is replaced with the usual quantum dimension qdim.
In this case, the modified invariant does not depend on the graph in the 3–manifold.
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Remark 6 (About semisimplicity) The main example of relative G–spherical cat-
egories we consider in this paper are the categories of modules over the unrestricted
quantum groups at roots of unity; see Section 5. These categories are not semisimple
which as we explain in this remark is an essential element of these categories. The
state sum invariants defined in this paper only use the algebraic data of these category
corresponding to their semisimple part

P
g2GnX Dg . Roughly speaking, we represent

a 3–manifolds with a representation of its fundamental group in G by a G–colored
triangulation. Then the trick consists in using gauge transformations to always avoid
the colors in X .

Nevertheless, even if the nonsemisimple modules are never considered, the construction
relies on simple modules with vanishing dimension. Such a module V can not exists in
a semisimple monoidal category as qdim.V / WDdV ıb

0
V
D 0 implies that the evaluation

map dV W V
�˝V ! I has no section because Hom.I, V �˝V / is generated by b0

V
.

Hence the nonsemisimplicity is essential in all these examples.

1.4 y‰ –systems

Here we recall the notion of a y‰–system. These systems are the algebraic notions
underlying Kashaev’s invariant defined in [20]. For more details see [12].

A ‰–system in a k–linear category C consists of

(i) a distinguished set of simple objects fVigi2I such that Hom.Vi , Vj /D 0 for all
i ¤ j ;

(ii) an involution I ! I , i 7! i� ;

(iii) two families of morphisms fbi W I! Vi ˝Vi�gi2I and fdi WVi ˝Vi� ! Igi2I ,
such that for all i 2 I ,

.IdVi
˝di�/.bi ˝ IdVi

/D IdVi
and .di ˝ IdVi

/.IdVi
˝bi�/D IdVi

I

(iv) for any i , j 2 I such that H
ij

k
¤ 0 for some k 2 I , the identity morphism

IdVi˝Vj is in the image of the linear mapM
k2I

H
ij

k
˝kH k

ij ! End.Vi ˝Vj /, x˝y 7! x ıy.

Consider the k–module H D yH ˚ LH , where

yH D
M

i,j ,k2I

H k
ij and LH D

M
i,j ,k2I

H
ij

k
.
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Let

�k
ij WH !H k

ij , �
ij

k
WH !H

ij

k
, y� WH ! yH , L� WH ! LH

be the obvious projections. The k–module H has a symmetric bilinear pairing h , i
given by

(5) hx, yi D
X

i,j ,k2I

�
h�k

ij x�
ij

k
yiC h�k

ij y�
ij

k
xi
�
2 k

for any x, y 2 H . A transpose of f 2 End.H / is a map f � 2 End.H / such that
hf x, yiD hx,f �yi for all x, y 2H . Note that if a transpose f � of f exists, then it is
unique and .f �/�Df (see [12]). An operator f 2End.H / such that f �Df is called
symmetric. An operator f 2 End.H / such that f .H ij

k
/�H

ij

k
and f .H k

ij /�H k
ij for

all i , j , k 2 I is called grading-preserving.

We define linear maps A, BW H !H by

Ax D
X

i,j ,k2I

�
.IdVi�

˝�k
ij x/.bi� ˝ IdVj /C .di� ˝ IdVj /.IdVi�

˝�
ij

k
x/
�
,

Bx D
X

i,j ,k2I

�
.�k

ij x˝ IdVj�
/.IdVi

˝bj /C .IdVi
˝dj /.�

ij

k
x˝ IdVj�

/
�
.

In [12], it is shown that both A and B are involutive and have transposes. Also, from
[12] we have that the operators

LDA�A, RD B�B, C D .AB/3 in End.H /

are symmetric, grading-preserving and invertible.

Definition 7 [12] A y‰–system in C is a ‰–system in C together with a choice of
invertible, symmetric, grading-preserving operators C

1
2 , R

1
2 2 End.H / satisfying

.C
1
2 /2 D C , AC

1
2 AD BC

1
2 B D C�

1
2 ,(6a)

.R
1
2 /2 DR, BR

1
2 B DR�

1
2 , R

1
2 C

1
2 D C

1
2 R

1
2 ,(6b)

T C
1
2

1
C

1
2

2
D T C

1
2

3
C

1
2

4
, TR

1
2

1
L

1
2

2
D TR

1
2

3
L

1
2

4
,(6c)

TR
1
2

1
R

1
2

2
D T C

1
2

3
R

1
2

4
, TL

1
2

1
D T C

1
2

2
L

1
2

3
L

1
2

4
,(6d)

where L
1
2 is defined to be the invertible operator L

1
2 D BAR�

1
2 AB 2 End.H /.
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2 Modified Reshetikhin–Turaev link invariants from projec-
tive ambidextrous objects

In this section we show that certain projective modules lead to ambidextrous traces
and renormalized invariants as discussed in Section 1.2. Let C be a pivotal k–linear
category with duality morphisms bV W I!V ˝V � , dV W V

�˝V ! I , b0
V
W I!V �˝V

and d 0
V
W V ˝V �! I . For every morphism f W V !W in C let f �W W �! V � be

the dual (or transposed) morphism given by

f � D .dW ˝ IdV �/.IdW � ˝f ˝ IdV �/.IdW � ˝bV /.

The axioms of a pivotal category imply that for each object V of C there is a canonical
functorial isomorphism V ! V �� ; see [18]. To simplify notation we will use this
isomorphism to identify V �� with V . Therefore, for any object V of C , we have
.V ˝V �/�D .V �/�˝V �DV ˝V � . A simple object V is ambidextrous if f ıbV D

f � ıbV for all f 2 End.V ˝V �/. Note in [18] it is shown that when C is ribbon this
definition is equivalent to the definition of ambidextrous given in [16].

Theorem 8 Let C be a ribbon category and let AProj be the set of simple projective
objects of C . Suppose that there is a projective ambidextrous object in C . Then there
is an unique (up to a scalar of k� ) map dW AProj ! k� such that .AProj, d/ is an
ambidextrous pair. Hence the map G0W LAProj! k given in Section 1.2 is a well defined
isotopy invariant.

Proof From [13, Theorem 3.3.2] we have the existence and uniqueness of a trace
on the subcategory of projective objects Proj. As in Section 1.2 this trace defines a
function dW AProj! k� . The properties of the trace imply that d.V /D d.V �/ for all
V 2 AProj and that .AProj, d/ is an ambi pair. The uniqueness of the trace implies the
uniqueness of d.

Let J be a projective ambidextrous object in a ribbon category C . Following [16], for
any simple objects V , W of C , define

S 0.V , W /D

*
V

W

+

so for any V 2 AProj with S 0.J , V / invertible, we have that

d.V /D d.J /
S 0.V , J /

S 0.J , V /

because d.V /S 0.J , V /D d.J /S 0.V , J / is the value of G0 on the Hopf link colored
by J and V .
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There is a large class of examples where the category C is not semisimple and the usual
Reshetikhin–Turaev ribbon functor G restricted to the domain LAProj of G0 is zero. For
example, let g be a simple Lie algebra. In Section 5, for each r th root of unity e2i�=r ,
we define an algebra UH which we call the unrolled Drinfeld–Jimbo quantum group
associated to g. Then in Section 5.3, we introduce a ribbon category D� of nilpotent
UH –weight modules which satisfy the hypothesis of Theorem 8. In particular, we
use S 0 to give an explicit formula for the modified quantum dimension d in this case
(see Theorem 46). The corresponding invariant G0 restricted to framed links colored
with projective simple modules can be considered as a generalized colored Alexander
invariant which in the case of sl.2/ is the hierarchy of invariants defined in [1] (see
[16, Theorem 35]).

In [7] we will extend the link invariants of Theorem 8 to a modified Reshetikhin–
Turaev-type 3–manifold invariant. More precisely, in [7] we will give a notion of a
relative G–modular category and show that such categories have Kirby colors which
give rise to 3–manifold invariants.

3 Topological invariants from relative G–spherical categories

In this section we will introduce a state sum (15) of 6j –symbol associated to a relative
spherical category. This sum is a topological invariant called the modified Turaev–Viro
invariant (cf Theorem 16). Then in Section 3.6 we will show that a relative spherical
category induces y‰–structures (cf Theorem 20) and that the associated Kashaev-type
state sums (18) are equal to the modified Turaev–Viro invariant (cf Theorem 21).

3.1 Modified 6j –symbols

In [17] the authors show that certain pivotal categories give rise to modified 6j –symbols.
In this subsection, we show the techniques of [17] can be applied to the situation of
relative spherical categories.

Let C be a .X , d/–relative G–spherical category with basic data fVi ,wigi2I . For
any i , j , k 2 I , recall the notation H ijk D Hom.I, Vi ˝Vj ˝Vk/. The k–modules
H ijk , H jki , H kij are canonically isomorphic. Indeed, let �.i , j , k/ be the isomor-
phism

H ijk
!H jki , x 7! dVi

ı .IdV �
i
˝x˝ IdVi

/ ı b0Vi
.

Using the functor GW GrC! C , one easily proves that

�.k, i , j /�.j , k, i/�.i , j , k/D IdH ijk .
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Identifying the modules H ijk , H jki , H kij along these isomorphisms we obtain a
symmetrized multiplicity module H.i , j , k/ depending only on the cyclically ordered
triple .i , j , k/. Remark that the G–grading of C implies that

(7) for all i , j , k 2 I such that zi zj zk ¤ 1 2 G, then H.i , j , k/D f0g.

By a labeling of a graph we mean a function assigning to every edge of the graph an
element of I . By a trivalent graph we mean a (finite oriented) graph whose vertices
all have valency 3. Let � be a labeled trivalent graph in S2 . Using the standard
orientation of S2 (induced by the right-handed orientation of the unit ball in R3 ),
we cyclically order the set Xv of 3 half-edges adjacent to any given vertex v of � .
The labels of the edges determine a function fvW Xv ! I as follows: if a half-edge
e adjacent to v is oriented towards v , then fv.e/ D i is the label of the edge of �
containing e ; if a half-edge e adjacent to v is oriented away from v , then fv.e/D i� .
Set Hv.�/DH.fv/ and H.�/D

N
v Hv.�/, where v runs over all vertices of � .

Consider now a labeled trivalent graph � � S2 endowed with a family of vectors
h D fhv 2 Hv.�/gv , where v runs over all vertices of � . We thicken � into a C–
colored ribbon graph on S2 as follows. First, we insert inside each edge e of � a
coupon with one edge outgoing from the bottom along e and with one edge outgoing
from the top along e in the direction opposite to the one on e . If e is labeled with
i 2 I , then these two new (smaller) edges are labeled with Vi and Vi� , respectively,
and the coupon is labeled with wi W Vi! V �i� as in Figure 1.

wi

Vi

��

Vi�

OO

Figure 1

Next, we thicken each vertex v of � to a coupon so that the three half-edges adjacent
to v yield three arrows adjacent to the top side of the coupon and oriented towards it. If
i , j , k 2 I are the labels of these arrows (enumerated from the left to the right), then we
color this coupon with the image of hv under the natural isomorphism Hv.�/!H ijk .
Denote the resulting C–colored ribbon graph by �� ,h . Then G.� , h/D G.�� ,h/ is
an isotopy invariant of the pair .� , h/ independent of the way in which the vertices of
� are thickened to coupons.

The invariant G0 defined in Section 1.3 can be extended to a bigger class of C–colored
ribbon graphs in S2 . We say that a coupon of a ribbon graph is straight if both its
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bottom and top sides are incident to exactly one arrow. We can remove a straight
coupon and unite the incident arrows into a (longer) edge; see Figure 2. We call this
operation straightening. A quasitrivalent ribbon graph is a ribbon graph in S2 such
that straightening it at all straight coupons we obtain a trivalent ribbon graph.

�!

Figure 2: Straightening a quasitrivalent ribbon graph

Lemma 9 Let TI be the class of connected quasitrivalent ribbon graphs in S2 such
that the colors of all edges belong to the set fVigi2I and all straight coupons are
colored with isomorphisms in C . Then Equation (2) determines a well-defined function
G0W TI ! k.

Proof This is proved in [17, Lemma 2].

We can combine the invariant G0 with the thickening of trivalent graphs to obtain
invariants of trivalent graphs in S2 . Suppose that � � S2 is a labeled connected
trivalent graph. We define

G0.�/ 2H.�/? D Homk.H.�/, k/

as follows. Pick any family of vectors h D fhv 2 Hv.�/gv , where v runs over all
vertices of � . The C–colored ribbon graph �� ,h constructed above belongs to the
class TI defined in Lemma 9. Set

G0.�/.˝vhv/D G0.�� ,h/ 2 k.

By the properties of G0 , the vector G0.�/ 2 H.�/? is an isotopy invariant of � .
Both H.�/ and G0.�/ are preserved under the reversion transformation inverting the
orientation of an edge of � and replacing the label of this edge, i , with i� . This can
be easily deduced from Equation (4).

Let i , j , k, l , m, n be six elements of I . Consider the labeled trivalent graph � D
�.i , j , k, l , m, n/�R2 � S2 given in Figure 3(a). By definition,

H.�/DH.m, n�, i�/˝k H.n, l�, j �/˝k H.i , j , k�/˝k H.k, l , m�/.

We define the modified 6j –symbol of the tuple .i , j , k, l , m, n/ to be

(8)
ˇ̌̌̌
i j k

l m n

ˇ̌̌̌
DG0.�/ 2H.�/?.
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It follows from the definitions that the modified 6j –symbols have the symmetries of
an oriented tetrahedron. In particular,ˇ̌̌̌

i j k

l m n

ˇ̌̌̌
D

ˇ̌̌̌
j k� i�

m n l

ˇ̌̌̌
D

ˇ̌̌̌
k l m

n� i j �

ˇ̌̌̌
.

These equalities hold because the labeled trivalent graphs in S2 defining these 6j –
symbols are related by isotopies and reversion transformations described above. Also,
it follows from Equation (7) that H.i , j , k�/D 0 if zi zj ¤ zk and soˇ̌̌̌

i j k

l m n

ˇ̌̌̌
D 0

if one of the following equalities is not satisfied in G :

(9) zi zj D zk, zk zl D em, zj zl D zn or zi znD em.

i
j

k
l

m

n

(a) �.i , j , k, l , m, n/

i

j

k

uv

(b) ‚.i , j , k/

Figure 3: Elementary labeled graphs

For any indices i , j , k 2 I , we define a pairing

. , /ijk WH.i , j , k/˝k H.k�, j �, i�/! k, ,(10)

.x, y/ijk DG0.‚/.x˝y/,(11)

where x 2H.i , j , k/DH ijk and y 2H.k�, j �, i�/DH k�j�i� and ‚D ‚i,j ,k is
the theta graph with vertices u, v and three edges oriented from v to u and labeled
with i , j , k ; see Figure 3(b). Clearly

Hu.‚/DH ijk
DH.i , j , k/ and Hv.‚/DH k�j�i�

DH.k�, j �, i�/

so that we can use x , y as the colors of u, v , respectively. It follows from the
definitions that the pairing . , /ijk is invariant under cyclic permutations of i , j , k and
.x, y/ijk D .y, x/k�j�i� for all x 2H.i , j , k/ and y 2H.k�, j �, i�/.
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Given indices i , j , k 2 I3 and a tensor product of several k–modules such that
among the factors there is a matched pair H.i , j , k/, H.k�, j �, i�/, we may contract
any element of this tensor product using the pairing (10). This operation is called
the contraction along H.i , j , k/ and denoted by �ijk . For example, an element
x˝y˝ z 2H.i , j , k/˝k H.k�, j �, i�/˝k H , where H is a k–module, contracts
into .x, y/z 2H .

The rest of this section contains properties of the modified 3j and 6j –symbols defined
above.

Lemma 10 For any elements i , j , k of I , the pairing (10) is nondegenerate.

Proof Let us assume that H.i , j , k/ ¤ 0 otherwise the lemma is trivial. Then by
Equation (7), Vi˝Vj is an object of Czk�1 which is semisimple because zi zj D zk�1 2G0 .
Then the lemma follows from [17, Lemma 3]. To show that the hypothesis of the
lemma in [17] are satisfied it is enough to show that the pair .i , j / has a quality called
good. A pair of indices .l , m/ 2 I2 is called good if Vl ˝Vm splits as a direct sum
of some Vn s (possibly with multiplicities) such that n 2 I and d.Vn/ is invertible in
k. Hence, by definition of a relative spherical category the pair .i , j / is good and the
proof follows [17, Lemma 3].

Theorem 11 (The Biedenharn–Elliott identity) Let j0, j1, : : :, j8 be elements of I .
Assume that zj2

zj3 62 X , then

(12)
X

j2Izj2 zj3

d.Vj /�j2j3j� �jj4j�
7
�j1jj�

6

�ˇ̌̌̌
j1 j2 j5

j3 j6 j

ˇ̌̌̌
˝

ˇ̌̌̌
j1 j j6

j4 j0 j7

ˇ̌̌̌
˝

ˇ̌̌̌
j2 j3 j

j4 j7 j8

ˇ̌̌̌�
D �j5j8j�

0

�ˇ̌̌̌
j5 j3 j6

j4 j0 j8

ˇ̌̌̌
˝

ˇ̌̌̌
j1 j2 j5

j8 j0 j7

ˇ̌̌̌�
.

Here both sides lie in the tensor product of the six k–modules

H.j6, j �3 , j �5 /, H.j5, j �2 , j �1 /, H.j0, j �4 , j �6 /,

H.j1, j7, j �0 /, H.j2, j8, j �7 /, H.j3, j4, j �8 /.

Proof The proof follows from [17, Theorem 7]. We now explain why the hypothesis
of this theorem are satisfied. First, the definitions above imply that the set J of [17]
is equal to Izj2

zj3
. Second, as in the proof of Lemma 10 certain pairs of elements of

I must be good. As above, if l , m, n 2 I with H.l , m, n/¤ 0 then the pair .l , m/ is
good. Moreover, if the pair .l , m/ is not good then for any n 2 I the space H.l , m, n/

is zero. Thus, from (9) it follows that both sides of Equation (12) are zero unless all
required pairs are good and so the hypothesis of [17] are satisfied.
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Theorem 12 (The orthonormality relation) Let i , j , k, l , m, p be elements of I .
Assume zj zl 62 X , then

d.Vk/
X

n2Izj zl

d.Vn/�inm� �jln�

�ˇ̌̌̌
i j p

l m n

ˇ̌̌̌
˝

ˇ̌̌̌
k j � i

n m l

ˇ̌̌̌�
D ık,p Id.i , j , k�/ Id.k, l , m�/,

where ık,p is the Kronecker symbol and Id.a, b, c/ is the canonical element of
H.a, b, c/˝k H.c�, b�, a�/ determined by the duality pairing.

Proof The proof follows from [17, Theorem 8]. Again here, as in the proof of
Theorem 11 the definition of a relative G–spherical category implies the hypothesis
of [17].

The following lemma is an algebraic analog of the H–bubble move.

Lemma 13 Let g1, g2, g3, g4, g5, g6 2 G n X with g3 D g1g2 , g6 D g2g4 and
g5 D g1g6 . If i 2 Ig1

, j 2 Ig2
, k 2 Ig3

, then

(13) d.k/
X

l2Ig4

m2Ig5
,n2Ig6

d.n/ b.l/ b.m/�klm� �inm� �jln�

�ˇ̌̌̌
i j k

l m n

ˇ̌̌̌
˝

ˇ̌̌̌
k j � i

n m l

ˇ̌̌̌�
D b.k/ Id.i , j , k�/.

Proof The proof follows from a direct manipulation of the orthonormality relation
using the properties of the map b. In particular, the proof of [17, Lemma 25] can easily
be adapted to the case when G is not commutative.

3.2 Topological preliminary

Let M be an oriented compact smooth 3–manifold. Here a graph Y is a finite 1–
dimensional CW–complex disjoint union a finite number of circles without vertices.
We denote by Y0 the set of vertices of Y and @Y the set of univalent vertices of Y .
By a graph in M , we mean an embedding of a graph in M such that Y \ @M � @Y

and Y meets all connected components of M . We say that Y is rooted in Y \ @M .

By a triangulation T of M , we mean a smooth �–complex structure on M (as in
[19]). Loosely speaking, a �–complex structure is a quotient space of a collection
of disjoint simplices obtained by identifying certain of their faces. In particular, the
interior of the simplices of T are embedded in M but their faces are not necessarily
distinct and two different simplices might meet on several faces. We say that T is
quasiregular if any simplex of T is embedded in M . This is equivalent to requiring
that the two endpoints of any edge of T are distinct vertices of T .
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Let Y be a graph in M . Let T be a quasiregular triangulation of M and T @ be a
triangulation of @M . Let Y be a set of unoriented edges of T such that the union of
these edges is the graph Y in M . We say the pair .T ,Y/ is an H–triangulation of
.M , Y / relative to T @ if the following four conditions hold: (1) the vertices of Y are
also vertices of T , (2) all the vertices of T are contained in Y (ie all the vertices are
incident to an edge of Y ), (3) any edge of T with both endpoints in Y0 is contained in
@M and (4) T restricts to T @ .

Theorem 14 Any triplet (a compact orientable 3–manifold M , a quasiregular trian-
gulation T @ of @M , a graph Y in M rooted in T @ ) admits an H–triangulation of
.M , Y / relative to T @ .

The proof of Theorem 14 will be given in Section 4.3.

3.3 Fundamental groupoid and space of representations in G

A groupoid is a small category in which all morphisms are isomorphisms. Let us
consider two examples of groupoids. First, every group G can be seen as a groupoid
with only one object whose set of endomorphisms is the group G . Second, let W be a
nonempty locally path connected topological space. The fundamental groupoid �1.W /

of W is the small category whose objects are points of W and whose morphisms
are homotopy classes of paths in W , where composition is concatenation of paths.
Let Z be a subset of W . If Z is nonempty, let �1.W , Z/ be the full subcategory
of �1.W / whose objects are points of Z . When Z is a single point w of W then
�1.W , Z/ D �1.W , fwg/ is the usual fundamental group. If W1, : : : , Wn are the
connected components of W and Z meets all of these component, then �1.W , Z/DF

i �1.Wi , Z \Wi/.

When W is connected, let

M.W ,G/D HomGroups.�1.W , fwg/,G/=G,

where w is any point of W and g 2 G acts on �W �1.W , fwg/! G by conjugation:
g.�W 
 7! g�.
 /g�1 . The set M.W ,G/ is called the space of representations of W .
Remark that for two different choices of the base point w , the corresponding spaces of
representations of W are canonically isomorphic. We set

M.W , Z,G/D
�
M.W ,G/ if Z D∅,
Homgroupoid.�1.W , Z/,G/ if Z ¤∅.

We extend this definition for nonconnected spaces by

M
�G

i

Wi , Z
�
D

Y
i

M.Wi , Z \Wi ,G/.
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The assignment .W , Z/ 7!M.W , Z,G/ extends to a contravariant functor. In par-
ticular, if W 0 � W and Z0 � Z by functoriality we have a map M.W , Z,G/!
M.W 0, Z0,G/ called the restriction map. Let E be a set of paths in �1.W , Z/, we
say that � 2M.W , Z,G/ is E–admissible if �.E/\X D ∅.

Let W be a triangulated manifold. A G–coloring of W is a map ˆ from the set of
oriented edges of W to G such that:

(i) ˆ.�e/Dˆ.e/�1 for any oriented edge e of W , where �e is e with opposite
orientation,

(ii) if e1, e2, e3 are ordered edges of a face of W endowed with orientation induced
by the order, then ˆ.e1/ˆ.e2/ˆ.e3/D 1.

If W0 is the set of vertices of W then ˆ2M.W , W0,G/ is equivalent to a G–coloring
ˆ of W . A G–coloring of W , ˆ2M.W , W0,G/ is admissible if it is W1 –admissible
where W1 is the set of oriented edges of W .

Let M be an oriented compact smooth 3–manifold and T @ a quasiregular triangulation
of its boundary. Let Y be a graph in M rooted in T @ . Let Y0 be the set of vertices
of Y and T @

1
be the set of edges of T @ . An admissible representation of .M , T @, Y /

in G is a T @
1

–admissible element of M.M , Y0,G/. If .T ,Y/ is a H–triangulation
of .M , Y / relative to T @ then a G–coloring ˆ 2M.M , T0,G/ of T restricts to an
element of M.M , Y0,G/.

In particular, this is true for a closed 3–manifold: If L is a link in a closed 3–manifold
M , and if .T ,L/ is a H–triangulation of .M , L/, then any G–coloring of T restricts to
a (always admissible) representation of the fundamental group of M up to conjugation,
ie an element of M.M ,G/. This restriction map is the image by the contravariant
functor M.�,G/ of the inclusion .M ,∅/� .M , T0/.

Theorem 15 Let .T ,Y/ be a H–triangulation of .M , Y / relative to T @ . Then for
any admissible representation � of .M , T @, Y /, there exists an admissible G–coloring
of T which restricts to � .

The proof of the Theorem 15 is given in Section 4.3.

3.4 Modified Turaev–Viro invariants

We start from the algebraic data described in the Section 3.1 and produce a topological
invariant of a quadruple .M , T @, Y , �/, where M is a compact oriented 3–manifold,
T @ is a quasiregular triangulation of its boundary, Y �M is a graph in M rooted in
T @ , and � is an admissible representation of .M , T @, Y /.
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A state of an admissible G–coloring ˆ of a triangulated manifold W is a map '
assigning to every oriented edge e of W an element '.e/ of Iˆ.e/ such that '.�e/D

'.e/� for all e . The set of all states of ˆ is denoted St.ˆ/. The identities d.'.e//D

d.'.�e// and b.'.e//D b.'.�e// allow us to use the notation d.'.e// and b.'.e//

for nonoriented edges.

The representation � restricts to an admissible G–coloring ˆ@ of the triangulated
surface .@M , T @/. Given a state ' of the G–coloring ˆ@ of T @ , the trivalent graph
�' dual to the 1–skeleton of T @ becomes a labeled graph in an oriented surface. We
adopt the convention that an oriented edge e of �' has the same label than the oriented
edge of T @ crossing e from the left to the right. We set

(14) H.@M , T @,ˆ@/ D
M

'2St.ˆ@/

H.�'/,

where H.�'/ is defined in Section 3.1. If @M D∅ then

T @ D � D∅ and H.@M , T @,ˆ@/D k.

Let .T ,Y/ be an H–triangulation of .M , Y / relative to T @ and let ˆ be an admissible
G–coloring of T that restrict to � . We now define a certain partition function (state
sum) as follows. For each tetrahedron t of T , we choose its vertices v1 , v2 , v3 , v4

so that the (ordered) triple of oriented edges .��!v1v2,��!v1v3,��!v1v4/ is positively oriented
with respect to the orientation of M . Here by ��!v1v2 we mean the edge oriented from
v1 to v2 , etc. For each ' 2 St.ˆ/, set

jt j' D

ˇ̌̌̌
i j k

l m n

ˇ̌̌̌
where

�
i D '.��!v2v1/,
l D '.��!v4v3/,

j D '.��!v3v2/,
mD '.��!v4v1/,

k D '.��!v3v1/,
nD '.��!v4v2/.

This 6j –symbol belongs to the tensor product of 4 multiplicity modules associated
to the faces of t and does not depend on the choice of the numeration of the vertices
of t compatible with the orientation of M . Note that any face of T n T @ belongs to
exactly two tetrahedra of T , and the associated multiplicity modules are dual to each
other. The tensor product of the 6j –symbols jt j' associated to all tetrahedra t of T
can be contracted using this duality. We denote by cntr the tensor product of all these
contractions. Let T 0

1
be the set of unoriented edges of T that are not in T @ and let T3

the set of tetrahedra of T . Set

(15) TV.T ,Y ,ˆ/

D

X
'2St.ˆ/

Y
e2T 0

1
nY

d.'.e//
Y
e2Y

b.'.e// cntr
�O

t2T3

jt j'

�
2H.T @,ˆ@/.
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Theorem 16 TV.T ,Y ,ˆ/ depends only on the isotopy class of Y in M , on the
triangulation T @ of @M and on the admissible representation � of .M , T @, Y /. We set

TV.M , Y , �/D TV.T ,Y ,ˆ/ 2H.@M , T @,ˆ@/.

Moreover, this invariant extends to a relative quantum field theory given in (31).

A proof of this theorem will be given in Section 4.3.

3.5 Kashaev-type 3–manifold invariants

In [12], Geer, Kashaev and Turaev introduce the notion of a y‰–system in a tensor
category (see Definition 7 above). It is shown that such a system, plus some algebraic
data, leads to the existence of a Kashaev-type invariant of a link in a 3–manifold. In
this subsection we briefly recall the construction of this invariant given in [12].

Throughout this subsection, M is a closed connected orientable 3–manifold and L is
a nonempty link inside M . Here we regard L as a graph in M with no vertices. Let
.T ,L/ be an H–triangulation of .M , L/. Let t be an tetrahedron of T . An integral
charge on t is a 1

2
Z–valued map c defined on the edges of t such that c.e/D c.e0/

for opposite edges e and e0 , and for any edges e1, e2, e3 of t forming the boundary of
a face of t we have c.e1/C c.e2/C c.e3/D

1
2

.

Let E.T / be the set of edges of T and let bE .T / be the set consisting of the edges
of all the tetrahedra ftig of T . Any edge e of T gives rise to n elements of bE .T /
where n is the number of tetrahedra of T adjacent to e . Let �T W bE .T /!E.T / be
the natural projection. An integral charge on an H–triangulation .T ,L/ of .M , L/

is a map cW bE .T /! 1
2
Z such that the restriction of c to any tetrahedron t of T is

an integral charge on t , and for each edge e of T we have
P

e02��1
T .e/ c.e0/ D ce ,

where ce D 0, if e belongs to L and ce D 1, otherwise. Each charge c on .T ,L/
determines a cohomology class Œc� 2 H 1.M IZ=2Z/ as follows. Let s be a simple
closed curve in M which lies in general position with respect to T and such that s

never leaves a tetrahedron t of T through the same 2–face by which it entered. Thus,
each time s passes through t , it determines a unique edge e belonging to both the
entering and departing faces. The sum of the residues 2cjt .e/ .mod 2/ 2 Z=2Z over
all passages of s through tetrahedra of T depends only on the homology class of s and
is the value of Œc� on s . For any nonempty link L�M and any � 2H 1.M IZ=2Z/,
each H–triangulation of .M , L/ has a charge representing � . The theory of integral
charges is based on the work of Neumann [24; 25].

We now describe the algebraic data needed to define the Kashaev-type invariant. Let C
be a k–linear category where k is a field. Recall the vector spaces H

ij

k
, H i

jk
, H , etc,

Algebraic & Geometric Topology, Volume 13 (2013)



3326 Nathan Geer and Bertrand Patureau-Mirand

from Section 1. Fix a b‰–system in C with distinguished simple objects fVigi2I . Fix
a family fIggg2G of finite subsets of the set I numerated by elements of a group G
and satisfying the following conditions:

(i) For any g 2 G , if i 2 Ig , then i� 2 Ig�1 .

(ii) For any i1 2 Ig1
, i2 2 Ig2

, k 2 I n Ig1g2
with g1, g2 2 G , we have H

i1i2

k
D 0.

(iii) If i1 2 Ig1
, i2 2 Ig2

with g1, g2 2G then either Ig1g2
D∅ or there is a k 2 Ig1g2

such that H
i1i2

k
¤ 0.

(iv) For any finite family fgr 2 Ggr , there is g 2 G such that Iggr
¤∅ for all r .

(v) We are given a map bW I ! k such that b.i/D b.i�/ for all i 2 I , and for any
g1, g2 2 G , k 2 Ig1g2

such that Ig1
¤∅ and Ig2

¤∅,X
i12Ig1

,i22Ig2

b.i1/ b.i2/ dimk.H
i1i2

k
/D b.k/.

We define two linear forms T , T , WH˝4! k by the following diagrammatic formulae:
for any u, v, x, y 2H ,

T .u˝ v˝x˝y/D
X

i,:::,n2I

� u

v

x

y

m

k

i

j
l

n

m

�
, T .u˝ v˝x˝y/D

X
i,:::,n2I

� u

v

x

y

m

i

l

j

k

n

m

�
.

For any a, b 2 1
2
Z, let T .a, b/, T .a, b/WH˝4! k be linear maps

T .a, b/D T q4ab
1 Rb

1R�a
2 L�a

3 R�b
3 , T .a, b/D T q�4ab

1 L�a
2 R�b

2 R�a
3 Rb

4.

Let q 2 End.H / be the operator q DR
1
2 AR�

1
2 AL�

1
2 C�

1
2 .

Let .T ,L/ be an H–triangulation of .M , L/, with integral charge c . Let ˆ be a
G–coloring of T such that St.ˆ/¤∅. As remarked in the previous subsection, the
G–coloring ˆ induces the conjugacy class of a representation Œˆ� 2M.M ,G/. Fix a
total ordering of the vertices of T . We recall the partition function defined, in [12],
from the above data.

For any tetrahedron t of T , let v1 , v2 , v3 , v4 be its vertices in increasing order
(induced from the total ordering). We say that t is right oriented if the tangent vectors
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v1v2, v1v3, v1v4 form a positive basis in the tangent space of M ; otherwise t is left
oriented. For each state ' of ˆ, set

(16)
i D '.��!v1v2/,
l D '.��!v3v4/,

j D '.��!v2v3/,
mD '.��!v1v4/,

k D '.��!v1v3/,
nD '.��!v2v4/,

where ��!vivj is the oriented edge of t going from vi to vj . Then for each right oriented
tetrahedron t of T and state ' the restriction of T .c.v1v2/, c.v2v3// to the tensor
product H m

kl
˝k H k

ij ˝k H
jl
n ˝k H in

m �H˝4 gives a vector in the k–vector space

(17) Homk.H
m
kl ˝k H k

ij ˝k H jl
n ˝k H in

m , k/DH kl
m ˝k H

ij

k
˝k H n

jl ˝k H m
in.

This vector is denoted by jt jc' and depends on ' , c and the ordering of the vertices
of T . Similarly, if t a left oriented tetrahedron then one uses T .c.v1v2/, c.v2v3// to
assigns t a vector jt jc' 2H in

m ˝k H
jl
n ˝k H k

ij ˝k H m
kl

. The multiplicity modules of
jt jc' are associated to the faces of t .

Note that any face of T belongs to exactly two tetrahedra of T , and the associated
multiplicity modules are dual to each other as in [12, Lemma 1]. The tensor product of
the 6j –symbols jt jc' associated to all tetrahedra t of T can be contracted using this
duality. We denote by cntr the tensor product of all these contractions. Set

(18) K.T ,L,ˆ, c/D
X

'2St.ˆ/

�Y
e2L

b.'.e//

�
cntr

�O
t

jt jc'

�
2 k,

where t runs over all tetrahedra of T .

Theorem 17 [12] Suppose that there exists a scalar zq 2 k such that q is equal to the
operator

zq Id yH ˚ zq
�1 Id LH 2 End.H /.

Then, up to multiplication by integer powers of zq , the state sum K.T ,L,ˆ, c/ depends
only on Œˆ� 2M.M ,G/, the isotopy class of L in M , and the cohomology class
Œc�D � 2H 1.M IZ=2Z/. We set K.M , L, Œˆ�, �/D K.T ,L,ˆ, c/.

3.6 y‰ –systems in relative G–spherical categories

In this subsection we prove that a relative G–spherical category with basic data has
a natural y‰–system for any choice of a square root of the modified dimension d.
Moreover, for this situation, we show that corresponding Kashaev-type and modified
TV invariants are equal.
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Let C be a .X , d/–relative G–spherical category with basic data fVi ,wigi2I where
the ground ring k is a field. For every pair .i , i�/ 2 I � I define the morphisms
di , di� , bi , bi� by

di D dVi�
.wi ˝ IdVi�

/, di� D d 0Vi�
.IdVi�

˝wi/,

bi D .IdVi
˝w�1

i� / ı bVi
, bi� D .w

�1
i� ˝ IdVi

/b0Vi
.

It is easy to see that Equation (4) implies .IdVi
˝w�1

i� /bVi
D .w�1

i ˝ IdVi�
/b0

Vi�
.

Therefore, if i D i� then bi D bi� and di D di� .

Recall the definition of a ‰–system given in Section 1.4.

Proposition 18 The collection fVi , bi , digi2I is a ‰–system in C .

Proof By definition fVi , bi , digi2I satisfies the first three properties in the definition
of a ‰–system. Let i , j 2 I and suppose H

ij

k
¤ 0 for some k . Then Equation (7)

implies zi zj D zk 2 G0 and so Vi ˝Vj is an object of Czk . Thus, since Czk is semisimple
with a finite number of isomorphism classes of simple objects given by fVl W l 2 Izkg

we have that IdVi˝Vj has the desired property.

Recall the operators A, B, LDA�A, RDB�BW H!H defined in Section 1.4. Since
C is pivotal we have ABADBAB and thus C D .AB/3 D IdH . Let S DABA then
S� D S D S�1 and SAS D B .

Choose a function d
1
2 W I ! k satisfying d

1
2 .i�/ D d

1
2 .i/ and d.i/ D d

1
2 .i/2 for all

i 2 I . Define the operator

ı W H !H given by ı D
M
ijk

d
1
2 .k/ IdH k

ij
˚ d

1
2 .k/ Id

H
ij

k

.

Let ıA
DA ı A and ıB

D B ı B .

Lemma 19 ı , ıA, ıB are symmetric commuting invertible operators satisfying:

S ı D ı S , S ıA
D ıB S ,(19)

A ıB
D ıB A, B ıA

D ıA B,(20)

A ı D ıA A, B ı D ıB B,(21)

LD
�
ı =ıA

�2, RD
�
ı =ıB

�2,(22)

T ı1 D T ı4, T ıB
1 D T ı2, T ıA

1 D T ıA
3 ,(23)

T ıA
2 D T ıB

3 , T ıB
2 D T ıB

4 , T ı3 D T ıA
4 .(24)
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Proof First,

ı , ıA
D

M
ijk

d
1
2 .i/ Id

H k
ij
˚H

ij

k

and ıB
D

M
ijk

d
1
2 .j / Id

H k
ij
˚H

ij

k

obviously commute. Notice that on H k
ij˚H

j�i�

k�
, ı acts by the scalar d

1
2 .k/Dd

1
2 .k�/.

As S stabilizes these summands of H , S and ı commute which is the first equality of
(19). Similarly, the other equality in (19) and Equations (20), (21) are easily deduced
from the relation satisfied by A, B, S and the definitions of ı , ıA, ıB .

We will now show that the equalities in (22) are a consequence of the fact that .A, d/
is a t-ambi pair. Consider the isomorphisms

(25)
H

ij

k
!H ijk�

DH.i , j , k�/,

H k
ij !H kj�i�

DH.k, j �, i�/,

y 7! .y˝w�1
k� /bVk

,

x 7! .x˝w�1
j� ˝w

�1
i� /.IdVi

˝bVj˝ IdV �
i
/bVi

.

Using these isomorphisms the pairings . , /ijk W H.i , j , k/˝k H.k�, j �, i�/! k and
h , iW H ˝H ! k given in Equations (5) and (11), respectively, are related by:

(26) .�,�/i,j ,k� D d.Vk/h�,�i
jH

ij

k
˝H k

ij

D hı.�/, ı.�/i
jH

ij

k
˝H k

ij

.

Remark that the isomorphisms of (25) commute with A and B and so we have

d.Vk/hx, Lyi
jH i

kj�
˝H

kj�

i

D d.Vk/hAx, Ayi
jH

ij

k
˝H k

ij

D .x, y/i,j ,k� D d.Vj /hx, yi
jH

j

i�k
˝H i�k

j

,

d.Vk/hx, Ryi
jH i

kj�
˝H

kj�

i

D d.Vk/hBx, Byi
jH

ij

k
˝H k

ij

D .x, y/i,j ,k� D d.Vi/hx, yi
jH i

kj�
˝H

kj�

i

.

Thus, Ly D ı2 .ıA/
�2
.y/, RD ı2 .ıB/

�2
.y/ and this implies Equation (22).

The form T on H˝4 is 0 on most of its summands. In particular, it can only be
nonzero if the morphisms are composable which mean that the summand has the form

(27) H m
kl ˝k H k

ij ˝k H jl
n ˝k H in

m

for some .i , j , k, l , m, n/ 2 I6 . Equations (23), (24) follow from the fact that on these
summand the operators ı , ıA, ıB act by easily identifiable scalars. For example, on
the summand of (27) the operators ıB

1 and ı2 act as

ıB
jH m

kl
D d

1
2 .k/ Id and ı

jH k
ij
D d

1
2 .k/ Id,

respectively.
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Theorem 20 The ‰–system of Proposition 18 extends to a y‰–system where

R
1
2 D

ı

ıB
and C

1
2 D Id .

In this case, L
1
2 D

ı
ı

A .

Proof The Equations (6a) and (6b) are trivial except for BR
1
2 B D R�

1
2 which is

a consequence of the fact that conjugation by B exchange ı and ıB (see (21)).
Equations (6c) and (6d) follow from Equations (23) and (24). For example,

TR
1
2

1
L

1
2

2
D T

ı1 ı2

ıB
1 ı

A
2

D T
ı1

ıA
2

and TR
1
2

3
L

1
2

4
D T

ı3 ı4

ıB
3 ı

A
4

D T
ı4

ıB
3

are equal. Finally,

L
1
2 D BAR�

1
2 AB D BA

ıB

ı
AB D B

ıB

ıA
AAB D

ı

ıA
BAAB D

ı

ıA
.

Theorem 21 Let L be a nonempty link in a closed connected orientable 3–manifold
M (as above we regard L as a graph with no vertices). Let � 2M.M ,G/ and � 2
H 1.M IZ=2Z/. Let TV.M , L, �/ be the invariant arising from the relative G–spherical
structure of C and let K.M , L, �, �/ be the invariant arising from the y‰–system de-
scribed above. Then TV.M , L, �/D K.M , L, �, �/. In particular, K.M , L, �, �/ is a
well-defined complex number which is independent of the choice of the cohomology
class � and the square root d

1
2 of d.

Proof First, using Lemma 19 and Theorem 20 it is easy to compute the operator
q W H !H :

q DR
1
2 AR�

1
2 AL�

1
2 C�

1
2 D

ı

ıB
A
ıB

ı
A
ıA

ı
D

ı

ıB

ıB

ıA

ıA

ı
D IdH .

Remark that as q is responsible for the ambiguity of zq in K, we see that in our context,
this ambiguity disappears.

From duality and the equality d.m/ IdH m
kl
D ı2jH m

kl
, we have symmetrized T –forms

Ts , T sW H
˝4! k given by Ts D T ı2

1
D T ı2

4
and T s D T ı2

1
D T ı2

4
. Let

hDH m
kl ˝k H k

ij ˝k H jl
n ˝k H in

m and h0 DH m
in˝H n

jl ˝H
ij

k
˝H kl

m .

After identifying the modules H
ij

k
and H k�

j�i� and with the H.i , j , k�/ (using the
isomorphisms in Equation (25)) we have that

(28) T sjh0 D d.m/T jh0 D

ˇ̌̌̌
i j k

l m n

ˇ̌̌̌
, Tsjh D d.m/T jh D

ˇ̌̌̌
n j � l

k m i

ˇ̌̌̌
.
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Note the 6j –symbol in the last equality correspond to the same spherical graph with
opposite orientation.

Let .T ,L/ be an H–triangulation of .M , L/. Let ˆ be an admissible G–coloring
of T such that Œˆ�D � 2M.M ,G/. Let c be a integral charge on .T ,L/ such that
Œc�D � 2H 1.M IZ=2Z/. For each state ' of ˆ let us write TV' (resp. K' ) for the
summand of TV.M , L, �/ (resp. K.M , L, �, �/) corresponding to ' . In other words,
we have

TV.M , L, �/ D
X

'2St.ˆ/

TV' , K.M , L, �, �/ D
X

'2St.ˆ/

K' .

Let ' be a state of ˆ. We will show that TV' D K' . First, notice that the factors
of TV' and K' corresponding to b are identical. Let t be a tetrahedron of T with
ordered vertices v1, v2, v3, v4 . We will now compute the vector jt jc' which is used in
the construction of K. Let aD c.v1v2/, bD c.v2v3/ and i , j , k, l , m, n be the indices
given in Equation (16). By definition we have

T .a, b/D T q4ab
1 Rb

1R�a
2 L�a

3 R�b
3 D T

�
ı1

ıB
1

�2b�
ı2

ıB
2

��2a�
ı3

ıA
3

��2a�
ı3

ıB
3

��2b

.

Using Lemma 19 and the fact that ı , ıA and ıB all act as scalars on a multiplicity
space we have

T .a, b/jh D .S
t
1S t

2/Tsjh,

where
S t

1 D .d.i/ d.l//
a .d.j / d.m//b .d.k/ d.n//c.v1v3/,

S t
2 D .d

1
2 .m/d

1
2 .k/d

1
2 .n/d

1
2 .m//�1.

Similarly, T .a, b/jh0 D .S1S2/Tsjh0 . If t is right oriented then jt jc' is the vector in the
module on right-hand side of Equation (17) corresponding to T .a, b/jh . Similarly, if t

is left oriented then jt jc' is the vector in H in
m ˝k H

jl
n ˝k H k

ij ˝k H m
kl

corresponding
to T .a, b/jh0 . Thus, from Equation (28) we have jt jc' D S t

1
S t

2
jt j' , where jt j' is the

tensor used in the construction of TV .

Now for each tetrahedron t of T we have a scalar S t
1

as described above. Each of
these scalars is the product

Q
e d.'.e//

c.e/ , where e runs over the 6 edges of t . Let e

be an edge of T . The portion of
Q

t2T3
S t

1
corresponding to the edge e isY

e02��1
T .e/

d.'.e0//c.e
0/
D d.'.e//

P
e0 c.e

0/
D d.'.e//ce ,
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where ce D 0 if e belongs to L and ce D 1 otherwise (for notation see Section 3.5).
Thus,

Q
t2T3

S t
1
D
Q

e2T nL d.'.e//.

For each t 2 T3 , the contribution of S t
2

can be considered as the operator
N
f ı
�1
f ,

where f runs over the set of the 4 faces of t and ıf is ı applied to the multiplicity
module H associated to the face f . This factor is exactly what is needed to relate the
pairs . , /ijk and h , i; see Equation (26). Combining all the statements above we see
that TV' D K' and so the invariants are equal.

4 Relative homotopy quantum field theory

In this section we will extend the invariant TV of 3–manifolds with triangulated
boundary to an invariant of 3–manifolds bounding surfaces with dots. We will also
prove the main topological theorems of the paper.

4.1 A .2 C 1/–cobordism category Cob� of triangulated surfaces

The first step in extending TV is the introduction of an “oscillating path” in a triangulated
surface.

An oscillating path in a triangulated surface † is a map �W fedges of †g ! f�1, 0, 1g

that satisfies the following conditions: Let P D ��1.f�1, 1g/ be the support of �
and jP j be the 1–dimensional simplicial complex which is the closure of P . Then
we require that any connected component of jP j is homeomorphic to a segment and
contains an even number of edges. We also require that � takes alternatively values
C1 and �1 on the sequence of edges of any of these paths.

We can represent an oscillating path on a triangulation by coloring some of its edges
with C and � (see Figure 4).

Figure 4: A triangulated surface with an oscillating path: �.edge/D �.color/
with �.red/DC1 , �.green/D�1 , �.black/D 0
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We define the number of strands of .†, �/ to be the cardinal of the set of vertices †0

of † minus the number of edges in the support of �. This is the number of connected
components of †0[ jP j.

Let †1 and †2 be two triangulated oriented surfaces with admissible G–colorings and
oscillating paths. Let †�

2
be the surface †2 with opposite orientation. An enriched

cobordism from †1 to †2 is a quadruplet .M ,f , Y , �/ where:

(i) M is an oriented compact 3–manifold.

(ii) f W †1 t†
�
2
! @M is a diffeomorphism.

(iii) Y �M is a graph in M rooted in the triangulation T @ of @M induced from
†1t†

�
2

under f such that if e is an edge of †1 (resp. †2 ) whose value under
the oscillating path is C1 (resp. �1) then there exits a connected component Ye

of Y and a trivializing disk D2 embedded in M with Int.D2/\ Y D ∅ and
@D2 D e[Ye (see Figure 5).

†1

†2

Y �M

Figure 5: A cobordism between triangulated surfaces with oscillating paths,
here the trivializing disks are the shaded regions

(iv) � is an admissible representation of .M , T @, Y / that restricts to both of the
admissible G–colorings of †2 and †1 .

The triplet .M , Y , �/ is regarded up to diffeomorphism that is trivial on the boundary
(where we use f to identify @M and †1 t†

�
2

).

One can glue an enriched cobordism .M ,f , Y , �/ from †1 to †2 with an enriched
cobordism .M 0,f 0, Y 0, �0/ from †2 to †3 . The result is an enriched cobordism
.M 00,f 00, Y 00, �00/ from †1 to †3 , where Y 00 is the union of the graphs Y and Y 0 .
The set of vertices of Y 00 is Y 00

0
D .Y0 [ Y 0

0
/ nZ , where Y0 and Y 0

0
are the vertices

of Y and Y 0 , respectively and Z D Y0\Y 0
0

is the subset of these vertices that are on
†2 ,!M 00 . Remark that van Kampen’s Theorem for groupoids (see [5]) implies that
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�.M 00, Y0[Y 0
0
/ is the pushout of the maps �.†2, Z/! �.M , Y0/ and �.†2, Z/!

�.M 0, Y 0
0
/. Thus, there exists an unique representation z� of .M 00, Y0 [ Y 0

0
/ which

restrict to both � and �0 . The representation �00 is the restriction of z� to .M 00, Y 00
0
/.

Loosely speaking, a path 
 in �.M 00, Y 00
0
/ can be cut to a finite composition of smaller

paths in �.M , Y0/ and �.M , Y 0
0
/, and �00.
 / is the product of the images by � and

�0 of these smaller paths.

Theorem 22 There is a monoidal category Cob� whose objects are quadruplets
.†, T , �,ˆ/ formed by an oriented surface † with a quasiregular triangulation T , an
oscillating path � and an admissible G–coloring ˆ of T , and whose morphisms are
enriched cobordisms. The tensor product is given by disjoint union and the composition
by gluing along the boundaries.

Proof It is well known that cobordisms of surfaces form a monoidal category. It is
easy to adapt the proof of this result to enriched cobordisms. The only nontrivial point is
to prove that objects have an identity morphism. Let us construct the identity morphism
M D .†� Œ0, 1�, Y , �/ of .†, T , �,ˆ/ as follows. The underlying 3–manifold is the
cylinder †� Œ0, 1�. The graph Y is a tangle as in the schematic picture of Figure 6.

†� f0g

†� f1g

Y �†� Œ0, 1�

Figure 6: The identity cobordism for a surface † with 3 strands

Y is the unique tangle (up to isotopy) which is vertical except in a neighborhood of
†� f0g and †� f1g where it is contained in jP j � Œ0, 1� (recall jP j is the union of
edges e with �.e/D˙1). The representation � is the pull back of ˆ by the projection
pW †� Œ0, 1�! †. One can check that gluing an enriched cobordism M 0 with M

along † does not change the isomorphism class of M 0 .

Let e† D .†, T , �,ˆ/ be an object of Cob� . The dual object e†� of e† in Cob� is
defined as follows. Let †� be the surface † with opposite orientation. Let T �D T be
the triangulation of †� and let ˆ�Dˆ be the G–coloring of T � . Finally, let ��D��
be the oscillating path of T � . We define e†� D .†�, T �, ��,ˆ�/.
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Let � be the trivalent graph dual to †. As in Equation (14) we can define H.e†/DL
'2St.ˆ/H.�'/. Changing the orientation of † changes all the indexes of �' to

their dual and so the pairing (10) induces a nondegenerate pairing

. � , � /0W H.e†�/˝H.e†/! k.

Consider the operator de† on H.e†/ given by

de† D M
'2St.ˆ/

�Y
e2T1

d.'.e//

�
IdH .�'/ .

Define the nondegenerate pairing

(29) . � , � /W H.e†�/˝H.e†/! k, x˝y 7!
�
x, dz†.y/0

�
D
�
dz†�.x/, y

�
0
.

Let e† 0 D .†0, T 0, �0,ˆ0/ be another object of Cob� . Since H.e†�i /ŠH.e†i/
� , the

pairing in (29) induces an isomorphism

(30) H.e†� t e† 0/DH.e†�/˝H.e† 0/Š Homk.H.e†/, H.e† 0//.
If .M ,f , Y , h/ is an enriched cobordism from e† to e† 0 then using (30) we can identify
TV.M , T @, Y , h/ with an element of Homk.H.e†/, H.e†0//, where T @ ' T � tT 0 is
the triangulation of @M induced by f .

In [29, Section 2.3] a mapping C! C0 of categories is called a semifunctor if it satisfies
the first condition of the definition of a functor: namely, it sends the composition of
morphisms to the composition of their images. If C0 is abelian, a semifunctor leads
to an honest functor: to each object of C assign the coimage in C0 of the image by
the semifunctor of the identity morphism of this object, then naturally extend this
assignment to morphisms. With this in mind, we define the following functor Q. The
definition of the state sum TV implies that the mapping Cob� ! Vect defined bye† 7! H.e†/ and .M , T @, Y , h/ 7! TV.M , T @, Y , h/ 2 Homk.H.e†/, H.e† 0// is a
monoidal semifunctor. Thus, we have a functor QW Cob�! Vect , where Q.e†/ is
given by H.e†/ modulo the kernel of the image of Idz† under this semifunctor.

4.2 A .2 C 1/–cobordism category Cob of marked surfaces

In this subsection, we remove the requirement that surfaces are triangulated.

A marked surface is a closed oriented surface † with a finite set of points m�† such
that m has a nonempty intersection with any connected component of †. The elements
of m are called marks. We consider marked surfaces equipped with a representation in
G that is an element of M.†,m,G/.
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If †1 and †2 are two marked surfaces with representations in G , a marked cobordism
from †1 to †2 is a quadruplet .M ,f , Y , �/ where:

(i) M is an oriented compact 3–manifold.

(ii) f W †1 t†
�
2
! @M is a diffeomorphism.

(iii) Y �M is a graph rooted in the subset m� @M formed by the image under f
of the marks of †1 and †2 .

(iv) � is an element of M.M , Y0,G/ that restricts to the representations of †1 and
†2 in G .

The triplet .M , Y , �/ is regarded up to diffeomorphism which is trivial with respect to
the boundary (where we use f to identify †1 t†

�
2

with @M ).

Let Cob be the monoidal category whose objects are marked surfaces with represen-
tation in G and morphisms are marked cobordisms. There is an obvious forgetful
semifunctor Cob�! Cob sending the set of vertices of a triangulation to the set of
marks. We modify this semifunctor to construct an equivalence of categories. The
main point here is that the number of marks must be reduced.

If .†, T / is a triangulated surface with an oscillating path �, we can associate a set
of marks m containing one point in each connected component of the support jP j of
� as follows: m is the set of vertices v of T such that for any edge e containing v ,
�.e/� 0. Hence the number of marks of .†, T , �/ is equal to the number of strands of
.†, �/. Restricting the representation in G of an object e† of Cob� , we get an object
E.e†/ of Cob . In order to extends this map to a functor E W Cob�! Cob we need to
define some special cobordisms.

Let e† D .†, T , �,ˆ/ be an object of Cob� and let †D E.e†/. Consider the enriched
cobordism †�Œ0, 1� that represents the identity of e† (see Figure 6). Using the forgetful
semifunctor Cob�! Cob we can view this enriched cobordism as marked cobordism
of .†, T0,ˆ/. Cutting this marked cobordism along † � f1

2
g, we can see it as the

composition of two morphisms

C†
z†
W .†, T0,ˆ/!† and C

z†

†
W †! .†, T0,ˆ/

in Cob such that
C†
z†
ıC
z†

†
D Id†

and C
z†

†
ıC†
z†

is the image of Idz† under the forgetful semifunctor Cob�! Cob .
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We define E on morphisms as follows. Let e† 0 be another object of Cob� and let
†
0
D E.e† 0/. For M 2 HomCob�.

z†, z†0/ define

E.M /D C†
0

z†0
ıM ıC

z†

†
2 HomCob.†,†

0
/.

Lemma 23 The functor E W Cob�! Cob is an equivalence of monoidal categories.

Proof We need to show that E is a full, faithful and essentially surjective. Consider
the map HomCob�.

e†, e† 0/ ! HomCob.E.e†/, E.e† 0// induced by E . This map is
invertible with inverse

HomCob.E.e†/, E.e† 0//! HomCob�.
e†, e† 0/ given by M 7! C

z†0

† 0
ıM ıC†

z†
.

Therefore, E is full and faithful. The functor E is essentially surjective because any
marked surface has a quasiregular triangulation T with oscillating path containing
those vertices of T which are not in m.

In fact, if two objects of Cob� have the same underlying marked surface †, then they
are canonically isomorphic (using the cylinders of Lemma 23) and thus we can define
Q.†/ as the result of the identification of these spaces along these isomorphisms. This
construction naturally extends to a functor

(31) QW Cob! Vect.

We call this functor a relative quantum field theory.

4.3 Proofs of Theorems 14, 15 and 16

Throughout this section, we keep notation of Theorem 16. We begin by explaining that
any two H–triangulations of .M , T 0, Y / can be related by elementary moves adding
or removing vertices, edges, etc. We call an elementary move positive if it adds edges
and negative if it removes edges.

The elementary moves (see [17]) are the so-called H–bubble moves (Figure 7(a)), the
H–Pachner 2$ 3 moves (Figure 7(b)) and the H–lune moves (Figure 7(c)).

It is understood that a negative move is only allowed if it is the inverse of a positive move
(hence these moves do not change the graph). The H–lune move may be expanded as
a composition of H–bubble moves and H–Pachner moves (see [2, Section 2.1]), but it
will be convenient for us to use the H–lune moves directly.
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�! v

(a) H–bubble move

 !

(b) H–Pachner move

 !

(c) H–lune move

Figure 7: Elementary moves

Proof of Theorem 14 As in the statement of the theorem, let T @ be a quasiregular
triangulation of @M and let Y be a graph in M rooted in T @ .

In the proof, we shall use the language of skeletons of 3–manifolds dual to the language
of triangulations (see, for instance, [27; 2]). A skeleton of M is a 2–dimensional
polyhedron P in M such that M nP is a disjoint union of open (half) 3–balls and
locally P looks like a plane, or a union of 3 half-planes with common boundary line
in R3 , or a cone over the 1–skeleton of a tetrahedron. A typical skeleton of M is
constructed from a triangulation T of M by taking the union PT of the 2–cells dual to
its edges. This construction establishes a bijective correspondence T $ PT between
the quasiregular triangulations T of M and “quasiregular” skeletons P of M such
that every 2–face of P is a disk adjacent to two distinct components of M �P . If
.T ,Y/ is an H–triangulation of .M , Y /, to specify the graph Y in dual skeleton we
provide some faces of PT with dots such that each component of M �PT is adjacent
to at least two (distinct) dotted faces. These dots correspond to the intersections of Y
with the 2–faces. Here the vertices Y0 of Y become a set of distinguished components
of M n PT . The elementary moves on the H–triangulations may be translated to
this dual language and give the well-known Matveev–Piergallini moves on skeletons
adjusted to the setting of Hamiltonian graphs; see [2].

Take a collar spine S 0 of .M 0,�/ as in [29, Theorems 6.4.A & B], where M 0 D

M n V .Y / for an open tubular neighborhood V .Y / of Y and � is a graph in the
boundary of M 0 which is the disjoint union of the trivalent graph dual to the triangu-
lation of @M union one meridian circle for each edge (and circle component) of Y .
Then we fill the meridian circle of S 0 with a dotted disk and get a skeleton S of M in
the complement of which a (half) 3–ball has at least one region in its boundary with a
dot. Taking the dual of S we obtain an H–triangulation .T ,Y/ of .M , Y / relative to
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T @ which may not be quasiregular. If T is not quasiregular then S contains a region
which has the same (half) 3–cell on both sides or a region with both sides in Y0 . We
call such a region bad.

The skeleton S can be modified by the Matveev–Piergallini moves dual to the ele-
mentary moves to obtain a skeleton which is dual to a quasiregular H–triangulation.
In the case when M is closed this was done by Baseilhac and Benedetti [2, proof of
Proposition 4.20]. In particular, for a 3–cell with a bad region they do a dual H–bubble
move on S which introduces a new 3–cell which is partially bounded by a two cell
which they call a capping disk. Then they use dual H–Pachner moves to slide a portion
of the capping disk over the bad region, thus dividing a (half) 3–cell with the bad region
into two 3–cell (or a 3–cell and a half 3–cell) with no bad regions. The proof of [2]
can be applied in the case when M has a boundary and Y is a graph.

Proposition 24 Let M be a compact 3–manifold, T @ a quasiregular triangulation of
@M and Y a graph in M rooted in T @ . Any two H–triangulations of .M , Y / relative
to T @ can be related by a finite sequence of H–bubble moves and H–Pachner moves
in the class of H–triangulations of .M , Y / relative to T @ .

Proof Let .T1,Y1/ and .T2,Y2/ be H–triangulation of .M , Y / relative to T @ . By
doing positive H–bubble moves if necessary we can assume that each edge of Y is
realized by the same number of edges in both Y1 and Y2 . Let PTi

be the skeleton dual
to Ti where each edge of Yi corresponds to a dotted face as in the proof of Theorem 14.
Replacing a neighborhood of each of these dots with a circle we obtain a collar spine
Si of .M nV .Y /,�i/, where �i is the graph in the boundary of M nV .Y / formed by
these circles. The assumption on the edges of Y1 and Y2 implies that �1 and �2 are
isotopic. Then [29, Theorem 6.4.B] implies that two spines S1 and S2 are related by a
sequence of dual H–Pachner and H–lune moves. In [2, Proposition 4.23], Baseilhac
and Benedetti prove that by adding and sliding capping disks this sequence of moves
leads to a sequence of moves in the class of H–triangulations connecting .T ,Y/ and
.T 0,Y 0/.

Lemma 25 Let ˆ be an admissible G–coloring of T . Suppose that .T 0,Y 0/ is an
H–triangulation obtained from .T ,Y/ by a negative H–Pachner, H–lune or H–bubble
move. Then ˆ restricts to an admissible G–coloring ˆ0 of T 0 and

(32) TV.T ,Y ,ˆ/D TV.T 0,Y 0,ˆ0/.

Proof The proof is exactly the same as the one of [17, Lemma 18]. That is we can
translate the H–Pachner, H–lune and H–bubble moves into algebraic identities: the
Biedenharn–Elliott identity, the orthonormality relation and (13), respectively.
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Let .T ,Y/ be a H–triangulation of .M , Y /. A G–gauge of T is a map from the set
of vertices T0 of T to G . The G–gauges of T form a multiplicative group which
acts on the set of G–colorings of T as follows. If ı is a G–gauge of T and ˆ is a
G–coloring of T , then the G–coloring ı ˘ˆ is given by

.ı ˘ˆ/.e/D ı.v�e /ˆ.e/ı.vCe /�1,

where v�e (resp. vCe ) is the initial (resp. terminal) vertex of an oriented edge e . Let
T i

0
be the set of vertices of T that are not vertices of Y so T0 D Y0tT i

0
. Let GT i

0 be
the set of G–gauges ıW T0! G such that ı.v/D 1 if v 2 Y0 .

Proof of Theorem 15 Take any G–coloring ˆ of T which restricts to � . We say that
a vertex v of T nY0 is bad for ˆ if there is an oriented edge e in T outgoing from v

such that ˆ.e/ 2 X . Since .T ,Y/ is an H–triangulation any edge not in @M has at
least one endpoint not in Y0 . Thus, it is clear that ˆ is admissible if and only if ˆ
has no bad vertices. We show how to modify ˆ to reduce the number of bad vertices.
Let v be a bad vertex for ˆ and let Ev be the set of all oriented edges of T outgoing
from v . Pick any

g 2 G n
� [

e2Ev

.Xˆ.e/�1/

�
.

Let ıv,g to be the G–valued gauge defined by

(33) ıv,g.v0/D

�
g if v D v0,
1 else.

Then ıv,g ˘ˆ takes values in G nX on all edges of T incident to v and takes the same
values as ˆ on all edges of T not incident to v . Here we use the fact that the edges
of T are not loops which follows from the quasiregularity of T . The transformation
ˆ 7! ıv,g ˘ˆ decreases the number of bad vertices. Repeating this argument, we find a
G–coloring without bad vertices which restricts to � .

Remark that for ˆ 2M.M , T0,G/, and for g 2 GT i
0 , the G–colorings ˆ and ıg ˘ˆ

restrict to the same representation in M.M , Y0,G/.

Lemma 26 If ˆ1 and ˆ2 in M.M , T0,G/ restrict to the same representation � in
M.M , Y0,G/, then there exists an element g 2 GT i

0 with ıg ˘ˆ1 Dˆ2 .

Proof We assume in the proof, without loss of generality, that M is connected. When
M is closed and Y0 is empty, the elements of M.M ,G/ bijectively correspond to
the G–colorings of T considered up to gauge transformations (see for example [26]).
Therefore, assume Y0 is not empty.
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We first distinguish a set of edge Y . Let start with Y D Y . Suppose that some vertex
of T is not connected to Y0 by a path in Y . We say that such a vertex is isolated. Then
there exists an edge of T whose ends are an isolated vertex on one side and a vertex
not isolated in the other side. We then add this edge to Y . We repeat this process until
there is no more isolated vertex. One can check that he had added one edge of T for
each circle component of Y . A path of length n is a sequence of n oriented edges
e1, : : : , en where the target of ei is equal to the source of eiC1 . Choose an orientation
of the edges of Y . This orientation can be extended to a compatible orientation of the
edges of Y such that for every vertex v of T there exists an unique shortest path 
v
in Y from some vertex of Y0 to v . To be more precise, recall that every oriented edge
of Y is realized by a path in Y . So there is an unique compatible orientation of the
edges of Y . As for the added edges of Y nY , we choose the orientation toward the
originally isolated vertex. The union of paths 
v where v is a vertex of T is a disjoint
union of trees rooted in Y0 . We say a vertex v of T is good if ˆ1.e/ D ˆ2.e/ for
every edge e of 
v . In particular, every vertex of Y0 is good.

Suppose all vertices of T are good. Then ˆ1 Dˆ2 because for any oriented edge e

of T from v1 to v2 , we have

ˆ1.e/Dˆ1.
v1
/�1�.
v1

e
�1
v2
/ˆ1.
v2

/Dˆ2.
v1
/�1�.
v1

e
�1
v2
/ˆ2.
v2

/Dˆ2.e/.

Thus, it remains to show that we can modify ˆ1 by a gauge transformation to increase
the number of good vertices. Let e be an edge of Y from v1 to v2 , where v1 is
good and v2 is not good. Then 
v2

D 
v1
e and so ıv2,g ˘ˆ1.e/ D ˆ2.e/, where

g D ˆ2.e/
�1ˆ1.e/. If v is a good vertex the path 
v can not pass through v2 as

ˆ1.e/¤ˆ2.e/. Therefore, the set of good vertices strictly increases when one replaces
ˆ1 with ıv2,g ˘ˆ1 .

Lemma 27 Let v0 2 T i
0

and cW T0! G be a map such that c.v/D 1 for all v ¤ v0

and c.v0/ 62X . If ˆ and ıc ˘ˆ are admissible G–colorings of T , then TV.T ,Y ,ˆ/D
TV.T ,Y , ıc ˘ˆ/

Proof A similar claim is proved in [17, Lemma 27] when G is a commutative group.
Since v0 is in T i

0
the vertex v0 is the endpoint for exactly two edges e1, e2 of Y . As

shown in [17, proof of Lemma 27] there is a sequence of elementary moves through
quasiregular triangulation with admissible colorings from .T ,Y ,ˆ/ to .T ,Y , ıc ˘ˆ/.
This sequence starts with a positive H–bubble move at e1 (where we introduce the
color c.v0/) and ends with a negative H–bubble move at e2 .
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Lemma 28 If ˆ and ˆ0 are two admissible G–colorings of T that restrict to the same
representation � 2M.M , Y0,G/, then TV.T ,Y ,ˆ/D TV.T ,Y ,ˆ0/.

Proof Since ˆ and ˆ0 represent the same element of M.M , Y0,G/ by Lemma 26
there exists pairs .vi , gi/ 2 fvertices of T g �G such that

ˆ0 D ıvn,gnıvn�1,gn�1 � � � ıv1,g1 ˘ˆ,

where ıvi ,gi is the G–valued gauge, defined as in (33), which takes nontrivial values
at a single vertex vi , for all i D 1, : : : , n. We prove the desired equality by induction
on n. If nD 0 then ˆ0 Dˆ and the equality is clear. Otherwise, let E1 be the set of
(oriented) edges of T beginning at v1 . Pick any

g 2 G n
h
X [

[
e2E1

�
Xˆ.e/�1

�
[

[
e2E1

�
Xˆ0.e/�1g1

�i
.

Then ıv1,g ˘ˆ and ıvn,gnıvn�1,gn�1 � � � ıv2,g2ıv1,g ˘ˆD ıv1,gg�1
1 ˘ˆ0 are admissible

colorings. Lemma 27 and the induction assumption imply that

TV.T ,L,ˆ, c/D TV.T ,L, ıv1,g ˘ˆ, c/

D TV.T ,L, ıvn,gnıvn�1,gn�1 � � � ıv2,g2ıv1,g ˘ˆ, c/

D TV.T ,L,ˆ0, c/.

Theorem 29 Let .T ,Y/ and .T 0,Y 0/ be two H–triangulations of .M , Y / relative
to T @ such that .T 0,Y 0/ is obtained from .T ,Y/ by a single H–Pachner move, H–
bubble move, or H–lune move. Then for any admissible G–colorings ˆ, ˆ0 of T , T 0 ,
respectively, restricting to the same element of M.M , Y0,G/, we have

TV.T ,Y ,ˆ/D TV.T 0,Y 0,ˆ0/.

Proof For concreteness, assume that T 0 is obtained from T by a negative move.
The admissible G–coloring ˆ of T restricts to an admissible G–coloring ˆ00 of
T 0 which restrict to the same element of M.M , Y0,G/. Now Lemma 25 implies
that TV.T ,Y ,ˆ/ D TV.T 0,Y 0,ˆ00/ and Lemma 28 implies that TV.T 0,Y 0,ˆ00/ D
TV.T 0,Y 0,ˆ0/.

Proof of Theorem 16 From Proposition 24 we know that any two H–triangulation of
.M , Y / are related by a finite sequence of elementary moves. Then the result follows
from the Theorem 29 by induction on the number of moves.
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5 Quantum groups at roots of unity

In this section we first recall some of the deep results established by De Concini,
Kac, Procesi, Reshetikhin and Rosso in the series of papers [8], [9], [10] and [11].
We then prove that the modules studied in these papers give rise to the topological
invariants described in Sections 2, 3 and 4. In particular, in Sections 5.1 and 5.2 we give
definitions and properties of the algebras U and UH associated to a simple Lie algebra
g. In Section 5.3 we discuss the category of weight modules over these algebras. Since
the constructions in the first three subsections are some what abstract, in Section 5.4
we give a concrete example when gD sl2 . Then we give descriptions of the pivotal
structure, braiding and modified dimensions. The section is concluded with a theorem
stating that the category of finite-dimensional weight modules over U is a relative
G–spherical category.

5.1 The quantum groups U and UH

Let g be a simple finite-dimensional complex Lie algebra of rank n and dimension
2N C n with a root system. Fix a set of simple roots f˛1, : : : ,˛ng and let �C be
the corresponding set of positive roots. Also, let A D .aij /1�i,j�n be the Cartan
matrix corresponding to these simple roots. There exists a diagonal matrix D D

diag.d1, : : : , dn/ such that DA is symmetric and positive-definite. Let h be the Cartan
subalgebra of g generated by the vectors H1, : : : , Hn , where Hj is determined by
˛i.Hj / D aji . Let LR be the root lattice which is the Z–lattice generated by the
simple roots f˛ig. Let h , i be the form on LR given by h˛i , j̨ i D diaij . Let LW

be the weight lattice which is the Z–lattice generated by the elements of h� which are
dual to the elements Hi , i D 1, : : : , n. Let �D 1

2

P
˛2�C ˛ 2LW .

Let r be an odd integer such that r � 3 (and r 62 3Z if gDG2 ). Let q D e2i�=r and
for i D 1, : : : , n, let qi D qdi . For x 2C and k, l 2N we use the notation:

qx
D e

2i�x
r , fxgq D qx

� q�x , Œx�q D
fxgq

f1gq
,

Œk�q D Œ1�q Œ2�q � � � Œk�q ,
�
k

l

�
q

D
Œk�q!

Œl �q!Œk � l �q!
.

Remark for x 2C , fxgq D 0 if and only if x 2 r
2
Z.

Next we consider two quantum groups associated to g. The Drinfeld–Jimbo quantum
group U is defined as the algebra with generators Kˇ , Xi , X�i for ˇ2LW , iD1, : : : , n
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and relations

K0 D 1, KˇK
 DKˇC
 , KˇX� iK�ˇ D q�hˇ,˛i iX� i ,(34)

ŒXi , X�j �D ıij
K˛i
�K�1

˛i

qi � q�1
i

,(35)

1�aijX
kD0

.�1/k
�
1� aij

k

�
qi

X k
� iX�j X

1�aij�k

� i D 0, if i ¤ j ,(36)

where � D ˙1. The algebra U is a Hopf algebra with coproduct �, counit � and
antipode S defined by

�.Xi/D 1˝Xi CXi ˝K˛i
,

�.X�i/DK�1
˛i
˝X�i CX�i ˝ 1,

�.Kˇ/DKˇ˝Kˇ,

S.Xi/D�XiK
�1
˛i

,

S.X�i/D�K˛i
X�i ,

S.Kˇ/DK�ˇ,

�.Xi/D �.X�i/D 0,

�.K˛i
/D 1.

The unrolled quantum group UH is the algebra generated by Kˇ, Xi , X�i , Hi for
ˇ 2LW , i D 1, : : : , n with relations (34), (35), (36) plus the relations

(37) ŒHi , X�j �D �aij X�j , ŒHi , Hj �D ŒHi , Kˇ �D 0,

where � D˙1. The algebra UH is a Hopf algebra with coproduct �, counit � and
antipode S defined as above on Kˇ, Xi , X�i and defined on the elements Hi for
i D 1, : : : , n by

�.Hi/D 1˝Hi CHi ˝ 1, �.Hi/D 0, S.Hi/D�Hi .

As a vector space UH is isomorphic to Uh˝C U where Uh DCŒh� is the symmetric
algebra of h˝Z C . The obvious map U ! UH is an injective morphism of Hopf
algebra. Using this morphism we can identify U with a Hopf subalgebra of UH .

5.2 The PBW basis

Let ˛1, : : : ,˛n be any ordering of the simple positive roots and let si1
si2
� � � siN

be
a reduced decomposition of the longest element of the Weyl group. Then ˇ1 D ˛i1

,
ˇ2D si1

˛i2
, : : : ,ˇN D si1

si2
� � � siN�1

˛iN
is a total ordering of the set of positive roots

�C . We call ˇ� D .ˇ1, : : : ,ˇN / a convex order of �C . For each i D 1, : : : , N let
X˙ˇi

be the positive (resp. negative) root vector of U (see for example [6, Section 8.1
and 9.1]). We say that .X˙ˇ/ˇ2ˇ� is a convex set of root vectors which depends of the
order of ˛1, : : : ,˛n and si1

, si2
, : : : , siN

.
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If y1, : : : , ym is a set of elements in an algebra then let Alghyi W i D 1, : : : , mi and
SpanChyi W i D 1, : : : , mi be the algebra generated and the complex vector space
spanned by these elements, respectively. We will use the following notation (for
U ,UH ,Uh see Section 5.1):

UC DAlghXi W i D 1, : : : , ni,

U� DAlghX�i W i D 1, : : : , ni,

UCC D UC\ ker �,

U�� D U�\ ker �,

UC< D SpanChX
k1

ˇ1
� � �X

kN

ˇN
W 0� ki < ri,

U�< D SpanChX
k1

�ˇ1
� � �X

kN

�ˇN
W 0� ki < ri,

Z0
DAlghKr


 , X r
ˇ W 
 2LW ,ˇ 2 ˇ�i,

U0 DAlghK!i
W f!igiD1,:::,n is the set of fundamental weightsi.

Remark (1) the algebra U0 is a commutative Hopf subalgebra of U , (2) the spaces
UC< and U�< depend on the convex order ˇ� of �C and (3) it is proven in [9] that
Z0 D .Z \U�/.Z \U0/.Z \UC/ and thus Z0 is independent of ˇ� .

We will need the following weak version of the PBW Theorem; for a proof see for
example [10; 6].

Theorem 30 The multiplication map defines vector space isomorphisms

U�˝U0˝UC ��! U  �� UC˝U0˝U�.

Furthermore, for � 2 fC,�g, the set˚
X

k1

�ˇ1
X

k2

�ˇ2
� � �X

kN

�ˇN
W .k1, : : : , kN / 2NN

	
is a basis of U� and the set fK˛ W ˛ 2LW g is a basis of U0 .

Note that in Theorem 30 one can reverse the order of the products for the monomials
of the basis of U˙ and still obtain a basis. From [9, Proposition 5.6] we have that Z0

is a Hopf subalgebra of U contained in the center U .

Let G be the simply connected group associated to g and let T D exp h be the maximal
torus of G . Let UC and U� be the unipotent radicals of the opposite Borel subgroups
BC and B� , respectively. Recall from [9] that, as a Hopf algebra, Z0 is the coordinate
ring of the dual group G which is the subgroup of BC �B� given by the kernel of
the composition BC �B�! T �T ! T , where T �T ! T is the multiplication
and BC �B�! T � T is the quotient modulo the unipotent radical (also see [11,
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Section 6.3]). As a variety, G can be identified with U��T �UC , where the inclusion
U��T �UC!BC�B� is given by .u, t , v/ 7! .tu, t�1v/. Thus, G can be identified
with the group of ring homomorphisms gW Z0!C where the group structure is given
by ghD .g˝h/ı�. Moreover, T can be identified with the subgroup of G consisting
of elements g which are zero on any element of Z0\ .UCC[U��/.

The authors of [11] define a subset of G called the unramified locus. Let X be the
complement of the unramified locus in G . The set G nX is a Zariski dense open subset
of G .

We will use the group G throughout the rest of the paper. In particular, we will show G
gives a grading on a certain category of U –modules where graded pieces corresponding
to the unramified locus are semisimple. With this in mind we recall the following
theorem.

Theorem 31 [8; 9; 10; 11, Proposition 5.5] For any g 2 G the following are equiva-
lent:

(i) U ˝gWZ0!C C is a semisimple algebra.

(ii) g 62 X .

(iii) There are (at least) rn nonisomorphic irreducible U –modules of dimension rN

on which any element of z 2 Z0 acts by the scalar g.z/.

In Corollary 35 we will give a partial description of X .

5.3 Weight modules

A multiplicative weight is a C–algebra homomorphism �W U0!C . Given a U –module
V and a multiplicative weight � , let E�.V / be the weight space consisting of elements
v 2 V such that any x 2 U0 acts on v as the scalar �.x/. A U –module V is called a
weight module if V splits as a direct sum of its weight spaces and if all elements of
Z0 act diagonally on it.

On the other hand, an additive weight is a C–algebra homomorphism �W Uh ! C .
Given a UH –module V and an additive weight �, let E�.V / be the weight space
consisting of elements v 2 V such that any x 2 Uh acts on v as the scalar �.x/. A
UH –module V is called a weight module if V splits as a direct sum of its weight
spaces, all elements of Z0 act diagonally on it, and for any ˇ D

P
i bi˛i 2 LW ,

the element Kˇ acts on V as the scalar
Q

i qbi Hi
i . An additive weight � induces a

multiplicative weight � D q� defined by the rule �.Kˇ/D
Q

i qbi�.Hi /
i D qhˇ,�i for

any ˇ D
P

i bi˛i 2 LW . If 
 is a multiplicative or additive weight we call a vector
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v 2 E
 .V / a weight vector with (multiplicative or additive) weight 
 . The vector
space UH with the adjoint action is a weight module over UH . If x 2E�.UH / we
say x has weight �.

Let D and DH be the categories of finite-dimensional weight modules over U and
UH , respectively. Let DT be the full subcategory of D whose objects are the modules
on which X r

˙ˇ acts by 0, for all ˇ 2 ˇ� . For g 2 G , let Dg be the full subcategory
of D whose objects are the modules for which any x 2 Z0 acts by the scalar g.x/.
Then D D

L
g2G Dg is G–graded. Also, if t 2 T � G we have that Dt � DT and

DT D
L

t2T Dt .

Let V be an object of DH . The first equality in Equation (37) implies that the
action of Xj , for j D 1, : : : , n, translates the weight spaces of V . Similarly, any
x 2 UCC[U�� translate nontrivially the weights. Combining this with the fact that V

is finite-dimensional one sees that the operator xW V ! V is nilpotent. In particular for
any ˇ 2 ˇ� , the operator X r

˙ˇW V ! V is nilpotent and thus the zero operator since
X r
˙ˇ 2 Z0 . By forgetting the action of Uh the module V becomes a weight module

over U . Moreover, since X r
˙ˇW V ! V is the zero operator, V is an object in DT .

Thus, we have a forgetful functor

(38) F W DH
!DT

and we say that objects of DT and DH are nilpotent modules.

For any nilpotent module V there exists a vector v˙ such that X˙iv˙ D 0 for all
i D 1, : : : , n. Such vectors vC and v� are called highest weight vectors and lowest
weight vectors, respectively. If V is simple then v˙ is unique up to a scalar.

Theorem 32 Let V 2Dg and V 0 2Dg0 , for g, g0 2 G . Then:

(i) V ˝V 0 2Dgg0 ,

(ii) V � 2Dg�1 ,

(iii) Dg is semisimple if and only if g 62 X .

Proof The first two items follows from the fact that Z0 is a Hopf subalgebra of U .
The third is a consequence of Theorem 31.

5.4 Example: U D U.sl2/ simple weight modules

To illustrate the different types of modules we use in this paper we give a description of
simple U –weight modules when gD sl2 ; for more details see [6, Chapter 11.1]. For
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general g, see also [6]. The algebra U.sl2/ has four generators X1 , X�1 , k and k�1 .
In the notation above, the generator k is K˛ , where ˛ is the fundamental weight.

The group G can be identified with the group of ring homomorphisms gW Z0! C ,
where Z0 DCŒk˙r , X r

1
, X r
�1
� is the central sub-Hopf algebra. As a Lie group, G can

be embedded in BC �B� via the map

g 7!

��
g.k�r / 0

0 g.kr /

�
�

�
1 g.X r

1 /

0 1

�
,
�

1 0

g.X r
�1
/ 1

�
�

�
g.kr / 0

0 g.k�r /

��
.

It can be shown that X is the subset of G defined by the equation

g 2 X () g..f1g2r X r
1 X r
�1� k2r

� k�2r /2/D 4.

Finally, T � G is the subgroup of elements t such that t.X r
1
/ D t.X r

�1
/ D 0 and

t 2 T \X if and only if t.k4r /D 1.

A U.sl2/–weight module is finite-dimensional. As we explain now, there are two kinds
of simple U.sl2/–weight module: highest weight modules and cyclic modules. Let V

be a simple U.sl2/–weight module of degree g . In [6], V is called cyclic module if
g.X r

1
/ and g.X r

�1
/ are nonzero. This terminology emphasis the fact that XC and X�

permute the weight spaces of V in a cyclic way. A cyclic module has dimension r .
If g.X r

1
/D g.X r

�1
/D 0 then g 2 T and V 2DT is a highest weight module. In this

case, V has a unique (up to a scalar) highest weight vector v0 such that k.v0D q�=2v0

(� 2C is unique modulo 2rZ). A highest weight module V has dimension r if and
only if 2� 62 f0, 1, : : : , r � 2gC rZ (see Proposition 34 below). This is in particular
true if g 2 T n .X \T / that is if g.k4r /¤ 1.

Remark that Theorem 32 implies that for g 2 G nX , the category Dg has r distinct
isomorphic classes of simple modules, all of dimension r . Moreover, the modules in
Dg are those isomorphic to a finite direct sum of these r –dimensional modules. For
g 2 X , Dg is not semisimple.

For t 2 T and V 2 Dt with highest weight � 2 C� as above (ie k.v0 D �v0 ), a lift
of V in DH consists in choosing a scalar � 2C by which H 2 UH acts on v0 such
that � D q�=2 . Finally, a module in DH

t has the following alternative description: A
module of DH is in DH

t if and only if all its additive weights are equal to � modulo
2Z (ie modulo the root lattice).

5.5 Typical modules

Let IH be the ideal of UH generated by the central elements X r
˙ˇ , ˇ 2 ˇ� . Let

I D IH \U the corresponding ideal in U . The ideals I and IH do not depend on
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the choice of ˇ� because they are generated by .Z0\UCC/[ .Z0\U��/. The set
of monomials of the PBW basis that contain at least one factor X k

˙ˇ , with k � r , is a
basis of I . Hence U˙< and I \U˙ are complementary vector subspaces of U˙ (note
U˙< is defined in Section 5.2). Any nilpotent module is annihilated by I .

Let � 2 Homalg.U0, C/ be a multiplicative weight and consider the one-dimensional
U0UC–module hv0i whose action is determined by xv0 D �.x/v0 for x 2 U0 and
yv0 D �.y/v0 for y 2 UC . This module induces the Verma module eV � which
is an infinite-dimensional weight module over U with highest weight vector v0 of
multiplicative weight � . The module eV � contains a unique maximal submodule not
containing v0 . The quotient of this submodule is an irreducible U –module V� with a
highest weight vector of weight � . Similarly, an additive weight � 2 Homalg.Uh, C/
defines a one-dimensional module over UhU0UC whose action is given by � on Uh , q�

on U0 and � on UC . The same process gives the Verma module eV � with irreducible
quotient V� , both having highest weight vectors of weight �.

If �2Homalg.Uh, C/ is an additive weight and �Dq�2Homalg.U0, C/ is its associated
multiplicative weight we denote by j�j D j�j the element of T 'Homalg.Z0\U0, C/
induced by � .

Proposition 33 Let � in Homalg.Uh, C/ be an additive weight and let � D q� in
Homalg.U0, C/ its induced multiplicative weight. Then V� 2 Ob.DH / and V� 2

Ob.Dj�j/ are the unique (up to isomorphism) irreducible nilpotent module with highest
weights � and � , respectively. Furthermore, F.V�/ is isomorphic to V� , where F is
the forgetful functor defined in (38).

Proof Let V be the module V� or V� with height weight vector v0 . Since the ideal
I annihilates V we have that V D U�v0 D U�<v0 . Therefore, the set˚

X
k1

�ˇ1
� � �X

kN

�ˇN
v0 W 0� ki < r

	
contains a finite basis of weight vectors. The uniqueness of V comes from the universal
property of its Verma module eV : eV can be mapped to any module W with a highest
weight vector of the same weight as v0 . If W is irreducible then the kernel of this map
is a maximal proper submodule and so W is isomorphic to V .

Similarly, the map F.eV�/ ��! eV� induces a surjective map F.V�/!V� . If the kernel
of this map were nonzero then it would be a nilpotent module with a highest weight
vector w . But w would also be a highest weight vector of V� generating a proper
submodule of V� . This is not possible because V� is irreducible.
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Proposition 33 implies that any irreducible nilpotent module in D is isomorphic to
F.V�/ for some �. However, it is not clear that every nilpotent U –module V is
isomorphic to F.W / for some UH weight module W .

Proposition 34 [8, Theorem 3.2] Let � 2 Homalg.Uh, C/ be an additive weight
and � D q� 2 Homalg.U0, C/ its induced multiplicative weight. Let vC and v� be
the highest and lowest weight vectors of V� , respectively. Then the following are
equivalent:

(i) The linear map U�<! V� defined by x 7! xvC is bijective.

(ii) The linear map UC<! V� defined by x 7! xv� is bijective.

(iii) q2h�C�,ˇiCmhˇ,ˇi ¤ 1 for all ˇ 2�C and m 2 f1, : : : r � 1g.

Proof In [8, Section 3.2], De Concini and Kac define the so called diagonal module
V 0� D

eV�=I eV� with highest weight vector of weight � . They prove that the third
condition is equivalent to the module V 0� being irreducible (remark they have a misprint
with the range of m in their Theorem 3.2). Thus, the proposition follows from the
following facts: (1) when V 0� is irreducible it is isomorphic to V� , (2) the maps in the
proposition are surjective and (3) dimC.U�</D dimC.UC</D dimC.V

0
�/D rN .

If � and �D q� are weights such that one of the equivalent conditions of Proposition 34
is satisfied then we say that V� and V� are typical modules. When g D sl2 then
the typical modules are exactly the simple r –dimensional U.sl2/–weight modules
described above. The following corollary combined with Proposition 33 implies that
any irreducible U –module V 2Dg with g 2 T nX is typical.

Corollary 35 If g 2 T � G such that g.Kr
ˇ
/¤˙1 for all ˇ 2�C , then g 62 X .

Proof There exist (nonunique) additive weights �i , for i D 1, : : : , rn , with induced
multiplicative weights �i such that j�i j D g , for all i D 1, : : : , rn . Then for all ˇ 2�C

and i D 1, : : : , rn we have

g.Kr
ˇ/D �i.K

r
ˇ/D qrh�i ,ˇi.

Combining this with the hypothesis g.Kr
ˇ
/¤˙1 we have q2h�iC�,ˇiCmhˇ,ˇi ¤ 1 for

all ˇ 2�C , m 2 f0, : : : r � 1g and i 2 f1, : : : , rng. Thus, Proposition 34 implies that
for each i D 1, : : : , rn the module V�i

has dimension rN and the result follows from
Theorem 31.
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5.6 The pivotal structure

It is well known that h2�,˛iiD h˛i ,˛iiD 2di , where ˛i is a simple positive root. Then
for � D˙1, Equation (34) implies that K2�X� iK

�1
2� DK˛i

X� iK
�1
˛i

. Combining this
fact with S2.X� i/DK˛i

X� iK
�1
˛i

we have

(39) S2.x/DK1�r
2� xKr�1

2�

for all x in UH . Equation (39) is a modification (by the central element Kr
2�

) of
a similar well-known equation. We impose this modification to make the modified
dimension d “spherical” and the twist invariant by the antipode (see Sections 5.8
and 5.9).

It is a general fact that a category of modules over a Hopf algebra in which the square
of the antipode is equal to the conjugation by a group-like element is a pivotal (or
sovereign) category (see [4, Proposition 2.9]). Hence, from Equation (39) it follows that
D and DH are both pivotal k–linear categories with ground ring C . In particular, for
any object V in D , the dual object and the duality morphisms are defined as follows:
V � D HomC.V , C/ and

(40)

bV WC! V ˝V � is given by 1 7!
X

vj ˝ v
�
j ,

dV WV
�
˝V !C is given by f ˝w 7! f .w/,

b0V WC! V �˝V is given by 1 7!
X

v�j ˝Kr�1
2� vj ,

d 0V WV ˝V �!C is given by v˝f 7! f .K1�r
2� v/,

where fvj g is a basis of V and fv�j g is the dual basis of V � .

5.7 Ambidextrous modules

Recall the definition of an ambidextrous object given in Section 2. In this subsection
we show that typical modules over UH and U are ambidextrous. With this in mind we
give a general theorem which allows one to prove certain objects are ambidextrous.

We will now assume that C is a category of H–modules for some Hopf C–algebra H .
If V is any object of C we have the bilinear pairing h , i on V ˝V � D .V ˝V �/�

given by hw,w0i D dV˝V �.w ˝ w
0/. Then for any f 2 End.V ˝ V �/ we have

hf .w/,w0i D hw,f �.w0/i.

Theorem 36 Let V be an irreducible H–module. Assume there exists w0,w0
0
2

V ˝ V � and x, y 2 H such that hw0,w0
0
i D 1 and x.w0 , y.w0

0
are nonzero H–

invariant vectors (ie any h 2H acts on x.w0 and y.w0
0

by the scalar ".h/). Then the
module V is ambidextrous if either of the following two conditions hold:
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(a) Cw0 and Cw0
0

are invariant lines under the action of EndC.V ˝V �/.

(b) ker x � kerh � ,w0
0
i and ker y � kerhw0, � i; here x, y are operators on V ˝V � .

Proof Let f 2 EndC.V ˝ V �/. Since V is simple then any invariant vector of
V ˝V � is proportional to bV .1/ because bV generates the one-dimensional vector
space HomC.C, V ˝V �/'HomC.V , V /. So up to rescaling x and y , we may assume
that x.w0 D y.w0

0
D bV .1/. Also, since f .x.w0/ and f .y.w0

0
/ are invariant vectors

there exists ˛,˛0 2 C with f .x.w0/ D ˛x.w0 and f .y.w0
0
/ D ˛0y.w0

0
. Therefore,

there exists .v, v0/2ker x�ker y such that f .w0/D˛w0Cv and f �.w0
0
/D˛0w0

0
Cv0 .

Also, f ı bV .1/D f .x.w0/D ˛x.w0 D ˛bV .1/ and f � ı bV .1/D ˛
0bV .1/.

If Condition (a) holds we can assume v D v0 D0. Then

˛ D hf .w0/,w00i D hw0,f �.w00/i D ˛
0.

On the other hand, if Condition (b) is satisfied, hv,w0
0
i D hw0, vi D 0 and so

˛ D hf .w0/,w00i D hw0,f �.w00/i D ˛
0.

Thus, in both cases we have f � ı bV D f ı bV .

Lemma 37 Consider the two following elements of U :

X� D
Y
˛2ˇ�

X r�1
�˛ and XC D

Y
˛2ˇ�

X r�1
˛ .

If 
� is any convex order of �C and fX˛g˛2
� is the corresponding convex set of root
vectors then there exists a, b 2C� such that

X� � a
Y
˛2
�

X r�1
�˛ mod I and XC � b

Y
˛2
�

X r�1
˛ mod I .

Proof This is a consequence of (PBW) Theorem 30. Indeed, the weight space of
UC=I with weight 2.r � 1/� is one-dimensional, generated by

Q
˛2
�

X r�1
˛ for any

convex order 
� of �C . This implies the equivalence for X� , the equivalence for XC
is obtained analogously with U�=I .

Theorem 38 Any typical module V over UH or U is ambidextrous.

Proof Let vC, v0C be (the unique up to a scalar) highest weight vectors of V , V � ,
respectively. Choose lowest weight vectors v�, v0� of V , V � so that dV .v

0
C˝ v�/D

d 0
V
.vC˝ v

0
�/D 1 (ie choose scalars of the vectors). We want to apply Theorem 36

where w0 D vC˝ v
0
C , w0

0
D v�˝ v

0
� and x, y are any elements of U proportional
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to
Q
˛2
�

X r�1
�˛ ,

Q
˛2
�

X r�1
˛ , respectively, for any convex ordering 
� of �C and

corresponding convex set fX˙
 g
2
� . First, we will prove that x.w0 is a nonzero
invariant vector, the proof for y.w0

0
is analogous.

Note that x.vC2C�v� and the weight of v0C is the opposite of the weight of v� . Hence,
the weight of w0 is 2.r � 1/� and weight of x.w0 is 0. We write x.w0 D

P
vi ˝ v

0
i ,

where vi , v0i are weight vectors. The term of x.w0 for which vi has smallest weight is
equal to .x˝ 1/..vC˝ v0C/D .x.vC/˝ v0C ¤ 0. Moreover, if j ¤ i then the weight
of vj is strictly larger than the weight of vi . Thus, x.w0 ¤ 0.

Next we show x.w0 is invariant. It suffices to show that for any i D 1, : : : , n we have
Xi ..x.w0/ D 0, X�i ..x.w0/ D 0 and Hi ..x.w0/ D 0. First, the last equality is true
because as mentioned above x.w0 has weight 0. Second, applying Lemma 37 with
a convex ordering 
� of �C such that 
1 D ˛i , we can write x � X r�1

�i x0 mod I

for some x0 2 U� (note that by definition X
1
D X˛i

D Xi ). Then X�i ..x.w0/D 0

because X�ix � X r
�ix
0 � 0 mod I . Finally, notice that the weights of the vectors

of U .w0 D U�.w0 are of the form
PN

jD1aj
j for 0 � aj < r . But X˛i
..x0.w0/

has weight n˛i so Xi ..x0.w0/D 0. Combining this with the fact that ŒXi , X r�1
�i �D

Œr � 1�qi
Œr � 2CHi �qi

X r�2
�i , we have

Xi ..x.w0/D Œr � 1�qi
Œr � 2CHi �qi

X r�2
�i x0.w0 D Œr � 1�qi

Œr �qi
X r�2
�i x0.w0 D 0

since Hi acts on X r�2
�i x0.w0 as 2 and Œr �qi

D 0. This proves that x.w0 is invariant.

Now we can apply Theorem 36. Indeed, if V is an UH –module, then Condition (a) is
satisfied: w0 and w0

0
are fixed up to a scalar by any endomorphism of V ˝V � because

they are weight vectors in a one-dimensional weight space. If V is a U –module we
can write V 'F.W / for some W 2Ob.DH /. The vector space W ˝W �DV ˝V �

is equipped with a bilinear form and the weight decomposition of W ˝W � gives
an orthogonal decomposition: V ˝ V � D .Cw0 ˚ Cw0

0
/˚ V 0 for some V 0 with

hV 0,w0i D hV
0,w0i D hw0, V 0i D hw0

0
, V 0i D 0. Now the weights in W ˝W � imply

that ker x � V 0˚Cw0
0
D kerh � ,w0

0
i and ker y � V 0˚Cw0 D kerhw0, � i. Hence

Condition (b) of Theorem 36 is satisfied.

5.8 The braiding

We recall some well-known facts about the h–adic version of the quantum group Uh.g/.
The algebra Uh.g/ is a CŒŒh�� topological Hopf algebra with generators Xi , X�i , Hi

for i D 1, : : : , n the relation (35), (36) and (37) where q is replaced by eh=2 and
K˛i
D qHi

i . For a root ˇ 2 LR , let qˇ D qhˇ,ˇi=2 . Let expq.x/ D
P1

iD0 xi=Œi I q�!,
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where Œi I q� D .1� qi/=.1� q/ and Œi I q�! D Œi I q� � � � Œ1I q�. Consider the following
elements of Uh.g/:

HHh
D q

P
i ,j di .A

�1/ijHi˝Hj , LRh
D

Y
ˇ2ˇ�

expq�2
ˇ

�
.qˇ � q�1

ˇ /Xˇ˝X�ˇ
�
,

where the product is ordered by the convex order ˇ� of �C . It is well known that
Rh D HHh LRh defines a quasitriangular structure on Uh.g/ (see for example [22]).
This mean that Rh is invertible and satisfies

(41) �˝ Id.Rh/DRh
13Rh

23, Id˝�.Rh/DRh
13Rh

12, Rh�op.x/D�.x/Rh

for all x 2 Uh.g/. The algebra Uh.g/ admit a PBW basis. Using this basis we can
write Uh.g/ as a direct sum decomposition: Uh.g/ D U< ˚ I , where U< is the
CŒŒh��–module generated by the monomials

nY
iD1

H
ki

i

Y
ˇi2ˇ�

X
li

ˇi

Y
ˇi2ˇ�

X
mi

�ˇi
for 0� li , mi < r

and I is generated by the other monomial.1 Let pW Uh.g/! U< be the projection
map with kernel I . We define

(42) R<
D p˝p.Rh/D p˝ Id.Rh/D Id˝p.Rh/.

Proposition 39 R< satisfies:

(i) .p˝p˝p/.�˝ Id.R<//D .p˝p˝p/.R<
13

R<
23
/.

(ii) .p˝p˝p/.Id˝�.R<//D .p˝p˝p/.R<
13

R<
12
/.

(iii) .p˝p/.R<�op.x//D .p˝p/.�.x/R</ for all x 2 Uh.g/.

Proof These equalities are obtained by projecting the equalities in (41). Indeed, using
p ıp D p and Equation (42) we have

.p˝p˝p/.�˝ Id.Rh//D .p˝p˝p/ ı .�˝ Id/ ı Id˝p.Rh//

D .p˝p˝p/.�˝ Id.R<//.

On the other hand,

.p˝p˝p/.Rh
13Rh

23/D .p˝p˝p/..p˝ Id˝ Id/.Rh
13/.Id˝p˝ Id/.Rh

23//

D .p˝p˝p/.R<
13R<

23/.

This proves the first equality and the proof of the second one is similar.

1The set I is not an ideal when q is not an r th root of unity and U< depends on .Xˇ�/ .
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To prove the third equality, it suffices to assume x is a generator of the algebra Uh.g/.
The equality is clear for xDHi as �.Hi/ is symmetric and commutes with any of the
products X˛˝X�˛ . Now for x DXi , we have �.Xi/D 1˝XiCXi˝K˛i

. Hence,

.p˝p/.Rh.K˛i
˝Xi CXi ˝ 1//

D .p˝p/..p˝ Id/.RhK˛i
˝Xi/C .Id˝p/.RhXi ˝ 1//

D .p˝p/.R<.K˛i
˝Xi CXi ˝ 1//.

On the other hand,

.p˝p/..1˝Xi CXi ˝K˛i
/Rh/

D .p˝p/..p˝ Id/.1˝XiR
h/C .Id˝p/.Xi ˝K˛i

Rh//

D .p˝p/..1˝Xi CXi ˝K˛i
/R</.

The proof is similar for x DX�i .

Let V DV1˝� � �˝Vk , where Vi 2Ob.DH / for i D 1, : : : , k . Then each x 2 .UH /˝k

defines a linear map  .x/W V ! V and we have a finite-dimensional representation
 W .UH /˝k ! EndC.V /. For any x 2 .UH /˝k , let  .qx/ be the limit as m goes to
infinity of the absolutely convergent series

Pm
jD0

1
j!
 .2i�x=r/j . In this situation, we

say that qx is an operator on DH . If qx , qy are two operators such that  .qx/D .qy/

for all finite-dimensional representations  then we say the operators are equal and
write qx D qy . One can multiply operators and take their coproduct and antipode
using the rules �qx D q�x and S.qx/ D qS.x/ . We will also call the linear map
 .x/W V ! V an operator and denote it by x .

Let H be the operator on DH defined as

HD q
P

i ,j di .A
�1/ijHi˝Hj .

Lemma 40 For any x, y 2 UH with weights ˛,ˇ 2 LW , respectively, we have the
equalities of operators on DH :

(43) H.x˝y/D qh˛,ˇi.xKˇ˝yK˛/H.

Also, �˝ Id.H/DH13H23 and Id˝�.H/DH13H12 .

Proof The proof is a direct computation using the following three facts: (1) Hix D

x.Hi C
1
di
h˛i ,˛i/, (2) as operators K˛i

D qHi
i and (3)

(44) H.v�˝w�/D qh�,�iv�˝w�

for any weight vectors v� and w� of weight � and �, respectively.
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Let LR be the truncated quasi R–matrix of UH given by

LRD

NY
iD1

 
r�1X
jD0

�
.qˇi
� q�1

ˇi
/Xˇi

˝X�ˇi

�j
Œj I q�2

ˇi
�!

!
2 UC˝U�,

where ˇ� D .ˇ1, : : : ,ˇN / is a convex set of �C .

Theorem 41 The operator R D H LR leads to a braiding fcV ,W g in DH , where
cV ,W W V ˝W !W ˝V is given by v˝w 7! �.R.v˝w//. Here � W V ˝W !W ˝V

is the trivial isomorphism of vector spaces given by permutation.

Proof It is enough to show that the operator R satisfies

(45) �˝ Id.R/DR13R23, Id˝�.R/DR13R12, R�op.x/D�.x/R

for all x 2 UH . Let �W Uh.g/ ˝ Uh.g/ ! Uh.g/ ˝ Uh.g/ be the map given by
x ˝ y 7! HHh.x ˝ y/.HHh/�1 . Viewing LR as element of Uh.g/ we have that
Proposition 39 induces the relations

(46)

�˝ Id. LR/D �23. LR13/ LR23,

Id˝�. LR/D �12. LR13/ LR12,

LR�op.x/D �.�.x// LR,

for all x 2 Uh.g/. Let us prove the first equality in (46); the other two are similar. The
first equation of Proposition 39 implies that �˝ Id.HHh LR/D HHh

13
LR13HHh

23
LR23 .

The left-hand side of this equality is equal to

�˝ Id.HHh/�˝ Id. LR/D HHh
13HHh

23�˝ Id. LR/.

On the other hand,

HHh
13
LR13HHh

23
LR23 D HHh

13HHh
23�23. LR13/ LR23.

Now since HHh is invertible we have the desired result.

The element R< does not have a pole at q when q is a primitive root of unity of order r .
Thus, the relations of Equation (46) hold when q is a root of unity. Finally, Lemma 40
implies that the operators HHh and H satisfy the same commutator relations on Uh.g/

and UH , respectively. Thus, the relations of Equation (45) hold.

Consider the operator uH D q
P

i ,j �di .A
�1/ijHi Hj . Then S.uH/D uH and if v is a

weight vector in a UH –module of weight � then uHv D q�h�,�iv . Also, if x 2 UH

has weight ˛ , then uHx D q�h˛,˛ixK2
�˛uH and conjugation by uH

�1 induces a well
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defined automorphism AduH�1 of Uh . Let uD�ı..AduH�1 ıS/˝Id/. LR21/2U�UC ,
where � is the multiplication. In particular, since u has weight 0, the operators uH
and u commute.

Let � and � be the operators � D uHu and � D �Kr�1
2�

. Then

�S.�/�1
D �Kr�1

2� S.�/�1Kr�1
2� D uS.u/�1K

2.r�1/
2�

.

We define $ D uS.u/�1K
2.r�1/
2�

2 UH .

Proposition 42 Let V� be a typical UH –module then $ W V�! V� is the identity.

Proof Let vC and v� be the highest and lowest weight vectors of V� of weights �
and ��2.r �1/� , respectively. Then u�1 2 U0U��UCC implies that u acts by 1 on
vC . Similarly, S.u/ acts by 1 on v� . In particular, �.vC/D q�h�,�iqh2�.r�1/,�ivC
and

.S.�//.v�/D q�h2.r�1/�,��2.r�1/�iq�h��2.r�1/�,��2.r�1/�iv�

D q�h�,�iqh2�.r�1/,�iv�.

But � and S.�/ are central and act as scalars on V� . Thus,

(47) �jV� D S.�/jV� D q�h�,��2�.r�1/i Id .

Theorem 43 Let D� be the full subcategory of DH formed by modules on which $
acts as the identity. Then D� is a C–linear ribbon category with braiding

cV ,W W V ˝W !W ˝V , v˝w 7! �.R.v˝w//

and twist
�V W V ! V , v 7! ��1.v/.

Proof Recall that IH is the ideal of UH generated by the central elements X r
˙ˇ ,

where ˇ 2 ˇ� . Remark that $ is central and group-like in the quotient Hopf algebra
UH =IH . Hence D� is a tensor subcategory of DH . The braiding of DH given
Theorem 41 restricts to a braiding on D� . Finally, since $ acts as the identity on any
object in D� we have that operators � and S.�/ are equal. It follows that �V is a
twist on D� .

Remark that from Proposition 42 the category D� contains all the typical modules
of DH .

Conjecture 44 $ D 1 and DH DD� is a ribbon category.
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5.9 The modified dimension

As irreducible projective modules of D and DH are ambidextrous, there is an unique
nontrivial trace on the ideal of projective objects (cf [18]). On simple objects, the trace
is given by the modified dimension which we calculate for the special case of nilpotent
modules. Then we show that the modified dimension is the same for an object and its
dual, thus leading to a relative G –spherical structure in D .

Proposition 45 Let �,� 2 Homalg.Uh, C/ be additive weights where V� is typical.
Then

S 0.�,�/D

*
V� V�

+
D q2h�C.1�r/�,�i

Y
˛2��

q2rh�C.1�r/�,˛i� 1

q2h�C.1�r/�,˛i� 1
2C,

where �� D��C is the set of negative roots and as above hf i 2 C of a morphism
f W V�! V� is the scalar defined by f D hf i IdV� .

Proof Let fvig be a basis of V� such that vi is a weight vector with additive weight
�i . Let w� be a highest weight vector of V� . From Equation (44) we have

H.w�˝ vi/D qh�,�i iw�˝ vi and H.vi ˝w�/D qh�,�i ivi ˝w�.(48)

We now give two facts. Let v be any weight vector of V� of weight �.

Fact 1 R.w�˝ v/D qh�,�i.w�˝ v/.

This fact follows from the definition of LR, Equation (48) and the property that E˛w�D

0 for ˛ 2�C .

Fact 2 All the pure tensors of the element . LR�1/.v˝v�/ 2 V�˝V� are of the form
v0˝w0 , where w0 is a weight vector of V� and v0 is a weight vector of V� whose
weight is of strictly higher order than that of the weight of v .

Fact 2 is true because En
˛v (for ˛ 2 �C and n 2 N>0 ) is zero or a weight vector

whose weight is of strictly higher order than the weight of v .

We will now compute S 0.�,�/ directly. Let V be a typical module and recall that the
duality morphisms d 0

V
W V ˝V �!C is defined as

(49) d 0V�.v˝f /D f .q
2.1�r/h�,�iv/,
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where v is a weight vector of V� of additive weight �. Consider the element S of
EndC.V�/ given by

.IdV� ˝d 0V�/ ı .cV�,V� ˝ IdV �
�
/ ı .cV�,V� ˝ IdV �

�
/ ı .IdV� ˝bV�/.

To simplify notation set S D .X1/.X2/.X3/.X4/, where Xi is the corresponding
morphism in the above formula. The morphism S is determined by its value on the
highest weight w� . By definition S.w�/ D S 0.�,�/w� , so it suffices to compute
S.w�/:

(50) S.w�/D .X1/.X2/.X3/
�
w�˝

X
i

.vi ˝ v
�
i /
�

D .X1/.X2/
�X

i

qh�,�i ivi ˝w�˝ v
�
i

�
D .X1/

�X
i

�
q2h�,�i iw�˝ vi ˝ v

�
i

�
C

X
k

w0k ˝ v
0
k ˝ zk

�
D

X
i

q2h�C.1�r/�,�iiw�,

where zk D v
�
i (for some i ), v0

k
is a weight vector of V� whose weight is of strictly

higher weight than that of the weight of z�
k

and w0
k

is a weight vector of V� . Moreover,
the second equality of the above equation follows from Fact 1, the third from (48) and
Fact 2 and finally the fourth from Equation (49) and the fact that zk.v

0
k
/D 0. The key

observation in this proof is that Facts 1 and 2 imply that in the above computation the
only contribution of the action of the operator R comes from H .

Finally, V� is typical and so its weights are determined the formal sum (ie its character):X
i

e�i D e�
Y
˛2��

er˛ �1

e˛ �1
.

Thus, the proposition follows from Equation (50).

We now can apply the results of Section 2 to D� . From Theorem 38 we know that any
typical UH –module J is ambidextrous. Therefore, we can apply Theorem 8 to D�
and obtain an ambi pair .AProj, d/. As discussed in Section 2 the functions d and dJ

are proportional. Now, let � 2 Homalg.Uh, C/ be an additive weight. Combining the
formula in Proposition 45 with the formulaY

˛2��

�
q2h�C.1�r/�,˛i

� 1
�
D qh�C.1�r/�,�2�i

Y
˛2�C

fh�C .1� r/�,˛ig
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we can see that the function d can be multiplied by a scalar in C� so that it is given
by the formula

(51) d.V�/D
Y
˛2�C

fh�� .r � 1/�,˛ig
frh�� .r � 1/�,˛ig

for V� with j�j 62 X . Thus we have proved:

Theorem 46 The category D� is a ribbon category with a projective ambidextrous
object and so gives rise to an ambi pair .AProj, d/ and isotopy invariant G0 , where d

satisfies Equation (51).

It is clear from (51) that d.V�/ depends only on the multiplicative weight � D q� 2

Homalg.U0, C/ induced by �. Thus we can define d.V�/D d.V�/ whenever j�j 62 X .

Let A be the set of irreducible U –modules V such that V 2Dg for some g 2 G nX .
Theorem 32 implies that each module in A is projective. Let Proj be the full subcategory
of D consisting of projective U –modules. Recall the notion of a trace given in
Section 1.2.

Lemma 47 There exist a trace tD ftV g on Proj such that tV� .IdV� /D d.V�/ for any
V� of multiplicative weight � D q� with j�j 62 X .

Proof Let U 2Dg be a typical projective U –module with g 62X . Consider the linear
map t W EndC.U /! C given by f 7! d.U /hf i where, as above, hf i is defined by
f D hf i IdU . From Theorem 38 we have that U is ambidextrous. Then from [18] we
have that t determines a unique trace tD ftV g on Proj such that t D tV .

On the other hand, F0 defines a trace t0D ft0
V
g on the projective modules of DH given

by t0
V
.f /D F0.Lf /, where Lf is ribbon graph which is the closure of coupon of f .

Then by definition, for any additive weight � with j�j 62 X , we have t0
V�
.IdV�/ D

F0.OV�/D d.V�/, where OV� is the unknot colored with V� .

By construction of t, for each � D q� with j�j 62 X , we have tV� D tF.V�/ , where
F W DH !D is the forgetful functor defined above. Moreover, tF.V�/.F.f //D t0V�.f /

for all f 2 End.V�/. Thus, tV� .IdV� /D t0
V�
.IdV�/D d.V�/D d.V�/.

Lemma 47 implies the assignment d on nilpotent U –modules can be extended to a
function dW A! C given by d.V /D tV .IdV /. Since V 2 A is projective it follows
from [18] that d.V /¤ 0. Let sW A!C be the slope given by s.V /D d.V /= d.V �/.
It satisfies

(52) s.W /D s.U /s.V /

whenever W is a direct summand of U ˝V (see [18]).
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Lemma 48 For any V 2 A, we have s.V /D 1 and so d.V /D d.V �/.

Proof First, we will show that for an irreducible V 2 Dg the slope s.V / depends
only of the degree g 2 G . In [11] it is shown that for any g, g0, gg0 2 G nX and any
irreducible modules V 2Dg, V 0 2Dg0 we have

V ˝V 0 '
M

W 2irr.Dgg0 /

W ˚rN�n

,

where irr.Dgg0/ denotes a representing set of the isomorphism classes of irreducible
modules of Dgg0 . This implies that if W1, W2 2 Dg are irreducible modules then
there exist projective irreducible modules U , V such that both W1 and W2 are direct
summands of U ˝V . Then by Equation (52) we have s.W1/D s.W2/D s.U /s.V /.
Thus, the slope factor through a map on G n X also denoted by s which satisfies
s.gg0/D s.g/s.g0/ and s.g�1/D 1=s.g/.

Next we show that s extends to a character on the whole group G : If x 2 X , choose
g 2 G n .X [Xx�1/ then we can define s.x/ as the ratio s.gx/=s.g/. This is well
defined: if h 2 G n .X [Xx�1/ then there exists k 2 G n .X [Xx�1 [Xg [Xh/

for which k, kx, kg�1, kh�1 62 X and thus s.kx/=s.gx/ D s.kg�1/ D s.k/=s.g/,
s.kx/=s.hx/D s.kh�1/D s.k/=s.h/ which imply that s.gx/=s.g/D s.kx/=s.k/D

s.hx/=s.h/.

But now Equation (51) implies that T � ker s . As the normal subgroup of the Borel
BC� G generated by its Cartan subgroup T is BC itself, this implies that BC� ker s .
Similarly B� � ker s thus ker s � BCB� D G .

Lemma 49 The pair .A, d/ is t-ambi.

Proof From Lemmas 47 and 48 there exists a trace tD ftV gV 2Proj such that d.V /D
d.V �/ for all V 2 Proj. Then from [18] we have that .AProj, d/ is t-ambi.

Let us increase X by adding all g 2 G with g2D 1. Then G nX is still a Zariski open
dense subset of G and by Lemma 3 there exists basic data for D .

Theorem 50 The category D of finite-dimensional weight modules over U is a
.X , d/–relative G–spherical category which admits basic data.

Proof The category D is a C–linear pivotal category where the pivotal structure
is given in Section 5.6. The G–grading of D is defined in Section 5.3. Item (i) of
Definition 2 follows from Theorem 32. Lemma 49 implies Item (ii). Finally, since the
objects of D are finite-dimensional vector spaces it follows from [17] that the map
bW A! C defined in Equation (3) is well defined and satisfies all the properties of
Item (iii).
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