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The universal character ring of
some families of one-relator groups

ANH T TRAN

We study the universal character ring of some families of one-relator groups. As an
application, we calculate the universal character ring of two-generator one-relator
groups whose relators are palindromic and, in particular, of the .�2; 2mC1; 2nC1/–
pretzel knot for all integers m and n . For the .�2; 3; 2nC1/–pretzel knot, we give a
simple proof of a result in [8] on its universal character ring, and an elementary proof
of a result in [10] on the number of irreducible components of its character variety.

57M27; 57N10

1 Introduction

1.1 The character variety and the universal character ring

The set of representations of a finitely presented group G into SL2.C/ is an algebraic
set defined over C , on which SL2.C/ acts by conjugation. The set-theoretic quotient
of the representation space by that action does not have good topological properties,
because two representations with the same character may belong to different orbits of
that action. A better quotient, the algebro-geometric quotient denoted by X.G/ (see
Culler and Shalen [1] and Lubotzky and Magid [9]), has the structure of an algebraic
set. There is a bijection between X.G/ and the set of all characters of representations
of G into SL2.C/, hence X.G/ is usually called the character variety of G . It is
determined by the traces of some fixed elements g1; : : : ;gk in G . More precisely,
one can find g1; : : : ;gk in G such that for every element g in G there exists a
polynomial Pg in k variables such that for any representation �W G! SL2.C/ one
has tr.�.g//D Pg.x1; : : : ;xk/, where xj WD tr.�.gj //. The universal character ring
of G is then defined to be the quotient of the polynomial ring CŒx1; : : : ;xk � by the
ideal generated by all expressions of the form tr.�.u//� tr.�.v//, where u and v are
any two words in g1; : : : ;gk which are equal in G ; see Lê and the author’s [8]. The
universal character ring of G is actually independent of the choice of g1; : : : ;gk . The
quotient of the universal character ring of G by its nilradical is equal to the ring of
regular functions on the character variety X.G/.
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1.2 Main results

Let Fa;w WDha; wi be the free group in 2 letters a and w . The character variety of Fa;w

is isomorphic to C3 by the Fricke–Klein–Vogt Theorem; see eg [9]. For every word u

in Fa;w there is a unique polynomial Pu in 3 variables such that for any representation
�W Fa;w!SL2.C/ one has tr.�.u//DPu.x;y; z/, where x WD tr.�.a//; y WD tr.�.w//
and z WD tr.�.aw//. Thus for every representation �W G ! SL2.C/, where G is a
group generated by a and w , we consider x;y , and z as functions of � .

For a word u in Fa;w , we denote by  �u the word obtained from u by writing the
letters in u in reversed order. The word u is called a palindrome if  �u D u.

In this paper we calculate the universal character ring of some families of two-generator
one-relator groups as follows.

Theorem 1 The universal character ring of the group ha; w j wn �r D r�1wn�1i

is the quotient of the polynomial ring CŒx;y; z� by the ideal generated by the two
polynomials P �

r
�Pr�1w�1 and P

wn �r a
�Pr�1wn�1a .

Theorem 2 The universal character ring of the group ha; w j wn �r D r�1wn�2i

is the quotient of the polynomial ring CŒx;y; z� by the ideal generated by the two
polynomials P �

r
�Pr�1w�2 and P

wn �r aw�1 �Pr�1wn�2aw�1 .

As an application of Theorem 1, we immediately obtain a simple proof of the following
result in [8] on the universal character ring of the .�2; 3; 2nC 1/–pretzel knot.

Theorem 3 [8] The fundamental group of the .�2; 3; 2nC1/–pretzel knot is isomor-
phic to the group ha; w j wn �r D r�1wn�1i, where r WD a�1w�1a�1wa. Hence its
universal character ring is the quotient of the polynomial ring CŒx;y; z� by the ideal gen-
erated by the two polynomials Q WDP �

r
�Pr�1w�1 and Rn WDP

wn �r a
�Pr�1wn�1a .

Explicitly,

QD x�xyC .�3Cx2
Cy2/z�xyz2

C z3;

Rn D Sn�2.y/CSn�3.y/�Sn�4.y/�Sn�5.y/�Sn�2.y/x
2

C .Sn�1.y/CSn�3.y/CSn�4.y//xz� .Sn�2.y/CSn�3.y//z
2;

where the Sk.y/ are the Chebychev polynomials defined by S0.y/D 1; S1.y/D y

and SkC1.y/D ySk.y/�Sk�1.y/ for all integers k .

Applying Theorem 3, we also give an elementary proof of the following result in
Mattman [10] on the character variety of the .�2; 3; 2nC 1/–pretzel knot.
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Theorem 4 [10] Suppose n 6D 0; 1; 2. Then character variety of the hyperbolic
.�2; 3; 2nC 1/–pretzel knot has 2 irreducible components if 2nC 1 is not divisible by
3, and has 3 irreducible components if 2nC 1 is divisible by 3.

As another application of Theorems 1 and 2, we calculate the universal character ring
of the group G D ha; w jRD 1i, where R is a palindromic word in Fa;w . Since R

is palindromic, it either has the form RD �r gr or RD �r g2r , where r is a word in
Fa;w and g is either a; a�1; w , or w�1 . Without loss of generality, we consider the
case g D w only.

By setting nD 0 in Theorems 1 and 2, we obtain:

Theorem 5 The universal character ring of the group ha; w j  �r wr D 1i, where r

is a word in a and w , is the quotient of the polynomial ring CŒx;y; z� by the ideal
generated by the two polynomials P �

r
�Pr�1w�1 and P �

r a
�Pr�1w�1a .

Theorem 6 The universal character ring of the group ha; w j  �r w2r D 1i, where r

is a word in a and w , is the quotient of the polynomial ring CŒx;y; z� by the ideal
generated by the two polynomials P �

r
�Pr�1w�2 and P �

r aw�1 �Pr�1w�2aw�1 .

Remark 1.1 By Hilden, Tejada and Toro [5], tunnel number one knots have presenta-
tions with two generators and one relator, where the relator is palindromic in the two
generators. Hence Theorems 5 and 6 can be applied to calculate the universal character
ring of the knot group of tunnel number one knots.

In our and T Lê’s work [6; 8] on the AJ conjecture of Frohman, Gelca and Lofaro [2],
Garoufalidis [3] and Gelca [4], which relates the A–polynomial and the colored Jones
polynomials of a knot, it is important to understand the universal character ring of
the knot group. The universal character ring has been so far calculated for a few link
groups, including two-bridge knot groups (Przytycki and Sikora [12] and Lê [13]), the
.�2; 3; 2nC 1/–pretzel knot groups [8] (see also Theorem 3 above), two-bridge link
groups (Lê and the author [7]), and the .�2; 2mC 1; 2n/–pretzel link groups (see the
author’s [14]).

In the present paper we consider the .�2; 2mC 1; 2nC 1/–pretzel knot group, where
m and n are integers. As an application of Theorem 5 we will show the following:
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Theorem 7 The fundamental group of the .�2; 2m C 1; 2n C 1/–pretzel knot is
isomorphic to the group ha; w j  �r wr D 1i, where

r D

�
suk�1awaw�1a�1u�k

sukawa�1w�1a�1u�k

if nD 2k;

if nD 2kC 1;

uD .awaw�1/1�mw;

s D

�
a.w�1awa/�l

.w�1awa/�l

if mD 2l;

if mD 2l C 1:

Hence its universal character ring is the quotient of the polynomial ring CŒx;y; z� by
the ideal generated by the two polynomials P �

r
�Pr�1w�1 and P �

r a
�Pr�1w�1a .

1.3 Plan of the paper

In Section 1, we collect preliminary facts and lemmas that will be repeatedly used in
the proofs of the main theorems of the paper. In Section 2, we consider the universal
character ring of groups and prove Theorems 1 and 2. In Section 3, we study the
universal character ring of pretzel knots and prove Theorems 4 and 7.

Acknowledgement The author would like to thank Thang T Q Lê for helpful dis-
cussions. He wishes to thank the referee for comments and suggestions that greatly
improved the presentation of the paper.

2 Preliminary facts and lemmas

2.1 The backward operator

Recall from Section 1 that for a word u in Fa;w , we denote by  �u the word obtained
from u by writing the letters in u in reversed order.

Lemma 2.1 One has
 �
 �u D u, �uvD �v �u and

 ��
u�1D

 �u �1 for all words u; v in Fa;w .
Hence

 �
un D

 �u n for all integers n.

Proof The first two identities follow directly from the definition of the backward
operator  �� . The third identity follows from the second one by taking v D u�1 .

We will also use the following result of [13] and [14].

Lemma 2.2 One has Puv D P �
u
 �
v

for all words u; v in Fa;w .
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2.2 Trace identities

For all matrices A;B;C in SL2.C/, the following trace identities are well-known:

tr AD tr A�1;(1)

tr AB D tr BA;(2)

tr BAC tr BA�1
D .tr A/.tr B/;(3)

tr BAC C tr BA�1C D .tr A/.tr BC /:(4)

Note that (3) and (4) follow from the Cayley–Hamilton Theorem ACA�1 D PAI2�2 ,
where I2�2 is the 2� 2 identity matrix.

Lemma 2.3 One has

Pucd CPudc D�Pcd�1PuCPcPud CPdPuc

for all words c; d;u in Fa;w .

Proof We have

Pu.dc/ D PdcPu�Puc�1d�1 by .3/

D PdcPu� .PdPuc�1 �Puc�1d / by .3/

D PdcPu�PdPuc�1 CPuc�1d

D PdcPu�Pd .PcPu�Puc/C .PcPud �Pucd / by .3/ and .4/

D .Pcd �PcPd /PuCPcPud CPdPuc �Pucd by .2/

D�Pcd�1PuCPcPud CPdPuc �Pucd by .3/:

The lemma follows.

2.3 Chebyshev polynomials

Let Sk.t/ be the Chebychev polynomials defined by S0.t/ D 1; S1.t/ D t and
SkC1.t/D tSk.t/�Sk�1.t/ for all integers k .

It is easy to see that Sk.2/D kC 1 and Sk.�2/D .�1/k.kC 1/ for all integers k .

Lemma 2.4 One has S2
k
.t/� tSk.t/Sk�1.t/CS2

k�1
.t/D 1.
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Proof Let gk.t/D S2
k
.t/� tSk.t/Sk�1.t/CS2

k�1
.t/. Then

gk.t/D .Sk.t/� tSk�1.t//Sk.t/CS2
k�1.t/

D�Sk�2.t/Sk.t/C .tSk�2�Sk�3.t//Sk�1.t/

D Sk�2.t/.tSk�1.t/�Sk.t//�Sk�3.t/Sk�1.t/

D S2
k�2.t/� .tSk�2.t/�Sk�1.t//Sk�1.t/

D gk�1.t/:

It means that gk.t/ does not depend on k and so gk.t/D g0.t/D 1. Hence

S2
k .t/� tSk.t/Sk�1.t/CS2

k�1.t/D gk.t/D 1:

3 Proof of Theorems 1 and 2

3.1 The universal character ring of two-generator one-relator groups

Proposition 3.1 Let G WD ha; w j u D vi, where u and v are two words in Fa;w .
Then the universal character ring of G is the quotient of the polynomial ring CŒx;y; z�
by the ideal generated by the four polynomials Pu�Pv; Pua�Pva; Puw �Pvw and
Puwa�Pvwa .

Proof By [14, Proposition 1.1], the universal character ring of G is the quotient
of the polynomial ring CŒx;y; z� by the ideal generated by the five polynomials
Pu�Pv; Pua�Pva; Puw�Pvw; Puaw�Pvaw and Puwa�Pvwa . From Lemma 2.3
it follows that

.Puaw �Pvaw/C .Puwa�Pvwa/

D�Paw�1.Pu�Pv/CPa.Puw �Pvw/CPw.Pua�Pva/:

Hence the universal character ring of G is the quotient of the polynomial ring CŒx;y; z�
by the ideal generated by the four polynomials Pu�Pv; Pua�Pva; Puw �Pvw and
Puwa�Pvwa .

Remark 3.2 From the proof of [14, Proposition 1.1], it is easy to see that the polyno-
mial Puwa�Pvwa in Proposition 3.1 can be replaced by any polynomial of the form
P

ug
"1
1

g
"2
2

�P
vg

"1
1

g
"2
2

, where fg1;g2g D fa; wg and "1; "2 2 f˙1g.
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3.2 Proof of Theorem 1

The group in Theorem 1 is ha; w j wn �r D r�1wn�1i.

To prove Theorem 1 we will need the following propositions.

Proposition 3.3 One has

P
wn �r

 �
u
�P

r�1wn�1 �u
D .P

wn �r uw�1 �Pr�1wn�1uw�1/�Puwn�1.P �r �Pr�1w�1/;

for all words u in Fa;w .

Proof We have

Pwn �r
 �
u D P �

wn
 ���
 �
r
 �
u

by Lemma 2.2

D Pwnur by Lemma 2.1

D P.wn�1u/.rw/

D Pwn�1uPrw �P.wn�1u/.rw/�1 by .3/

D Puwn�1Pr�1w�1 �Pr�1wn�1uw�1 by .1/ and .2/:

Similarly,

P
r�1wn�1 �u

D P ��
r�1
 �����
wn�1 �u

by Lemma 2.2

D P �
r �1uwn�1 by Lemma 2.1

D Puwn�1P �
r
�P �

r uwn�1 by .3/

D Puwn�1P �
r
�P

wn �r uw�1 by .1/ and .2/:

Hence

P
wn �r

 �
u
�P

r�1wn�1 �u

D .P
wn �r uw�1 �Pr�1wn�1uw�1/�Puwn�1.P �r �Pr�1w�1/:

Proposition 3.4 One has

P
wn �r

�Pr�1wn�1 D�.Sn�1.y/CSn�2.y//.P �r �Pr�1w�1/:

Proof Let gn D P
wn �r

�Pr�1wn�1 . By applying Identity (3), it is easy to show
that gnC1 D ygn�gn�1 for all integers n (note that Pw D y ). By definition, g0 D

P �
r
�Pr�1w�1 . Applying Lemmas 2.1, 2.2 and (1), we get

g1 D P
w
 �
r
�Pr�1 D Pwr �Pr D Pr�1w�1 �P �

r
D�.P �

r
�Pr�1w�1/:
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Hence, by induction on n, we can easily show that

gn D�.Sn�1.y/CSn�2.y//.P �r �Pr�1w�1/:

Proposition 3.4 follows.

We now prove Theorem 1. Let fn.u/D P
wn �r u

�Pr�1wn�1u for u 2 Fa;w . Then, by
Proposition 3.1, the universal character ring of the group GDha; w jwn �r D r�1wn�1i

is the quotient of the polynomial ring CŒx;y; z� by the ideal I generated by the four
polynomials fn.1/; fn.a/; fn.w/ and fn.wa/, where xDPa; yDPw and zDPaw .

Let Q D P �
r
�Pr�1w�1 . Since  �r and r�1w�1 are conjugate in G (by wn ), it is

clear from the definition of the universal character ring that Q is contained in the ideal
I .

By Proposition 3.3,
fn.
 �u /D fn.uw

�1/�Puwn�1Q:

In particular, we have fn.w/ D fn.1/�PwnQ and fn.wa/ D fn.a/�PawnQ. By
Proposition 3.4, fn.1/D �.Sn�1.y/CSn�2.y//Q. Hence the ideal I is generated
by the two polynomials Q D P �

r
� Pr�1w�1 and fn.a/ D P

wn �r a
� Pr�1wn�1a .

Theorem 1 follows.

3.3 Proof of Theorem 2

The group in Theorem 2 is ha; w j wn �r D r�1wn�2i.

To prove Theorem 2 we will need the following propositions.

Proposition 3.5 One has

P
wn �r

 �
u
�P

r�1wn�2 �u
D P

wn �r .wuw�1/
�Pr�1wn�2.wuw�1/

for all words u in Fa;w .

Proof From the proof of Proposition 3.3 we have

P
wn �r

 �
u
D PrwPuwn�1 �Pr�1wn�2.wuw�1/:

Similarly,

P
r�1wn�2 �u

D P ��
r�1
 �����
wn�2 �u

by Lemma 2.2

D P �
r �1uwn�2 by Lemma 2.1

D P
.
 �
r w/�1.uwn�1/

by .2/

D P �
r w

Puwn�1 �P
wn �r .wuw�1/

by .1/ and .2/:
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Hence

P
wn �r

 �
u
�P

r�1wn�2 �u
DP

wn �r .wuw�1/
�Pr�1wn�2.wuw�1/CPuwn�1.Prw�P �

r w
/:

The proposition follows, since Prw �P �
r w
D 0 by Lemma 2.2.

Proposition 3.6 One has

.P
wn �r u

�Pr�1wn�2u/C .Pwn �r .wuw�1/
�Pr�1wn�2.wuw�1//

D�Puw�2.Pwn �r
�Pr�1wn�2/ CPuw�1.Pwn �r w

�Pr�1wn�2w/

CPw

�
P

wn �r .uw�1/
�Pr�1wn�2.uw�1/

�
for all words u in Fa;w .

Proof By Lemma 2.3, for any word v in Fa;w , we have

PvuCPv.wuw�1/ D Pv.uw�1/wCPvw.uw�1/

D�Puw�2PvCPuw�1PvwCPwPv.uw�1/:

In particular,

P
wn �r u

CP
wn �r .wuw�1/

D�Puw�2P
wn �r

CPuw�1P
wn �r w

CPwP
wn �r .uw�1/

;

Pr�1wn�2uCPr�1wn�2.wuw�1/ D�Puw�2Pr�1wn�2 CPuw�1Pr�1wn�2w

CPwPr�1wn�2.uw�1/:

The proposition follows by taking the difference of the two identities above.

Proposition 3.7 One has

P
wn �r

�Pr�1wn�2 D�Sn�2.y/.P �r �Pr�1w�2/;

P
wn �r w

�Pr�1wn�2w D�Sn�1.y/.P �r �Pr�1w�2/:

Proof The proof is similar to that of Proposition 3.4, so we omit the details.

We now prove Theorem 2. Let fn.u/DP
wn �r u

�Pr�1wn�2u . Then, by Proposition 3.1
and Remark 3.2, the universal character ring of the group GDha; w jwn �r D r�1wn�2i

is the quotient of the polynomial ring CŒx;y; z� by the ideal I generated by the four
polynomials fn.1/; fn.a/; fn.w/ and fn.aw

�1/, where x D Pa; y D Pw and
z D Paw .
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By Proposition 3.5, fn.
 �u /D fn.wuw�1/. Moreover, we have

fn.u/Cfn.wuw�1/D�Puw�2fn.1/CPuw�1fn.w/CPwfn.uw
�1/

by Proposition 3.6. Hence

fn.u/Cfn.
 �u /D�Puw�2fn.1/CPuw�1fn.w/CPwfn.uw

�1/:

In particular,

(5) 2fn.a/D�Paw�2fn.1/CPaw�1fn.w/CPwfn.aw
�1/:

Let Q D P �
r
�Pr�1w�2 . Since  �r and r�1w�2 are conjugate in G (by wn ), it is

clear that from the definition of the universal character ring that Q is contained in the
ideal I .

By Proposition 3.7, fn.1/D�Sn�2.y/Q and fn.w/D�Sn�1.y/Q. These identities
and (5) imply that the ideal I is generated by Q and fn.aw

�1/, and so the universal
character ring of G is the quotient of the polynomial ring CŒx;y; z� by the ideal
generated by the two polynomials P �

r
�Pr�1w�2 and P

wn �r aw�1 �Pr�1wn�2aw�1 .

4 Pretzel knots

4.1 Proof of Theorem 7

The fundamental group of the .�2; 2mC 1; 2nC 1/–pretzel knot is

� D ha; b; c j bab�1
D .ac/�mc.ac/m; a�1baD .cb/nc.cb/�n

i:

The first relation in the group is .ac/mbaD c.ac/mb , ie a.ca/m�1cbaD ca.ca/m�1cb .
Let w D .ca/m�1cb , then awa D caw . It implies that ca D awaw�1 and cb D

.ca/1�mw D .awaw�1/1�mw . Let uD .awaw�1/1�mw . Then cb D u and so

b D c�1uD awa�1w�1a�1.awaw�1/1�mw D a.awaw�1/�mw:

The second relation in the group � becomes .awaw�1/�mwaD unawaw�1a�1u�n ,
which is equivalent to

.awaw�1a�1u�n/�1
D .u�n.awaw�1/�mwa/�1:

Therefore
� D ha; w j unawa�1w�1a�1

D a�1w�1awaun�1
i:

To proceed, we will need the following lemma.
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a

b

c

� � � � � �

2mC 1 crossings 2nC 1 crossing

Figure 1: The .�2; 2mC 1; 2nC 1/–pretzel knot

Lemma 4.1 One has uD �s ws , where

s D

�
a.w�1awa/�l if mD 2l;

.w�1awa/�l if mD 2l C 1:

In particular, u is palindromic, ie uD �u .

Proof We first note that .uv/kC1 D u.vu/kv for all integers k . If mD 2l then

uD .awaw�1/�l.awaw�1/1�lw

D .awaw�1/�l Œ.awa/.w�1awa/�lw�1�w

D Œ.awaw�1/�la�wŒa.w�1awa/�l �:

By Lemma 2.1,  �s D .awaw�1/�la. Hence uD �s ws .

If mD 2l C 1 then similarly

uD .awaw�1/�l�1.awaw�1/1�lw

D .awaw�1/�l�1.awa/.w�1awa/�l

D .awaw�1/�lw.w�1awa/�l :

Hence uD �s ws , where s D .w�1awa/�l .

Proposition 4.2 One has � D ha; w j  �r wr D 1i, where

r D

�
suk�1awaw�1a�1u�k if nD 2k;

sukawa�1w�1a�1u�k if nD 2kC 1:

Algebraic & Geometric Topology, Volume 13 (2013)
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Proof Recall that � D ha; w j unawa�1w�1a�1 D a�1w�1awaun�1i.

If nD 2k then the relation in � is u2kawa�1w�1a�1 D a�1w�1awau2k�1 , which
is equivalent to u�ka�1w�1awau2k�1awaw�1a�1u�k D 1.

If n D 2k C 1 then the relation in � is u2kC1awa�1w�1a�1 D a�1w�1awau2k ,
which is equivalent to u�ka�1w�1a�1wau2kC1awa�1w�1a�1u�k D 1.

The proposition then follows from Lemma 4.1.

We now complete the proof of Theorem 7. Proposition 4.2 and Theorem 5 imply that
the universal character of � is the quotient of the polynomial ring CŒx;y; z� by the
ideal generated by the two polynomials P �

r
�Pr�1w�1 and P �

r a
�Pr�1w�1a .

4.2 Proof of Theorem 4

Let V be the character variety of the .�2; 3; 2nC1/–pretzel knot. Then by Theorem 3,
V is the zero locus of the two polynomials Q and Rn , where

QD x�xyC .x2
Cy2

� 3/z�xyz2
C z3;

Rn D .yC 2/Sn�2.y/� .y
2
Cy � 2/Sn�3.y/�Sn�2.y/x

2

C ..y � 1/Sn�2.y/CySn�3.y//xz� .Sn�2.y/CSn�3.y//z
2:

It is known that 3–strand pretzel knots are small knots (see [11]), hence by [1] their
character varieties have irreducible components of dimension 1 only. Therefore, all
irreducible components of V have dimension exactly 1.

Note that if nD0; 1 or 2 then the .�2; 3; 2nC1/–pretzel knot is a torus knot, otherwise
it is hyperbolic. From now on we suppose that n 6D 0; 1; 2.

Lemma 4.3 Suppose gcd.2nC 1; 3/D 1. Then z 6D 0 on V except a finite number
of points.

Proof Fix z D 0. Then QD x.1�y/ and

Rn D .yC 2/Sn�2.y/� .y
2
Cy � 2/Sn�3.y/�Sn�2.y/x

2:

Note that Sk.2/D kC 1 for all integers k .

If x D 0 then Rn D p.y/, where p.y/ WD .yC 2/Sn�2.y/� .y
2C y � 2/Sn�3.y/.

Note that p.2/D 4Sn�2.2/� 4Sn�3.2/D 4.n� 1/� 4.n� 2/D 4, hence p.y/ is a
nonzero polynomial in y and so it has a finite number of roots.

If yD 1 then RnD .3�x2/Sn�2.y/. Note that S3kC2.1/D 0; S3k.1/DS3kC1.1/D

.�1/k . Since gcd.2nC1; 3/D 1, we have Sn�2.y/DSn�2.1/D˙1. Hence RnD 0

if and only if x D˙
p

3. The lemma follows.
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By Lemma 4.3, we separate the proof of Theorem 4 into 2 cases: gcd.2nC 1; 3/D 1

and gcd.2nC 1; 3/D 3.

4.3 The case gcd.2n C 1; 3/ D 1

Then by Lemma 4.3, z 6D 0 on V except a finite number of points. Without loss of
generality, we may suppose z 6D 0 on V . Let Q0DQz�1 and R0nDRnCSn�2.y/Q

0 .
Then we have

Q0 D x2
� .yz2

Cy � 1/z�1xCy2
C z2

� 3 and R0n D�˛z�1xCˇ;

where

˛ D .z2
Cy � 1/Sn�2.y/�yz2Sn�3.y/;

ˇ D .y2
Cy � 1/Sn�2.y/� .y

2
Cy � 2C z2/Sn�3.y/:

To proceed, we will need the following lemma.

Lemma 4.4 One has ˛ 6D 0 on V \fz 6D 0g except a finite number of points.

Proof Assume ˛ D 0 on V \fz 6D 0g. Then ˛ D ˇ D 0, which implies that

.y � 1/Sn�2.y/D
�
ySn�3.y/�Sn�2.y/

�
z2;

.y2
Cy � 1/Sn�2.y/� .y

2
Cy � 2/Sn�3.y/D z2Sn�3.y/:

Hence

(6) .ySn�3.y/�Sn�2.y//Œ.y
2
Cy � 1/Sn�2.y/� .y

2
Cy � 2/Sn�3.y/�

� .y � 1/Sn�2.y/Sn�3.y/D 0:

Let q.y/ be the left-hand side of (6). Note that q.2/D .n�3/.nC3/�.n�1/.n�2/D

3n� 11 6D 0. It implies that q.y/ is a nonzero polynomial in y and so it has a finite
number of roots. For each root y of q.y/, the system

.y � 1/Sn�2.y/D .ySn�3.y/�Sn�2.y//z
2;

.y2
Cy � 1/Sn�2.y/� .y

2
Cy � 2/Sn�3.y/D z2Sn�3.y/;

has at most 2 solutions z , since either ySn�3.y/�Sn�2.y/ or Sn�3.y/ is nonzero (by
Lemma 2.4). For each solution .y; z/ of the system ˛ D ˇ D 0, the equation Q0 D 0

has at most 2 solutions x . Therefore ˛ 6D 0 on V \fz 6D 0g except on a finite number
of points.
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Since gcd.2nC 1; 3/ D 1, by Lemmas 4.3 and 4.4 we may assume that ˛ 6D 0 and
z 6D 0 on V . The equation R0n D 0 is then equivalent to x D zˇ=˛ . Hence

˛2Q0 D z2ˇ2
� .yz2

Cy � 1/ˇ˛C .y2
C z2

� 3/˛2

D .�2C 3y �y3
C z2/

˚
Sn�2.y/

2
� .y � 1/Sn�2.y/Sn�3.y/

� .3Sn�2.y/
2
� .2yC 1/Sn�2.y/Sn�3.y/C 2Sn�3.y/

2/z2

C .Sn�2.y/
2
�ySn�2.y/Sn�3.y/CSn�3.y/

2/z4
	
:

By Lemma 2.4, we have Sn�2.y/
2�ySn�2.y/Sn�3.y/CSn�3.y/

2 D 1. It follows
that

˛2Q0 D .�2C 3y �y3
C z2/

˚
1CSn�2.y/Sn�3.y/�Sn�3.y/

2

� .2CSn�2.y/
2
�Sn�2.y/Sn�3.y//z

2
C z4

	
D .�2C 3y �y3

C z2/T .y; z/;

where

T .y; z/ WD t0.y/C t2.y/z
2
C z4;

t0.y/ WD 1CSn�2.y/Sn�3.y/�Sn�3.y/
2;

t2.y/ WD �.2CSn�2.y/
2
�Sn�2.y/Sn�3.y//:

Lemma 4.5 Suppose n 6D 1; 2. Then t0.y/ 2CŒy� is a polynomial of positive degree
and it does not have any repeated factors.

Proof Note that Sk.2/D k C 1 and Sk.�2/D .�1/k.k C 1/ for all integers k . It
follows that h0.y/D 1CSn�2.y/Sn�3.y/�Sn�3.y/

2 is equal to n�1 if yD 2; and
is equal to .n�1/.5�2n/ if y D�2. Hence h0.y/ 2CŒy� is a polynomial of positive
degree since n 6D 1; 2.

We have t0.y/DSn�2.y/.Sn�2.y/�.y�1/Sn�3.y//DSn�2.y/.Sn�3.y/�Sn�4.y//.
If n� 4 then

Sn�2.y/D

n�2Y
jD1

�
y � 2 cos

j�

n� 1

�
;

Sn�3.y/�Sn�4.y/D

n�3Y
jD1

�
y � 2 cos

.2j � 1/�

2n� 5

�
;
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(see, for example, [8, Lemma 4.13]), hence

t0.y/D

n�2Y
jD1

�
y � 2 cos

j�

n� 1

� n�3Y
jD1

�
y � 2 cos

.2j � 1/�

2n� 5

�
does not have any repeated factors.

Similarly, if n� �1 then by letting n0 D�.nC 1/� 0, we have

t0.y/D Sn0C1.y/.Sn0C2.y/�Sn0C3.y//

D�

n0C1Y
jD1

�
y � 2 cos

j�

n0C 2

� n0C3Y
jD1

�
y � 2 cos

.2j � 1/�

2n0C 7

�
since Sk.y/D�S�k�2.y/ for all integers k . Hence h0.y/ does not have any repeated
factors. If nD 0 then t0.y/D�.y

2 � y � 1/. If nD 3 then t0.y/D y . The lemma
follows.

Proposition 4.6 Suppose n 6D 0; 1; 2. Then T .y; z/ is irreducible in CŒy; z�.

Proof If T .y; z/ has a factor zC f .y/, where f .y/ 6� 0, then z � f .y/ is also a
factor of T .y; z/. Hence T .y; z/ has a factor z2�f 2.y/.

If T .y; z/ has a factor z2Cf .y/zCg.y/, where f .y/; g.y/ 6� 0, then it is easy to
see that z2�f .y/zCg.y/ is also a factor of T .y; z/. In this case, we have

z4
C h2.y/z

2
C h0.y/D .z

2
Cf .y/zCg.y//.z2

�f .y/zCg.y//

D z4
C .2g.y/�f 2.y//z2

Cg2.y/:

Hence g2.y/ D t0.y/, which is impossible since t0.y/ 2 CŒy� is a polynomial of
positive degree and it does not have any repeated factors by Lemma 4.5.

Assume that the polynomial T .y; z/ is reducible. Then by the above arguments, we may
suppose that T .y; z/D .z2Cg.y//.z2C t2.y/�g.y//, where g.y/ 6� 0. In this case
g.y/.t2.y/�g.y//D t0.y/ which implies that t2.y/

2=4� t0.y/D .g.y/� t2.y/=2/
2 .

Note that t2.y/
2� 4t0.y/D .4CSn�2.y/

2/.Sn�2.y/�Sn�3.y//
2 . Hence

4CSn�2.y/
2
D .2g.y/� t2.y//

2=.Sn�2.y/�Sn�3.y//
2:

Let h.y/D .2g.y/�t2.y//=.Sn�2.y/�Sn�3.y//2CŒy� then 4CSn�2.y/
2Dh.y/2 ,

ie .h.y/�Sn�2.y//.h.y/CSn�2.y//D 4. It follows that both h.y/�Sn�2.y/ and
h.y/CSn�2.y/ are constant polynomials, and so is Sn�2.y/. This can not occur since
n 6D 0; 1; 2. Therefore T .y; z/ is irreducible in CŒy; z�.
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We now complete the proof of Theorem 4. Note that T .2; z/D z4� .nC1/z2Cn�1

is not divisible by .�2C3y�y3C z2/jyD2 D z2�4, since T .2;˙2/D 11�3n 6D 0.
Hence T .y; z/ is not divisible by �2C 3y � y3 C z2 and so, by Proposition 4.6,
˛2Q0 D .�2C 3y � y3C z2/T .y; z/ has exactly 2 irreducible factors. Therefore V

has exactly 2 irreducible components.

4.4 The case gcd.2n C 1; 3/ D 3

From the proof of Lemma 4.3 and the proof of Theorem 4 for the case gcd.2nC1; 3/D1,
it is easy to see that in this case V has exactly 3 irreducible components, where one of
them is fz D 0; y D 1g.
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