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A geometric construction of panel-regular lattices
for buildings of types zA2 and zC2

JAN ESSERT

Using Singer polygons, we construct locally finite affine buildings of types zA2 and
zC2 that admit uniform lattices acting regularly on panels. For type zA2 , these cover all
possible buildings admitting panel-regular lattices. All but one of the zC2 –buildings
are necessarily exotic. To the knowledge of the author, these are the first presentations
of lattices for buildings of type zC2 . Integral and rational group homology for the
lattices is also calculated.

20E42, 20F65, 22E40; 20J06

0 Introduction

A uniform lattice is a discrete and cocompact subgroup in a locally compact topological
group. In recent years, the investigation of lattices in the automorphism groups of
locally finite polyhedral complexes with non-positive curvature has been an active topic
of research. Many open problems and an overview of the current situation can be found
in the survey Farb, Hruska and Thomas [14].

This text describes a new geometric construction method producing buildings of type
zA2 and zC2 with a uniform lattice in their full automorphism groups. The advantages of

this construction are very simple presentations for the lattices, very explicit descriptions
of the buildings and a very good understanding how these lattices act on the building.
Using the latter fact, we can calculate the group homology of these lattices.

The lattices act regularly, that is, transitively and freely, on panels of the same type of
the building. It is known that there are countably many buildings of types zA2 and zC2

coming from algebraic groups over local fields, as well as uncountably many other
so-called exotic buildings. For the buildings of type zC2 , all but possibly one of the
buildings we construct are certainly exotic.

In the case of zA2 , the situation is more complex. Explicitly, we can only realise
one single lattice in SL3.F2..t///. On the other hand, we can show that every build-
ing of type zA2 admitting a panel-regular lattice must come from our construction.
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In [6], Capdeboscq, Rumynin and Thomas show that every building associated to
SL3.Fq..t/// admits a panel-regular lattice, which is even contained in SL3.Fq..t/// for
.3; q� 1/D 1. Presently, however, it is not clear which input data to our construction
produces this lattice.

If the building X we construct is classical, then there is an associated algebraic group
G � Aut.X /. By a classical result of Tits in [31], the algebraic group G is always
cocompact in Aut.X / and it is hence conceivable that our lattice (or a finite-index
subgroup) is already contained in G . Then Margulis’s Arithmeticity [23] asserts that
the lattice is arithmetic, that is, comes from an algebraic construction. Our construction
would then provide simple presentations for arithmetic lattices, along with a very
explicit description of the action on the building.

Main construction For the construction, we use Singer polygons, generalised poly-
gons with a point-regular automorphism group called a Singer group, to construct
small complexes of groups. The local developments of these complexes of groups are
cones over the generalised polygons we started with. These cones are automatically
non-positively curved in a natural metric, so the complexes of groups are developable by
a theorem of Bridson and Haefliger in [2]. Then, by a recognition theorem by Charney
and Lytchak in [10], we know that their universal covers are buildings. The fundamental
groups of these complexes of groups are then uniform lattices on two–dimensional
locally finite affine buildings.

In principle, our construction might even extend to lattices for buildings of type zG2 ,
but unfortunately, there are no known Singer hexagons.

Previous constructions There are several previous geometric constructions of cham-
ber-transitive lattices for buildings that led to the classification of all chamber-transitive
lattices in classical buildings by Kantor, Liebler and Tits in [21], among these three
lattices for buildings of type zA2 .

Cartwright, Mantero, Steger and Zappa construct vertex-transitive lattices for buildings
of type zA2 in [7; 8]. They prove that some of the lattices they construct are contained
in SL3.Fq..t///, while others correspond to exotic buildings.

In [24], Ronan constructs possibly exotic buildings of type zA2 admitting a lattice acting
regularly on vertices of the same type. Except for the single lattice mentioned above, it
is not clear whether any of our lattices is commensurable to the lattices constructed by
Cartwright, Mantero, Steger and Zappa or by Ronan.

In a previous version of the paper, it was not yet clear whether buildings associated to
SL3.Fq..t/// admit panel-regular lattices and in which cases these lattices are already
contained in SL3.Fq..t///. As mentioned above, Capdeboscq, Rumynin and Thomas
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answer these questions in [6] as follows: They construct a panel-regular lattice in
PGLn.Fq..t/// for all q . For nD 3, they determine that this lattice is even contained in
SL3.Fq..t/// if .3; q� 1/D 1. Conversely, they show that for 3 j .q� 1/ and q large
enough, the group SL3.Fq..t/// cannot contain a panel-regular lattice.

For buildings of type zC2 , there is a free construction by Ronan in [25] that produces
very unstructured examples of exotic buildings, but which does not give any control
over the automorphism groups. In [20], Kantor gives a construction of exotic buildings
of type zC2 admitting uniform lattices acting freely on vertices of the building. However,
there are no presentations of these lattices given. Again, we do not know whether the
lattices we construct here are commensurable to the examples given by Kantor.

0.1 Buildings of type zA2

For buildings of type zA2 , we obtain the following result. Fix three projective planes of
order q along with three Singer groups Si , i 2 f1; 2; 3g, that is, groups acting regularly
on points (and hence on lines) of these planes. For each of these planes, fix a point pi

and a line li and write:

Di D fd 2 Si W pi is incident to d.li/g

These sets are called difference sets. Finally, write J D f0; 1; : : : ; qg and fix three
bijections di W J !Di .

Theorem 0.1 There is a building X such that the group

�1 D

*
S1;S2;S3

ˇ̌̌̌
ˇ all relations in the groups S1;S2;S3;

d1.j /d2.j /d3.j /D d1.j
0/d2.j

0/d3.j
0/ 8j ; j 0 2 J

+
is a uniform lattice in the full automorphism group of the building. The set of all
chambers adjacent to any panel is a fundamental domain for the action. Moreover,
every panel-regular lattice on a building of type zA2 arises in this way and admits a
presentation of the above form with d1.0/d2.0/d3.0/D 1.

A very simple special case arises as follows:

Classical projective planes admit cyclic Singer groups. Denote the generators of the
three Singer groups Si by �i , and write:

�i D fı 2 Z=jSi j W �
ı
i 2Dig

These are difference sets in the classical sense.
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Theorem 0.2 For any prime power q , for any three classical difference sets �1 , �2 ,
�3 containing 0 and for any bijections ı˛W J !�˛ satisfying ı˛.0/D 0, the group
�2 with presentation

�2 D

*
�1; �2; �3

ˇ̌̌̌
ˇ �q2CqC1

1
D �

q2CqC1
2

D �
q2CqC1
3

D 1;

�
ı1.j/
1

�
ı2.j/
2

�
ı3.j/
3

D 1 8j 2 J

+

is a uniform lattice in a building of type zA2 .

Examples Two simple examples are:

ƒD h�1; �2; �3 j �
7
1 D �

7
2 D �

7
3 D �1�2�3 D �

3
1�

3
2�

3
3 D 1i

ƒ0 D h�1; �2; �3 j �
13
1 D �

13
2 D �

13
3 D �1�

3
2�

9
3 D �

3
1�

9
2�3 D �

9
1�2�

3
3 D 1i

Further examples can easily be constructed using the list of difference sets found in the
La Jolla Difference Set Repository [16].

If we start from cyclic Singer groups, we obtain very explicit descriptions of the
associated buildings. Using these, we can give explicit descriptions of the spheres
of radius 2 in these buildings, which lead to an interesting incidence structure called
a Hjelmslev plane of level two. Using a result of Cartwright, Mantero, Steger and
Zappa in [8], we show that the lattices from Theorem 0.2 cannot belong to the building
associated to SL3.Qp/ if �1 D�2 D�3 .

For the homology groups, we obtain the following result.

Theorem 0.3 If �2 is a lattice as in Theorem 0.2, then

Hj .�2IZ/Š

8̂̂̂̂
<̂̂
ˆ̂̂̂:

Z if j D 0;

ker.D/ if j D 1;

Zq if j D 2;

.Z=.q2C qC 1//3 if j � 3 odd;
0 else;

where DW .Z=.q2C qC 1//3! .Z=.q2C qC 1//q is given by the matrix .ıj .i//i;j .

In addition

H2.�i IQ/DQq; Hj .�i IQ/D 0 for j ¤ 0; 2

for any lattice �i as in Theorems 0.1 or 0.2.
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0.2 Buildings of type zC2

For buildings of type zC2 , we give two different constructions of panel-regular lattices,
depending on the types of panels the lattice acts regularly on. We use slanted symplectic
quadrangles as defined by Grundhöfer, Joswig and Stroppel in [18] for the vertex links.
Since almost all of these quadrangles are exotic, we necessarily construct exotic
buildings admitting panel-regular lattices.

Starting from a slanted symplectic quadrangle of order .q� 1; qC 1/, where q > 2 is
a prime power, we write J D f0; 1; : : : ; qC 1g and consider a Singer group S acting
regularly on points of the quadrangle. Fix the set of lines L through a point and a
bijective enumeration function �W J ! L. All line stabilisers Sl are isomorphic to
Z=q , and we fix isomorphisms  j W Z=q! S�.j/ . We repeat this construction for a
second quadrangle of order .q� 1; qC 1/ and obtain a Singer group S 0 and functions
�0 and f 0j gj2J .

Theorem 0.4 The finitely presented groups

�1 D .S �S 0/=hŒS�.j/;S
0
�0.j/� W j 2 J i

as well as

�2 D .S �S 0 � hci/=hcqC2; cj j .x/c
�j 0j .x/

�1
W j 2 J;x 2 Z=qi

are uniform panel-regular lattices for buildings of type zC2 .

� If q is an odd prime power, then S and S 0 are three–dimensional Heisenberg
groups over Fq . If q is an odd prime, the above presentations can be made more
explicit by writing out presentations for S and S 0 .

� If q is even, then S and S 0 are isomorphic to the additive groups of F3
q . The set

of lines can be identified with PF2
q t f0g, where PF2

q is the classical projective
plane of order q , the stabilisers have the following structure:
– We denote the equivalence class of .a; b; 1/T in the projective plane PF2

q

by Œa W b�. Its stabiliser SŒaWb� is the Fq –subspace of S D F3
q spanned by

.a; b; 0/T .
– The stabiliser S0 is the Fq –subspace spanned by .0; 0; 1/T .

If q > 3, then the associated buildings are necessarily exotic. In any case, the above
presentations imply very simple descriptions of these buildings. Finally, we calculate
group homology.
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Theorem 0.5 If �i is any of the two lattices constructed in Theorem 0.4, we have
Hj .�i IQ/D 0 for j ¤ 0. In addition, for the first type of lattices we have:

H1.�1IZ/Š .Z=q/
6; H2.�1IZ/ŠH2.S/˚H2.S

0/:

0.3 Structure of the paper

This paper is structured as follows: In Section 1, we introduce complexes of groups
and the concept of developability, the universal cover and local developments, which
we need for our constructions. We briefly introduce two–dimensional affine buildings
in Section 2 and state the metric recognition theorem by Charney and Lytchak. Singer
polygons and, in particular, the explicit construction of slanted symplectic quadrangles
and their Singer groups are treated in Section 3. The construction of a complex of
groups with cones over Singer polygons as local developments, which is central to this
paper, is detailed in Section 4. We construct the panel-regular lattices for buildings of
type zA2 and zC2 in Sections 5 and 6, respectively. Finally, we calculate integral and
rational group homology of these lattices in Section 7.
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1 Complexes of groups

To fix the notation, we will collect some facts about complexes of groups, but our
treatment will not be complete. For a reference, see, of course, [2, Chapter III.C ]. We
will also mostly use the notation of this book, except denoting vertices by v , w instead
of � , � and changing the notation for the presentations of fundamental groups slightly.

Algebraic & Geometric Topology, Volume 13 (2013)



A geometric construction of panel-regular lattices for buildings of types zA2 and zC2 1537

1.1 Definitions

Definition 1.1 A small category without loops (scwol) is a set X which is the disjoint
union of a vertex set V .X / and an edge set E.X / together with initial and terminal
vertex maps i; t W E.X /! V .X /. We denote by E.2/.X / the set of pairs .a; b/ 2
E.X /�E.X / such that i.a/D t.b/ and require the existence of a composition map
E.2/.X /!E.X /, .a; b/ 7! ab , satisfying certain additional conditions, which will
not be made explicit here.

Associated to any scwol X there is the geometric realisation jX j: a piecewise Euclidean
complex whose vertices are in bijection to V .X / and whose k –simplices correspond
to k –chains of composable edges in E.X /. For any vertex v 2 V .X / we denote the
closed star of v in jX j by St.v/. The open star or residue is denoted by st.v/.

Definition 1.2 Let Y be a scwol. A complex of groups G.Y/D .Gv;  a;ga;b/ over
Y is given by the following data:

(1) a local group Gv for each vertex v 2 V .Y/
(2) a monomorphism  aW Gi.a/!Gt.a/ for each edge a 2E.Y/
(3) a twisting element ga;b 2 Gt.a/ for each pair of composable edges .a; b/ 2

E.2/.Y/

with certain compatibility conditions. Throughout this paper we will only consider
finite vertex groups.

If a group G acts on a scwol X , there is a natural way to construct a quotient complex
of groups GnnX over the quotient scwol GnX . This construction assigns the vertex
stabilisers as local groups. A complex of groups is called developable if it is isomorphic
to a quotient complex arising in this fashion.

The notation in the following definition differs from the one in [2]. In addition, we
simplified the presentation slightly. It is very easy to see that this definition is equivalent
to the one in the aforementioned book.

Definition 1.3 Let G.Y/ be a complex of groups. We consider the associated graph
with vertex set V .Y/ and edge set E.Y/. Choose a maximal tree T in this graph. The
fundamental group �1.G.Y/;T / of G.Y/ with respect to T is generated by the seta

v2V .Y/

Gv t fka W a 2E.Y/g
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subject to the relations in the groups Gv and to:

kakb D ga;bkab 8.a; b/ 2E.2/.Y/

 a.g/D kagk�1
a 8g 2Gi.a/

ka D 1 8a 2 T

It can be shown that fundamental groups associated to different maximal trees are
isomorphic. We will hence omit T usually and we will write simply �1.G.Y//. The
importance of complexes of groups for the construction of lattices comes from the
following assertion.

Proposition 1.4 Associated to each developable complex of groups G.Y/, there is a
simply connected scwol X , called the universal cover or development of Y on which
�1.G.Y// acts such that G.Y/ is isomorphic to the complex of groups �1.G.Y//nnX .

Construction We will need the precise construction of the universal cover X later on.
Abbreviate � WD�1.G.Y//. Then write 'vW Gv!� for the canonical homomorphisms,
which are injective if and only if Y is developable. The universal cover X is given by

V .X / WD
˚�

g'v.Gv/; v
�
W g 2 �; v 2 V .Y/

	
;

E.X / WD
˚�

g'i.a/.Gi.a//; a
�
W g 2 �; a 2E.Y/

	
;

with initial and terminal vertex maps:

i
��

g'i.a/.Gi.a//; a
��
WD
�
g'i.a/.Gi.a//; i.a/

�
t
��

g'i.a/.Gi.a//; a
��
WD
�
gk�1

a 't.a/.Gt.a//; t.a/
�

Composition is defined as follows:

.g'i.a/.Gi.a//; a/.h'i.b/.Gi.b//; b/D .h'i.b/.Gi.b//; ab/

These edges are composable if a, b are composable and:

g'i.a/.Gi.a//D hk�1
b 't.a/.Gt.a//

Remark If the scwol Y is locally finite, so is the universal cover X . The automor-
phism group of the geometric realisation jX j is then a locally compact group with
compact open stabilisers. Since we only consider finite vertex groups, the fundamental
group �1.G.Y// acts on the geometric realisation of X with finite vertex stabilisers, so
it is discrete. If Y is finite, the fundamental group acts cocompactly on the geometric
realisation of X . Hence, if Y is finite, its fundamental group is a uniform lattice
in Aut.jX j/.
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1.2 Developability and non-positive curvature

Unlike graphs of groups, not all complexes of groups are developable. If the polyhedral
complex jYj is endowed with a locally Euclidean metric then there is a sufficient
criterion for developability, namely non-positive curvature on all local developments,
as defined in [2, III.C .4.20].

To ease reading of this paper, we duplicate the construction of the local development
here. The reader is assumed to be familiar with the curvature conditions CAT(0) and
CAT(1). A very good introduction can be found in [2, II].

Two auxiliary concepts are required for the definition of the local development.

Definition 1.5 (III.C .4.20 in [2]) For a vertex v 2 Y in a complex of groups G.Y/
we define the scwol Lkzv.Y/ as follows:

V .Lkzv.Y//D
˚�

g a.Gi.a//; a
�
W a 2E.Y/; t.a/D v;g a.Gi.a// 2Gv= a.Gi.a//

	
E.Lkzv.Y//D

˚�
g ab.Gi.b//; a; b

�
W .a; b/ 2E.2/.Y/;

t.a/D v;g ab.Gi.b// 2Gv= ab.Gi.b//
	

The maps i; t W E.Lkzv.Y//! V .Lkzv.Y// are defined by

i
�
.g abGi.b/; a; b/

�
D
�
g ab.Gi.b//; ab

�
;

t
�
.g abGi.b/; a; b/

�
D
�
gg�1

a;b ab.Gi.b//; a
�
:

Since all scwols in this paper are at most two–dimensional and hence the scwols Lkzv.Y/
are at most one–dimensional, we omit the definition of the composition of edges.

We also need the definition of the lower link.

Definition 1.6 [2, III.C .1.17] Let v 2 V .Y/ be a vertex in a scwol Y . The lower
link Lkv.Y/ is given by

V .Lkv.Y//D fa 2E.Y/ W i.a/D vg;

E.Lkv.Y//D f.a; b/ 2E.2/.Y/ W i.b/D vg;

with i.a; b/ WD b , t.a; b/ WD ab . Again, we do not define composition of edges.

We will not define the join of scwols formally. It is enough to know that the geometric
realisation of a join is affinely isometric to the (simplicial) join of the geometric
realisations of the two scwols involved.
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Definition 1.7 For any vertex v 2 V .Y/ of a complex of groups G.Y/, we define
the local development of the complex of groups G.Y/ at the vertex v to be the scwol
Y.zv/ WD Lkv.Y/� fvg �Lkzv.Y/.

Notation: We write St.zv/D jY.zv/j for the geometric realisation of Y.zv/ and st.zv/ for
the open star of zv in St.zv/.

There is a natural projection of St.zv/ onto the closed star St.v/ of the vertex v . Assume
that the geometric realisation jYj of Y is endowed with a locally Euclidean metric.
Then St.v/ is endowed with the induced metric, and we can endow St.zv/ and its
subspace st.zv/ with a locally Euclidean metric such that the aforementioned projection
is isometric on every simplex.

Proposition 1.8 [2, III.C .4.11] Assume the complex of groups G.Y/ is developable
and let X be the universal cover. Let v 2 V .Y/ and choose a preimage xv 2 X of v .
Then there is a Gv–equivariant isometry st.zv/! st.xv/.

Hence we have a precise understanding of the local structure of the universal cover,
even though the global structure may be complicated.

Definition 1.9 If jYj can be endowed with a locally Euclidean metric such that for
every vertex v of G.Y/ the metric space st.zv/ is CAT(0), we say that the complex of
groups is non-positively curved.

Theorem 1.10 (Bridson and Haefliger [2, III.C .4.17]) A non-positively curved com-
plex of groups is developable.

We will use the following criterion later on.

Definition 1.11 [2, I.7.38] For each point x in a piecewise Euclidean polyhedral
complex X , consider the set lk.x;X / of germs of �–equivalence classes of geodesic
segments Œx;y� with y 2 st.x/ n fxg, Œx;y�� Œx;y0� if Œx;y�� Œx;y0� or vice versa.

It can be endowed with the following metric: for two segments Œx;y�, Œx;y0� where y ,
y0 are contained in a common polyhedral cell, their distance is the comparison angle
†x.y;y

0/ in the corresponding Euclidean comparison triangle. A global metric on
lk.x;X / can be obtained by taking the infimum of the lengths of piecewise geodesic
paths.

The set lk.x;X / has then the structure of a piecewise spherical polyhedral complex,
called the geometric link at X . If " > 0 is less than the distance from x to the union
of faces of X that do not contain x , then the "–neighbourhood of x in X is isometric
to the "–neighbourhood of the vertex x in the Euclidean cone C.lk.x;X //.
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Proposition 1.12 [2, III.C .4.18] If the geometric link lk.zv; st.zv// is CAT(1) for
every vertex v 2 V .Y/, then the complex of groups is non-positively curved and hence
developable.

2 Two–dimensional affine buildings

In this section, we will briefly introduce spherical and affine buildings. For general
introductions to the topic, see Brown [4] or Ronan [26]. Furthermore, we will cite a
criterion by Charney and Lytchak to recognise affine buildings by their metric properties.

2.1 Definitions

Definition 2.1 A Coxeter group W of rank r is a finitely presented group with the
presentation

W D hs1; : : : ; sr j .sisj /
m.i;j/

D 1i;

where the Coxeter matrix .m.i; j //i;j is symmetric with value 1 on the diagonal and
values in f2; 3; : : : ;1g else. We will denote the set of generators by S D fs1; : : : ; sr g.

The Coxeter group W is called irreducible if there is no decomposition S D S1 tS2

such that W D hS1i � hS2i.

Definition 2.2 As usual, we associate to each Coxeter matrix a labelled graph with
vertex set S , the Coxeter diagram. Two vertices si ; sj are connected by an edge if
m.i; j / > 2 and the edges are labelled with m.i; j / if m.i; j / > 3. In this paper,
we will only consider Coxeter groups of types zA2 , zC2 and I2.n/ with the following
Coxeter diagrams:

zA2
zC2 I2.n/

4 4 n

Coxeter complexes are the basic ingredients we require for the definition of buildings.

Definition 2.3 A subgroup generated by a subset of T is called a special subgroup.
The set of all cosets of special subgroups,

†.W;S/D fwhT i W w 2W;T � Sg;

partially ordered by reverse inclusion forms a simplicial complex, the Coxeter complex
associated to .W;S/.
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Definition 2.4 Top–dimensional simplices of †.W;S/ are called chambers, codim-
ension 1 simplices are called panels.

We define the type of a simplex as a subset of S via the following map:

†.W;S/! 2S

whT i 7! SnT

In particular, since a panel is always of the form whfsgi, there is exactly one type of
panel for each element of S .

Definition 2.5 We are interested in the following two cases.

� If W is finite, in particular in the case I2.n/, then there is a natural geometric
realisation of †.W;S/ as a triangulated unit sphere Sr�1 and there is hence a
piecewise spherical metric on j†.W;S/j. In this case W is called spherical.

� If the Coxeter diagram is affine, in particular in the cases zA2 and zC2 (see
Weiss [34] for a complete list of affine diagrams), there is a natural geometric
realisation of †.W;S/ as a triangulated Euclidean space Rr�1 . There is hence
a piecewise Euclidean metric on j†.W;S/j, and W is said to be affine or
irreducible Euclidean.

Definition 2.6 A simplicial complex X together with a collection of subcomplexes
A called apartments is a building if:

� Every subcomplex A 2A is a Coxeter complex.
� Every two simplices of X are contained in a common apartment.
� For any two apartments A1;A2 2A containing a common chamber, there is an

isomorphism A1!A2 fixing A1\A2 pointwise.

The building X is called thick if every panel is contained in at least three chambers.
The axioms force all apartments to be isomorphic; there is in particular a unique
Coxeter group W associated to X . Again, if W is spherical or affine, we say that X

is spherical or affine.

Remarks A building of type I2.n/ is called a generalised n–gon. These can also be
described in a more explicit fashion; see Definition 3.1.

There is a colouring of the vertex set of X by the elements of S . The link of every
vertex of X is a building of the type obtained by removing the vertex colour from the
generating set S . For the buildings of type zA2 and zC2 , this implies that vertex links
are generalised polygons.
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2.2 Buildings as metric spaces

The natural metric on j†.W;S/j extends to a natural metric on jX j. If W is spherical
(affine), then jX j is hence a piecewise spherical (Euclidean) simplicial complex.

Theorem 2.7 (Davis [11]) The canonical realisation of a spherical building is CAT(1)
and has diameter � . The canonical realisation of an affine building is CAT(0). Both
these metrics coincide with the natural metrics coming from j†.W;S/j.

For every vertex v in an affine building X , the geometric link lk.x; jX j/ is a spherical
building and the induced metric coincides with the natural building metric.

It turns out that spherical and affine buildings can be recognised by their metric
properties. This is the content of a paper by Charney and Lytchak; see [10]. We will
only require the following result, which is a special case of a result in this paper.

Theorem 2.8 [10, Theorem 7.3] Let X be a connected two–dimensional piecewise
Euclidean polyhedral complex satisfying the following conditions:

� X is CAT(0).
� Every 1–cell is contained in at least three 2–cells.
� The geometric link of every vertex is connected and has diameter � .

Then X is an irreducible two–dimensional Euclidean building or a product of two trees.

3 Singer polygons

We will construct complexes of groups whose universal covers are two–dimensional
buildings. We will do this by prescribing the vertex links, which are generalised
polygons. The main ingredients for our constructions are generalised polygons admitting
Singer groups.

Definition 3.1 A generalised n–gon is an incidence structure I D .P;L;F/ whose
associated incidence graph has diameter n and girth 2n. The associated simplicial
complex with vertex set P tL and with 1–simplices F is a spherical building of type
I2.n/ in the sense of Section 2.

Definition 3.2 A Singer polygon is a generalised polygon which admits an automor-
phism group acting regularly, that is transitively and freely, on its points, a so-called
Singer group.

We will investigate examples for Singer polygons in the following sections.
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3.1 Bipartite graphs

A generalised 2–gon is just a complete bipartite graph.

Lemma 3.3 Any group of order k acts point- and line-regularly on a complete bipartite
graph of order .k; k ).

Proof Identify the sets of points and lines of the bipartite graph each with the elements
of the group and consider the left regular representation on both sets.

3.2 Projective planes

A generalised triangle is a projective plane. A projective plane is classical if it is the
usual projective plane over a division ring. The following classical result gives rise to
the name of Singer groups.

Theorem 3.4 (Singer [29]) Every finite classical projective plane admits a cyclic
Singer group. A generator of such a group is called a Singer cycle.

It is conjectured that, conversely, every finite projective plane even admitting a group
acting transitively on points is already classical. This seems to be difficult to prove;
see [15] for a recent contribution. It is not even known whether a projective plane with
an Abelian Singer group must be classical. On the other hand, all Singer groups on
finite classical projective planes are classified by Ellers and Karzel:

Theorem 3.5 (Ellers and Karzel [12, 1.4.17]) Every finite classical projective plane
of order pe admits a Singer group S as follows:

There is a divisor n of 3e such that n.pe � 1/ divides p3e � 1 and S can be presented
in the following way:

S D h
; ı j 
 s
D 1; ın

D 
 t ; ı
 ı�1
D 
p3e=n

i;

where

s D
p3e � 1

n.pe � 1/
and t D

p3e � 1

n.p3e=n� 1/
:

Conversely, every group satisfying these relations operates point-regularly on a classical
projective plane. In addition, the group S is contained in PGL3.Fpe / if and only if
n 2 f1; 3g.

Finally, we require the following simple fact about arbitrary finite projective planes.

Proposition 3.6 [12, 4.2.7] Every Singer group on a finite projective plane also acts
regularly on lines.
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3.3 Generalised quadrangles

There is no classification of all Singer quadrangles known to the author. However,
there is a list of all Singer quadrangles among all known finite generalised quadrangles,
see the book Shult, Thas and de Winter [28]. All known Singer quadrangles except
one arise by Payne derivation from translation generalised quadrangles and symplectic
quadrangles.

Since we require rather explicit descriptions of the quadrangles, we consider only a
large class of examples, the so-called slanted symplectic quadrangles. For a detailed
investigation of these quadrangles, see [18] and Stroppel [30].

Definition 3.7 Fix a prime power q > 2. Let V D he�2; e�1; e1; e2i be a four–
dimensional vector space over the finite field Fq endowed with the symplectic form h

satisfying:

h.ei ; ej /D

8<:
�1 if i C j D 0; i > j

1 if i C j D 0; i < j

0 else

The polar space consisting of all nontrivial totally isotropic subspaces of V , that is,
subspaces U satisfying U �U? , forms a generalised quadrangle, called the symplectic
quadrangle W .q/. More specifically, set:

P.W .q//D fU � V W dim.U /D 1;U � U?g

L.W .q//D fW � V W dim.W /D 2;W �W ?g

F.W .q//D f.U;W / 2 P.W .q//�L.W .q// W U �W g

We denote the full symplectic group by Sp4.q/, which is the group of all linear maps
preserving h, and we fix the following notation

x.a/D

0BB@
1 a 0 0

0 1 0 0

0 0 1 �a

0 0 0 1

1CCA ; y.b/D

0BB@
1 0 b 0

0 1 0 b

0 0 1 0

0 0 0 1

1CCA ; z.c/D

0BB@
1 0 0 c

0 1 0 0

0 0 1 0

0 0 0 1

1CCA ;
for specific elements in Sp4.q/, where a; b; c 2Fq . We abbreviate xDx.1/, yDy.1/

and z D z.2/. It is not hard to see that Œx;y�D z .

Lemma 3.8 The subgroup E D hx.a/;y.b/; z.c/ W a; b; c 2 Fqi � Sp4.q/ acts regu-
larly on all points not collinear with the point p0 D Fq.1; 0; 0; 0/

T .
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� If q is odd, then E is a three–dimensional Heisenberg group over Fq . If q is
prime, we have the following simple presentation:

E D hx;y j z D xyx�1y�1;xq
D yq

D zq
D 1;xz D zx;yz D zyi

Note that z is not a generator, just a means to write the presentation more
concisely.

� If q is even, then E Š F3
q , which is hence an elementary Abelian 2–group.

Proof It is an easy calculation to show that all points not collinear with p0 have the
form Fq.x;y; z; 1/

T . Simple matrix calculations then imply that E acts regularly on
these points.

If q is odd, then E is a three–dimensional Heisenberg group by [28, 4.3]. It is a simple
calculation to verify the presentation in the case where q is prime. By calculating three
commutators, one can see that E is isomorphic to F3

q if q is even.

Payne derivation We will give a definition of Payne derivation as described in [28].
The same procedure is called slanting in [18]. We write p � r for collinear points p

and r . Then we define:

p? D fr 2 P.W .q// W p � rg

fp;p0g?? D fr 2 P.W .q// W r 2 s? for all s 2 p?\p0?g

Definition 3.9 The slanted symplectic quadrangle W .q/˙ is given as follows:

� The points of W .q/˙ are all points of W .q/ not collinear with p0 .

� The lines of W .q/˙ are all lines of W .q/ not meeting p0 as well as the sets

fp0; rg
??
n fp0g

for all points r 2W .q/˙ .

The following characterisation will be used later on to construct lattices for buildings
of type zC2 .

Theorem 3.10 The slanted symplectic quadrangle W .q/˙ is a Singer quadrangle of
order .q� 1; qC 1/ with Singer group E . A set of representatives L for the E–action
on lines is given by all lines through the point p1 D .0; 0; 0; 1/

T :

LD
˚
lŒaWb� D

�
Fq.0; 0; 0; 1/

T
CFq.0; b; a; 0/

T
� ˇ̌
Œa W b� 2 PF2

q

	
t
˚
l0 D fp0;p1g

??
n fp0g
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The line stabilisers have the form

ElŒaWb� D

8̂̂<̂
:̂
0BB@

1 fa f b 0

0 1 0 f b

0 0 1 �fa

0 0 0 1

1CCA W f 2 Fq

9>>=>>; and El0
D fz.f / W f 2 Fqg:

In particular, all line stabilisers are isomorphic to the additive group of Fq . If q is an
odd prime, the line stabilisers have the form

ElŒaWb� D
˝
xaybz

�
1
2

ab˛ and El0
D hzi;

where of course 2 is invertible in F�q . If q is even, we have

ElŒaWb� D hx.a/y.b/i and El0
D hz.1/i

as Fq –subspaces in F3
q .

Proof The first claim follows from Lemma 3.8. For the set of line representatives and
the structure of the stabilisers, see [30, Lemma 4.1]. The last two statements are simple
calculations.

4 A local complex of groups construction

Using Singer polygons, we will now construct a complex of groups whose local
development at one vertex is the cone over a generalised polygon. With this local piece
of data, we will later construct complexes of groups whose local developments are
cones over buildings.

Definition 4.1 Associated to any generalised n–gon I D .P;L;F/, there is a scwol
Z.I/ with vertex set

V .Z.I//D P tLtF

and with edges, suggestively written as follows,

E.Z.I//D fp f W p 2 P; f 2 F ;p 2 f g t fl f W l 2 L; f 2 F ; l 2 f g;

where we mean i.x y/D y and t.x y/D x , of course.

The geometric realisation of this scwol is isomorphic as a simplicial complex to the
barycentric subdivision of the geometric realisation jIj of the generalised polygon.
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Notation Let I D .P;L;F/ be a Singer polygon with Singer group S . Fix a point
p 2 P and a set L of line representatives for the S –action on L. For all lines l 2L,
we consider the sets:

Dl D fd 2 S W .p; dl/ 2 Fg

The set D D
S

l2L Dl is called a difference set. Furthermore, let

Fl WD f.p; dl/ W d 2Dlg

for all l 2L. This is a partition of the set of all flags containing p , which we denote
by:

F WD ff 2 F W p 2 f g D
a
l2L

Fl D

a
l2L

f.p; dl/ W d 2Dlg

In particular, the set F is a set of representatives of flags for the S –action on F .

Construction Let a complex of groups G.Y/ be given. Let v 2 V .Y/ be a minimal
element (that is, no edges start in v ), and assume that the closed star of v in Y , denoted
by Y.v/, has the following structure:

V .Y.v//Š fvg t fpg tLtF

Again, we will write the edges in the following suggestive fashion:

E.Y.v//Š fv pg t fv l W l 2Lg t fv f W f 2 Fg

t fp f W f 2 Fg t
a
l2L

˚
l f W f 2 Fl

	
The scwol Y.v/ can be visualised as in Figure 2. The left image shows the full complex
Y.v/, while the right picture illustrates the upper link of the vertex v .

v

p

l

l 0

fl
f 0

l

fl 0

f 0
l 0 p l 0

l

fl 0

f 0
l 0

fl

f 0
l

Figure 2: The scwol Y.v/ on the left, the link Lkv.Y/ on the right
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In addition, assume now that the vertex groups in G.Y/ are

Gv Š S; Gp DGf D f1g; Gl Š Sl 8l 2L;8f 2 F;

that the monomorphisms are the obvious inclusions and that the twist elements are

gv p .p;dl/ D 1; gv l .p;dl/ D d�1
8l 2L; d 2Dl :

The significance of this construction lies in the following:

Proposition 4.2 The local development Y.zv/ isomorphic to the cone over the scwol
Z.I/.

Proof Since v is a minimal element in Y , by Definition 1.7, we have Y.zv/ D
fzvg �Lkzv.Y/. By the construction of the scwol Lkzv.Y/ in Definition 1.5, we have

V .Lkzv.Y//D
˚
.g a.Gi.a//; a/ W a 2E.Y/; t.a/D v;g a.Gi.a// 2Gv= a.Gi.a//

	
Df.fgg; v p/ W g 2 Sg t f.gSl ; v l/ W g 2 S; l 2Lg

t f.fgg; v f / W g 2 S; f 2 Fg

which is in bijection to V .Z.I//D P tLtF via:

.fgg; v p/ 7! gp .gSl ; v l/ 7! gl .fgg; v f / 7! gf

For the edge set, we obtain

E.Lkzv.Y//D
˚
.g ab.Gi.b//; a; b/ W .a; b/ 2E.2/.Y/; t.a/D v;

g ab.Gi.b// 2Gv= ab.Gi.b//
	

D f.fgg; v p f / W g 2G; f 2 Fg

t f.fgg; v l f / W g 2G; l 2L; f 2 Flg

which is in bijection to the set of edges E.Z.I// via:

.fgg; v p f / 7! .gp gf /

.fgg; v l .p; dl// 7! .gdl .gp;gdl//

The twist elements precisely guarantee that these bijections commute with the maps i

and t , respectively. We have:

i..fgg; v p f //D .fgg; v f / 7! gf D i.gp gf /

t..fgg; v p f //D .fgg; v p/ 7! gp D t.gp gf /

i..fgg; v l .p; dl///D .fgg; v .p; dl// 7!.gp;gdl/D i.gdl .gp;gdl//

t..fgg; v l .p; dl///D .gdSl ; v l/ 7! gdl D t.gdl .gp;gdl//
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where we use Definition 1.5 for the maps i and t . So Lkzv.Y/Š Z.I/.

Note that the special situation is always simpler.

Bipartite graphs If a group S acts regularly on points and lines of a complete bipartite
graph of order .k; k/, there is only one line orbit, hence LD flg and Sl D f1g. Since
the bipartite graph is complete, we have jF j D jFl j D k and Dl D S .

Projective planes If a group S is a Singer group on a projective plane, there is only
one line orbit by Proposition 3.6, hence LD flg and Sl D f1g. In particular, there is
only one difference set D WDDl .

Generalised quadrangles For slanted symplectic quadrangles of order .q�1; qC1/,
there are q line orbits, hence jLj D jF j D q . For simplicity, we choose the set L to
be the set of all lines incident to p . Then we have Dl D f1g for all l 2L.

We endow the geometric realisation jYj with a piecewise Euclidean metric such that
the angles between v p and v f as well as the angles between v f and v l

are �=2n for all lines l 2L and all flags f 2 F .

Proposition 4.3 The geometric link lk.zv; st.zv// is isometric to the barycentric sub-
division of the generalised n–gon jIj with its standard metric. In particular, it is a
connected CAT(1) space with diameter � .

Proof By Proposition 4.2, the local development Y.zv/ is isomorphic to the cone over
the scwol Z.I/. By Definition 1.11, the polyhedral complex structure on lk.zv;Y.zv//
is then the barycentric subdivision of I . By construction, the angles at the vertex zv
are �=2n. Since the edge length in the geometric link lk.zv; st.zv// is given by the
angles, the geometric link is hence isometric to the barycentric subdivision of jIj
with the natural metric of a generalised polygon. The CAT(1) condition follows from
Theorem 2.7.

5 Lattices in buildings of type zA2

In this section, we will give a construction of small complexes of groups whose universal
covers are affine buildings of type zA2 . We will first state a general construction. Later,
we specialise to cyclic Singer groups to obtain lattices with very simple presentations.
For these special lattices, we investigate the structure of spheres of radius 2 in the
corresponding buildings.
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5.1 A general construction of panel-regular lattices for buildings of
type zA2

For the whole construction, we fix three finite Singer projective planes I1 , I2 and I3

of order q with three (possibly isomorphic) Singer groups S1 , S2 and S3 . Note that
the projective planes need not be classical, even though this is likely in view of what
we have said in Section 3.2. By Proposition 3.6, these Singer groups act regularly on
lines as well. As in Section 4, we obtain a difference set for each of these groups by
choosing a point and a line in the corresponding projective plane. We denote these
three difference sets by D1 , D2 and D3 .

Write J D f0; 1; : : : ; qg and choose bijections d˛W J !D˛ for ˛ 2 f1; 2; 3g, which
we call ordered difference sets.

Construction Associated to this piece of data, we consider the complex of groups
G.Y/ over the scwol Y with vertices

V .Y/ WD fv1; v2; v3g t fe1; e2; e3g t ffj W j 2 J g

and edges

E.Y/ WD fv˛ eˇ W ˛ ¤ ˇg t fv˛ fj W j 2 J g t feˇ fj W j 2 J g:

Figure 3 illustrates this scwol for q D 2.

v1 v2

v3

e3

e1e2

f1

f2

f3

Figure 3: The scwol Y for q D 2

Choose the three vertex groups Gv˛ to be isomorphic to S˛ for ˛ D 1; 2; 3. All other
vertex groups are trivial. The twist elements are defined as follows:

gv˛ eˇ fj WD

�
1 if ˇ�˛ �3 1

d˛.j /
�1 if ˇ�˛ �3 2
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We endow jYj with a locally Euclidean metric as follows:

Let � be the geometric realisation of one triangle in the affine Coxeter complex of type
zA2 . For each j 2 J , we map each subcomplex spanned by fv1; v2; v3; e1; e2; e3; fj g

onto the barycentric subdivision of � in the obvious way and pull back the metric. We
obtain a locally Euclidean metric on jYj. In particular, the angles at every vertex v˛
are �=3.

Proposition 5.1 The complex of groups G.Y/ is developable.

Proof We want to apply Proposition 1.12, so we have to check that the geometric link
of every vertex in its local development is CAT(1).

For any vertex v˛ , ˛ 2 f1; 2; 3g, the subcomplex Y.v˛/ obviously has the appropriate
structure for the construction in Section 4. By construction, the induced complex of
groups has the right form to apply Proposition 4.2, and we obtain that Y.zv˛/ is isomor-
phic to the cone over the scwol Z.I˛/, where I˛ is one of the three Singer projective
planes we have chosen in the beginning of this section. Then, by Proposition 4.3, the
geometric link Lk.zv˛; st.zv˛// is CAT(1).

For any vertex eˇ , by Definition 1.7 the local development has the form:

St.zeˇ/D jLkeˇ .Y/� fzeˇg �Lkzeˇ .Y/j

The lower link Lkeˇ .Y/ is isomorphic to the scwol consisting of just two vertices
fv˛ W ˛ ¤ ˇg; the upper link of the local development Lkzeˇ .Y/ is isomorphic to a
scwol consisting of the vertices ffj W j 2 J g. The geometric realisation of the local
development is hence isometric to qC 1 triangles joined along one edge. In particular,
the geometric link is CAT(1).

The upper link of the local development Lk zfj .Y/ is trivial. The lower link Lkfj .Y/
consists of the sub-scwol of Y spanned by the vertices fv1; v2; v3; e1; e2; e3g. The
local development Y. zfj / is hence just one triangle, so the geometric link is also
CAT(1). By Proposition 1.12, the complex G.Y/ is then non-positively curved and
hence developable by Theorem 1.10.

Proposition 5.2 The fundamental group � of the complex G.Y/ admits the following
presentation:

� D
D
S1;S2;S3

ˇ̌̌ all relations in the groups S1;S2;S3;

d1.j /d2.j /d3.j /D d1.j
0/d2.j

0/d3.j
0/ 8j ; j 0 2 J

E
Remark We show in Theorem 5.6 that D˛ and d˛ can always be chosen such that
d˛.0/D 1, which simplifies this presentation even further.
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Proof Consider the following maximal spanning subtree T :

E.T /D fv1 e2; v1 e3; v2 e3; v2 e1; v3 e1g t fe3 fj W j 2 J g

By taking a look at Definition 1.3, we obtain a presentation of � with generating sets
S1 , S2 and S3 and generators for all edges of the scwol Y not contained in T . The
relations imposed are first of all the relations from the groups S˛ . For the relations of
the form kakb D ga;bkab , consider Figure 4 showing the j th triangle in the complex
of groups G.Y/. There, black arrows indicate edges contained in T and all other edges
are drawn dotted. Group elements g written on dotted edges a indicate that ka D g .

v1 v3

v2

e2
kv3 e2

e3 e1

fj

d1.j /

1

d2.j /
�1

d2.j /
�1

d1.j /

d2.j /
�11

d1.j /
�1 1

1 d3.j /
�1

Figure 4: One triangle in G.Y/

All edge elements but kv3 e2
have already been replaced by elements in the groups

S˛ . For kv3 e2
, we obtain the relation kv3 e2

D d1.j /d2.j /d3.j / for all j 2 J .
Since this edge is contained in all triangles for all j 2 J , we obtain the additional
relations for all pairs of triangles. All other relations from Definition 1.3 do not show
up here, since almost all vertex groups are trivial.

Theorem 5.3 The universal cover X is a building of type zA2 , where the vertex
links are isomorphic to I1 , I2 and I3 . The fundamental group � D �1.G.Y// with
presentation

� D
D
S1;S2;S3

ˇ̌̌ all relations in the groups S1;S2;S3;

d1.j /d2.j /d3.j /D d1.j
0/d2.j

0/d3.j
0/ 8j ; j 0 2 J

E
is hence a uniform lattice in the full automorphism group of the building. The set of all
chambers containing a fixed panel is a fundamental domain for the action.
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Proof The universal cover jX j is a simply connected space which is locally CAT(0).
So by [2, II.4.1], the space jX j is CAT(0). Consider the space jX j as a polyhedral
complex consisting only of simplices where each cell is the preimage of subscwols
spanned by fv1; v2; v3; e1; e2; e3; fj gj2J . The vertices of this polyhedral complex are
the preimages of the vertices v˛ of X . This is, a priori, not a simplicial complex since
the intersection of two simplices might not be a simplex.

However, in view of Theorem 2.8 it remains to see that jX j is thick and that the
geometric links of all vertices are connected and have diameter � . Thickness of jX j is
clear by construction. Again by Proposition 4.3, the geometric link of every vertex is
connected and of diameter � .

By Theorem 2.8, the geometric realisation jX j is then either a two–dimensional affine
building or a product of two trees. Of course, the universal cover cannot be a product
of trees and it has to be of type zA2 , since all vertex links are projective planes.

Remark Unfortunately, there are many examples of buildings of type zA2 . It is
clear that X has an automorphism group which is transitive on vertices of the same
type, but there are known examples of non-classical buildings with vertex-transitive
automorphism groups; see Van Maldeghem [33]. However, some information can be
obtained by considering spheres of radius 2 in X and comparing these to corresponding
spheres in the classical buildings of type zA2 associated to Qp and Fp..t//, respectively.
We will explicitly calculate these spheres of radius 2 in Section 5.4.

Construction Since we know that jX j is a building, it is a flag complex. By using the
construction of the universal cover in Section 1, we obtain a very explicit description
of the building as the flag complex over the following graph X :

V .X / WD �=S1 t�=S2 t�=S3;

E.X / WD
˚
.gS1;gS2/ W g 2 �

	
t
˚
.gS2;gS3/ W g 2 �

	
t
˚
.gS1;gk�1S3/ W g 2 �

	
;

where k�1 D d1.0/d2.0/d3.0/. Note again that we can choose D˛ and d˛ such that
k D 1 by Theorem 5.6 to obtain a symmetric description.

Remark Finally, it is not clear in which way the building X and the lattice � depend
on the given data, namely on the Singer groups S˛ , on the difference sets D˛ and
on the ordered difference sets d˛ . In Section 5.3, we give examples where different
orderings d˛ lead to non-isomorphic lattices. We do not know whether the lattices
arising from different orderings are all commensurable. In addition, it is not even clear
whether this construction can lead to different buildings for fixed projective planes.
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Several strong properties of these lattices can be obtained without knowing the exact
building they act on.

Remark By unpublished work of Shalom and Steger, lattices in arbitrary buildings of
type zA2 follow a version of Margulis’s Normal Subgroup Theorem. In particular, the
lattices � are almost perfect; their first homology group is finite. For the special case
of lattices generated by cyclic Singer groups, one can calculate group homology quite
explicitly, as we show in Section 7.

In addition, by using the so-called spectral criterion, one can see that these lattices have
property (T).

Proposition 5.4 (Cartwright, Młotkowski and Steger, and Żuk) All cocompact lat-
tices for buildings of type zA2 have property (T).

Proof See Cartwright, Młotkowski and Steger [9] or Żuk [32]. A detailed description
of the latter result can be found in Bekka, de la Harpe and Valette [1].

5.2 The classification of panel-regular lattices and simple properties

In this section, we will classify all panel-regular lattices on locally finite buildings of
type zA2 . In this process, we will show that, actually, the examples from the last section
cover all possible lattices, and that the presentations can even be simplified to a more
symmetric form. We start with a simple observation.

Lemma 5.5 Let X be a locally finite building of type zA2 . Let � � Aut.X / be a
lattice acting regularly on one type of panel. Then � already acts regularly on all types
of panels.

Proof Let v;w;u be the vertices of a chamber in the building. Assume that � acts
regularly on the panels of the same type as the panel .v; w/. In particular, the vertex
stabiliser �v is a group acting regularly on points (or lines) of the finite projective plane
lkX .v/. By Proposition 3.6, �v then also acts regularly on lines (or points) of lkX .v/,
hence � also acts regularly on the panels of the same type as .v;u/. By repeating the
argument, we see that � acts regularly on all types of panels.

In particular, the lattice � acts transitively on vertices of the same type, which implies
that vertex links of vertices of the same type are isomorphic. There are hence three
finite projective planes of the same order, denoted by I1 , I2 and I3 associated to
X . Pick a chamber in X with vertices xv1; xv2 and xv3 . By the same argumentation
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as before, the three vertex stabilisers �xv1
, �xv2

and �xv3
are then Singer groups on

the vertex links and we denote these by S1 , S2 and S3 . In the following, we write
J D f0; 1; : : : ; qg.

Theorem 5.6 Let X be a locally finite building of type zA2 . We assume that there is a
lattice � �Aut.X / acting regularly on one and hence on all types of panels. Then there
are three Singer groups S1 , S2 and S3 associated to the three types of possible vertex
links. Furthermore, there are three ordered difference sets d1 , d2 and d3 corresponding
to these Singer groups satisfying d˛.0/D 1 2 S˛ . The lattice � admits the following
presentation:

�ŠhS1;S2;S3 jall relations in the groups S1;S2;S3; d1.j /d2.j /d3.j /D1 8j 2J i

Proof Consider the canonical scwol X associated to the building. Choose a vertex
xf0 2 V .X / corresponding to a chamber in X . Denote the vertices corresponding to

vertices of this chamber by xv1 , xv2 and xv3 and the vertices corresponding to panels of
the chamber by xe1 , xe2 and xe3 . Choose q chambers representing the other � –orbits of
chambers and denote the corresponding vertices in X by xf1; : : : ; xfq .

Now we construct a quotient complex of groups following [2, III.C .2.9]. For this, note
that, since the � –action is regular on panels, the vertices we just named form a system
of representatives for all orbits of vertices of X . It is not hard to see that the quotient
scwol then has the following structure:

V .�nnX / WD fv1; v2; v3g t fe1; e2; e3g t ffj W j 2 J g

E.�nnX / WD fv˛ eˇ W ˛ ¤ ˇg t fv˛ fj W j 2 J g t feˇ fj W j 2 J g

where we denote the orbits of vertices by removing the bar. The quotient scwol is also
shown in Figure 5 for q D 2.

The vertex groups are just the stabilisers. All of these are hence trivial except the
stabilisers �xv˛ , which are the Singer groups S˛ . All monomorphisms are obviously
trivial.

It remains to determine the twist elements as in [2, III.C .2.9]. For every edge a 2

E.�nnX /, there is precisely one preimage xa 2 E.X / satisfying i.xa/D i.a/, but in
general t.xa/¤ t.a/. We choose ha such that ha.t.xa//D t.a/.

We first consider the edges of the form v˛  eˇ . For these, we obviously have
hv˛ eˇ D 1. Now consider the edges of the form eˇ  fj . There is exactly one
preimage xe0

ˇ
 xfj , where xe0

ˇ
is in the orbit eˇ . Since the �–action is regular on

panels, there is exactly one element heˇ fj 2 � satisfying:

heˇ fj .t.xe
0
ˇ 

xfj //D xeˇ
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v1 v2

v3

e3

e1e2

f1

f2

f3

Figure 5: The quotient scwol �nnX for q D 2

For edges of the type xv0˛  xfj , where xv0˛ is in the orbit v˛ , set hv˛ fj D heˇ fj

where ˇ �3 ˛C 1. Since by construction ga;b D hahbh�1
ab

, we have:

gv˛ eˇ fj D hv˛ eˇ„ ƒ‚ …
D1

heˇ fj h�1
v˛ fj

This implies:
gv˛ eˇ fj D 1 for all ˇ�˛ �3 1; j 2 J

The other twist elements then necessarily form three ordered difference sets d˛ as
follows

gv˛ eˇ fj D d˛.j / for ˇ�˛ �3 2; j 2 J;

since the element heˇ fj h�1
eˇ�1 fj

transports the unique vertex in the orbit fj adja-
cent to xeˇ�1 to the unique vertex in the orbit fj adjacent to xeˇ . Since the vertices
fxv1; xv2; xv3; xe1; xe2; xe3; xf0g span a subcomplex, we have:

d1.0/D d2.0/D d3.0/D 1

By the same calculation as in the proof of Proposition 5.2 we obtain the required
presentation.

Remark In particular, this means that any lattice constructed as in Section 5.1 admits
a presentation as in Theorem 5.6. This will simplify our considerations in the following
sections.

Corollary 5.7 In this situation, the building X is isomorphic to the flag complex over
the graph with vertices

V .X /D �=S1 t�=S2 t�=S3
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and edges

E.X /D f.gS1;gS2/; .gS2;gS3/; .gS3;gS1/ W g 2 �g:

5.3 Lattices generated by cyclic Singer groups

In this section, we start with cyclic Singer groups to obtain very simple lattices. Let
I be the classical projective plane of order q . Take three cyclic Singer groups S˛ of
I of order q2C qC 1 with respective generators �˛ . We choose the points and lines
for the construction of the difference sets D˛ to be incident, such that 1S˛ 2D˛ . We
write:

�˛ WD fı 2 Z=.q2
C qC 1/ W �ı˛ 2D˛g

The sets of numbers �˛ are then difference sets in the classical sense. In addition, we
choose bijections ı˛W J D f0; 1; : : : ; qg !�˛ satisfying ı˛.0/D 0. If we apply the
construction from Section 5.1, we obtain the following very simple presentation.

Theorem 5.8 (Lattices generated by cyclic Singer groups) For any prime power
q and any three classical difference sets �1 , �2 and �3 containing 0, and for any
bijections ı˛W f0; 1; : : : ; qg!�˛ satisfying ı˛.0/D 0, the group � with presentation

�D
˝
�1; �2; �3

ˇ̌
�

q2CqC1
1

D�
q2CqC1
2

D�
q2CqC1
3

D1; �
ı1.j/
1

�
ı2.j/
2

�
ı3.j/
3
D18j 2J

˛
is a uniform lattice in a building of type zA2 , where I˛ is one of the three Singer
projective planes we have chosen in the beginning of this section

Examples We give explicit presentations for three lattices in the two smallest cases.
More difference sets � can be obtained from [16].

(1) For q D 2, we choose all difference sets to be � D f0; 1; 3g. We obtain the
lattice:

�2 WD h�1; �2; �3 j �
7
1 D �

7
2 D �

7
3 D �1�2�3 D �

3
1�

3
2�

3
3 D 1i

It can easily be seen that H1.�2/Š .Z=7/
2 .

(2) By changing the order of the first difference set, we obtain a new lattice which
is not isomorphic to the first one:

� 02 WD h�1; �2; �3 j �
7
1 D �

7
2 D �

7
3 D �

3
1�2�3 D �1�

3
2�

3
3 D 1i

For the Abelianisation, we obtain H1.�
0
2
/Š Z=7.
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(3) For q D 3, we choose the difference set �D f0; 1; 3; 9g. We obtain:

�3 WD h�1; �2; �3 j �
13
1 D �

13
2 D �

13
3 D �1�2�3 D �

3
1�

3
2�

3
3 D �

9
1�

9
2�

9
3 D 1i

Here, we have H1.�3/Š .Z=13/2 .

For q D 5, it is possible to construct perfect lattices with this method.

Remark In [22], Köhler, Meixner and Wester showed that the following group is a
chamber-regular lattice in the building associated to SL3.F2..t///:

� D ha; b; c j a3
D b3

D c3
D 1; .ab/2 D ba; .ac/2 D ca; .c�1b/2 D bc�1

i

It is not hard to verify that the subgroup generated by a�1b�1 , bc�1 and ca is
isomorphic to the lattice �2 from the example above.

Computer searches done by the author using SAGE [27] and GAP [17] have not yielded
any embeddings of our lattices in SL3.Fq..t/// for q > 2 yet.

5.4 Spheres of radius two

For any vertex of an affine building of type zA2 , the combinatorial sphere of radius
one, usually called the link, forms a projective plane. The spheres of larger radii also
admit interesting incidence structures, the so-called Hjelmslev planes; see Hanssens and
Van Maldeghem [19]. It is a well-known fact that the two families of classical buildings
of type zA2 associated to the groups PSL3.Qp/ and PSL3.Fp..t/// can already be
distinguished by inspecting their spheres of radius two.

We will use a criterion by Cartwright, Mantero, Steger and Zappa, see [8, Section 8],
to distinguish between these two affine buildings. Consider the following construction.

Denote the type set of a building X of type zA2 by {1,2,3}. Fix a chamber c0 and
denote its vertices of type 1, 2 and 3 by v1 , v2 and v3 , respectively. Denote by P
and L the sets of vertices adjacent to v1 of types 3 and 2, respectively. Then of course
P and L with the adjacency relation in the building form a projective plane.

Now consider the vertices of type 2 and 3 at distance 2 from the vertex v1 and denote
these sets by P2 and L2 , respectively.

Definition 5.9 Two vertices x2 2 P2 , x3 2 L2 are defined to be adjacent, x2 � x3 ,
if the configuration in Figure 6, where the colours of the vertices indicate the type,
exists in the building. The incidence structure .P2;L2;�/ is called a Hjelmslev plane
of level two.
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v1 x2

x3

Figure 6: Adjacency in the Hjelmslev plane of level 2

We will give an explicit construction of the Hjelmslev plane in the case of a building
X of type zA2 admitting a panel-regular lattice � .

Denote the vertex stabilisers of the vertices v˛ by S˛ : these are Singer groups in the
corresponding vertex links. For every vertex v˛ , the link lkX .v˛/ is a projective plane
of order q , where we call the vertices of type ˛C 1 .mod 3/ lines and the vertices of
type ˛C 2 .mod 3/ points.

For each of these projective planes, we construct a difference set D˛ with respect to the
points and lines given by the other vertices of c0 , respectively. We take the description
of the building from Corollary 5.7 and prove a simple lemma.

Lemma 5.10 We have:

� If h; f 2 S1 and .v1; hv2; f v3/ is a triangle in X , then f �1h 2D1 .

� If g; f 2 S2 and .gv1; v2; f v3/ is a triangle in X , then g�1f 2D2 .

� If g; h 2 S3 and .gv1; hv2; v3/ is a triangle in X , then h�1g 2D3 .

Proof We will only prove the first claim; the other two are analogous. If .v1; hv2; f v3/

is a triangle, then so is .v1; f
�1hv2; v3/, which we obtain by multiplying with f �1 .

Since S1 -translates of v2 correspond to lines in the projective plane lkX .v1/ by the
definition of the difference set D1 , the line f �1hv2 is incident to the point v3 if and
only if f �1h 2D1 .
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Lemma 5.11 We have

P D fs1v3 W s1 2 S1g; LD ft1v2 W t1 2 S1g;

as well as

P2
D fs1s3v2 W s1 2 S1; s3 2 S3nD

�1
3 g; L2

D ft1t2v3 W t1 2 S1; t2 2 S2nD2g:

Proof The first claim is obvious, since S1 acts regularly on points and lines of the
projective plane lk.v1/. The second claim is a simple consequence of Lemma 5.10—the
vertex t2v3 is not adjacent to v1 if and only if t2 62D2 , and similarly for s3 .

Adjacency in the Hjelmslev plane is relatively complex to describe but becomes man-
ageable for cyclic Singer groups. The following observation will be used frequently in
this section:

From the presentation of � in Theorem 5.6, we see that for d1 2D1 , there are always
elements d2 2D2 , d3 2D3 such that d1d2d3 D 1.

Lemma 5.12 Fix a point s1s3v2 2 P2 and a line t1t2v3 2 L2 , where s1; t1 2 D1 ,
t2 2D2 and s3 2D3 . In the Hjelmslev plane of level 2 around v1 , we have s1s3v2 �

t1t2v3 if and only if the following conditions hold.

(C1) We have s�1
1

t1 2D1 .

There are hence elements d2 2D2 , d3 2D3 such that .s�1
1

t1/d2d3 D 1.

(C2) There is an element n2 2 t2D�1
2
\ d2D�1

2
such that

s�1
3 d�1

3 e3 2D3

where e1.n
�1
2

d2/e3 D 1 for some elements e1 2D1 and e3 2D3 .

Note that the elements e1 and e3 exist since n2 2 d2D�1
2

.

If the lattice arises from cyclic Singer groups S˛Dh�˛i, ˛ 2 f1; 2; 3g, as in Section 5.3
and if the associated unordered difference sets �˛ D� are all equal, we obtain:

�
j1

1
�

j3

3
v2 � �

k1

1
�

k2

2
v3 ,

�
k1� j1 2� and
9n 2 .k2��/\ .�j3��/\ .k1� j1��/

Proof Assume that s1s3v2 � t1t2v3 . Then there must be an element n2 2 S2 such
that we have the configuration of Figure 7 in X . We will now investigate the triangles
in the order given by roman numerals and apply Lemma 5.10 repeatedly to obtain the
required relations.
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v1 s1s3v2

t1t2v3

s1v3

t1v2 t1n2v1

I

II

III

IV

Figure 7: The configuration in the proof of Lemma 5.12

Since .v1; t1v2; s1v3/ form triangle I, we obtain:

(1) s�1
1 t1 2D1

There are hence elements d2 2 D2 and d3 2 D3 such that .s�1
1

t1/d2d3 D 1. By
looking at triangle II translated by t�1

1
, we obtain:

(2) n�1
2 t2 2D2

From triangle III, by observing that s1v3 D s1d�1
3
v3 and by translating by t�1

1
, we

obtain the triangle

.n2v1; v2; t
�1
1 s1d�1

3 v3/D .n2v1; v2; d2v3/;

which again by Lemma 5.10 yields

(3) n�1
2 d2 2D2

and there are hence elements e1 2D1 and e3 2D3 such that e1.n
�1
2

d2/e3 D 1. For
the last triangle IV, we first write t1n2v1 D t1n2e�1

1
v1 . By translating by s�1

1
, we

obtain the triangle:
.s�1

1 t1n2e�1
1 v1; s3v2; v3/

Substituting s�1
1

t1 by d�1
3

d�1
2

yields the triangle:

.d�1
3 d�1

2 n2e�1
1 v1; s3v2; v3/
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Finally, we substitute d�1
2

n2 D e3e1 and obtain the triangle:

.d�1
3 e3v1; s3v2; v3/

We can now apply Lemma 5.10 again to obtain:

(4) s�1
3 d�1

3 e3 2D3

By assembling equations (1),(2), (3) and (4), we obtain conditions (C1) and (C2). For
the reverse direction, observe that (C1) and (C2) imply directly that the configuration
of Figure 7 exists in the building.

The second claim is then a simple calculation.

There is an obvious projection  W .P2;L2;�/! .P;L;F/ given by:

 W P2
! P W s1s3v2 7! s1v3

L2
! L W t1t2v3 7! t1v2

Lemma 5.13 [8, Lemma 8.1] For p;p0 2 P2 consider the images  .p/ and  .p0/.
If  .p/ ¤  .p0/, there is a unique l 2 L2 such that p � l � p0 . If  .p/ D  .p0/,
there are q distinct such lines. The same is true if the roles of points and lines are
reversed.

Proposition 5.14 If the lattice � and the building X arise from cyclic Singer groups
as in Section 5.3 and if in addition all difference sets �˛ D � are equal, there is a
splitting map �W .P;L;F/! .P2;L2;�/ satisfying  ı �D id.P;L;F/ .

Proof With the same notation as in Lemma 5.12, we choose an element:

m 2 .Z=.q2
C qC 1// n .�[ .��//

This is always possible for cardinality reasons, since q2C qC 1> 2qC 2 for q � 2.
The map � is given by:

P! P2 and L! L2

s1v3 7! s1�
�m
3 v2 t1v2 7! t1�

m
2 v3

This map preserves incidence by Lemma 5.12, since for any j1; k1 , the set

.m��/\ .k1� j1��/

has exactly one element, which corresponds to the intersection of lines in the projective
plane lkX .v1/.
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Definition 5.15 [8, Section 8] Consider P 0�P2 and L0�L2 . We say that .P 0;L0/
is a substructure of .P2;L2/ if for all p;p0 2P 0 satisfying  .p/¤ .p0/, the unique
line l 2 L2 incident with both p and p0 is already contained in L0 and if the same
condition holds with points and lines exchanged. The substructure generated by a set
P 00 � P2 is the smallest substructure containing P 00 .

We will use the following characterisation to distinguish spheres of radius 2 in buildings
of type zA2 by Cartwright, Mantero, Steger and Zappa in [8].

Proposition 5.16 [8, Proposition 8.6] Assume that X is the building associated to the
projective special linear group PSL3.K/, where K is a local, non-Archimedean field
with residue field of prime order p . Choose a vertex v12X and construct the projective
plane .P;L;F/ and the Hjelmslev plane of level 2 denoted by .P2;L2;�/ as above.
Consider four points p1; : : : ;p4 2 P2 such that no three points of  .p1/; : : : ;  .p4/

are collinear.

� If KDQp , the substructure of the Hjelmslev plane generated by the set of points
fp1; : : : ;p4g is all of .P2;L2;�/.

� Otherwise, the substructure generated by the set of points fp1; : : : ;p4g is a
projective plane of order p .

Corollary 5.17 The panel-regular lattices constructed out of cyclic Singer groups with
identical difference sets cannot be contained in the building associated to PSL3.Qp/.

Proof Take any four points p1; : : : ;p4 in .P;L;F/ such that no three points are
collinear. Then �.p1/; : : : ; �.p4/ satisfy the conditions of Proposition 5.16. But by
Lemma 5.13 and by Proposition 5.14, the substructure generated by these four points
is exactly im.�/, which is a projective plane of order p . By Proposition 5.16, if the
building X is associated to PSL3.K/, then necessarily K ¤Qp .

Remark Conjecturally, these very simple lattices (or a finite-index subgroup if
3 j .p� 1/) should be contained in SL3.Fp..t///. It might be possible to prove this by
investigating the structure of all Hjelmslev planes of all levels and prove a splitting
lemma for every step. This seems tedious and difficult, however. Surprisingly, we have
not found any realisation of such a lattice in SL3.Fp..t/// for p ¤ 2 yet.
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6 Lattices in buildings of type zC2

In this section, we will construct lattices for buildings of type zC2 . This will be done
using the slanted symplectic quadrangles discussed in Section 3.3. We will give two
different constructions of panel-regular lattices for buildings of type zC2 .

Situation Fix a prime power q > 2, and set J D f0; 1; : : : ; q C 1g. Let I and I 0
be two copies of the slanted symplectic quadrangle of order .q � 1; qC 1/. For the
quadrangle I , we fix a point p and denote the set of lines through p by L. The set of
flags F is given by F D f.p; l/ W l 2Lg. The associated Singer group will be denoted
by S and the line stabilisers by Sl for lines l 2L. We fix the same objects for I 0 and
add a prime 0 to the notation.

6.1 Lattices acting regularly on two types of panels

Since q determines the quadrangle and the Singer group uniquely up to isomorphism,
there is a bijection between the sets of line representatives L and L0 and the corre-
sponding line stabilisers Sl and S 0

l 0
are pairwise isomorphic.

Construction We choose two bijections �W J!L, �0W J!L0 and an abstract group
Sj ŠZ=q with isomorphisms  j W Sj ! S�.j/ and  0j W Sj ! S 0

�0.j/
for every j 2 J .

Consider the complex of groups G.Y/ over the scwol Y with vertices

V .Y/ WD fv; v0; wg t fe; e0g t fej W j 2 J g t ffj W j 2 J g

and edges

E.Y/ WD fw e; w e0; v e; v0 e0g t fv ej ; v
0
 ej W j 2 J g

t fv fj ; v
0
 fj ; w fj W j 2 J g t fe fj ; e

0
 fj ; ej  fj W j 2 J g:

Figure 8 illustrates the scwol Y in the case q D 3.

Now choose the vertex groups to be Gv D S , Gv0 D S 0 and Gw D hc j c
qC2 D 1i.

In addition, set Gej D Sj for all j 2 J . All other vertex groups are trivial. The only
non-trivial monomorphisms are chosen to be the maps  j and  0j for j 2 J . All twist
elements are trivial except:

gw e fj WD cj

We endow jYj with a locally Euclidean metric as follows:

Let � be the geometric realisation of one triangle in the affine Coxeter complex of
type zC2 . For each j 2 J , we map the subcomplex spanned by fv; v0; w; e; e0; ej ; fj g

onto the barycentric subdivision of � in the obvious way and pull back the metric. We

Algebraic & Geometric Topology, Volume 13 (2013)



1566 Jan Essert

w v0

v

e0

e

e0

e1

e2

e3

e4

f0

f1

f2

f3

f4

Figure 8: The scwol Y for q D 3

obtain a locally Euclidean metric on jYj. In particular, the angles at the vertices v and
v0 are �=4, the angle at w is �=2.

Proposition 6.1 The complex of groups G.Y/ is developable.

Proof The proof is analogous to the one of Proposition 5.1. By construction of the
complex, the geometric links in the local developments at v , v0 and w are Z.I/,
Z.I 0/ and the scwol associated to a complete bipartite graph of order .qC 2; qC 2/.
In particular, they are CAT(1) by Proposition 4.3.

The local developments of the edges e and e0 are the same as the closed stars in Y :
.qC 2/ 2–simplices glued along one edge. For the edges ej , the local development is
isometric to q triangles glued along one edge. The local developments of the vertices
fj are just flat triangles.

By Proposition 1.12, the complex of groups G.Y/ is non-positively curved and hence
developable by Theorem 1.10.

Proposition 6.2 The fundamental group � D �1.G.Y// admits the following presen-
tation:

�D
˝
S;S 0; c

ˇ̌
all relations in S;S 0; cqC2

D 1; cj j .s/c
�j
D 0j .s/ 8j 2J; s 2Sj

˛
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Proof Consider the following maximal spanning subtree T :

E.T /D fw e; w e0; v e; v0 e0g t fw fj ; ej  fj W j 2 J g

As in the proof of Proposition 5.2, the group is generated by S , S 0 , c and group
elements for each edge not contained in T . Consider, however Figure 9 showing one
triangle in Y .

w

v

v0

e

e0

ej

1

cj

fj

1 1

cj

cj

1

1

cj

1

1

1

Figure 9: One triangle in Y

As before, edges in T are drawn black; the other edges are drawn dotted. Group
elements g written on an edge a indicate that ka D g . From the presentation in
Definition 1.3, one can see that all additional relations are of the form stated in the
result.

Theorem 6.3 The universal cover X is a building of type zC2 . The fundamental group
� D �1.G.Y// with presentation

�D
˝
S;S 0; c

ˇ̌
all relations in S;S 0; cqC2

D 1; cj j .s/c
�j
D 0j .s/ 8j 2J; s 2Sj

˛
is hence a uniform lattice in the automorphism group of X , which is panel-regular on
two types of panels.

Proof The proof is analogous to the one of Theorem 5.3, using Proposition 4.3 and
Theorem 2.8.
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Remark Except for the slanted symplectic quadrangle W .3/˙ , all Singer quadrangles
are necessarily exotic. Hence, except for possibly this case, all buildings constructed in
this way are exceptional buildings of type zC2 .

It is not hard to see that hc j cqC2D 1i can be replaced by any group C of order qC2.
In the above presentation, the term cj has to be replaced by an arbitrary bijection
J ! C .

Finally, we also have a very explicit description of this building as the flag complex
over the following graph

V .X / WD �=S t�=S 0 t�=hci;

E.X / WD f.gS;gS 0/; .gS;ghci/; .gS 0;ghci/ W g 2 �g;

which could be used to study these exotic affine buildings.

Instead, we will focus on the two cases where we obtain relatively simple presentations
of these lattices.

6.1.1 The prime case If q D p is prime, we have very simple presentations of the
Heisenberg groups S and S 0 . Denote their generators by x;y and x0;y0 , respectively
and set z D Œx;y� and z0 D Œx0;y0�. The sets of line representatives L and L0 can be
parametrised by PF2

p t f0g as in Theorem 3.10. We pick the following generators for
the line stabilisers:

cŒaWb� D xaybz
�

1
2

ab
; c0 D z; c0ŒaWb� D x0ay0bz

0�
1
2

ab
; c00 D z0:

Theorem 6.4 For any odd prime p , for J D f0; 1; : : : ;pC 1g and any two bijections
�; �0W J ! PF2

p t f0g, consider the group � presented by:

� D

*
x;y;x0;y0; c

ˇ̌̌̌
ˇ

xp D yp D x0p D y0p D cp D zp D z0p D 1;

z D xyx�1y�1; z0 D x0y0x0�1y0�1;xz D zx;yz D zy;

x0z0 D z0x0;y0z0 D z0y0; cj c�.j/c
�j D c0

�0.j/
8j 2 J

+

Then � is a uniform lattice in a building of type zC2 , where all vertex links which are
quadrangles are isomorphic to the slanted symplectic quadrangle of order .p�1;pC1/.

Proof This is a direct application of Theorem 6.3.
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6.1.2 The Abelian case If q is even, then the associated Singer groups S and S 0

are isomorphic to F3
q . We write J D f0; 1; : : : ; qC 1g and fix two bijections:

�; �0W J ! PF2
q t f0g

We write SŒaWb� D Fq.a; b; 0/
T and S0 D Fq.0; 0; 1/

T for the line stabilisers in S as
in Theorem 3.10 and add a prime 0 for the respective groups in S 0 . Finally, we fix
isomorphisms of abstract groups  j ;  

0
j W Z=q! S�.j/;S

0
�0.j/

for any j 2 J .

Theorem 6.5 Consider the group � given by:

� D
�
S �S 0 � hci

�
=hcqC2

D 1; cj . j .x//c
�j
D  0j .x/ W x 2 Z=q; j 2 J i

Then � is a uniform lattice in an exotic building of type zC2 , where all vertex links
which are quadrangles are isomorphic to the slanted symplectic quadrangle of order
.q� 1; qC 1/.

Proof Again, this is a simple application of Theorem 6.3.

6.2 Lattices acting regularly on one type of panel

In this section, we will consider lattices acting regularly on only one type of panel in a
building of type zC2 . We will concentrate on the simpler case where the type of this
panel corresponds to the two extremal vertices in the zC2 –diagram.

As before, let I and I 0 be two slanted symplectic quadrangles of the same order
.q � 1; qC 1/ and let S and S 0 be the associated Singer groups. Pick points p and
p0 and denote the sets of lines incident to p and p0 by L and L0 , respectively. Then
F D f.p; l/ W l 2Lg and F 0 D f.p0; l 0/ W l 0 2L0g are sets of flag representatives.

Construction We set J D f0; 1; : : : ; qC 1g and choose two bijections �W J ! L,
�0W J !L0 . We consider the scwol Y given by:

V .Y/ WD fv; v0g t fvj W j 2 J g t feg t fej ; e
0
j W j 2 J g t ffj W j 2 J g

E.Y/ WD fv e; v0 eg t fv ej ; vj  ej W j 2 J g t fv0 e0j ; vj  e0j W j 2 J g

tfv fj ; v
0
 fj ; vj  fj W j 2 J g t fe fj ; ej  fj ; e

0
j  fj W j 2 J g

Figure 10 illustrates this scwol for q D 3.

We construct a complex of groups G.Y/ over Y by setting the vertex groups to be:

Gv D S; Gv0 D S 0; Gvj D S�.j/ �S 0�0.j/; Gej D S�.j/; Ge0
j
D S 0�0.j/:
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v0e0
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0
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Figure 10: The scwol Y for q D 3

All other vertex groups are trivial. The inclusions are the obvious ones. All twist
elements are trivial, so G.Y/ is a simple complex of groups.

We endow jYj with a locally Euclidean metric as follows: Let � be the geometric
realisation of one triangle in the affine Coxeter complex of type zC2 . For each j 2 J ,
we map each subcomplex spanned by fv; v0; vj ; e; ej ; e

0
j ; fj g onto the barycentric

subdivision of � in the obvious way and pull back the metric. We obtain a locally
Euclidean metric on jYj with angle �=4 at the vertices v; v0 and with angle �=2 at
the vertex vj .

Lemma 6.6 The local development Y.zvj / is isomorphic to the cone over the barycen-
tric subdivision of a complete bipartite graph of order .q; q/. The geometric link
lk.zvj ; st.zvj // is hence isometric to the barycentric subdivision of a generalised 2–gon,
in particular a connected, CAT(1) polyhedral complex of diameter � .
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Proof We abbreviate H D S�.j/ , F D S 0
�0.j/

and G D H �F . We have Y.zv/ D
fzvg �Lkzvj .Y/ by the definition of the local development, where

V .Lkzvj .Y//D f.gH; ej / W g 2Gg t f.gF; e0j / W g 2Gg t f.g; fj / W g 2Gg

Š F tH tG

E.Lkzvj .Y//D f.g; ej  fj / W g 2Gg t f.g; e0j  fj / W g 2Gg

which is easily seen to be the barycentric subdivision of a complete bipartite graph
on the vertex set F t H . The rest of the argument is analogous to the proof of
Proposition 4.3.

Theorem 6.7 The complex G.Y/ is developable. The fundamental group � D

�1.G.Y// admits the presentation:

� D hS;S 0 j all relations in the groups S;S 0; ŒS�.j/;S
0
�0.j/�D 1 8j 2 J i

The universal cover X of this complex of groups is a building of type zC2 , and � is a
uniform lattice acting regularly on one type of panels of X .

Proof This proof is analogous to the proofs of Proposition 6.1 and Theorem 6.3,
where we use Lemma 6.6 for the local developments at the vertices vj .

In the next two small sections, we will make this explicit in the cases where we have
simple presentations.

6.2.1 The prime case If q D p is prime and if we start with two slanted symplectic
quadrangles I , I 0 of order .p� 1;pC 1/ with corresponding Heisenberg groups S ,
S 0 with respective generator pairs x , y and x0 , y0 , the sets of line representatives L

and L0 can be parametrised by PF2
p t f0g. The stabilisers then have the form

SŒaWb� D hx
aybz

�
1
2

ab
i and S0 D hzi;

where z D Œx;y� and similarly for S 0 . Let J D f0; 1; : : : ;pC 1g.

Theorem 6.8 Let �; �0W J ! PF2
p t f0g be two bijections. The group

� D

*
x;y;x0;y0

ˇ̌̌̌
ˇ

z D xyx�1y�1; z0 D x0y0x0�1y0�1;

xp D yp D x0p D y0p D zp D z0p D 1;xz D zx;yz D zy;

x0z0 D z0x0;y0z0 D z0y0; ŒS�.j/;S
0
�0.j/

�D 1 8j 2 J

+

is a uniform lattice in a building of type zC2 .

Proof This is a direct application of Theorem 6.7.
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6.2.2 The Abelian case If q is even, then the associated Singer groups S and S 0

are isomorphic to F3
q . In this case, we obtain a very simple presentation:

Let J D f0; 1; : : : ; q C 1g and fix two bijections �; �0W J ! PF2
q t f0g. We write

SŒaWb� D Fq.a; b; 0/
T and S0 D Fq.0; 0; 1/

T for the line stabilisers in S and add a
prime 0 for the respective groups in S 0 .

Theorem 6.9 The group

� D
�
S �S 0

�
=hŒS�.j/;S

0
�0.j/� W j 2 J i

is a uniform lattice in an exotic building of type zC2 .

Proof Again, this is a direct application of Theorem 6.7.

Remark Note that � is a finitely presented group generated by involutions such that
all other relations make elements commute. It would be very interesting if one of these
groups were a right-angled Coxeter group, but this seems very unlikely.

6.3 Property (T)

Even though most of these buildings are necessarily exotic, the lattices automatically
have property (T).

Proposition 6.10 (Żuk) All cocompact lattices for buildings of type zC2 have property
(T) if the order of the generalised quadrangles that appear as vertex links is not .2; 2/.
In particular, all lattices we construct here have property (T).

Proof See [32]. A more detailed exposition can be found in [1].

7 Group homology

We will calculate group homology of the lattices we have constructed using the action
on the building. Remember that a group action on a polyhedral complex is said to
be without inversions if every setwise stabiliser of a polyhedral cell stabilises the
cell pointwise. The actions of the lattices we have constructed are obviously without
inversions, since the lattices act in a type-preserving fashion.
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Theorem 7.1 (Brown [3, VII.7, VII.8]) If a group G acts without inversions on a
contractible polyhedral complex X , and if †i is a system of representatives for the
i –cells of X , there is a spectral sequence:

E1
i;j D

M
�2†i

Hj .G� /)HiCj .G/

In particular, we have E1
i;0
Š
L
�2†i

Z and the differential d1
i;0

is induced by the
differential @i on cellular chains. This results in:

E2
i;0 ŠHi.GnX /

Proof The construction of the spectral sequence can be found in [3, VII.7]. The
structure of the differential d1 on the bottom row can either be seen directly from
the construction of the spectral sequence as the spectral sequence associated to group
homology with coefficients in cellular chains or by specialising [3, VII.8].

Corollary 7.2 If all stabilisers G� are finite for every cell � 2X , we have:

H�.GIQ/ŠH�.GnX IQ/

Proof This follows easily from Theorem 7.1 and the fact that Hj .G� IQ/D 0 for all
j > 0 and for all simplices � by the transfer map; see [3, Corollary III.10.2].

Since cyclic groups are abundant in the construction of our lattices, we need the
following simple result.

Proposition 7.3 [3, II.3.1] Let G be a cyclic group of order n. Then:

Hj .G/Š

8̂<̂
:

Z if j D 0

Z=n if j odd

0 else

7.1 Group homology of lattices for buildings of type zA2

We will calculate the full group homology of the lattices generated by cyclic Singer
groups, which we have constructed in Section 5.3. The Abelianisation can be calculated
directly.
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Proposition 7.4 Let �1 be a lattice constructed as in Theorem 5.8 using a classical
projective plane of order q and three ordered classical difference sets ı1 , ı2 and ı3 .
We have:

H1.�1/D
D
s1; s2; s3

ˇ̌̌
.q2C qC 1/s1 D .q

2C qC 1/s2 D .q
2C qC 1/s3 D 0

ı1.j /s1C ı2.j /s2C ı3.j /s3 D 0 8j 2 J

E
In particular, �1 is perfect if and only if the .q � 3/–matrix D D .ıj .i//i;j over
Z=.q2C qC 1/ has full rank in the sense of Brown [5, Chapter 4].

Proof Since H1.�1/ is isomorphic to the Abelianisation of �1 , we just have to
Abelianise the presentation from Theorem 5.8. The resulting group is the kernel of the
linear map .Z=.q2CqC1//3! .Z=.q2CqC1//q described by D . In particular, by
[5, Theorem 5.3], the kernel is trivial if and only if D has full rank.

Theorem 7.5 Again, let �1 be a lattice constructed as in Theorem 5.8. Let q be the
order of the associated projective plane. Then:

Hj .�1/Š

8̂̂̂̂
<̂̂
ˆ̂̂̂:

Z if j D 0

ker.D/ if j D 1

Zq if j D 2

.Z=.q2C qC 1//3 if j � 3 odd
0 else

In addition

H2.�2IQ/DQq; Hj .�2IQ/D 0 for j 62 f0; 2g;

for any lattice �2 constructed as in Theorems 5.3 or 5.8.

Proof Consider the spectral sequence E1
i;j from Theorem 7.1 for the �1 –action on

the associated building X . The quotient space �1nX is the geometric realisation of
the scwol Y from the construction in Section 5.1, which has hence the homotopy type
of a bouquet of 2–spheres. The structure of the spectral sequence is particularly simple
since most stabiliser subgroups are trivial. We have:

E1
0;j Š

3M
kD1

Hj .Z=.q
2
C qC 1//; E1

1;0 Š Z3; E1
2;0 Š ZqC1:

All other groups on the first page are trivial. The differential on the bottom row is
induced by the cellular differential, so we have:

E2
0;0 Š Z; E2

1;0 D 0; E2
2;0 Š Zq:
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All other groups remain unchanged. Since the only remaining nontrivial differential is

d2
2;0W E

2
2;0 Š Zq

! .Z=.q2
C qC 1//3 DE2

0;1

whose kernel is always isomorphic to Zq , we obtain the full description of H�.�1/ by
inspecting the third page E3

i;j and using Proposition 7.3 for the homology of cyclic
groups. Rational homology can easily be calculated using Corollary 7.2.

7.2 Group homology of lattices for buildings of type zC2

We will first calculate rational group homology for the lattices of type zC2 we have
constructed in Section 6.

Theorem 7.6 For a lattice � constructed as in Sections 6.1 or 6.2, we have:

Hj .�IQ/D 0 for j ¤ 0

Proof The geometric realisations of the quotient scwols are contractible in both cases.
We can hence apply Corollary 7.2 to obtain the result.

For the lattices acting regularly on two types of panels as in Section 6.1, the situation with
integral coefficients is rather complicated and probably depends on the identification
bijections � and �0 given in the construction.

Hence we will consider lattices acting regularly on one type of panel as in Section 6.2.
Assume that the associated slanted symplectic quadrangle has order .q � 1; qC 1/,
denote the associated Singer group by S .

Theorem 7.7 For the lattice � , we have:

H1.�/Š .Z=q/
6 and H2.�/ŠH2.S/˚H2.S/

Proof The structure of the Abelianisation can easily be seen using the presentation
from Theorem 6.7. For H2 , we inspect the corresponding spectral sequence from
Theorem 7.1. As a set of representatives for the action, we use the subcomplex induced
by the set of all chambers containing a common panel of the type the lattice acts
regularly on. Then we have:

E1
0;2 ŠH2.S/

2 E1
1;2 D 0

E1
0;1 Š .Z=q/

6
˚ .Z=q/2qC4 E1

1;1 Š .Z=q/
2qC4

E1
0;0 Š ZqC4 E1

1;0 Š Z2qC5 E1
2;0 Š ZqC2
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In this calculation, we use Proposition 7.3 as well as H1.S/D .Z=q/
3 , which is easily

verified. Since the quotient space �nX is contractible, we obtain:

E2
0;0 Š Z E2

1;0 D 0 E2
2;0 D 0

Since we already know that H1.�/Š .Z=q/
6 , the map d1

1;1
W E1

1;1
! E1

0;1
must be

injective and we obtain E2
1;1
D 0, which proves the theorem.
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