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Generalized Mom-structures and ideal triangulations
of 3–manifolds with nonspherical boundary

EKATERINA PERVOVA

The so-called Mom-structures on hyperbolic cusped 3–manifolds without boundary
were introduced by Gabai, Meyerhoff, and Milley, and used by them to identify
the smallest closed hyperbolic manifold. In this work we extend the notion of a
Mom-structure to include the case of 3–manifolds with nonempty boundary that
does not have spherical components. We then describe a certain relation between
such generalized Mom-structures, called protoMom-structures, internal on a fixed
3–manifold N , and ideal triangulations of N ; in addition, in the case of nonclosed
hyperbolic manifolds without annular cusps, we describe how an internal geometric
protoMom-structure can be constructed starting from the Epstein–Penner or Kojima
decomposition. Finally, we exhibit a set of combinatorial moves that relate any two
internal protoMom-structures on a fixed N to each other.

57M20, 57N10; 57M15, 57M50

Introduction

This paper is devoted to an extension of the notion of Mom-structure, that is defined
for manifolds with toric boundary, to the case of manifolds with arbitrary nonspheri-
cal nonempty boundary. Mom-structures were introduced by Gabai, Meyerhoff and
Milley [6; 4] in the context of hyperbolic 3–manifolds and served as a tool for them
to identify the smallest closed hyperbolic manifold [4; 12]. Certain components of
a similar notion for compact hyperbolic manifolds with nonempty totally geodesic
boundary were considered by Kojima and Miyamoto [10] and Deblois and Shalen [1],
also as an instrument for studying volume.

A Mom-structure [6] (see Section 1 below for the precise definition) is a triple of
form .M;T; �/, where M is a 3–manifold with toric boundary, T is a selected torus
in @M , and � is a particular type of handle decomposition of M that includes a
collar of T serving as the “base” for the subsequent gluings of 1– and 2–handles.
The crucial point is then to consider a fixed hyperbolic manifold N and the set of
Mom-structures internal on N (roughly speaking, the structure is internal on N if
N can be reconstructed from the structure via some Dehn fillings). The relation with
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the hyperbolic volume, as suggested in [6] and then realized in [4], is, very generally,
the following one. Given a complete finite-volume cusped hyperbolic manifold N ,
consider a horotorus neighbourhood of some cusp. After expanding it in the normal
direction, it will eventually encounter itself, which gives rise to a 1–handle, while
further expansions create other 1– and 2–handles. For N of low enough volume, this
process allows one to construct an internal Mom-structure on N with at most three
2–handles (and in fact other properties), which is a crucial result of [4].

Considering examples of hyperbolic 3–manifolds with low Matveev complexity (avail-
able in the census of Frigerio, Martelli and Petronio [3]) that admit an ideal triangulation
into hyperbolic tetrahedra suggests that something similar may occur for other types
of hyperbolic 3–manifolds, particularly for “mixed” ones with both toric cusps and
totally geodesic boundary. This fact served as a motivation for us to consider a slightly
generalized notion of a Mom-structure, that we call a protoMom-structure, and to study
its relations with ideal triangulations; we immediately note that we do this from a
combinatorial point of view rather than from a geometric one.

The generalization itself is entirely straightforward; essentially, it consists in replacing T

with an arbitrary nonempty surface † without spherical components. Our first, and
perhaps not unexpected, result is that any such generalized Mom-structure internal
on a fixed 3–manifold N with boundary † can actually be obtained by thickening
some of the arcs and faces of a suitably chosen ideal triangulation of N (Theorem 2.4).
We emphasize that our proof of this fact has a constructive nature: how the desired
triangulation can be constructed via a sequence of a small number of specific moves.

It is the construction just mentioned, rather than just the existence itself of the triangu-
lation, that enables us to address the main point of the paper, namely, the determination
of a set of combinatorial moves that relate any two protoMom-structures (internal on
the same manifold) to each other. The definition of the moves given in Section 4 is
rather natural in view of Theorem 2.4 and of the easy fact that an ideal triangulation
naturally gives rise to a variety of internal protoMom-structures (Section 2.1). Indeed,
protoMom-structures arise from a triangulation by discarding some of its faces and
by thickening the remaining ones, and by possibly cancelling some 1–handles (that
are thickenings of the edges) of valence 1 with the respective 2–handles. The way in
which one can change the choice of which faces will be discarded naturally translates
into certain M-moves, while the collapses of 1–handles translate into so-called C-moves.
It is then the content of Theorem 4.6 that these moves are indeed sufficient to relate
between them any two protoMom-structures internal on a fixed manifold.

The structure of the paper is as follows. Section 1 contains the necessary definitions,
while Section 2 describes the relations between ideal triangulations and protoMom-
structures. Section 3 is devoted to establishing some preliminary results needed to
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prove Theorem 4.6, and Section 4 contains the definitions of the moves together with
the proof of the main theorem. Throughout the paper we will employ the piecewise
linear viewpoint, which is equivalent to the smooth one in dimensions 2 and 3.
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1 Preliminaries and main definitions

In this section we recall some known definitions and facts that will be used in the rest
of the paper, and we describe the main object of our study, which is a generalization of
the key definition of [6] recalled below.

Mom-structures Given a handle decomposition of some cobordism, we will call
valence of a 1–handle the number of 2–handles incident to it (with multiplicity), and
valence of a 2–handle the number of 1–handles to which it is incident (with multiplicity).
The original definitions due to Gabai, Meyerhoff and Milley are as follows.

Definition 1.1 [6, Definition 0.4] A Mom–n structure is a triple .M;T; �/ where
� M is a compact connected 3–manifold such that @M is a union of tori;
� T is a preferred boundary component of M ;
� � is a decomposition of M obtained as follows:

– take T � Œ0; 1��M such that T � f0g D T ;
– attach n 1–handles to T � f1g;
– add n 2–handles of valence 3 in such a way that each 1–handle has valence

at least 2.
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Definition 1.2 Let M be a compact connected 3–manifold, and let S � @M be
a compact surface, which can be disconnected or empty. A general-based handle
structure � on .M;S/ is a decomposition of M obtained in the following way:

� take S � Œ0; 1��M such that S � f0g D S ;

� add several 0–handles;

� attach finitely many 1– and 2–handles to S � f1g and to the 0–handles;

� if needed, fill in some spherical boundary components with 3–handles.

Thus, if .M;T; �/ is a Mom-structure then � is a (particular type of a) general-based
handle decomposition on .M;T /.

Given a general-based handle decomposition � on .M;S/, we will call

� islands the connected components of the intersection of the 1–handles of �
with .S � f1g/[f0–handlesg;

� bridges the connected components of the intersection of the 2–handles of �
with .S � f1g/[f0–handlesg;

� lakes the connected components of the complement in .S�f1g/[fboundaries of
0–handlesg of the union of all islands and bridges.

Definition 1.3 Let � be a general-based handle structure on .M;S/. Then � is full
if all the lakes are discs.

ProtoMom-structures and weak protoMom-structures The main object of our
study throughout the paper will be the following specific type of a general-based
handle decomposition, that is obtained by a (rather straightforward) generalization of
the notion of a Mom-structure.

Definition 1.4 Let M be a compact connected orientable 3–manifold such that @M
can be written as the union of a nonempty surface † without spherical components, and
some tori. Let � be a general-based handle decomposition on .M; †/ such that � does
not contain 0– or 3–handles, each 1–handle has valence at least 2, and each 2–handle
has valence precisely 3. Then the triple .M; †;�/ is called a protoMom-structure.

Remark 1.5 Let � be a protoMom-structure on M with @M the union of a surface †
of the above type and some tori. Suppose that � contains n 2–handles; then � contains
n�gC 1 1–handles, where g is the genus of † (or, if † is disconnected, the sum of
the genera of its connected components).
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Remark 1.6 In the case where † is a torus, a protoMom structure is simply a Mom
structure in the sense of [6] (see also [4]).

Definition 1.7 Let � be a general-based handle decomposition on .M; †/ with M

and † as in Definition 1.4. The triple .M; †;�/ is called a weak protoMom-structure if
� has no 0– or 3–handles and all its 2–handles have valence 3 (whereas no restriction
is placed on the valences of 1–handles).

Remark 1.8 Our definition of weakness differs from that given for Mom-structures
in [6], where a weak Mom-structure is one where 2–handles are allowed to have
valence 2 (for us it is always 3), while 1–handles are still required to have valence at
least 2 (whereas we drop this assumption in the definition of weakness).

Lateral tori and internal protoMom-structures Given a (weak) protoMom-struc-
ture .M; †;�/, we call any toric boundary component of M that is not contained
in † a lateral torus of the given protoMom-structure. Clearly, if † does not have toric
boundary components, then any torus in @M is lateral.

Definition 1.9 Let N be a 3–manifold with nonempty boundary, and let .M; †;�/

be a protoMom structure on a submanifold M �N . The triple .M; †;�/ is called an
internal protoMom structure on N if N nM consists of a collar of @N and possibly
some solid tori.

The meaning of this definition is simply that N can be obtained from M by Dehn-filling
some of the lateral tori of M .

Note that in what follows our main focus will mostly be on full weak protoMom-
structures internal on a certain fixed 3–manifold; we conclude this section by describing
three other notions that will provide us with the tools necessary to obtain our results,
namely ideal triangulations, special spines and their singular graphs, and the natural
duality between the former two classes of objects.

Ideal triangulations By an ideal triangulation of a compact 3–manifold N with
boundary we mean a realization of N as the result of first gluing a finite number of
tetrahedra along a complete system of simplicial pairings of their lateral faces, and then
removing small open neighbourhoods of all the vertices (such neighbourhoods must be
small enough so that their closures be disjoint). Note that N is thus decomposed into
truncated tetrahedra (see Figure 2(left)), not into actual ones. Observe also that we
allow multiple and self-adjacencies of the tetrahedra.
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Special spines A compact 2–dimensional polyhedron P is called special if the fol-
lowing two conditions hold. First, the link of each point should be homeomorphic to
one of the following 1–dimensional polyhedra:

(a) a circle;

(b) a circle with a diameter;

(c) a circle with three radii.

(See Figure 1 where the corresponding three possible types of regular neighbourhoods
of a point of P are shown). Second, the components of the set of points with link of

Figure 1. Neighbourhoods of points in a special polyhedron

type (a) are open discs, while the components of the set of points with link of type (b)
are open segments.

The components just described are called faces and edges, respectively, and the points
with link of type (c) are called vertices. The points with link of type (b) or (c) are
called singular, and the set of all singular points of P is denoted by S.P /, which is a
four-valent graph (without circular components) that we will refer to as the singular
graph of P .

Let now N be a 3–manifold with nonempty boundary, and let P be a special polyhedron
embedded in Int N . We say that P is a special spine of N if N nP is an open collar
of @N .

Duality The final notion that we need is the well-known duality between ideal trian-
gulations of 3–manifolds with boundary and their special spines, summarized in the
next statement.

Proposition 1.10 Let N be a compact 3–manifold with nonempty boundary. Then
the set of ideal triangulations of N corresponds bijectively to the set of special spines
of N via the correspondence shown in Figure 2.

Given an ideal triangulation � of N , we will denote the special spine dual to � by P� .
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Figure 2. Duality between ideal triangulations and special polyhedra

2 Ideal triangulations and internal protoMom-structures

In this section we describe a procedure that, given an ideal triangulation of a manifold N

with nonempty boundary (without spherical components), allows us to obtain an internal
weak protoMom-structure on N . We then give a slightly more general notion of a
so-called triangulation-induced protoMom-structure (that we usually call � –induced,
where � stands for a specific triangulation), and we show that all full weak protoMom-
structures internal on a given N are actually induced by some ideal triangulation
of N . The proof of this fact is constructive, and will be used in Section 4 to study
combinatorial moves relating different protoMom-structures internal on the same fixed
manifold N .

2.1 Triangulation-induced protoMom-structures

Fix a compact connected orientable 3–manifold N such that @N D† is a nonempty
surface without spherical components. Let � be an arbitrary ideal triangulation of N ,
seen as a decomposition of N into truncated tetrahedra. Then � gives rise to a number
of internal protoMom-structures on N , which are constructed in the following way.

From an ideal triangulation to a protoMom-structure: constructive approach
Consider the 3–manifold M 0 obtained by removing from each tetrahedron of � a small
open ball around the centre of the tetrahedron. The triangulation � naturally induces
on M 0 a general-based handle decomposition �0 obtained by taking the collar of †
and thickening each edge of � to a 1–handle and each face to a 2–handle.

We can construct a (nonunique) weak protoMom-structure .M; †;�/ with M �M 0

and � induced by �0 by starting from �0 and repeatedly deleting 2–handles ˛
satisfying one of the following conditions:
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(a) the ends of the cocore of ˛ lie on two distinct spherical components of the
boundary, or

(b) one end of the cocore of ˛ lies on a spherical component and the other one on a
toric component, or

(c) both ends of the cocore of ˛ lie on the same spherical component.

We do this until a handle decomposition of a manifold bounded by † and some tori is
reached.

Denote the manifold obtained as a result by M and the subset of the handles of �0

that are contained in M by �. Then it is evident that .M; †;�/ thus obtained is a
weak protoMom-structure internal on N .

Remark 2.1 Observe that the procedure described above involves the minimal possible
number of handle deletions required to obtain an internal protoMom-structure composed
of handles belonging to �0 (this fact will be given a precise formulation in Section 4;
see Definition 4.8 and Lemma 4.11). Note however that canceling a 1–handle of
valence 1 with the 2–handle incident to it transforms a weak protoMom-structure into
a weak protoMom-structure, so performing such cancelations intermittently with the
above operation allows us to obtain a much wider class of protoMom-structures from
a given triangulation. An a priori still wider class of protoMom-structures could be
obtained by allowing the removal of 1–handles of valence 0 intermittently with the
removal of 2–handles, but we will not consider this latter procedure in the paper.

Remark 2.2 We note in particular that, as will easily follow from Lemma 4.13 below,
for any “genuine” (ie, nonweak) full protoMom-structure (hence for any Mom-structure
considered in [6; 4; 5]) there exist a triangulation and a choice of 2–handles to remove
via the operation described above, such that the subsequent cancelation of 1–handles
of valence 1 until none such is left yields the original protoMom-structure.

We now give a formal definition of a notion already referred to above.

Definition 2.3 Let N , with @N D †, � , and �0 be as above. A weak protoMom-
structure .M; †;�/ internal on N is said to be � –induced if the set of handles of �
is a subset of that of �0 .

Note that, while any protoMom-structure obtained as described above is of course
� –induced, the latter notion is a priori more general. Indeed, suppose that we have a � –
induced protoMom-structure .M; †;�/ containing a subset of 1– and 2–handles such
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that: (1) the subset forms an annular sheet in the sense of [6]; (2) the lateral boundary of
this sheet consists of two annuli belonging to two different lateral boundary components
of the ambient manifold M ; (3) each such lateral annulus is nontrivial in the respective
lateral torus. Then removing such sheet still yields a � –induced protoMom-structure,
which may or may not be obtainable via a sequence of the operations described above.

Geometric protoMom-structures and canonical decompositions We briefly ob-
serve that a certain adjustment of the above constructive procedure allows to obtain a
number of weak protoMom-structures internal on nonclosed hyperbolic 3–manifolds
without annular cusps and geometric in the sense of [4; 5] (ie, such that the cores of all
the 1– and the 2–handles are respectively geodesic arcs and geodesic hexagons). The
adjustment is as follows. We consider, as appropriate, either the Epstein-=Penner [2] or
the Kojima decomposition [8; 9] of N , and we subdivide each face of each polyhedron
into triangles by geodesic arcs. Then we construct �0 by taking thickenings of the
edges of the polyhedra and of the added arcs as 1–handles, and the thickenings of the
triangles as 2–handles (M 0 is then the ambient space of �0 ), and we apply precisely
the same procedure as above (with or without the collapses) to obtain a geometric weak
protoMom-structure from �0 .

2.2 From an internal protoMom-structure to an ideal triangulation

In this section we will establish the following result.

Theorem 2.4 Let .M; †;�/ be a full weak protoMom-structure internal on a com-
pact connected orientable 3–manifold N with @N D †. Then there exists an ideal
triangulation � of N such that .M; †;�/ is � –induced.

To prove this theorem, we will need several auxiliary tools, including one well-known
construction described in the next paragraph.

Layered triangulations Given a 3–manifold M 0 with a toric boundary component T

triangulated into two triangles, a layering along an edge e (see Jaco, Rubinstein and
Tillmann [7] and the references therein) of this triangulation consists in gluing a standard
tetrahedron �3 to T via a simplicial homeomorphism between ˛[ˇ , where ˛ and ˇ
are the two triangular faces in the triangulation of T (and are therefore adjacent to e ),
and two faces ˛0 and ˇ0 in the boundary of �3 , such that the common edge ˛0\ˇ0 is
glued to e . Clearly, this operation changes the triangulation of T � @M 0 but not the
manifold M 0 itself; we will need it to describe the so-called layered triangulations of
solid tori.
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Figure 3. Left: one-tetrahedron triangulation of a solid torus. The two back
faces are glued together according to the labels of the edges. Right: the
resulting triangulation of the boundary torus.

A layered triangulation of a solid torus H is any triangulation of H obtained by taking
the one-tetrahedron triangulation of H shown in Figure 3(left) and then performing
several successive operations of layering along edges in @H . If � is a layered triangu-
lation of H then its restriction to the boundary of H is always of the form shown in
Figure 3(right); the operation of layering changes the position of this triangulation with
respect to the meridional disc of H . More precisely, the set of triangulations of @H
as in Figure 3(right) is in bijective correspondence with the set of isotopy classes of
embeddings of the � –curve in @H having a disc as the complement, where the bijection
is by taking the dual graph to the 1–skeleton of the triangulation, as in Figure 4.

Figure 4. The dual � –curve

To proceed, we will need the following known result.

Lemma 2.5 [7] For every � –curve in the boundary of a solid torus H having a disc
as the complement there exists a layered triangulation of H such that the 1–skeleton of
its restriction to @H is dual to the � –curve.

Induced triangulations of lateral tori Observe that a full weak protoMom-structure
cannot contain 1–handles of valence 0. Hence, each lateral torus Ti of the ambient
manifold M of such a protoMom-structure admits a natural decomposition into disks
of the following 3 types:
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� lakes (contained in †� f1g);
� strips of the form `� Œ0; 1� with `� @D2 for some 1–handle D2 � Œ0; 1�;
� hexagons that are lateral sides of 2–handles.

This decomposition induces a natural triangulation of Ti obtained by compressing
each lake to a point and each strip ` � Œ0; 1� to an arc f�g � Œ0; 1�. We denote this
triangulation by ı0.Ti/.

Moves on triangulations of surfaces We now introduce several moves on triangula-
tions of surfaces, that will be used to prove Theorem 2.4. Let T be a closed surface
endowed with a triangulation ı .

(s1) Let v be a vertex of ı , and let e0 , e00 be two distinct edges incident to v . Cut
T open along e1[ v[ e2 and fill the resulting square by two triangles sharing
an edge in the original position of e1 [ v [ e2 . We say that the move (s1) is
performed at v along e0; e00 .

(s2) Let e be an edge of ı belonging to two distinct triangles. Remove e and replace
it by the other diagonal e0 of the resulting square (“flipping” e ). We say that the
move (s2) is performed at e .

(s3) Let v be a vertex of ı incident to exactly 3 distinct triangles. Merge the three
triangles into a single one, removing v and the edges incident to it.

The moves (s1)–(s3) are shown in Figure 5.

e0 e00
v

(s1) e
e

(s2) e0

v (s3)

Figure 5. The moves (s1), (s2), (s3)

We will most often apply the move (s1) at a vertex v0 along two edges e0; e00 such
that e0 is incident to a vertex v of valence 1; see Figure 6. Observe that the move
destroys v without creating vertices of valence 1 or 2.
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v0 v v00
e0 e00

v1

v0

v2

v00

Figure 6. A special case of move (s1)

Below we will often use the following composition of moves.

(s1 0 ) Let v be a vertex of ı of valence 2. Denote the two edges incident to v by e0

and e00 . The move (s1 0 ) consists in performing the move (s1) at v along e0; e00

and subsequently performing the move (s2) along the newly created edge e .

The effect of this move on the triangulation is shown in Figure 7. Observe that the

e0 e00

v (s10)

v1

v2

Figure 7. The move (s1 0 )

move decreases the number of vertices of valence 2 by one, and does not create any
vertices of valence 1.

Simplifying a triangulation The key ingredient in the proof of Theorem 2.4 will be
the following fact.

Lemma 2.6 Let ı be a triangulation of a two-dimensional torus. Then there exists a
sequence of moves (s1), (s2), (s3) transforming ı into a triangulation with exactly two
triangles.

The desired triangulation is the one shown in Figure 3(right).

Proof The strategy of the proof is to use first the moves (s?) to get rid of all vertices
of valence 1 and 2; note that, since we will use the move (s1 0 ), this may increase the
total number of vertices. We then show that a triangulation where all vertices have
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valence at least 3, can be transformed into the desired one by moves (s2) and (s3), and
the argument is based on the fact that the move (s3) strictly decreases the number of
vertices.

Case 1 Assume first that ı contains a vertex v of valence 1. Then it is easy to see
that we have a situation as in Figure 8(left), possibly with v1 D v2 . We then perform

v1 e v v2

Figure 8. Destroying a vertex of valence 1; note that v1 and v2 may coincide.

the move (s2) at the edge e , followed by the move (s1 0 ) at the vertex v , as shown in
Figure 8. This destroys the vertex v of valence 1 without creating new vertices of
valence 1 or 2, so we can repeat the procedure until no vertices of valence 1 are left.

Case 2 Assume now that ı has a vertex v of valence 2 but not of valence 1. We then
perform (s1 0 ) at v and proceed until no vertex of valence 1 or 2 remains.

Case 3 Assume now that all vertices of ı have valence at least 3. The proof is by
induction on the number k of vertices of ı . The base of induction is k D 1 and it
follows from the Euler characteristic argument that in this case we indeed have the
triangulation with two triangles. Assume that k > 1.

Case 3.1 Suppose that ı contains a vertex v of valence precisely 3. It is easy to see
that in this case the closure of any edge incident to v is a segment. There are now the
following two possibilities:

Case 3.1.a There exists a vertex v of valence 3 such that the three vertices v1 , v2 , v3

joined to v by an edge are all of valence at least 4. Observe first that if two of these
vertices, say v2 and v3 , coincide then the valence of w D v2 D v3 is at least 5;
furthermore, if all three vertices coincide then the valence of w D v1 D v2 D v3 is
at least 7. We now perform the move (s3) at v , the effect of doing which is that v
disappears and the valences of v1 , v2 , v3 are decreased by 1, if they are all distinct; if
they are not, the valence of w is decreased by 2 or by 3, depending on how many of
the vertices vi are different. In either case, by the assumption these new valences are
still at least 3. In addition, observe that the valences of all the other vertices are not
affected, and that the total number of vertices in ı is decreased by 1.
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Case 3.1.b The second possibility is that for any vertex v of valence 3 at least one of
the vertices v1 , v2 , v3 joined to v by an edge has valence 3, with vi ’s not necessarily
all distinct. Choose any such v and observe that we must have the situation as shown
in Figure 9, with the valences of v2 , v3 being at least 5 and where we may or may not

v

v1

v2 v3

v4

e

Figure 9. Two vertices of valence 3 joined by an edge

have v2 D v3 . Denote by e one of the edges joining v2 to v3 ; then e belongs to two
triangles, one with vertices v1 , v2 , v3 and the other with vertices v2 , v3 , v4 ; we also
have that v4 ¤ v1 . Thus, performing the move (s2) at e has the following effect on the
set of valences:

� the valence of v1 becomes 4;

� the valence of v4 is increased by 1;

� if v2 ¤ v3 then the valence of each of them decreases by 1, and if they coincide
then the total valence is decreased by 2, however, in this case it was at least 6

to begin with.

Notice that no other vertices are affected by the move and that after the move the
valences of v2 and v3 (or that of v2D v3 ) are still at least 4. Therefore we can proceed
as in Case 3.1.a.

Case 3.2 Suppose that all vertices of ı have valence at least 4. Again, there are two
possibilities:

Case 3.2.a There is a vertex such that the closure of any edge incident to it is a
segment. Let v be a vertex of minimal valence among all such vertices. Denote the
edges incident to v by e1; : : : ; ek in the clockwise order around v and let vi be the
other endpoint of ei for i D 1; : : : ; k (we note that some of the vi ’s may coincide).
Perform now the move (s2) consecutively along the edges e2; e3; : : : ; ek�2 , followed
by the move (s3) at the vertex v ; see Figure 10. Observe that
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v

v1

v2

v3vk�1

vk

e0
1

e0
2e0

k�1

e0
k

v1

v2

v3vk�1

vk

Figure 10. Destroying vertex v

� the valence of any vertex (among vi ’s) distinct from v2 and vk does not decrease;
� if v2 ¤ vk then the valence of each of these vertices is decreased at most by 1,

hence it is still at least 3.

Suppose now that v2 D vk Dw , and that the valence of w is at most 2; this implies in
particular that w ¤ v1 and that the valence of w before the move was at most 4. We
claim that in this case w cannot be incident to a loop; indeed, if it were, the loop edge
would be distinct from the edge e0

1
, hence after the moves the valence of w would

be at least 3. Now, since v was a vertex of minimal valence among those edges not
incident to any loop, this implies that k D 4 and that among the edges e0

1
, e0

2
, e0

3
, e0

4

there are precisely two distinct ones. However, this would imply that we already have
a triangulation of the torus into two triangles.

Since the total number of vertices diminishes, we can repeat the entire procedure,
starting from Case 3, until we either reach a triangulation with exactly two triangles or
encounter the situation as in Case 3.2.b below.

Case 3.2.b Suppose that all vertices are incident to at least one edge whose closure
is a loop. In this case all such loops are nontrivial in T because if one of them were
the boundary of a disc, the assumption just made implies that an innermost loop in
this disc would contradict the fact that we are dealing with a triangulation. Then one
can see directly that, up to applying the move (s2), we have a situation as shown in
Figure 11 (more precisely, the triangulation either will be exactly as in the figure or

...

v1 v2 vm�1

e1 e3 e2m�1

e2 e4 e2m

Figure 11. A series of particular triangulations of a torus; the opposite sides
of the rectangle are identified forming the torus.

can be obtained from it by performing (s2) at the diagonals of some of the squares). In
this case the proof is by induction on the number m of parallel loops.
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If mD 1, we already have the desired triangulation. If m > 1 then we perform the
move (s2) at e1 , then (s2) at e2 , and finally (s3) at v1 . This again yields a triangulation
as in Case 3.2.b but the number m decreases by 1, whence the conclusion.

Constructing triangulations of solid tori Let now H be a solid torus, and let ı be
a triangulation of T D @H . We define the following moves consisting in inserting
inside H some 2– or 3–dimensional simplices.

(ŝ1) Let v be a vertex of ı , and let e0 , e00 be two distinct edges adjacent to v . The
move (ŝ1) consists in gluing to T , inside H , a triangle via a piecewise-linear
identification of two of its edges with e0[ v[ e00 . We say that the move (ŝ1) is
performed at v along e0; e00 .

(ŝ2) Let e be an edge of ı adjacent to two distinct faces ˛ and ˇ . The move (ŝ2)
consists in gluing to T , inside H , a tetrahedron via a piecewise-linear identifica-
tion of two of its faces with ˛[ˇ . We say that the move (ŝ2) is performed at e ;
note that this is the same operation as the one performed in the construction of
any layered triangulation.

(ŝ3) Let v be a vertex of ı incident to exactly 3 distinct edges. Denote the three
triangles incident to v by ˛1; ˛2; ˛3 . The move (ŝ3) consists in gluing to T ,
inside H , a tetrahedron via a piecewise-linear identification of three of its faces
with ˛1[˛2[˛3 .

We also define the following composite move.

(ŝ1 0 ) Let v be a vertex of ı of valence 2. Denote the two edges adjacent to v by e0

and e00 . The move (ŝ1 0 ) consists in performing move (ŝ1) at v along e0; e00 and
subsequently performing move (ŝ2) along the newly created edge.

There is a natural correspondence between the moves (s?) and (ŝ?) described in the
following:

Observation 2.7 Let H be a solid torus, and let ı be a triangulation of T D@H . Let 

be the simplex added by a move (ŝ?) applied to H , and let ı0 be the induced triangulation
of the surface T 0 , where T 0 is the connected component of @U.T [
 / that lies inside
H , with U.X / denoting a regular neighbourhood, in H , of any subcomplex X of H .
Then ı0 is obtained from ı by a move (s?).

We can now establish the following:

Lemma 2.8 Let ı be a triangulation of a two-dimensional torus T D @H , where H

is a solid torus. Then there exists a triangulation � of H such that � j@H D ı , and
� .0/ D ı.0/ .
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Proof We construct the desired triangulation by following the proof of Lemma 2.6 and
performing for each move (s?) the corresponding move (ŝ?). Here the surface that tells
us which move to apply, is, at each step, the connected component of the boundary of
U.T [f
ig/ (where 
i are all the simplices added by the moves (ŝ?) already performed)
that lies in the interior of H and is endowed with the obvious triangulation, whereas
the simplices themselves are glued, inside H , to the simplicial complex T [ f
ig.
By Lemma 2.6 we will end up with a solid torus H 0 �H (possibly with immersed
boundary) such that @H 0 is triangulated into two triangles (while H n Int H 0 is already
triangulated in a desired fashion, ie such that all the vertices are in @H ), and we
conclude the proof by adding a suitable layered triangulation.

Proof of Theorem 2.4 Denote the lateral tori of .M; †;�/ by T1; : : : ;Tk and con-
sider the triangulations ı0.Ti/ induced by �, as described at the beginning of this
section. Let Hi be the solid torus bounded by Ti in N . For each i D 1; : : : ; k denote
by �i the triangulation of Hi provided by Lemma 2.8 applied to Ti D @Hi and ı0.Ti/.
It now follows directly from the construction that the triangulations �i , i D 1; : : : ; k ,
yield an ideal triangulation � of N (we emphasize that the triangulation is an ideal
one because its vertices, obtained by contracting the lakes of the Ti ’s, all lie on †)
and that the protoMom-structure .M; †;�/ is � –induced, whence the conclusion.

3 Mom-subgraphs in 4–valent graphs

We will now describe a combinatorial tool that we will use to show that any two internal
protoMom-structures on a given N are related by the combinatorial moves that will be
described in Section 4.1. This tool is that of a Mom-subgraph; as will be explained
in Section 4 (see Lemma 4.11) these objects are dual, in a certain natural sense, to a
particular type of triangulation-induced protoMom-structures, the type that will play
an especially important role in establishing the rest of our results.

3.1 Minimal Mom-subgraphs

The above-mentioned notion of a Mom-subgraph comes in two types, and in this
subsection we study the first of them, called a minimal Mom-subgraph.

Definition 3.1 Let G be a connected 4–valent graph. A minimal Mom-subgraph �
of G is a complete coloring of the edges of G by colors ft; c; f g such that
� the union T .�/ of the edges with color t gives a maximal tree in G ;
� precisely one edge, denoted c.�/, has color c .

We also define yT .�/ WD T .�/ [ c.�/, and C.�/ as the only simple closed curve
contained in yT .�/. Note that c.�/� C.�/.
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Moves on minimal Mom-subgraphs We first describe two admissible moves that
can be applied to a minimal Mom-subgraph � of some G .

(m1) if eD c.�/ and some edge e0 of color f share a vertex v , switch the colors of
e and e0 ;

(m2) if e � T .�/ and e0 � .G n T .�// share a vertex v , and .T .�/ n e/ [ e0 is
connected (equivalently, e lies along the path in T .�/ which joins the endpoints
of e0 ), switch the colors of e and e0 .

v v v vc

c
e e e e

e0 e0 e0 e0

f

f t

tx

x(m1) (m2)

Figure 12. Moves on Mom-subgraphs; on the right, we have x 2 fc; f g .

In both cases we will say that the move is applied at .v; e; e0/; see Figure 12. The
following statement is obvious.

Lemma 3.2 The moves (m1) and (m2) transform a minimal Mom-subgraph into
another one.

We will mostly use not a single move (m2) but a particular composition of several such
moves, namely,

(m̃2) if e � T .�/ and e0 � .G nT .�//, and e is contained in the (unique) simple
path ` in T .�/ that joins the endpoints of e0 , switch the colors of e and e0 .

We will say that the move (m̃2) is applied to .e; e0/ along the cycle C 0 WD `[ e0 .

Lemma 3.3 The move (m̃2) is a composition of moves (m2).

Proof Let `0 be one of the connected components of `n Int.e/, and let e1 � `
0 be the

edge incident to e0 . Denote the endpoints of e0 by v0D e0\ e1 and v00 , and denote the
other endpoint of e1 by v1 . Observe now that, since e1 is separating for T .�/, the
vertices v1 and v0 are contained in different connected components of T .�/ n Int.e1/.
Furthermore, the existence of the path ` implies that v00 belongs to the same connected
component as v1 , hence we can apply the move (m2) at .v0; e1; e

0/. The conclusion
then follows by the induction on the number of edges in the fixed `0 .

We will refer to the moves (m1) and (m2) as to admissible moves; by the above lemma,
(m̃2) is a composition of such.
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Relating minimal Mom-subgraphs by the moves We now establish the following
result.

Proposition 3.4 Let G be a connected 4–valent graph. Then any two minimal Mom-
subgraphs �1 and �2 of G are connected by a sequence of admissible moves.

Proof The proof is by induction on the number n.�1; �2/ of edges e of G having
different colors in �1 and �2 for e belonging to exactly one of yT .�1/ or yT .�2/.
Note that, since yT .�1/ and yT .�2/ contain the same number of edges, n.�1; �2/

cannot be equal to 1. Furthermore, if n.�1; �2/D 0 then yT .�1/D yT .�2/, therefore
C.�1/D C.�2/, and the conclusion is obtained by applying the move (m̃2) at the two
c–edges along C.�1/.

Suppose now that n.�1; �2/ > 0. We distinguish two cases.

(1) Assume that T .�1/¤ T .�2/. Since also yT .�1/¤ yT .�2/, we can find an edge
e2� .T .�2/n yT .�1//, possibly up to change of notation. We now take the only simple
closed curve ` contained in T .�1/[ e2 ; since T .�2/ is a tree, we can find e1 � `

with �2.e1/¤ t . Then we apply to �1 the move (m̃2) at .e1; e2/ along C D `[ e2 ,
reducing n.�1; �2/.

(2) Assume now that T .�1/D T .�2/. This immediately implies that n.�1; �2/ is 2.
More precisely, for ei D c.�i/ with i D 1; 2 we have �1.e2/D f D �2.e1/, while
any other edge is assigned the same color by both �1 and �2 .

The proof is by induction on the distance k between C.�1/ and C.�2/. Namely, let
` be the shortest path in T .�1/ joining C.�1/ to C.�2/; we define ` to be empty if
C.�1/\C.�2/ contains at least one edge. Note that if C.�1/\C.�2/ consists of a
single vertex v then ` coincides with v . The distance k is defined to be the simplicial
length of `, ie the number of edges in `; by definition, the length of the empty path
is �1.

Base of induction: k 6 0. Then C.�1/\C.�2/ is a nonempty path in T .�1/DT .�2/;
let v be an end vertex of this path (note that we might have C.�1/\ C.�2/ D v ).
Denote by e.1/ (one of) the extremal edge(s) of C.�1/ n C.�2/ incident to v , and
by e.2/ (one of) the extremal edge(s) of C.�2/ n C.�1/ incident to v . Apply now
to �1 the following sequence of moves:
� (m̃2) at .e1; e

.1// along C.�1/;
� (m̃2) at .e2; e

.2// along C.�2/;
� (m1) at .v; e.1/; e.2//;
� (m̃2) at .e2; e

.2// along C.�2/;
� (m̃2) at .e1; e

.1// along C.�1/.
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It is then easy to see that the resulting coloring is in fact �2 . It follows from Lemma 3.3
that all of the above operations are compositions of admissible moves, whence the
conclusion in this case.

Inductive step Suppose that k > 0; then ` contains at least one edge. Let w be the
vertex at which ` meets C.�1/, and let T 0 be the connected component of T .�1/ nw

containing `; notice that T 0 is not compact. We claim that there exists an f –edge e with
one endpoint in T 0 and the other not belonging to T 0 (but possibly coinciding with w ).
Indeed, assume that such an edge does not exist. Then all f –edges with one endpoint
on T 0 would have the other endpoint on T 0 as well, so the obvious compactification
of .T 0[ff � edges with an endpoint on T 0g[ e2/ would be a graph with one vertex
of valence 1 and all the other vertices of valence 4, which is impossible.

Consider now an edge e with the above property, and let `0 be the simple path in T .�1/

joining its endpoints. Observe that `0 contains w and has at least one edge in common
with `. Denote by e.1/ an edge of C.�1/ incident to w and not contained in `0 , and
by e.2/ the edge of ` incident to w ; notice that e.2/ is contained in `0 . Apply now
to �1 the following moves:

� (m̃2) at .e1; e
.1// along C.�1/;

� (m̃2) at .e; e.2// along `0[ e ;
� (m1) at .w; e.1/; e.2//;
� (m̃2) at .e; e.2// along `0[ e ;
� (m̃2) at .e1; e

.1// along C.�1/.

Denote the resulting coloring by � 0
1

. Observe that � 0
1

and �2 are still related as in
case (2), and that the distance between C.� 0

1
/ and C.�2/ is strictly less than that

between C.�1/ and C.�2/, and this concludes the inductive step.

Remark 3.5 In what follows (Proposition 4.12) we will only use a weaker form
of Proposition 3.4, namely the fact that given �1 , �2 one can use (m1) and (m2) to
transform �1 into some � 0

1
such that yT .� 0

1
/D yT .�2/, but for the sake of completeness

we present the above stronger version.

3.2 General Mom-subgraphs

In this subsection we consider a more general instance of Mom-subgraphs than minimal
ones:

Definition 3.6 Let G be a connected 4–valent graph. A general Mom-subgraph �
in G is a complete coloring of the edges of G by colors ft; c; f g such that
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� the set T .�/ of the edges of G that have color t spans G ;
� each connected component of T .�/ is a tree;
� each edge colored by c has both endpoints on the same connected component

of T .�/, and for each connected component of T .�/ there is precisely one
c–colored edge with vertices on it.

Note that the set of c–edges is in bijective correspondence with the set of connected
components of T .�/.

For the rest of this subsection we fix the following notation. If � is a general Mom-
subgraph of some G then
� k� is the number of connected components of T .�/;
� Ti.�/ with i D 1; : : : ; k� are the connected components of T .�/;
� ei is the c–edge with the endpoints on Ti.�/;
� Ci.�/ is the unique simple cycle in Ti.�/[ ei .

Moves on general Mom-subgraphs The definition of the moves (m1), (m2) and of
the composite move (m̃2) naturally extends to the context of general Mom-subgraphs.
The extension is verbatim for (m1), whereas for (m2) and (m̃2) we add the requirement
that both endpoints of the edge e0 participating in the move belong to the same
component Ti.�/. In addition to these, we will also consider three new moves:
(m2 0 ) let e be an f –edge with one endpoint on Ti.�/ and the other on Tj .�/nCj .�/

with i ¤ j , and let e0 � Tj .�/ nCj .�/ be an edge incident to e at a vertex v .
Assume furthermore that v and Cj .�/ belong to different connected compo-
nents of .Tj .�/[Cj .�// n Int.e0/. Then switch the colors of e and e0 ;

(m3) let e be an f –edge with one endpoint on Ti.�/ incident to some ej with
j ¤ i (recall that ej is a c–edge). Then assign color t to e and color f to ej ;

(m̄3) let e be an edge in Ti.�/, and let e0 be an f –edge incident to e and such that
both endpoints of e0 belong to the same connected component of Ti.�/nInt.e/
and this component is not incident to the c–edge ei . Then assign color f to e

and color c to e0 .

The moves are shown in Figure 13. We will say that (m2 0 ) and (m̄3) are applied at
.e; e0/ and that (m3) is applied at .e; ej /. The next result is now readily established.

Lemma 3.7 We have the following:
(1) The moves (m2 0 ), (m3), and (m̄3) transform any general Mom-subgraph into a

general Mom-subgraph.
(2) The inverse of a move (m2 0 ) is a move (m2 0 ).
(3) The inverse of a move (m3) is a move (m̄3) and vice versa.
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Figure 13. The moves (m2 0 ), (m3), and (m̄3) on general Mom-subgraphs

For brevity, we will refer to the moves (m1), (m2), (m2 0 ), (m3), (m̄3) as to admissible
moves.

Relating general Mom-subgraphs by the moves We now prove the following tech-
nical result.

Proposition 3.8 Let G be a connected 4–valent graph. Then every general Mom-
subgraph � of G can be transformed to a minimal Mom-subgraph of G via a sequence
of admissible moves.

Proof We proceed by induction on k� . The base of the induction is k� D 1, in which
case � is already a minimal Mom-subgraph, so there is nothing to prove.

Suppose that k� > 1. Since G is connected, there exists an edge of G joining two
distinct connected components of T .�/, say T1.�/ and T2.�/. For each such edge e

we can define mi.e/ as the minimal edge-length of a path in Ti.�/ connecting the
vertex e\Ti.�/ to Ci.�/; if e is incident to Ci.�/ then the path consists of one vertex
only and its length is 0. Let m.e/D minfm1.e/;m2.e/g, and let m� D minfm.e/g,
where the minimum is taken over all edges connecting T1.�/ to T2.�/. We will show
by induction on m� that there is a sequence of admissible moves transforming � to a
general Mom-subgraph � 0 such that k� 0 D k� � 1.
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Base of induction: m� D0. This implies that there exists an edge e that has an endpoint
on at least one of C1.�/, C2.�/. Up to change of notation, we can assume that e has
an endpoint on C2.�/.

If e is incident to e2 then the desired � 0 is obtained by applying (m3) at .e; e2/.
Otherwise, denote by e0 an edge of C2.�/ incident to e . Then � 0 is obtained by
applying first the move (m̃2) at .e0; e2/ along C2.�/ and then applying (m3) at .e; e0/.

Inductive step. Suppose that m� > 0, and let e be an f –edge realizing m� . Up to
change of notation we can assume that m� Dm2.e/. Set vi D e\Ti.�/.

Let ` be the shortest path in T2.�/ joining v2 to C2.�/, and let e0 be the edge of `
incident to v2 . Apply the move (m2 0 ) at .e; e0/ and denote the resulting general
Mom-subgraph by �1 . Notice that k�1

D k� ; let T1.�1/ be the connected component
of T .�1/ containing T1.�/, and let T2.�1/ be the component containing C2.�/.

Observe now that T1.�1/ and T2.�1/ are still joined by an f –edge (for example, e0 ).
Moreover, ` n e0 joins e0 \ T2.�1/ to C2.�/ D C2.�1/. Hence m�1

< m� , which
concludes both inductions.

We can now easily establish the main result of this section.

Corollary 3.9 Let G be a connected 4–valent graph. Then any two general Mom-
subgraphs in G are related by a sequence of moves (m1), (m2), (m2 0 ), (m3), (m̄3).

4 Moves on protoMom-structures

In this section we will state and prove the main result of the paper. In the first subsection
we introduce two types of combinatorial moves on weak protoMom-structures, and in
the second subsection we show that these moves are sufficient to relate to each other
any two full weak protoMom-structures internal on the same manifold.

4.1 Description of the moves

The moves that we describe can be broken down into two types, that we call M-moves
and C-moves. The meaning of the latter is quite clear, as they correspond to so-called
elementary collapses and their inverses. The former moves are inspired by the procedure
of obtaining a protoMom-structure from an ideal triangulation (see Section 2.1); we
describe this origin below in Remark 4.2.

For all the moves considered we introduce a natural notion of admissibility by saying
that a move is admissible if it transforms a weak protoMom-structure into a weak
protoMom-structure. It will be easy to see from the definition of the moves that this is
equivalent to requiring the moves to keep the lateral boundary toral.
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M-moves The precise definition of an M-move is the following one.

Definition 4.1 Let .M; †;�/ be a weak protoMom-structure internal on a compact
connected orientable 3–manifold N with @N D †. Let H be a 1–handle of � of
valence at least 1, and let ˛ be a 2–handle incident to H . Let ` � @M be a closed
embedded curve such that

(a) ` is disjoint from the 2–handles of �;

(b) ` passes exactly 3 times along 1–handles, counting with multiplicity;

(c) ` passes along @H , and the attaching curves of the 2–handles different from ˛

do not separate ` from the attaching curve of ˛ on @H ;

(d) ` bounds a disc in the complement of M in N .

Then the M-move at .H; ˛/ along ` consists in removing the 2–handle ˛ and gluing
another 2–handle along ` instead.

The actual shape of an M-move may vary depending on how the curve ` and the
boundary annulus of ˛ pass along the various 1–handles (although the number of
possibilities is obviously limited). In Figures 14 and 15 we show two specific examples
of an M-move.

H

H

H

H
H1

H1

H1

H1

H2

H2

H2

H2

H3

H3

H3

H3

H4

H4

H4

H4

Figure 14. An example of an M-move; on the left, the dotted line indicates
segments of the curve ` and the thick line indicates segments of the core
of the boundary annulus of ˛ . The areas shown in grey do not intersect
any bridge other than that contained in ˛ , and the ovals indicate portions of
lakes (which actually may or may not belong to the same lake). On the right
the thick line indicates segments of the core of the boundary annulus of the
2–handle replacing ˛ .
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H

H

H

H

H1

H1

H1

H1

H2

H2

H2

H2

Figure 15. Another example of an M-move; see the explanation for Figure 14.
Note that in this case only one lake is involved in the move.

Remark 4.2 The requirements for the curve ` defining the move may seem rather
stringent, so at first glance the question of existence of at least one curve with such
properties may appear nontrivial. Note however that the idea of the move comes from
considering triangulation-induced protoMom-structures, in particular those obtained
by removing some 2–handles from the thickening of the triangulation and keeping all
1–handles; if we have such a protoMom-structure then every tetrahedron such that one
of its faces is removed and another one is kept, provides a situation exactly as described
in the definition of an M-move.

Remark 4.3 An M-move is not automatically admissible. However, it follows imme-
diately from the definition that it is so if and only if after its application the boundary
still consists of tori.

Remark 4.4 It is clear from the definition that the (admissible) M-move performed
at .H; ˛/ along ` is invertible with the (admissible) inverse of the same type. More
precisely, the inverse of this move is the M-move performed at .H; ˛0/ along `˛ , where
˛0 is the 2–handle inserted by the initial move and `˛ is the gluing curve of ˛ (ie the
core circle of its boundary annulus).

C-moves The second class of moves consists of elementary collapses and their inverses,
where by an elementary collapse we mean the removal of a 1–handle of valence 1

together with the 2–handle incident to it. The precise description of these moves is as
follows.

Definition 4.5 Let .M; †;�/ be a weak protoMom-structure internal on a compact
connected orientable 3–manifold N with @N D †, and let ` � .@M n†/ be an
embedded arc such that

Algebraic & Geometric Topology, Volume 12 (2012)



260 Ekaterina Pervova

(a) the endpoints of ` are contained in the union of the islands;

(b) ` intersects the union of the 1–handles along precisely two segments and the
union of the lakes along precisely one segment;

(c) ` is disjoint from the 2–handles of �.

Then the C-move along ` consists in first adding a 1–handle H contained in N and
parallel to @M and with bases in the immediate vicinity of the endpoints of `, then
completing ` to a closed curve `0 that passes precisely once along H and is disjoint
from any 2–handles, and finally gluing a new 2–handle along `0 .

The C-move has three distinct shapes that are shown in Figures 16, 17 and 18.

a b
H H

H1

H1

H1

H1

H2

H2

H2

H2

Figure 16. The first type of the C-move; a and b denote the endpoints of ` .

a

a

a

a

b

b b

b

H H

H1 H1 H1 H1

Figure 17. The second type of the C-move; a and b indicate how the segment
passes along the 1–handle H1 .

It is clear that any C-move is automatically admissible. It is also invertible, with the
inverse being a suitable elementary collapse, and we call any of the latter a C�1 –move.
We will typically refer to all C˙1 –moves as simply to C-moves.
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H

H

H1 H1 H1 H1

Figure 18. The third type of the C-move

4.2 Relating protoMom-structures by the moves

We are now ready to state the main result of the paper.

Theorem 4.6 Let N be a compact connected orientable 3–manifold such that @N is
a nonempty surface without spherical components. Then any two full weak protoMom-
structures internal on N are related by a sequence of admissible M- and C-moves.

The proof of this result is based on the statement of Theorem 2.4 and on the construction
used to prove it, and on Corollary 3.9. We start by introducing some additional notions
and proving some easy facts. For the rest of the section we fix an ambient manifold N

as in Theorem 4.6.

General Mom-subgraphs and protoMom-structures Let � be an ideal triangula-
tion of N ; then, as described in Section 1, dual to � there is a special spine P� of N .
Note that any general Mom-subgraph � on S.P� /, which is a 4–valent graph, defines
a weak protoMom-structure .M� ; †;��/ internal on N : the 1–handles of �� are
thickenings of the edges of � , and the 2–handles of �� are thickenings of the faces
of � dual to the edges of S.P� / having color f in � . We will call .M� ; †;��/ the
protoMom-structure dual to � . This duality extends to the moves:

Proposition 4.7 Let � , � , and .M� ; †;��/ be as above, and let � 0 be obtained
from � by an admissible move of type (m1), (m2), (m2 0 ), (m3), or (m̄3).

(1) If the move is of type (m1), (m2 0 ), (m3), or (m̄3) then the dual structure
.M� 0 ; †;�� 0/ is obtained from .M� ; †;��/ by an admissible M-move.

(2) If the move is of type (m2) then either .M� 0 ;†;�� 0/ coincides with .M� ;†;��/

or it is obtained from .M� ;†;��/ by an admissible M-move.
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Weak protoMom-structures maximal with respect to a triangulation We now
present an alternative way to describe the set of protoMom-structures obtained by
taking the duals of all Mom-subgraphs in S.P� /, where � is a fixed ideal triangulation
of N .

Definition 4.8 We say that a � –induced weak protoMom-structure .M; †;�/ is � –
maximal if it is not properly contained in any other � –induced protoMom-structure
on N .

Remark 4.9 The above definition is equivalent to requiring the set of the 1–handles
of .M; †;�/ to coincide with the set of thickenings of all the edges of � .

Remark 4.10 When speaking about � –maximal protoMom-structures, we implicitly
fix for each edge or triangle of � a specific thickening of it, used then for all � –induced
protoMom-structures.

Lemma 4.11 Let � be an ideal triangulation of N . Then the set of � –maximal weak
protoMom structures on N is precisely the set of weak protoMom-structures dual to
general Mom-subgraphs of S.P� /.

Proof A weak protoMom-structure dual to a Mom-subgraph is � –maximal because it
contains all 1–handles, and insertion of some 2–handle would create sphere boundary
components. Let now .M; †;�/ be a � –maximal weak protoMom-structure. Consider
the auxiliary coloring � 0 of S.P� / obtained by assigning color f to the edges dual
to the 2–handles that are contained in �, and a new color x to all the other edges.
Since @M has no spherical components, no connected component of x–colored edges
is contractible; furthermore, @M n† consists of tori, hence we can find a general
Mom-subgraph � such that the set of its t –colored edges and c–colored edges is
contained in the set of x–colored edges (relative to � 0 ). Then it is clear that .M; †;�/

is contained in .M� ; †;��/, and since .M; †;�/ is � –maximal, they must actually
coincide.

Corollary 3.9 and Proposition 4.7 now imply:

Proposition 4.12 Let � be an ideal triangulation of N . Then any two � –maximal
weak protoMom-structures are related by a sequence of admissible M-moves.

Recovering a maximal protoMom-structure from an arbitrary one The last es-
sential tool for the proof of Theorem 4.6 is the following:
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Lemma 4.13 Let .M; †;�/ be a full weak protoMom-structure internal on N , and
let � be the triangulation constructed in the proof of Theorem 2.4. Then there exists
a sequence of C-moves transforming .M; †;�/ into a � –maximal weak protoMom
structure.

Proof Recall from the proof of Theorem 2.4 that � can be explicitly constructed
by compressing each handle of � on its core and performing a sequence of moves
(ŝ1), (ŝ2), (ŝ3) described in Section 2.2 (whose definition would be adjusted in a
straightforward manner to account for the fact that we do not compress lakes and the
triangles and tetrahedra that we insert are actually truncated). Indeed, recall that the
move (ŝ1 0 ) is actually a composition of (ŝ1) and (ŝ2) and that the layered triangulation
inserted at the conclusion can be obtained by a sequence of (ŝ2) moves followed by
filling in the one-tetrahedron triangulation of solid torus.

Let us fix such a sequence of (ŝ?) moves. To each move we now associate either a
C-move or an identity (empty) move on the protoMom-structure .M; †;�/. More
precisely, we do the following:

� to each (ŝ1) move we associate the C-move that consists in insertion of the
2–handle and the 1–handle that are thickenings of respectively the triangle and
the edge inserted by the (ŝ1) move under consideration;

� to each (ŝ2) move we associate the C-move that consists in insertion of a precisely
one 2–handle and one 1–handle where the 1–handle is the thickening of the
edge inserted during the (ŝ2) move under consideration and the 2–handle is
the thickening of precisely one of the two triangles inserted by the move (this
association is therefore nonunique);

� no move is associated to any of the (ŝ3) moves.

(Note that we do not associate anything to the final operation of filling in with the
one-tetrahedron triangulation). Then the sequence of (ŝ?) moves fixed above yields a
well-defined sequence of C-moves on .M; †;�/. Applying this sequence of moves
to .M; †;�/ gives a new weak internal protoMom-structure .M 0; †0; �0/ on N .
Moreover, .M 0; †0; �0/ is also � –induced and the set of its 1–handles coincides with
the set of thickenings of all the edges of � . It now follows from the Euler characteristic
argument that .M 0; †0; �0/ is � –maximal, whence the conclusion.

Proof of Theorem 4.6 It follows from Lemma 4.13 that, given two full weak proto-
Mom-structures internal on N , each is related by a sequence of C-moves to a �i –
maximal weak protoMom-structure for some triangulations �i with i 2 f1; 2g; Propo-
sition 4.12 then implies that each of the two structures is related by a sequence of
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admissible M- and C-moves to any other �i –maximal structure, for the corresponding i .
Recall now [11; 13] that two ideal triangulations �1 and �2 of N are related to each
other by a sequence of instances of the .2!3/–move shown in Figure 19 and of
inverses of this move. (This would be false if �1 or �2 were to consist of only one

Figure 19. The .2!3/–move on a truncated triangulation

tetrahedron, but this is impossible for an orientable N without spherical boundary
components.)

It is then sufficient to show that if �2 is obtained from �1 by one .2!3/–move
then there exist a �1 –maximal weak protoMom-structure and a �2 –maximal weak
protoMom-structure that are related by M- and C-moves. Indeed, let ˛ be the 2–handle
that thickens the triangle destroyed by the .2!3/–move, and let .M 0

1
; †;�0

1
/ be any

�1 –maximal protoMom-structure not containing ˛ ; its existence is obvious. Now we
note that .M 0

1
; †;�0

1
/ can actually be viewed as a �2 –induced protoMom-structure,

and there exists a C-move transforming it into a �2 –maximal structure .M 0
2
; †;�0

2
/;

this move consists in inserting the edge and exactly one of the three triangles that appear
during the .2!3/–move and then thickening them. The proof is whence complete.

Remark 4.14 By Theorem 4.6 two genuine (nonweak) Mom-structures internal on
the same cusped hyperbolic manifold are related by a sequence of admissible M- and
C-moves. However, even starting with two Mom-structures for which there exists a
triangulation with respect to which both structures are maximal, along the sequence one
might very well encounter nongenuine (weak in our sense) Mom-structures. Therefore
the question of finding combinatorial moves relating to each other any two genuine
Mom-structures remains open.
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