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Quadratic forms classify products on quotient ring spectra

ALAIN JEANNERET

SAMUEL WÜTHRICH

We construct a free and transitive action of the group of bilinear forms Bil.I=I2Œ1�/

on the set of R–products on F , a regular quotient of an even E1–ring spectrum R

with F� Š R�=I . We show that this action induces a free and transitive action
of the group of quadratic forms QF.I=I2Œ1�/ on the set of equivalence classes
of R–products on F . The characteristic bilinear form of F introduced by the
authors in a previous paper is the natural obstruction to commutativity of F . We
discuss the examples of the Morava K–theories K.n/ and the 2–periodic Morava
K–theories Kn .

55P42, 55P43, 55U20; 18E30

1 Introduction

With the advent of sound foundations for a theory of modules over an E1–ring
spectrum R (for instance as developed by Elmendorf, Kriz, Mandell and May [4]), it
has become possible to mimic in homotopy theory well-known constructions usually
performed in algebra. The setting is the homotopy category DR of R–module spectra
over R, a category equipped with a smash product ^R (the equivalent of the tensor
product), giving DR the structure of a symmetric monoidal category. Objects in DR

may be regarded as ordinary spectra by neglect of structure, via a (lax) monoidal functor
to the classical stable homotopy category.

With this framework at hand, the problem of constructing quotient spectra, ie spectra
whose homotopy groups are isomorphic to a given quotient of the coefficient ring
R�D��.R/ of R, admits a clean and transparent solution for a large class of quotients.
The quotients in question are the quotients R�=I by ideals I which are generated by
regular sequences. The R–module spectra realizing such quotients are often referred
to as regular quotients.

Shortly after the publication of [4], Strickland [9] proved that for E1–ring spectra R

for which R� forms a domain and which is trivial in odd degrees, any regular quotient
can be realized as an R–ring spectrum, ie as a monoid in DR , and therefore in particular
as a ring spectrum.
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The aim of the present article is to give a conceptual description of the set of all R–ring
structures on regular quotients F of R, as well as of the set of equivalence classes of
R–ring structures. Our result in both cases is based on a free and transitive action of a
certain abelian group canonically associated to F on the set of products.

As an application, we show that the characteristic bilinear form bF of a regular
quotient F , introduced by the authors in [5], is always symmetric and provides a
measure for the noncommutativity of F .

As another application, we give a necessary and sufficient criterion for a map of regular
quotient rings � W F ! G to be multiplicative, in terms of the characteristic bilinear
forms.

We use our results to classify products on the 2–periodic Morava K–theories Kn ,
which from an algebro-geometric point of view are the more natural objects to study
than their classical variants K.n/. In contrast to K.n/, we show that Kn supports a
large number of products, even many commutative ones for p odd and n> 1.

In addition, we confirm many well-known facts concerning certain families of quotients
of complex cobordism MU , whose existing proofs are in many cases technically
forbidding and scattered in the literature.

We now proceed to a more detailed overview of the content of this article. Throughout,
R denotes an E1–ring spectrum for which R� is a domain and is trivial in odd
degrees.

The following result assembles our two main theorems (Theorem 4.1 and Theorem 7.2).
The symbol I=I2Œ1� stands for the graded module I=I2 shifted by one, where I �R�
is an ideal.

Theorem 1 Let F be a regular quotient of R with coefficients F� ŠR�=I .

(i) The abelian group Bil.I=I2Œ1�/ of bilinear forms on I=I2Œ1� acts in a natural
way freely and transitively on the set of R–products on F .

(ii) This action induces a free and transitive action of the abelian group QF.I=I2Œ1�/

of quadratic forms on I=I2Œ1� on the set of equivalence classes of R–products
on F .

For a regular quotient ring F D R=I with product � and a bilinear form ˇ 2

Bil.I=I2Œ1�/, we will denote by ˇF the R–module F , endowed with the product ˇ�
in the sequel.

For the proof of the theorem we build on our previous paper [5]. The central ingredient
is the module of (homotopy) derivations Der�R.F /. Of crucial importance is the fact
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proved in [5] that Der�R.F / does not depend on the product of F , as a submodule of
the algebra of endomorphisms F�

R
.F /.

Applied to RD yE.n/, the completed Johnson–Wilson theories, and F DK.n/, the
theorem implies immediately that for p odd, there is precisely one yE.n/–product
on K.n/, which therefore must be commutative. For p D 2, it implies that there are
precisely two nonequivalent yE.n/–products on K.n/. They are both noncommutative,
as we will see below. These are well-known results.

For RDEn , the Morava E–theories, and F DKn , we deduce that there are pnn2

different En –products and pn n
2
.nC 1/ equivalence classes of En –products on Kn .

It is natural to ask whether there is an invariant which distinguishes the different
products on F or at least the different equivalence classes of products. A candidate is
the characteristic bilinear form

bF W I=I
2Œ1�˝F� I=I2Œ1� �! F�

of a regular quotient ring F constructed in [5]. We prove as Corollary 7.5:

Proposition 2 The characteristic bilinear forms of equivalent products on F coincide.
The converse holds whenever F� is 2–torsion free.

In fact, the characteristic bilinear form bF admits a natural characterization in terms
of the action of the theorem. To express it, let F op denote the opposite ring of F . We
prove as Corollary 5.5:

Proposition 3 The characteristic bilinear form bF of a regular quotient ring F satisfies
F op D bF F .

Hence bF is the obstruction to commutativity of F :

Corollary 4 A regular quotient ring F is commutative if and only if bF D 0.

Consider again the Morava K–theories K.n/ at pD 2. We proved in [5] that it admits
an yE.n/–product � with nontrivial characteristic bilinear form. Corollary 4 implies
that � cannot be commutative. Therefore the second product on K.n/ is neither, as
it must be the opposite of �. Moreover, Proposition 3 recovers the formula from
Nassau [6] (see Section 8 for the definition of vn and Qn�1 )

�op
D � ı .1C vnQn�1 ^Qn�1/:

Algebraic & Geometric Topology, Volume 12 (2012)
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As a consequence of Theorem 1, there is in general a large variety of products on F ,
even up to equivalence, unless there are only few bilinear forms on I=I2Œ1� due to
sparseness of the coefficients F� . One may ask if the situation changes when one
restricts to commutative products. To approach this question, one needs a formula
which expresses how bF transforms under the action of Bil.I=I2Œ1�/, in view of
Corollary 4. Let ˇt denote the transpose of a bilinear form ˇ on I=I2Œ1�, defined by
ˇt .x˝y/D ˇ.y˝x/. We prove as Corollary 5.3:

Proposition 5 Let F be a regular quotient ring with characteristic bilinear form bF

and let ˇ be a bilinear form in Bil.I=I2Œ1�/. Then the characteristic bilinear form
of ˇF is given by bˇF D bF �ˇ�ˇ

t .

With Corollary 4, it follows that for commutative F , ˇF is commutative if and only
if ˇ is antisymmetric. Together with Theorem 1, this implies the following result
(Proposition 7.8, Corollary 7.10), which sharpens a result of [9].

Corollary 6 Let F be a regular quotient ring of R. If 22F� is invertible, there exists
a unique commutative product on F up to equivalence. If F� is 2–torsion free, there
exists at most one commutative product on F up to equivalence.

For the 2–periodic Morava K–theories, Proposition 5 implies that there are pn n
2
.n�1/

commutative En –products for odd p , all of which are equivalent. At the prime 2, Kn

admits a product with nontrivial characteristic bilinear form, by a result from [5]. From
this, it follows that there does not exists any commutative product on Kn for p D 2.

Using the fact proved in [9] that the Brown–Peterson spectrum BP at a prime p admits
a commutative MU–product, it follows that there is a unique commutative MU–product
on BP up to equivalence.

The products on regular quotients F constructed in [9] have a very special form. To
explain in what sense, let .x1;x2; : : :/ be a regular sequence generating I , where
F� Š R�=I . Then F is equivalent to R=x1 ^R R=x2 ^R � � � as an R–module
spectrum (see Section 2 for details). The products considered in [9] are all obtained by
“smashing together” products on the R–module spectra R=xk . We call such products
diagonal and refer to products equivalent to diagonal ones as diagonalizable. In [5],
we showed that the characteristic bilinear form of a diagonal regular quotient ring is
diagonal. Together with Proposition 5, this implies (Corollary 5.4):

Corollary 7 The characteristic bilinear form bF of a regular quotient ring F is
symmetric.
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The following result is proved as Proposition 7.13:

Proposition 8 Assume that R� is a finite-dimensional regular local ring with maximal
ideal I and suppose that F is an R–ring satisfying F� Š R�=I . If the character-
istic p of F� is zero or an odd prime, then F is diagonalizable. If p D 2, then
F is diagonalizable unless bF is alternating and nontrivial, in which case F is not
diagonalizable.

This implies for instance that any En –product on Kn is diagonalizable, for p ar-
bitrary. However, not every regular quotient ring is diagonalizable: We construct a
nondiagonalizable MU–ring spectrum in Section 8.

As an application of Theorem 1, we give a necessary and sufficient condition for a
map � W F ! G between regular quotients of R to be multiplicative. Let I � J be
the ideals of R� for which F� Š R�=I and G� D R�=J , respectively. In [5], we
introduced a bilinear form

bG
F W .G�˝F� I=I2Œ1�/˝G� .G�˝F� I=I2Œ1�/!G�;

which depends on � . Let bF and bG denote the characteristic bilinear forms of F

and G , respectively. Let ��.bG/ be the bilinear form on G�˝F� I=I2Œ1� obtained by
“pulling back” bG along the morphism x� W I=I2Œ1�! J=J 2Œ1� induced by � .

Theorem 9 Suppose that � W F ! G is as above and assume that the induced map
G�˝F� I=I2Œ1�! J=J 2Œ1� is split injective. Then � is multiplicative if and only if
G�˝ bF D bG

F
D ��.bG/.

As an illustration, we show that there are infinitely many MU–products on the spec-
trum P .n/ for any prime p such that the canonical map BP! P .n/ is multiplicative,
where BP is endowed with an arbitrary commutative MU–product (see Section 8).

Acknowledgements The second author would like to thank Professor Kathryn Hess
for her support throughout his time at the EPFL in Lausanne.

Notation and conventions

In this article, we will work in the framework of S–modules of [4]. In this setting,
E1–ring spectra correspond to commutative S–algebras. Throughout, R denotes
an even commutative S–algebra, ie one with Rodd D 0. We also assume that the
coefficient ring R� of R is a domain (see [5, Remark 2.11]). Associated to R is the
homotopy category DR of R–module spectra. For simplicity, we refer to its objects as
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R–modules. The smash product ^R endows DR with a symmetric monoidal structure.
We will abbreviate ^R by ^ throughout the paper.

Monoids in DR are called R–ring spectra or just R–rings. Unless otherwise specified,
we use the generic notation �F W R!F (or simply �) for the unit and �F W F^F!F

(or simply �) for the multiplication of an R–ring F . Mostly, �F will be clear from
the context, in which case we call a map �F W F ^F!F which gives F the structure
of an R–ring an R–product or just a product. For a given R–ring .F; �F ; �F /, we
will often be in the situation where we consider another product x�F on F . We then
write xF for the R–ring .F; x�F ; �F /. We denote the opposite of an R–ring F by F op .
Its product is given by �F op D �F ı � , where � W F ^F ! F ^F is the switch map.

An R–ring .F; �F ; �F / determines multiplicative homology and cohomology theories
FR
� .�/ D ��.F ^�/ D D��

R
.R;F ^�/ and F�

R
.�/ D D�

R
.�;F /, respectively, on

DR . For an R–module M , the homology FR
� .M / is an F�–bimodule in a natural

way. Even if F� is commutative, the left and right F�–actions may well be different.
However, if we assume that F is a quotient of R, by which we mean that the unit
map �F induces a surjection on homotopy groups (see Section 2 below for definitions),
the left and right F�–actions agree. In this case, we can refer to FR

� .M / as a F�–
module without any ambiguity. A similar discussion applies to cohomology F�

R
.M /.

See Section 1.1 of [5] for a more detailed discussion.

Denote by M�Œd � the d –fold suspension of a graded abelian group M� , so .M�Œd �/kD
Mk�d . With this convention, we have .†dM /� DM�Œd � for an R–module M . We
use the convention M �DM�� . If the ground ring is clear from the context, we omit it
from the tensor product symbol ˝ from now on. We write DF�.M�/ or just D.M�/

for the dual Hom�F�.M�;F�/ of a graded module M� over a graded ring F� .

We introduce some notation and recall some well-known facts concerning bilinear and
quadratic forms. For an F�–module V , we write Bil.V / for the abelian group of
(degree zero) bilinear forms on V . For ˇ 2 Bil.V /, we set ˇt .x˝ y/ D ˇ.y ˝ x/

for x;y 2 V . A bilinear form ˇ 2 Bil.V / is symmetric if ˇt D ˇ , antisymmetric
if ˇt D �ˇ and alternating if ˇ.v ˝ v/ D 0 for any v 2 V . We write Sym.V /,
Asym.V / and Alt.V / for the subgroups of Bil.V / consisting of the symmetric, anti-
symmetric and alternating bilinear forms, respectively. If V is 2–torsion-free, we have
Sym.V /\Alt.V /D 0 and Asym.V /D Alt.V /. If 2 2 F� is invertible, we have the
usual decomposition Bil.V /D Sym.V /˚Alt.V /.

Let QF.V / denote the group of quadratic forms qW V ! F� . Recall that the grading
convention is that jq.v/j D 2n for v 2 Vn . For ˇ 2 Bil.V /, q.v/ D ˇ.v ˝ v/ is
easily seen to be a quadratic form. We therefore obtain a group homomorphism
�W Bil.V / ! QF.V /, whose kernel is Alt.V /. If V is F�–free, � is surjective
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(see Bourbaki [3, Chapter IX, Section 3, Proposition 2]) and so we have a canonical
isomorphism Bil.V /=Alt.V /Š QF.V /. If 2 2 F� is invertible, we recover the well-
known isomorphism Sym.V /Š QF.V /.

For a ring homomorphism ��W F�! k� and ˇ 2 Bil.V /, we define k�˝ˇ to be the
bilinear form on the k�–module k�˝F� V determined by

.k�˝ˇ/..1˝x/˝ .1˝y//D ��.ˇ.x˝y//

for x;y 2 V . If ��W W ! V is a morphism of F�–modules and ˇ 2 Bil.V /, ��.ˇ/
denotes the bilinear form on W which on x;y 2W takes the value

��.ˇ/.x˝y/D ˇ.��.x/˝��.y//:

2 Recollection

In this section we collect some results, definitions and notation from [5] which we are
using in the present paper.

A quotient module of R is an R–module F with a map �F W R! F of R–modules
which induces a surjection on homotopy groups, that is F� ŠR�=I . We will write
F DR=I for such an F in the sequel. The modules of interest for our purposes are the
regular quotient modules of R. By this, we mean quotient modules F DR=I whose
ideal I is generated by some (finite or infinite) regular sequence .x1;x2; : : :/ in R� .

A (regular) quotient ring of R is an R–ring .F; �F ; �F / with product �F such that
.F; �F / is a (regular) quotient module of R. For instance, let F DR=I be a regular
quotient of R and .x1;x2; : : :/ a regular sequence generating the ideal I . Then F is
isomorphic in DR to

R=x1 ^R=x2 ^ � � � WD hocolimk R=x1 ^ � � � ^R=xk ;

where for x 2R� , we denote by R=x the homotopy cofiber of xW †jxjR!R. For
any products �i on R=xi , there is a uniquely determined product � on F D R=I

such that the natural maps ji W R=xi!F are multiplicative and commute for k ¤ l , ie
�.jk ^jl/D�

op.jk ^jl/. This ring F is called the smash ring spectrum of the R=xi .
If we need to be more precise, we refer to the product map �F as the smash ring
product of the �i . A regular quotient ring F whose product is of this form is said to
be diagonal or diagonal with respect to .x1;x2; : : :/ if we need to keep track of the
regular sequence.

An admissible pair is by definition a triple .F; k; �/ consisting of two quotient
R–rings .F; �F ; �F /, .k; �k ; �k/ and a unital R–module map � W F ! k , ie an
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R–morphism � with ��F D �k . If � is a map of R–ring spectra, we call .F; k; �/
a multiplicative admissible pair. A typical example of an admissible pair is .F;F; 1F /

where 1F is the identity on F , but where we distinguish two products � and � on F .

In the following, we fix an admissible pair Its characteristic homomorphism is a
homomorphism of F�–modules

(2-1) 'k
F W I=I

2Œ1� �! kR
� .F /;

which is natural in F and k and independent of the products on F and k .

The homology group kR
� .F / carries a natural k�–algebra structure, whose product is

defined by the following composition of k�–homomorphisms

(2-2) mk
F W k

R
� .F /˝k� kR

� .F /
�k
�! kR

� .F ^F /
kR
� .�F /
�����! kR

� .F /:

Here �k stands for the Künneth homomorphism associated to the ring k .

The characteristic bilinear form bk
F

associated to .F; k; �/ is defined as the following
composition of k�–homomorphisms

bk
F W .k�˝F� I=I2Œ1�/˝2

�'˝2

����! kR
� .F /

˝2
mk

F
��! kR

� .F /
k�.�/
����! kR

� .k/
.�k/�
����! k�;

where �' is the k�–homomorphism canonically induced by ' . The characteristic
quadratic form qk

F
is defined as qk

F
.xx/D bk

F
.xx˝ xx/ for xx 2 k�˝F� I=I2Œ1�.

We write 'F , bF and qF for the characteristic homomorphism, bilinear and quadratic
forms of the admissible pair .F;F; 1F /, respectively, for a quotient ring F .

If .F; k; �/ is multiplicative, the characteristic bilinear form bk
F op of the associated

admissible pair .F op; k; �/ is trivial. In particular, bF
F op D 0 for a quotient ring F and

bF D 0 for a commutative quotient ring F .

The characteristic homomorphism ' D 'k
F

lifts to an algebra homomorphism

ˆW C`.k�˝F� I=I2Œ1�; qk
F / �! kR

� .F /;

where C`.k�˝F� I=I2Œ1�; qk
F
/ denotes the Clifford algebra of the quadratic module

.k�˝F� I=I2Œ1�; qk
F
/. If F is a regular quotient, then ˆ is an isomorphism. In

particular, this yields an algebra isomorphism

FR
� .F

op/Šƒ.I=I2Œ1�/:

To be more explicit, fix a regular sequence .x1;x2; : : :/ generating I . This choice
determines an isomorphism I=I2Œ1�Š

L
i F�xxi , where xxi denotes the residue class
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of xi in I=I2Œ1�. Letting ai D '
F
F op.xxi/ 2 FR

� .F /, we have

(2-3) FR
� .F

op/Šƒ.a1; a2; : : :/:

If .F; k; �/ is multiplicative, we may consider the module of (homotopy) derivations
Der�R.F; k/ � k�

R
.F /. By definition, these are maps d W F ! †ik which satisfy

d�F D �k.1^ d C d ^ 1/. If F D k and � D 1F , we write Der�R.F / instead of
Der�R.F;F /. There is a natural k�–homomorphism

(2-4)  W Der�R.F; k/! Hom�F�.I=I
2Œ1�; k�/;

defined by  .d/.xx/D .�k/�k
R
� .d/.'

k
F
.xx// for d 2Der�R.F; k/ and xx 2 I=I2Œ1�. It

is a homeomorphism if both F and k are regular quotient rings, where Der�R.F; k/
is endowed with the subspace topology induced by the profinite topology on k�

R
.F /

and Hom�F�.I=I
2Œ1�; k�/ŠDk�.k�˝F� I=I2Œ1�/ with the dual-finite topology. The

composition

Hom�F�.I=I
2Œ1�; k�/

 �1

���! Der�R.F; k/� k�R.F /

is independent of the products on F and k . This result allows us to construct derivations.
We restrict to the case where k D F is a regular quotient ring and � D 1F here. Let
.x1;x2; : : :/ be a regular sequence generating the ideal I and let xx_i 2DF�.I=I

2Œ1�/

be dual to xxi . The Bockstein operation Qi 2 Der�R.F / associated to xi is defined by
Qi D  

�1.xx_i /.

For a regular quotient ring F , the inclusion Der�R.F /! F�
R
.F / lifts to a homeomor-

phism of F�–algebras

(2-5) yƒ.Der�R.F //Š F�R.F /;

where yƒ.Der�R.F // denotes the completed exterior algebra on Der�R.F / and where
F�

R
.F / is endowed with the profinite topology. In particular we have d2 D 0 for any

d 2 Der�R.F /.

3 The action of bilinear forms on products

In this section, we show that there is a canonical action of the group of bilinear forms
Bil.I=I2Œ1�/ on the set of products on a regular quotient F DR=I .

Let F DR=I be a regular quotient and let ProdR.F /�F�
R
.F^F / denote the set of all

products on F . Let Per.ProdR.F // be the group of permutations of the set ProdR.F /.

Writing V for I=I2Œ1�, we have a linear isomorphism [2, Lemma 6.15]

Bil.V /DD0.V ˝V /Š .D.V / y̋ D.V //0:
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Composing it with the isomorphism

.D.V / y̋ D.V //0
 �1 y̋  �1

��������! .Der�R.F / y̋ Der�R.F //
0

induced by the homeomorphism  (2-4) yields an isomorphism of F�–modules

(3-1) Bil.V /Š .Der�R.F / y̋ Der�R.F //
0:

The aim of this section is to prove the following result.

Proposition 3.1 Let � 2 ProdR.F / be a product and let d; d 0 2 Der�R.F / be deriva-
tions with jd j D �jd 0j. Then the composition

�d;d 0 W F ^F
1Cd^d 0

������! F ^F
�
�! F

defines a product. This construction induces a group homomorphism

(3-2) y� W .Der�R.F / y̋ Der�R.F //
0
�! Per.ProdR.F //;

which gives rise via (3-1) to an action of Bil.I=I2Œ1�/ on ProdR.F /.

Notation 3.2 We refer to the action of Proposition 3.1 as the canonical action
of Bil.I=I2Œ1�/ on ProdR.F / in the sequel. The image of an element .ˇ; �/ 2
Bil.I=I2Œ1�/ � ProdR.F / under the canonical action will be denoted by ˇ�. Ac-
cordingly, ˇF stands for F , endowed with the product ˇ�.

Remark 3.3 The proof of Proposition 3.1 given below shows that in the special case
F DR=x , the action of Bil..x/=.x/2Œ1�/Š F2jxjC2 coincides with the action defined
in [9, Proposition 3.1].

Proof of Proposition 3.1 We first prove that x� D �d;d 0 is associative, ie that we
have x�.1^ x�/D x�.x�^ 1/. As a consequence of the isomorphism (2-5), derivations
anticommute, ie for d; d 0 2Der�R.F /, we have dd 0D�d 0d . Moreover, as a derivation,
d satisfies d�D �.d ^ 1C 1^ d/. This yields

x�.x�^ 1/D �..�C�.d ^ d 0//^ 1/C�.d ^ d 0/..�C�.d ^ d 0/^ 1/

D �.�^ 1/.1C d ^ d 0 ^ 1/C�Œ.�.d ^ 1C 1^ d//^ d 0

C .�.d ^ 1C 1^ d//.d ^ d 0/^ d 0�

D �.�^ 1/Œ1C d ^ d 0 ^ 1C d ^ 1^ d 0C 1^ d ^ d 0� d ^ dd 0 ^ d 0�:
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On the other hand, we obtain

x�.1^ x�/D �.1^ .�C�.d ^ d 0///C�.d ^ d 0/.1^ .�C�.d ^ d 0///

D �.1^�/.1C 1^ d ^ d 0/C�Œd ^ .�.d 0 ^ 1C 1^ d 0//

C d ^ .�.d 0 ^ 1C 1^ d 0//.d ^ d 0/�

D �.1^�/Œ1C 1^ d ^ d 0C d ^ d 0 ^ 1C d ^ 1^ d 0� d ^ dd 0 ^ d 0�;

which proves that x� is associative.

That x� has �F W R! F as a two-sided unit is an easy consequence of the fact that the
composition d�F is trivial for a derivation d .

To prove that � 7! �d;d 0 defines a permutation of ProdR.F /, it suffices to note that
�0 7! �0

�d;d 0
is a two-sided inverse. This follows from

(3-3) .�d;d 0/�d;d 0 D
�
�.1C d ^ d 0/

�
.1� d ^ d 0/D �:

We have shown so far that .d; d 0/ 7! �d;d 0 defines a function

� W .Der�R.F /�Der�R.F //
0
! Per.ProdR.F //:

For derivations d; d 0; e; e0 for which jd j D �jd 0j and jej D �je0j, we have that
.�d;d 0/e;e0 D .�e;e0/d;d 0 ie �.e; e0/�.d; d 0/D �.d; d 0/�.e; e0/. Using the two facts
that (i) derivations square to zero and (ii) that F is a quotient ring of R, one can
check that � is bilinear, ie �.d; d 0C d 00/D �.d; d 0/�.d; d 00/ and �.d 0C d 00; d/D

�.d 0; d/�.d 00; d/ for derivations d; d 0; d 00 such that jd 0j D jd 00j D �jd j. Hence �
induces a group homomorphism

x� W .Der�R.F /˝Der�R.F //
0
�! Per.ProdR.F //:

Recall that Der�R.F / carries the topology inherited by the profinite topology on F�
R
.F /.

We now show that x� lifts to a group homomorphism

y� W .Der�R.F / y̋ Der�R.F //
0
�! Per.ProdR.F //:

Let End�R.F ^F / denote .F ^F /�
R
.F ^F /. Consider the homomorphism of monoids

– with respect to addition and composition, respectively –

˛W .Der�R.F /˝Der�R.F //
0
! End�R.F ^F /;

given by ˛.d˝d 0/D 1Cd ^d 0 . Observe that End�R.F ^F / is complete with respect
to the profinite filtration, because the .F ^F /�–module

.F ^F /R� .F ^F /Š .F ^F /R� .F /˝.F^F /� .F ^F /R� .F /
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is free (compare [5, Remark 2.23]). Composition ı in End�R.F ^F / is clearly contin-
uous, and so .End�R.F ^F /; ı/ is a complete topological monoid. It is easily checked
that ˛ is a continuous homomorphism of topological monoids. Moreover, the action of
.Der�R.F /˝Der�R.F //

0 on ProdR.F / induced by x� is compatible with the canonical
right action of End�R.F ^F / on F�

R
.F ^F / via ˛ . Since End�R.F ^F / is complete,

˛ lifts to a continuous homomorphism

y̨W .Der�R.F / y̋ Der�R.F //
0
! End�R.F ^F /:

For the construction of y� , it remains to show that this action restricts to an action
on ProdR.F /. For this, we use the facts that (i) the action of End�R.F ^ F / on
F�

R
.F ^ F / is continuous and (ii) that ProdR.F / is closed in F�

R
.F ^ F /. The

verification of Fact (i) is easy. To prove (ii), we consider

aW F�R.F ^F / �! F�R.F ^F ^F /; a.f /D f .f ^ 1/�f .1^f /;

and the homomorphisms

l; r W F�R.F ^F / �! F�R.F /; l.f /D f .1^ �F /; r.f /D f .�F ^ 1/;

where we implicitly use the equivalences R^F ' F ' F ^R. Observe that

ProdR.F /D ker.a/\ ker.l/\ ker.r/\F0
R.F ^F /� F�R.F ^F /:

Because a; l and r are continuous and because their targets are Hausdorff, their kernels
are closed. Moreover, so is F0

R
.F ^F / and hence ProdR.F /.

It follows that ProdR.F / is complete, as a closed subset of the complete module
F�

R
.F ^F /. This implies that the action of .Der�R.F / y̋ Der�R.F //

0 on F�
R
.F ^F /

restricts to an action on ProdR.F /, and we are done.

4 Classification of products

In this section, we show that the action of bilinear forms on I=I2Œ1� on the set of
products on a regular quotient F DR=I classify the products on F . The main result
is the following theorem.

Theorem 4.1 Let F DR=I be a regular quotient. Then the canonical action of the
group of bilinear forms Bil.I=I2Œ1�/ on the set of products ProdR.F / is free and
transitive.

The strategy for the proof is as follows. On fixing “coordinates”, we first give an explicit
formula for ˇ�, for ˇ 2 Bil.I=I2Œ1�/ and � 2 ProdR.F / (Lemma 4.2). Secondly,
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we give an explicit description of all products on F (Lemma 4.3). With these two
ingredients, we prove Theorem 4.1.

We first fix some notation. Let F DR=I be a regular quotient and let � 2 ProdR.F /

be an arbitrary fixed product on F (such a � always exists – see [9, Corollary 2.10; 5]).
Let .x1;x2; : : :/ be a regular sequence generating I . Then the residue classes xxi 2

V D I=I2Œ1� form a basis, and we let xx_i 2 D.V / denote the dual elements. An
arbitrary bilinear form ˇ 2 Bil.V / can be uniquely written as a (possibly infinite) sum
ˇ D

P
vij xx

_
i ˝ xx

_
j , with vij D ˇ.xxi˝ xxj / 2 F� . Recall that  W Der�R.F /!D.V /

from (2-4) maps the Bockstein operation Qi to xx_i , by definition of Qi .

Now it is easy to check
�Q

iCj6k.1C vij Qi ^Qj /
�
k

is a Cauchy sequence in the com-
plete F�–module End�R.F^F / (compare Section 3). We define

Q
i;j .1Cvij Qi^Qj /

to be its limit.

By definition of the canonical action of Bil.V / on ProdR.F /, we have:

Lemma 4.2 In the notation from above, the product ˇ� is given by

ˇ�D � ı
Y
i;j

.1C vij Qi ^Qj /:

The next lemma describes the set of all products on F . It appears in Angelveit [1,
Theorem 3.9]. We provide a complete proof here. It makes essential use of the existence
of the canonical action of Bil.I=I2Œ1�/ on ProdR.F /, which in turn relies crucially on
the fact proved in [5] that Der�R.F / is independent of the product on F , as a submodule
of F�

R
.F /.

Lemma 4.3 For any product x�2 ProdR.F /, there exist uniquely determined elements
vij 2 F� of degree jvij j D jQi jC jQj j such that

x�D � ı
Y
i;j

.1C vij Qi ^Qj /:

The proof of Lemma 4.3 is postponed to the end of the section. We first prove
Theorem 4.1.

Proof of Theorem 4.1 To prove transitivity, let �; x�2ProdR.F / be arbitrary products.
According to Lemma 4.3, we can write x� as

x�D � ı
Y
.1C vij Qi ^Qj /:

On setting ˇ D
P
vij xx

_
i ˝ xx

_
j , we obtain ˇ�D x�, by Lemma 4.2.

Freeness of the action follows from the fact that the coefficients vij in Lemma 4.3 are
uniquely determined.
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We need some notation for the proof of Lemma 4.3. Let ai 2 FR
� .F / be the image

of the residue class xxi 2 V under the characteristic homomorphism 'W V ! FR
� .F /.

By (2-3), we have .F op/R� .F /Šƒ.a1; a2; : : :/. Under this isomorphism, .F op/�.Qi/

corresponds to the partial derivative @=@ai ; see [5, Remark 4.5]. For a multi-index
I D .i1; : : : ; im/ with i1 < � � �< im , we write jI j for m, QI for Qi1

� � �Qim
and aI

for ai1
^ � � � ^ aim

.

Proof of Lemma 4.3 The Künneth homeomorphism (see [10, Section 2])

�W F�R.F / y̋ F�R.F /
Š
�! F�R.F ^F /

maps
P

xIJ QI ˝QJ to � ı .
P

xIJ QI ^QJ /. Since x� 2 F0
R
.F ^F /, we may

write x�D�ı .
P
wIJ QI ^QJ /, with jwIJ j D jQI jC jQJ j. In particular, wIJ ¤ 0

only for jI jC jJ j even. Since x� has a two sided unit, it follows that w∅J DwI∅ D 0

for all I;J . Hence x� can be written as

x�D � ı

�
1C

X
jI j;jJ j>0

wIJ QI ^QJ

�
D �

�
1C

X
jI j;jJ j>0

wIJ QI ˝QJ

�
:

In a first step, we show that there exist vIJ 2 F� such that

(4-1) 1C
X

jI j;jJ j>0

wIJ QI ^QJ D

Y
jI j;jJ j>0

.1C vIJ QI ^QJ / ;

where the product is taken in the monoid End�R.F ^F /.

If .x1;x2; : : :/ is finite, the sum on the left hand side of (4-1) is of the form

1C

nX
kD1

wIkJk
QIk
^QJk

:

Set ˛k D wIkJk
QIk
^QJk

and observe that ˛2
k
D 0. A tedious computation shows

that there exist coefficients ci1���ik
2 F� such that

(4-2)
Y

kD1;:::;n
16i1<���<ik6n

.1C ci1���ik
˛i1
� � �˛ik

/D 1C

nX
kD1

˛k :

This shows (4-1) for finite sequences .x1;x2; : : :/. The general case follows from this
by passing to limits.
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In a second step, we use the associativity of x� to show that the coefficients vIJ in
(4-1) are zero for jI jC jJ j> 2. We write

x�D � ı
Y
i;j

.1C vij Qi ^Qj / ı
Y

jI jCjJ j>2

.1C vIJ QI ^QJ /

and let ˇ D
P
.�vij / xx

_
i ˝ xx

_
j 2 Bil.V /. From Lemma 4.2, we deduce

ˇx�D � ı
Y

jI jCjJ j>2

.1C vIJ QI ^QJ /:

We set z�D ˇx� 2 ProdR.F / and assume that I D f.I;J / j vIJ ¤ 0g is nonempty. We
will show below that this implies that the two morphisms

(4-3) z��.z��˝ 1/; z��.1˝ z��/W .F
op/R� .F /

˝3
�! .F op/R� .F /

are different, where z�� stands for mF op

zF
. It follows that z� is not associative, which is

a contradiction. Therefore, I is empty, and the statement is proved.

Let .I0;J0/ 2 I such that jI0jC jJ0j is minimal. In the case where jI0j> 1, we set
I0 D .L;M / with jLj; jM j> 1. If jI0j D 1, we decompose J0 in the same way. We
show that the two morphisms of (4-3) don’t agree by evaluating them on aL˝aM˝aJ0

if jI0j> 1 or on aI0
˝ aL˝ aM if jI0j D 1.

As .F op/R� .F /Šƒ.a1; a2; : : :/, the set of elements faI˝aJ˝aK gI;J ;K forms a basis
of the free F�–module .F op/R� .F /

˝3 . By minimality of .I0;J0/, we have jI j> jLj
or jJ j> jM j for any .I;J / 2 I . This shows that

(4-4) F�.QI /˝F�.QJ /.aL˝ aM /D 0

for all .I;J / 2 I . For a; b 2 FR
� .F

op/, let us write a^ b for mF op

F
.a˝ b/. Using

(4-4), we find

z��.z��˝ 1/.aL˝ aM ˝ aJ0
/D z��.��˝ 1/.aL˝ aM ˝ aJ0

/

D z��.aL ^ aM ˝ aJ0
/

D z��.aI0
˝ aJ0

/

D ��.aI0
˝ aJ0

� vI0J0
� 1˝ 1/D a.I0;J0/� vI0J0

� 1:

(The negative sign appears because the elements involved have odd degree.) Similarly,

z��.1˝ z��/.aL˝ aM ˝ aJ0
/D z��.1˝��/.aL˝ aM ˝ aJ0

/

D z��.aL˝ aM ^ aJ0
/

D z��.aL˝ a.M;J0//D ��.aL˝ a.M;J0//D a.I0;J0/:

This shows that the two morphisms in (4-3) are different, as required.
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Uniqueness of the coefficients vij follows from the equality

z��.ai ˝ aj /D ai ^ aj � vij � 1;

which we used in the argument above. This concludes the proof.

5 Transformation rules for the characteristic bilinear form

In this section, we describe how the action of the bilinear forms affects characteristic
bilinear forms and draw some consequences.

Proposition 5.1 Let .F; k; �/ be an admissible pair, where F D R=I is a regular
quotient ring. For a bilinear form ˇ 2 Bil.I=I2Œ1�/, we have

bk
ˇF D bk

F � k�˝ˇ:

Proposition 5.2 Let .F; xF ; 1F / be an admissible pair, where F; xF are regular quo-
tient rings with the same underlying quotient module R=I , endowed with two (possibly)
different products. For ˇ 2 Bil.I=I2Œ1�/, we have

b
ˇ xF
F
D b

xF
F �ˇ

t :

The proof of these two propositions is technical and will be given at the end of this
section. We draw some consequences first.

Corollary 5.3 Let bF be the characteristic bilinear form of a regular quotient ring
F DR=I and let ˇ 2 Bil.I=I2Œ1�/ be a bilinear form. Then the characteristic bilinear
form of ˇF is given by

bˇF D bF � .ˇCˇ
t /:

Proof The equalities of Propositions 5.1 and 5.2 imply that

bˇF D b
ˇF

ˇF
D b

ˇF
F
�ˇ D bF

F �ˇ
t
�ˇ D bF � .ˇCˇ

t /:

Corollary 5.4 The characteristic bilinear form bF of a regular quotient ring F is
symmetric.

Proof Let � denote the product on F DR=I . By [9, Corollary 2.10; 5], there exists
a diagonal product x� on F with respect to some regular sequence .x1;x2; : : :/ gener-
ating I . By Theorem 4.1, there exists ˇ 2 Bil.I=I2Œ1�/ with ˇ xF D F . Corollary 5.3
implies that bF D b xF � .ˇ C ˇ

t /. Now b xF is diagonal with respect to the basis
xx1; xx2; : : : of I=I2Œ1� associated to the sequence .x1;x2; : : :/ [5, Proposition 2.35].
Therefore, bF is the sum of two symmetric bilinear forms and therefore symmetric.
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Corollary 5.5 For a regular quotient ring F with characteristic bilinear form bF ,
we have F op D bF F and bF op D �bF . Therefore, F is commutative if and only if
bF D 0.

Proof As the bilinear forms Bil.I=I2Œ1�/ act transitively on ProdR.F /, there exists
ˇ 2 Bil.I=I2Œ1�/ with F op D ˇF . Proposition 5.1 implies that bF

F op D bF
ˇF
D bF �ˇ .

But bF
F op is trivial by [5, Proposition 2.21] and so ˇ D bF . From Corollary 5.3, we

deduce that bF op D bF � .bF C bt
F
/D�bF , since bF is symmetric.

Remark 5.6 Let .F D R=I; �/ be a regular quotient ring which is diagonal with
respect to some regular sequence .x1;x2; : : :/ generating I . Then bF 2 Bil.I=I2Œ1�/

is diagonal with respect to the basis xx1; xx2; : : :, as we used above. Thus bF can be
written as

P
˛i xx
_
i ˝ xx

_
i , where ˛i 2 F� and where xx_i denotes the dual of xxi . From

Corollary 5.5, we obtain

�op
D bF�D � ı

Y
i

.1C˛i Qi ^Qi/;

where Qi denotes the Bockstein operation associated to xx_i . This generalizes well-
known formulas for P .n/ and K.n/ (see Section 8).

We now proceed to the proofs of Proposition 5.1 and Proposition 5.2.

Observe that it suffices to verify the statements for bilinear forms ˇ of the form
ˇD ˛˝˛0 with ˛; ˛0 2D.I=I2Œ1�/, because an arbitrary bilinear form can be written
as a (possibly infinite) sum of bilinear forms of this type.

We first fix some notation used for the proofs. The proof of each proposition is then
preceded by a lemma.

Let .F; k; �/ be an admissible pair. For the proof of Proposition 5.2, k will be xF
and � D 1F . Let � denote the product on F and � the one on k . For k D xF , we
write x� instead of � , as usual. We let V D I=I2Œ1� and consider ˇD ˛˝˛0 2Bil.V /,
where ˛; ˛0 2D.V /. We let d; d 0 2 Der�R.F / be the derivations corresponding under
 W Der�R.F / Š D.V / to ˛; ˛0 , respectively. By definition of the action of Bil.V /
on ProdR.F /, we have (using notation from Section 3)

(5-1) ˇ�D .˛˝˛0/�D �d;d 0 D �.1C d ^ d 0/:

We write xx; xy for the residue classes of elements x;y 2 I in both V and in k�˝F� V .
Recall that bk

F
is defined as bk

F
.xx ˝ xy/ D ��k�.�/.'.xx/ � '.xy//, where ' is the

characteristic homomorphism 'k
F
W V !kR

� .F / and where a�bDmk
F
.a˝ b/ 2 kR

� .F /

for a; b 2 kR
� .F / given in (2-2).
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Lemma 5.7 Let .F; k; �/ be an admissible pair, where F DR=I is a regular quotient
ring. For ˇ a bilinear form in Bil.I=I2Œ1�/ and x;y 2 I , we have

mk
ˇF .'.xx/˝'.xy//D '.xx/ �'.xy/���.ˇ.xx˝ xy// � 1:

Proof Let ˇ D ˛˝˛0 with ˛; ˛0 2D.V /. Recall the definition of mk
ˇF

:

(5-2) mk
ˇF .'.xx/˝'.xy//D .� ^ˇ�/�.1^ � ^ 1/��.'.xx/˝'.xy//;

where �W kR
� .F /˝kR

� .F /! .k^F ^k^F /� is the canonical map and � the switch
map � W F ^ k! k ^F . From the definition of ˇ�, we deduce that

mk
ˇF .'.xx/˝'.xy//

D .� ^�C � ^ .� ı d ^ d 0//�.1^ � ^ 1/��.'.xx/˝'.xy//

D '.xx/ �'.xy/� .� ^�/�.1^ � ^ 1/��
�
.1^ d/�.'.xx//˝ .1^ d 0/�.'.xy//

�
D '.xx/ �'.xy/� .� ^�/�.1^ � ^ 1/��

�
kR
� .d/.'.xx//˝ kR

� .d
0/.'.xy//

�
:

By [5, Lemma 4.11], we have that kR
� .d/.'.xx//D˛.xx/�1 and kR

� .d
0/.'.xy//D˛0.xy/�1,

which implies the statement.

Proof of Proposition 5.1 Let ˇ D ˛˝˛0 , ˛; ˛0 2D.V /. Lemma 5.7 implies

bk
ˇF .xx˝ xy/D ��

�
mk
ˇF .'.xx/˝'.xy//

�
D ��

�
'.xx/ �'.xy/�˛.xx/˛0.xy/ � 1

�
D bk

F .xx˝ xy/�˛.xx/˛
0.xy/:

Lemma 5.8 For F; xF as in Proposition 5.2 and ˇ 2 Bil.I=I2Œ1�/, we have

m
ˇ xF
F
.'.xx/˝'.xy//D '.xx/ �'.xy/�ˇ.xx˝ xy/ � 1:

Proof Let ˇ D ˛˝˛0 with ˛; ˛0 2D.V /. By definition of ˇx�, we have

m
ˇ xF
F
.'.xx/˝'.xy//

D .x�^�C .x� ı d ^ d 0/^�/�.1^ � ^ 1/��.'.xx/˝'.xy//

D '.xx/ �'.xy/C .x�^�/�.1^ � ^ 1/��
�
.d ^ 1/�˝ .d

0
^ 1/�.'.xx/˝'.xy//

�
D '.xx/ �'.xy/� .x�^�/�.1^ � ^ 1/��

�
.d ^ 1/�.'.xx//˝ .d

0
^ 1/�.'.xy//

�
:

It remains to identify the second summand of the last equality above. By definition, we
have .1^ d/� D FR

� .d/, and furthermore

.d ^ 1/� D ��.1^ d/��� D ��F
R
� .d/��:
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From [5, Proposition 3.6], we obtain ��'.xx/D�'.xx/. By [5, Lemma 4.11], we have
FR
� .d/.'.xx//D ˛.xx/ � 1. This yields .d ^ 1/�.'.xx//D�˛.xx/ � 1. Analogously, we

obtain .d 0 ^ 1/�.'.xy//D�˛
0.xy/ � 1, and we are done.

Proof of Proposition 5.2 For ˇ D ˛˝˛0 with ˛; ˛0 2D.V /, we compute

b
ˇ xF
F
.xx˝ xy/D .ˇx�/�.m

ˇ xF
F
.'.xx/˝'.xy///D .ˇx�/�.'.xx/ �'.xy/�˛.xx/˛

0.xy/ � 1/

D .x�C x�.d ^ d 0//�.'.xx/ �'.xy//�˛.xx/˛
0.xy/ � 1/

D bx��.xx˝ xy/�˛.xx/˛
0.xy/C .x�.d ^ d 0//�.'.xx/ �'.xy///:

The first equality holds by definition of the characteristic bilinear form, the second
by Lemma 5.7, the third by definition of ˇx� and the fourth because d and d 0 are
derivations and so are trivial on 1.

Since ˛.xx/˛0.xy/D ˇ.xx˝ xy/, it remains to show that

.�.d ^ d 0//�.'.xx/ �'.xy//D ˇ.xx˝ xy/�ˇ
t .xx˝ xy/:

To prove this, we write d ^ d 0 as .d ^ 1/.1^ d 0/. Using computations from the proof
of Lemma 5.8 and the fact that FR

� .d/ and FR
� .d

0/ are derivations with respect to m
xF
F

(see [5, Lemma 4.3]), we obtain

.�.d ^ d 0//�.'.xx/ �'.xy//D x��.d ^ 1/�.1^ d 0/�.'.xx/ �'.xy//

D x��.d ^ 1/�.˛
0.xx/'.xy/�'.xx/˛0.xy//

D x��.�˛
0.xx/˛.xy/ � 1C˛.xx/˛0.xy/ � 1/

D .˛˝˛0/.xx˝ xy � xy˝ xx/D ˇ.xx˝ xy/�ˇt .xx˝ xy/;

and the proposition is proven.

6 Maps of quotient ring spectra

In this section, we determine which maps � W F !G between regular quotient rings
are multiplicative. We start with a definition.

Definition 6.1 An admissible pair .F;G; �/ with F DR=I and G DR=J is called
smooth if the canonical homomorphism ��W G� ˝F� I=I2Œ1� ! J=J 2Œ1� is split
injective, ie �� is injective and its image in J=J 2Œ1� is a direct summand. If there is
no risk of confusion, we say that I � J is smooth.

Theorem 6.2 Let .F;G; �/ be an admissible pair for which F DR=I and GDR=J

are regular quotient rings and which is smooth. Then � is multiplicative if and only if
G�˝ bF D bG

F
D ��.bG/.
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The strategy for the proof is as follows. We first prove the result in the special case
where F is diagonal. As in this case the smoothness hypothesis is unnecessary, we
formulate a separate statement (Proposition 6.3). After assembling some auxiliary
results (Lemma 6.5 and Lemma 6.6), we prove Theorem 6.2 by reducing it to the case
where F is diagonal.

Proposition 6.3 Let .F;G; �/ be an admissible pair for which F DR=I and G D

R=J are regular quotient rings. Assume that F is diagonal. Then � is multiplicative
if and only if G�˝ bF D bG

F
D ��.bG/.

Proof If � is multiplicative, .F;G; �/ is a multiplicative admissible pair by definition
and the assertion follows from [5, Proposition 2.20].

To prove the converse, fix a regular sequence .x1;x2; : : :/ generating I , for which
there are products �k on the R=xk such that the product �F on F is the smash
product of the �k . Let �k stand for the composition �jk W R=xk ! F !G , where
jk W R=xk ! F is the canonical map.

By [9, Proposition 4.8], the map � W F!G is multiplicative if and only if (i) all the �k

are multiplicative and (ii) �k commutes with �l for k ¤ l .

In a first step, we show that the �k are multiplicative, ie that they satisfy �G.�k^�k/D

�k�k , where �G is the product on G . Because xk 2 I � J , the G�–module
GR
� .R=xk/ is free on 1 and ak D 'G

R=xk
.xxk/, where 'G

R=xk
is the characteristic

homomorphism of the admissible pair .R=xk ;G; �k/. Therefore, the Kronecker
duality homomorphism (see eg [5, Proposition 2.25])

d W G�R.R=xk ^R=xk/ �! Hom�G�.G
R
� .R=xk ^R=xk/;G�/

is an isomorphism. To relieve the notation, we identify GR
� .R=xk ^R=xk/ with

GR
� .R=xk/˝GR

� .R=xk/ via the Künneth isomorphism with respect to �G in the
following.

To show that �k is multiplicative, we need to verify that d.�G.�k^�k// and d.�k�k/

take the same values on the basis elements 1˝ 1, 1˝ ak , ak ˝ 1 and ak ˝ ak of
GR
� .R=xk/˝GR

� .R=xk/. By naturality of the characteristic homomorphism, we have
that GR

� .�k/.ak/ D 'G.��.xxk// 2 GR
� .G/, where �� denotes the homomorphism

��W G� ˝F� I=I2Œ1� ! J=J 2Œ1� induced by � . Writing a0
k

for this element and
suppressing Künneth isomorphisms from the notation, we compute

d.�G.�k ^�k//.ak ˝ ak/D .�G/�G
R
� .�G/.G

R
� .�k/˝GR

� .�k//.ak ˝ ak/

D .�G/�G
R
� .�G/.a

0
k ˝ a0k/

D bG.��.xxk/˝��.xxk//D �
�.bG/.xxk ˝ xxk/:
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On the other hand, denoting both the residue classes of xk in G�˝R�=xk
.xk/=.xk/

2Œ1�

and in G�˝F� I=I2Œ1� by xxk , we have

d.�k�k/.ak˝ak/D .�G/�G
R
� .�k�k/.ak˝ak/D bG

R=xk
.xxk˝xxk/D bG

F .xxk˝xxk/:

For the last equality, we have used that jk W R=xk ! F is multiplicative. By the
hypothesis, we have ��.bG/D bG

F
, which shows that

d.�G.�k ^�k//.ak ˝ ak/D d.�k�k/.ak ˝ ak/:

Similar, but simpler calculations show that d.�G.�k ^�k// and d.�k�k/ agree on
the other basis elements 1˝ 1; 1˝ ak and ak ˝ 1 as well.

In a second step, we prove that �k and �l commute for k ¤ l , in the sense that
�G.�k ^�l/D �

op
G
.�k ^�l/. The relevant Kronecker duality morphism

d W G�R.R=xk ^R=xl/ �! Hom�G�.G
R
� .R=xk ^R=xl/;G�/

is again an isomorphism. We use the notation and conventions from above and evaluate
d.�

op
G
.�k ^�l// and d.�G.�k ^�l// on ak ˝ al . We first compute

d.�
op
G
.�k ^�l//.ak ˝ al/D .�G/�G

R
� .�

op
G
/.GR
� .�k/˝GR

� .�l//.ak ˝ al/

D .�G/�G
R
� .�

op
G
/.a0k ˝ a0l/D .�G/�.a

0
k � a0l/;

where � denotes the product on GR
� .G

op/. Now .�G/�W G
R
� .G

op/!G� is multiplica-
tive by [5, Corollary 3.3]. Together with Godd D 0, this implies that .�G/�.ak �al/D

.�G/�.ak/ � .�G/�.al/D 0. On the other hand, we have

d.�G.�k ^�l//.ak ˝ al/D .�G/�G
R
� .�G/.a

0
k ˝ a0l/

D .�G/�.a
0
k � a
0
l/

D bG.x��.xxk/˝ x��.xxl//D �
�.bG/.xxk ˝ xxl/;

where � denotes the product of GR
� .G/. Since ��.bG/ D G� ˝ bF by hypothesis,

since bF is diagonal with respect to the basis xx1; xx2; : : : and since k ¤ l , we have
��.bG/.xxk ˝ xxl/D 0.

Leaving the analogous, simpler computations on 1˝ 1, 1˝ al , ak ˝ 1 again to the
reader, we conclude that d.�

op
G
.�k ^ �l// D d.�G.�k ^ �l//. Hence �k and �l

commute with each other, which concludes the proof.

By [5, Proposition 2.35], the characteristic bilinear form of a diagonal regular quotient
ring is diagonal. We now show that the converse is true as well:
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Proposition 6.4 Let F D R=I be a regular quotient ring and .x1;x2; : : :/ a reg-
ular sequence generating the ideal I . Then F is diagonal with respect to the se-
quence .x1;x2; : : :/ if and only if bF is diagonal with respect to the basis xx1; xx2; : : :

of I=I2Œ1�.

Proof The necessity of the condition was shown in [5], as noted above. For sufficiency,
assume that bF is diagonal, and let �k be a product on R=xk such that the canonical
map jk W R=xk ! F is multiplicative, for all k . The proof of Proposition 6.3 above
shows that jk and jl commute if k ¤ l , since bF is diagonal with respect to the xxi .
From [9, Proposition 4.8], we deduce that the product on F is the smash ring product
of the �k .

Lemma 6.5 Let .F;G; �/ be an admissible pair satisfying the conditions of Theorem
6.2. Assume that G�˝ bF D �

�.bG/.

(i) There exist products x� on F and x� on G such that � W xF ! xG is multiplicative.

(ii) For any d 2 Der�R.G/ there exists ı 2 Der�R.F / such that d� D �ı .

Proof (i) Let ˇ2Bil.I=I2Œ1�/ be defined by ˇ.xxi˝xxj /D0 for i > j , ˇ.xxi˝xxj /D

bF .xxi ˝ xxj / for i < j and let zF D ˇF . By Corollary 5.3, the characteristic bilinear
form b zF of zF is given by b zF D bF � .ˇCˇ

t / and is therefore diagonal with respect
to the xxi , as bF is symmetric by Corollary 5.4.

Since .F;G; �/ is smooth, the homomorphism

��W Bil.J=J 2Œ1�/! Bil.G�˝F� I=I2Œ1�/

is surjective. Choose 
 2 Bil.J=J 2Œ1�/ with ��.
 /DG�˝ˇ and set xG D 
G . By
hypothesis and by Corollary 5.3, it follows that G�˝ b zF D �

�.b xG/.

Let �k D �jk W R=xk !
xG , with jk the canonical map. The proof of Proposition 6.3

implies that �k and �l commute for k ¤ l . Choose a product �k on R=xk such that
�k is multiplicative, for each k , and let xF be the induced smash ring spectrum. By [9,
Proposition 4.8], � W xF ! xG is then multiplicative.

(ii) Suppose first that � is multiplicative. Then we have the commutative diagram

Der�R.G/

 Š

��

�ı� // Der�R.F;G/

 Š

��

Der�R.F /

 Š

��

�ı�oo

Hom�G�.J=J
2Œ1�;G�/

�� // Hom�F�.I=I
2Œ1�;G�/ Hom�F�.I=I

2Œ1�;F�/
��oo

where  is as in (2-4). The right bottom morphism �� is surjective, which implies the
statement in this particular case.
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In the general case, (i) implies that there exist products x� on F and x� on G such that
� W xF! xG is multiplicative. By [5, Lemma 4.6], d is a derivation for any product on G ,
in particular d 2 Der�R. xG/. By what we have shown above, there exists ı 2 Der�R. xF /
such that d� D �ı . By [5, Lemma 4.6] again, we deduce that ı 2 Der�R.F /, which
proves (ii).

The following two statements are generalizations of Lemma 5.8 and Proposition 5.2,
respectively, for the case where the map of the admissible pair is not necessarily the
identity.

Lemma 6.6 For an admissible pair .F;G; �/ satisfying the conditions of Theorem 6.2
and 
 2 Bil.J=J 2Œ1�/, we have b


G
F
D bG

F
���.
 t /.

Proof Let ' D 'G
F

be the characteristic homomorphism of the admissible pair
.F;G; �/. In a first step, we show that for x;y 2 I , we have

(6-1) m

G
F
.'.xx/˝'.xy//DmG

F .'.xx/˝'.xy//��
�.
 /.xx˝ xy/ � 1:

Let � be the product on F and � the one on G , and let us write a �b for mG
F
.a˝ b/ 2

GR
� .F /, where a; b 2GR

� .F /. Clearly, it suffices to prove (6-1) for the case where 

is of the form 
 D ˛˝˛0 , with ˛; ˛0 2D.J=J 2Œ1�/. Let d; d 0 2Der�R.G/ correspond
to ˛; ˛0 , respectively, under the isomorphism  W Der�R.G/!D.J=J 2Œ1�/. We have

�D �C�.d ^d 0/. Recall that for x 2 I , we denote both the residue classes of x 2 I

in I=I2Œ1� and in G�˝F� I=I2Œ1� by xx . Exactly as in the proof of Lemma 5.8 we
identify m


G
F
.'.xx/˝'.xy// for x;y 2 I as

'.xx/ �'.xy/� .�^ �/�.1^ � ^ 1/��
�
.d ^ 1/�.'.xx//˝ .d

0
^ 1/�.'.xy//

�
:

To determine .d ^ 1/�.'.xx//, we proceed as follows. By Lemma 6.5(ii), there exists
ı 2 Der�R.F / such that �ı D d� . By commutativity of the diagram

FR
� .F /

.�^1/�
��

.ı^1/� // FR
� .F /

.�^1/�
��

GR
� .F /

.d^1/�// GR
� .F /;

and using similar arguments as in the proof of Lemma 5.8, we deduce

.d ^ 1/�.'.xx//D .d ^ 1/�.'
G
F .xx//D .� ^ 1/�.ı^ 1/�.'F .xx//

D .� ^ 1/���.1^ ı/��.'F .xx//D�.� ^ 1/�. .ı/.xx/ � 1/

D���. .ı/.xx// � 1D��
�. .d//.xx/ � 1D���.˛/.xx/ � 1:
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Similarly, we obtain .d 0 ^ 1/�.'.xy//D��
�.˛0/.xy/ � 1. It follows that

m

G
F
.'.xx/˝'.xy//D '.xx/ �'.xy/���.˛/.xx/��.˛0/.xy/ � 1;

which is (6-1) for 
 D ˛˝˛0 .

We now proceed to the proof of the lemma itself. Again, we assume 
 D ˛˝˛0 , with
˛; ˛0 2D.J=J 2Œ1�/, and let d D .˛/, d 0D .˛0/ 2Der�R.G/. Using (6-1), we start
the computation of b


G
F
.xx˝ xy/ for x;y 2 I as in the proof of Proposition 5.2 and find

b

G
F
.xx˝ xy/D bG

F .xx˝ xy/��
�.
 /.xx˝ xy/C .�.d ^ d 0/.1^�//�.'.xx/ �'.xy//:

We now identify the last summand of the sum on the right hand side. Since d 0 2

Der�R.G/ is a derivation, the homomorphism

.1^ d 0/� DGR
� .d

0/W GR
� .G/!GR

� .G/

is a derivation, too [5, Lemma 4.3]. Using [5, Lemma 4.11], and writing � for mG
G

(as
well as for mG

F
), we compute

.�.d ^ d 0/.1^�//�.'.xx/ �'.xy//

D ��.d ^ 1/�.1^ d 0/�.'G.xx/ �'G.xy//

D ��.d ^ 1/�.G
R
� .d

0/.'G.xx// �'G.xy/�'G.xx/ �G
R
� .d

0/.'G.xy///

D ��.d ^ 1/�.�
�.˛0/.xx/'G.xy/�'G.xx/�

�.˛0/.xy//:

In the proof of (6-1) above, we showed that �.d ^ 1/�.'.xx//D��
�.˛/.xx/ � 1. Using

the analogous expression for .d ^ 1/�.'.xy//, we find that

b
ˇG
F
.xx˝ xy/D bG

F .xx˝ xy/��
�.˛0/.xx/��.˛/.xy/:

This finishes the proof of the lemma.

Proof of Theorem 6.2 If � is multiplicative, then .F;G; �/ is a multiplicative
admissible pair and the statement follows from [5, Proposition 2.20].

Conversely, let us assume that bG
F
D ��.bG/DG�˝ bF . Let � be the product on F

and � the one on G . Let .x1;x2; : : :/ be a regular sequence generating the ideal I .
Let x� be a product on F which is diagonal with respect to .x1;x2; : : :/ (see eg [5,
Corollary 2.10]) and let ˇ 2 Bil.I=I2Œ1�/ be such that xF D ˇF . Write ˇ as a sumP

i "i˝"
0
i with "i ; "

0
i 2DF�.I=I

2Œ1�/. Because .F;G; �/ is smooth, the composition

��W DG�.J=J
2Œ1�/!DG�.G�˝ I=I2Œ1�/ŠG�˝F� DF�.I=I

2Œ1�/

is surjective. Choose ˛i ; ˛
0
i 2DG�.J=J

2Œ1�/ such that ��.˛i/D "i and ��.˛0i/D "
0
i

and define 
 D
P
˛i ˝˛

0
i . Observe that ��.
 /DG�˝ˇ .
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Now set xG D 
G . Using Proposition 5.1 and Lemma 6.6, we compute

b
xG
xF
D b


G

ˇF
D bG

F ��
�.
 /t �G�˝ˇ D �

�.bG � 

t
� 
 /D ��.b xG/:

Similarly, we find
b
xG
xF
DG�˝ b xF ;

and so
G�˝ b xF D b

xG
xF
D ��.b xG/:

Since xF is diagonal, this implies by Proposition 6.3 that � W xF ! xG is multiplicative.

Let di ; d
0
i 2 Der�R.G/ be the derivations corresponding to ˛i ; ˛

0
i under the isomor-

phism  W Der�R.G/ Š DG�.J=J
2Œ1�/, and ıi ; ı

0
i 2 Der�R.F / corresponding under

 W Der�R.F /ŠDF�.I=I
2Œ1�/ to "i ; "

0
i . By naturality of  , we have di� D �ıi and

d 0i� D �ı
0
i . From the definition of the canonical action of the group of bilinear forms

on the set of products, we have that


x� ı .� ^�/D x� ı
Y

i

.1C di ^ d 0i/.� ^�/

D x� ı .� ^�/ ı
Y

i

.1C ıi ^ ı
0
i/D � x� ı

Y
i

.1C ıi ^ ı
0
i/D � ıˇx�:

Therefore � W F D�ˇ xF !�
 xG DG is multiplicative. This completes the proof of
the theorem.

7 Classification of products up to equivalence

In this section, we classify the products on regular quotients up to equivalence. More-
over, we study commutative products and consider the question of diagonalizability of
products on regular quotients.

Let F D R=I be a regular quotient ring with product �. If x� is a second product
on F , we write xF for F , endowed with x�, as before. If ˇ 2 Bil.I=I2Œ1�/ is such that
x�D ˇ�, we alternatively write xF D ˇF .

Recall the following definition:

Definition 7.1 Two products � and x� on F are equivalent (denoted � � x�) if
there is a multiplicative isomorphism f W F ! xF in DR . Such a map f is called a
multiplicative equivalence.

Together with Theorem 4.1, the following result gives a classification for products up
to equivalence:
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Theorem 7.2 Let F DR=I be a regular quotient ring and ˇ 2Bil.I=I2Œ1�/ a bilinear
form. Then F and ˇF are equivalent if and only if ˇ is alternating. In this case, there
is a canonical multiplicative equivalence F ! ˇF .

Let F DR=I be a regular quotient ring. Consider the map

� W .Der�R.F /�Der�R.F //
0
! F0

R.F /

defined by �.d; d 0/D 1Cdd 0 . Since F�
R
.F /Š yƒ.Der�R.F;F // (by (2-5)), the image

of � is contained in the center of the monoid F�
R
.F /, the product on F�

R
.F / being

the composition. Clearly, � is bilinear. Since F�
R
.F / is complete with respect to the

profinite topology, � induces (see (3-1))

‚W Bil.I=I2Œ1�/Š .Der�R.F / y̋ Der�R.F //
0
�! F0

R.F /:

The next lemma is a crucial step in the proof of Theorem 7.2.

Lemma 7.3 Let F D R=I be a regular quotient ring and ˇ 2 Alt.I=I2Œ1�/. Then
‚.ˇ/ is a multiplicative equivalence ‚.ˇ/W F ! ˇF .

Proof It suffices to prove the lemma for bilinear forms ˇ of the form ˇD˛˝˛0�˛0˝˛

with ˛; ˛0 2D.I=I2Œ1�/, because an arbitrary alternating bilinear form can be written
as a sum of such elements. Let d; d 0 2 Der�R.F / correspond to ˛; ˛0 under the
isomorphism  W Der�R.F /ŠD.I=I2Œ1�/ (2-4). Denoting by � the product on F , we
then have ˇ�D �.1Cd ^d 0/.1�d 0^d/. In order to simplify the notation, we write
x� for ˇ�.

Since derivations anticommute, the map f D 1C dd 0 is an equivalence, with inverse
1� dd 0 . We have to show that f W F ! xF is multiplicative, that is, f�D x�.f ^f /.
For this, we first compute

f�D .1C dd 0/�D �
�
1C .d ^ 1C 1^ d/.d 0 ^ 1C 1^ d 0/

�
D �

�
1C dd 0 ^ 1C d ^ d 0� d 0 ^ d C 1^ dd 0

�
:

On the other hand, we find

x�.f ^f /D �.1C d ^ d 0/.1� d 0 ^ d/.1C dd 0 ^ 1C 1^ dd 0C dd 0 ^ dd 0/

D �.1C dd 0 ^ 1C 1^ dd 0C dd 0 ^ dd 0� d 0 ^ d C d ^ d 0C dd 0 ^ d 0d/:

Since dd 0 D�d 0d , the lemma is proven.

Proof of Theorem 7.2 We fix a regular sequence .x1;x2; : : :/ generating I . The
residue classes xx1; xx2; : : : form a basis of V D I=I2Œ1�, and we denote by xx_

1
; xx_

2
; : : :
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the elements dual to the xxi . The Bockstein operations Qi are defined as QiD 
�1.xx_i /,

where  is the isomorphism  W Der�R.F /!D.V /.

Assume first that ˇ is alternating. Then it can be written as ˇ D
P
vij xx

_
i ˝ xx

_
j with

vii D 0 and vij D�vji for i ¤ j . Thus, ˇ� can be expressed as (see Lemma 4.2)

(7-1) ˇ�D �
Y
i<j

�
.1C vij Qi ^Qj /.1� vij Qj ^Qi/

�
:

If the product in (7-1) is finite, the map f D
Q

i<j .1C vij QiQj / is a multiplicative
homotopy equivalence f W F ! ˇF by Lemma 7.3. If the product in (7-1) is infinite,
the Cauchy sequence of multiplicative equivalences

�Q
i<j ; iCj6k.1C vij QiQj /

�
k

converges to one from F to ˇF .

Suppose now that F and xF D ˇF are equivalent via a multiplicative equivalence
� W F ! xF . Since both ��W F�! xF� and the homomorphism x��W xF�˝ I=I2Œ1�Š

I=I2Œ1�! I=I2Œ1� induced by �� are (equivalent to) the identities, naturality of the
characteristic bilinear form and the commutative diagram

F

�

��

1F // F

�

��
xF

1 xF // xF

show that bF D b xF . Corollary 5.3 implies that b xF D bF � .ˇCˇ
t /. It follows that ˇ

is antisymmetric. Hence it remains to check that ˇ.xxi ˝ xxi/D 0 for all i in order to
prove that ˇ is alternating.

Choose a product on R=xi such that the natural map ji W R=xi! F is multiplicative.
Then both .R=xi ;F; ji/ and .R=xi ; xF ; �ji/ are multiplicative admissible pairs, and
[5, Proposition 2.21] implies that

bF
.R=xi /op D 0D b

xF
.R=xi /op :

Since .xi/ � I is smooth, Lemma 6.6 applies. On setting bi D bR=xi
and recalling

that .R=xi/
op D biR=xi (Corollary 5.5), we obtain

0D b
xF
.R=xi /op D b

ˇF

bi R=xi
D b

ˇF

R=xi
�F�˝ bi D bF

R=xi
�F�˝ bi � j �i .ˇ

t /

D bF
bi R=xi

C j �i .ˇ/

D bF
.R=xi /op C j �i .ˇ/D j �i .ˇ/:

Therefore 0 D j �i .ˇ/.xxi ˝ xxi/ D ˇ.xxi ˝ xxi/, where xxi again stands for the residue
class of xi in either .xi/=.xi/

2Œ1� or I=I2Œ1�. Thus ˇ is alternating, and the theorem
is proven.
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Remark 7.4 Theorem 7.2 states that Alt.I=I2Œ1�/ acts freely and transitively on the
equivalence class of any product on F . Therefore, the (additive) group of quadratic
forms QF.I=I2Œ1�/ Š Bil.I=I2Œ1�/=Alt.I=I2Œ1�/ acts freely and transitively on the
set of equivalence classes of products on F .

Corollary 7.5 Let � and x� be two products on a regular quotient F .

(i) If F and xF are equivalent then bF D b xF .

(ii) If F� is 2–torsion-free, then F and xF are (canonically) equivalent if and only if
bF D b xF if and only if qF D q xF .

Proof (i) This has been shown in the proof of Theorem 7.2.

(ii) Suppose that bF D b xF . Let ˇ 2 Bil.I=I2Œ1�/ be the bilinear form which satisfies
ˇF D xF (Theorem 4.1). As in the proof of Theorem 7.2, we deduce that ˇt D �ˇ .
As F� is 2–torsion-free, this means that ˇ is alternating. Now Theorem 7.2 implies
that F and ˇF D xF are equivalent. The last implication is clear.

Remark 7.6 If F� has 2–torsion, there may exist nonequivalent products �; x� 2
ProdR.F / with bF D b xF ; see for instance Proposition 8.7.

Remark 7.7 Let F DR=I be a regular quotient ring. We may interpret the character-
istic bilinear form as a map bW ProdR.F /!Bil.I=I2Œ1�/. By Corollary 5.4, the image
of b is contained in Sym.I=I2Œ1�/ � Bil.I=I2Œ1�/, and by Corollary 7.5, b factors
through the set of equivalence classes of products on F :

xbW ProdR.F /=��! Sym.I=I2Œ1�/:

From Corollary 7.5 we deduce that xb is injective if F� is 2–torsion-free. Moreover,
we easily check that xb is surjective if 2 2 F� is invertible.

We now turn to a discussion of commutative products on a regular quotient F . We
prove that if 2 2 F� is invertible, there are many commutative products in general
(Proposition 7.8), which, however, are all equivalent to each other (Corollary 7.10).

Strickland proves [9, Theorem 2.6] that F� is strongly realizable [9, Definition 2.1] if
2 2 F� is invertible. In particular, this shows that F admits a commutative product.
Because F� is a quotient of R� , any commutative product on F which is equivalent
to a strong realization is itself a strong realization. As a consequence, any commutative
product turns F into a strong realization of F� .
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Proposition 7.8 Let F DR=I be a regular quotient of R.

(i) Suppose that F admits a commutative product. Then Asym.I=I2Œ1�/ acts freely
and transitively on the set of all commutative products.

(ii) If 2 is invertible in F� , there exists a commutative product on F .

Proof (i) Endow F with a commutative product. For a bilinear form ˇ2Bil.I=I2Œ1�/,
Corollaries 5.3 and 5.5 imply that ˇF is commutative if and only if ˇ2Asym.I=I2Œ1�/.
Now the statement follows from Theorem 4.1.

(ii) Let � be an arbitrary product on F (see eg [5, Corollary 2.10]) and let ˇD 1
2

bF .
Then Corollary 5.3 implies that

bˇF D bF � .
1
2

bF C
1
2

bt
F /D 0;

since bF is symmetric. Therefore ˇF is commutative, by Corollary 5.5.

Remark 7.9 Proposition 7.8 is a generalization of [9, Corollary 3.12], which treats the
case F DR=x . Note that in this situation, Asym.I=I2Œ1�/ is the group of 2–torsion
elements in F2jxjC2 .

Using Theorem 7.2, we deduce the following corollary.

Corollary 7.10 Let F DR=I be a regular quotient of R.

(i) If F admits a commutative product, then the group Asym.I=I2Œ1�/=Alt.I=I2Œ1�/

acts freely and transitively on the set of equivalence classes of commutative
products on F .

(ii) If F� has no 2–torsion, then there exists at most one commutative product up to
canonical equivalence.

(iii) If 2 is invertible in F� , there exists a unique commutative product up to canonical
equivalence.

Remark 7.11 If F� has 2–torsion, there may not exist any commutative product
on F . This is well-known; see eg Proposition 8.7.

For regular quotients whose coefficient ring is 2–torsion, we have the following result.

Proposition 7.12 Let F DR=I be a regular quotient such that 2 �F�D 0. Then there
exists a commutative product on F if and only if F admits a product whose charac-
teristic bilinear form is alternating. If this holds, then b.ProdR.F // D Alt.I=I2Œ1�/,
where bW ProdR.F /! Sym.I=I2Œ1�/ is the map from Remark 7.7.
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Proof Assume F is endowed with a commutative product. For any ˇ 2 Bil.I=I2Œ1�/,
Corollary 5.3 implies that bˇF D bF C ˇ C ˇ

t . Hence for any xx 2 I=I2Œ1� we
have bˇF .xx˝ xx/ D bF .xx˝ xx/C 2ˇ.xx˝ xx/ D 0 since bF D 0. As a consequence
bˇF 2 Alt.I=I2Œ1�/ and thus b.ProdR.F //� Alt.I=I2Œ1�/.

Conversely, let F be endowed with a product such that bF 2 Alt.I=I2Œ1�/. Choose
a regular sequence .x1;x2; : : :/ generating the ideal I . Define ˇ 2 Bil.I=I2Œ1�/

by ˇ.xxi ˝ xxj / D 0 for i 6 j and ˇ.xxi ˝ xxj / D bF .xxi ˝ xxj / for i > j . Then
bˇF D bFCˇCˇ

t is diagonal with respect to the basis consisting of xx1; xx2; : : :. Since
bF is alternating, this implies that bˇF .xxi ˝ xxi/D bF .xxi ˝ xxi/D 0 and hence that
bˇF D 0. From Corollary 5.5, it follows that ˇF is commutative.

For the remaining statement, let F be endowed with a commutative product and let
ˇ 2 Alt.I=I2Œ1�/ be any alternating bilinear form. With the notation from above, we
define 
 2Bil.I=I2Œ1�/ by 
 .xxi˝xxj /D 0 for i 6 j and 
 .xxi˝xxj /Dˇ.xxi˝xxj / for
i > j . Then the characteristic bilinear form of 
F satisfies b
F D bF C 
 C 


t D ˇ ,
and the proof is complete.

We close this section with a discussion of diagonalizability of products. Recall [5,
Definition 2.9] that a regular quotient ring F is diagonalizable if it is equivalent to a
diagonal regular quotient ring.

Recall that the maximal ideal of a regular local ring of dimension n <1 is always
generated by a regular sequence of length n [8, Chapter IV].

Proposition 7.13 Assume that R� is a regular local ring of dimension n with maximal
ideal I whose residue field R�=I is of characteristic p > 0. Let F DR=I .

(i) If p is zero or an odd prime, then F is diagonalizable.

(ii) If p D 2, then:
(a) If bF 62 Alt.I=I2Œ1�/, F is diagonalizable.
(b) If bF 2 Alt.I=I2Œ1�/ and bF ¤ 0, F is not diagonalizable.
(c) If bF D 0, F is diagonalizable.

Proof Suppose first that (i) p is zero or odd or that (ii) pD 2 and bF 62Alt.I=I2Œ1�/.
Then [3, Chapter IX, Section 6, Theorem 1] implies that there exists a basis B con-
sisting of elements b1; : : : ; bn of I=I2Œ1� such that the matrix of bF with respect
to B is diagonal. By [8, Chapter IV, Proposition 22], there exists a regular sequence
.y1; : : : ;yn/ generating I such that bi D xyi 2 I=I2Œ1� for all i . We then conclude
with Proposition 6.4.
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Now suppose that p D 2 and 0 ¤ bF 2 Alt.I=I2Œ1�/. For any basis B consisting
of elements b1; : : : ; bn of I=I2Œ1�, we have bF .bi ˝ bi/ D 0 for all i . Therefore,
bF is not diagonalizable, since bF ¤ 0. Hence, by Proposition 6.4 again, F is not
diagonalizable.

For the remaining case, pD 2 and bF D 0, the statement follows from Proposition 6.4.
Alternatively, we may observe that F is commutative (Corollary 5.5) and therefore
diagonalizable [5, Corollary 2.12].

8 Examples

In this section, we present some applications of our results.

We first collect some facts concerning complex cobordism. Let MU be the commu-
tative S–algebra associated to complex cobordism (see [4]). Recall that there is an
isomorphism

MU� Š ZŒx1;x2; : : :�; jxi j D 2i:

Fix a prime number p and recall from [9] that wk 2MU2.pk�1/ denotes the bordism
class of a smooth hypersurface Wpk of degree p in CPpk

. Let Jn�MU� be the ideal
.w0; : : : ; wn�1/, where w0 D p . The following statement is an important ingredient
for our examples. It is a consequence of [9, Section 7; 5, Proposition 2.27].

Proposition 8.1 Let pD 2. There is a product on F DMU=wk with bF . xwk˝ xwk/�

wkC1 mod Jk for k > 0.

8.1 BP–theory

We fix a prime number p . The Brown–Peterson spectrum BP can be described
as a regular quotient BP D MU.p/=I of the p–localization MU.p/ of MU , where
I � .MU.p//� is the ideal generated by the regular sequence xi ; i ¤ pk � 1; k > 0

(see [4; 9]). The coefficient ring is given by

BP� Š Z.p/Œv1; v2; : : :�; jvi j D 2.pi
� 1/;

where we choose the vi ’s to be Hazewinkel’s generators (see [9]).

Remark 8.2 Since BP� is p–local, we do not need to distinguish between MU–
products and MU.p/–products on BP; see [4, Section VIII. 3].

It is shown in [9] that BP is a commutative MU–ring.

Algebraic & Geometric Topology, Volume 12 (2012)



1436 Alain Jeanneret and Samuel Wüthrich

Proposition 8.3 There are infinitely many nonequivalent MU–products on BP, all
of which induce the same ring structure in DS . Infinitely many of the MU–products
on BP are commutative, but all of these are equivalent.

Proof The equivalence classes of MU–products on BP are in one-to-one correspon-
dence with the quadratic forms on I=I2Œ1�. There are infinitely many such, for odd p

for instance the ones associated to the family of bilinear forms ˇk D vk xx
_
i.k/
˝ xx_

i.k/
,

where i.k/D 1
2
.pk � 1/.

Let �0 be a commutative product on BP [9]. Any other product � is of the form
�D �0 ı

Q
.1C aij Q0i ^Q0j /, where Q0

k
2 BP�MU.p/.BP/ is the Bockstein operation

associated to xx_
k
2D.I=I2Œ1�/ (the notation Qk is reserved for a different Bockstein

operation – see the next section). Since BP�.BP/ is concentrated in even dimensions,
all the Q0

k
are in the kernel of the forgetful morphism

BP�MU.p/.BP/ �! BP�.BP/

induced by the monoidal functor DMU.p/�DS . As a consequence, all the MU–products
on BP are equal to �0 in DS .

The last assertion follows from Corollary 7.10.

8.2 P.n/–theory

We fix a prime number p and endow BP with a commutative MU–product. Recall
that Jn �MU� is the ideal .w0; : : : ; wn�1/, where w0 D p . The sequence of the wi

is regular, and the image of Jn in BP� is the ideal In D .v0; : : : ; vn�1/, with v0 D p

(see [9]).

We define P .n/ as a quotient of BP (see [9]):

P .n/D BP=In D BP^MU MU=Jn:

The coefficient ring satisfies P .n/� Š Fp Œvn; vnC1; : : :�. The kernel Hn of the com-
position .MU.p//�! BP�! P .n/� is generated by a regular sequence. Therefore,
P .n/DMU.p/=Hn is a regular quotient of MU.p/ .

Since P .n/� is p–local, we do not need to distinguish between MU–products and
MU.p/–products on P .n/ (see Remark 8.2).

We endow P .n/ with an MU–product �n as follows. If p is odd, MU=Jn carries
a commutative product � , since 2 is invertible. If p D 2, we define a product �
on MU=Jn as the smash ring product of the �k of Proposition 8.1 for k D 0; : : : ; n�1.
In any case, we define �n as the smash ring product of �0 , a commutative product
on BP, with � . Observe that the natural map �nW BP! P .n/ is then multiplicative.
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Proposition 8.4 Let p be a prime and n > 1. There are infinitely many nonequivalent
MU–products on P .n/. All of them induce the same ring structure in DS if p is
odd. For p D 2, they induce either �n or �op

n . Up to equivalence, there is a unique
commutative MU–product for p odd and no commutative MU–product for p D 2.

Proof Let P .n/ be endowed with the product �n defined as above.

Consider first the case p D 2. Since vk � wk mod IkC1 , Proposition 8.1 and [5,
Proposition 2.34] imply that bP.n/ D vnxv

_
n�1
˝ xv_

n�1
. By [6] or Remark 5.6, we

know that �op
n D �n ı .1C vnQn�1^Qn�1/, where Qn�1 2 P .n/�MU.p/.P .n// is the

Bockstein operation associated to xv_
n�1
2D.Hn=H

2
n Œ1�/. By Proposition 7.12, there is

no commutative product on P .n/.

For p odd, any MU–product on P .n/ can be written as

�n ı

Y
i;j

.1C˛ij Q0i ^Q0j /

for dimensional reasons, where Q0
k

is as in the proof of Proposition 8.3. Similarly, for
p D 2, any MU–product on P .n/ can be written as

�n ı

Y
i;j

.1C˛ij Q0i ^Q0j / ı .1C 
nvnQn�1 ^Qn�1/

with 
n2f0;1g. The rest of the argument is exactly as in the proof of Proposition 8.3.

Remark 8.5 We may consider the two degenerated cases of the family P .n/, P .0/D

BP and P .1/ D hocolim P .n/ D HFp , the Eilenberg–Mac Lane spectrum. The
former was discussed above. For the latter, our results imply easily that it carries a
unique MU–product, which is commutative for all p .

Proposition 8.6 Let BP be endowed with a commutative MU–product. Then there
are infinitely many nonequivalent MU–products on P .n/ such that the natural map
�nW BP! P .n/ is multiplicative.

Proof Any product on P .n/ is of the form ˇ�n with ˇ 2 Bil.Hn=H
2
n /, where �n

is defined as above. By Theorem 6.2, the map �nW BP! ˇP .n/ is multiplicative if
and only if P .n/�˝ bBP D b

ˇP.n/
BP D ��n .bˇP.n//. Since BP is commutative, bBP is

trivial. Furthermore, �nW BP! P .n/ is multiplicative, by definition of �n , and hence
b

P.n/
BP D 0. We then deduce from Lemma 6.6 that �nW BP! ˇP .n/ is multiplicative

if and only if ��n .ˇ/D 0. We easily check that there are infinitely many such bilinear
forms ˇ whose associated quadratic forms are different (see Remark 7.4).
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8.3 A nondiagonalizable product

We aim to construct a nondiagonalizable MU–ring spectrum.

Let p D 2, I D J2 D .w0; w1/ � MU� , as above, and F D MU=I . Clearly, F is
a regular quotient MU–module, with F� Š F2Œx2;x3; : : :�. Let � be the smash ring
product of the products �k on MU=wk , k D 0; 1, from Proposition 8.1. Let x� D
�ı.1Cx2Q0^Q1/, with Qk the Bockstein operation associated to xw_

k
2D.I=I2Œ1�/.

We claim that the product x� is not diagonalizable.

We deduce from [5, Proposition 2.34] and the construction of � that the matrix of bF

with respect to the basis xw0; xw1 of I=I2Œ1� is

B D

�
0 0

0 w2

�
:

From Corollary 5.3, we deduce that the matrix of b xF with respect to the same basis is
given by

xB D

�
0 x2

x2 w2

�
:

Now assume that there exists an invertible matrix

AD

�
a b

c d

�
with coefficients in F� such that At xBADD is diagonal. We deduce from the equality
above that

(�) .bcC ad/x2C cdw2 D 0:

Since A is invertible, det.A/ is a unit in F� . Therefore det.A/D ad � bc D 1, and
hence (�) is equivalent to

(��) .1C 2bc/x2C cdw2 D 0:

Since jx2j D 4 and jw2j D 6, there are no coefficients in F� satisfying (��). Hence,
x� is not equivalent to a diagonal product, by Proposition 6.4.

8.4 Morava K –theory K.n/

The spectra K.n/ can be studied as MU–rings, similarly as we discussed the spec-
tra P .n/ above. We adopt here a more classical point of view and work over the ground
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rings yE.n/ instead. We recall the definition and the notation from there. Fix a prime
number p . For n> 0, there exists an MU.p/–algebra yE.n/ (see Rognes [7]) with

yE.n/� Š lim
k

Z.p/Œv1; : : : ; vn�1�Œvn; v
�1
n �=Ik

n ;

where In is the ideal generated by the regular sequence .v0 D p; v1; : : : ; vn�1/. The
n–th Morava K–theory K.n/ may be defined as the regular quotient of yE.n/ by In :

K.n/D yE.n/=In Š
yE.n/=v0 ^ yE.n/

� � � ^ yE.n/
yE.n/=vn�1:

Its coefficient ring satisfies K.n/� Š Fp Œvn; v
�1
n �.

The following statement can be deduced from existing literature; see Nassau [6]. Our
methods give an independent and quick proof. Let Qi 2 K.n/�yE.n/.K.n// be the
Bockstein operation associated to xv_i 2D.In=I

2
n Œ1�/.

Proposition 8.7 For p odd, there is precisely one yE.n/–product on K.n/, which is
commutative. For p D 2, there are precisely two nonequivalent yE.n/–products �; x�
on K.n/, both of which are noncommutative. They are related by

x�D �op
D � ı .1C vnQn�1 ^Qn�1/

and satisfy bK.n/ D b xK .n/ D vnxv
_
n�1
˝xv_

n�1
.

Proof The K.n/�–module In=I
2
n Œ1� is free with basis xv0; : : : ; xvn�1 . Let first p be

odd. Because jxvi ˝xvj j< jvnj for all i; j < n, In=I
2
n Œ1� admits only the trivial bilinear

form. Hence there is exactly one yE.n/–ring structure on K.n/ by Theorem 4.1, which
therefore must be commutative.

Let now p D 2. For degree reasons again, there are exactly two bilinear forms on
In=I

2
n Œ1�, the trivial one and ˇ D vn xv

_
n�1
˝ xv_

n�1
. Therefore, there are two yE.n/–

products � and x� on K.n/, related by the formula x�Dˇ�D�ı.1CvnQn�1^Qn�1/.

Without loss of generality, we may suppose that � is the diagonal product constructed in
[5, Section 5.3], whose characteristic bilinear form bK.n/ is ˇ . Hence � is noncommu-
tative. As a consequence, we deduce x�D�op , and so x� is noncommutative either. This
is confirmed by Corollary 5.3, which implies that b xK .n/DbK.n/�.ˇCˇ

t /DbK.n/Dˇ .

Since ˇ is nonalternating, we find that � and �op are not equivalent.
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8.5 2–Periodic Morava K –theory Kn

We now turn to 2–periodic Morava K–theory Kn . In this case, we have more products
than for K.n/, and the situation is much more interesting.

We still fix a prime number p and an integer n > 0. There exists a commutative
yE.n/–algebra En (see [7]), with coefficients

.En/� ŠW .Fpn/ŒŒu1; : : : ;un�1��Œu
˙1�;

where W .Fpn/ is the Witt ring on Fpn , jui j D 0 for 1 6 i 6 n� 1 and juj D 2. The
homomorphism induced on coefficient rings by the unit �W yE.n/! En maps vi to
uiu

pi�1 for 1 6 i 6 n� 1 and vn to upn�1 .

Let Hn� .En/� be the ideal generated by the regular sequence .u0Dp;u1; : : : ;un�1/.
The 2–periodic Morava K–theory is defined as

Kn DEn=Hn ŠEn=u0 ^En
� � � ^En

En=un�1:

Its coefficient ring satisfies .Kn/� Š Fpn Œu;u�1�.

Proposition 8.8 There are pnn2 different En –products on Kn , none is commutative
for p D 2; for p odd, one is commutative if nD 1 and pn n.n�1/

2
are commutative for

n> 1.

Proof The degree zero bilinear forms

Hn=H
2
n Œ1�˝.Kn/� Hn=H

2
n Œ1�! .Kn/�

are in bijection with the ungraded bilinear forms

Hn=H
2
n ˝Fpn Hn=H

2
n ! Fpn :

Hence there are pn � dimFpn .Bil.Hn=H
2
n //D pnn2 different En –products on Kn .

For p odd, there is a commutative En –product (see Proposition 7.8) on Kn , and the
set of commutative products is in bijection with the group Asym.Hn=H

2
n /, which

consists of pn n.n�1/
2

elements for n> 1 and one element for nD 1.

Let pD2. Using the same arguments as in the proof of [5, Proposition 5.1], we construct
a diagonal product � on Kn with bKn

D uxu_
n�1
˝ xu_

n�1
. Hence, by Proposition 7.12,

Kn supports no commutative En –product.

Corollary 8.9 Up to equivalence, there are pn n.nC1/
2

different En –products on Kn .
For p odd, there is a unique commutative product on Kn up to equivalence.

Proof This is straightforward from Remark 7.4 and Proposition 7.8.
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Proposition 8.10 Any En –product on Kn is diagonalizable.

Proof Apply Proposition 7.13.
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