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Minimal entropy and geometric decompositions
in dimension four

PABLO SUÁREZ-SERRATO

We show vanishing results about the infimum of the topological entropy of the
geodesic flow of homogeneous smooth four-manifolds. We prove that any closed
oriented geometric four-manifold has zero minimal entropy if and only if it has zero
simplicial volume. We also show that if a four-manifold M admits a geometric
decomposition in the sense of Thurston and does not have geometric pieces modelled
on hyperbolic four-space H4 , the complex hyperbolic plane H2

C or the product of
two hyperbolic planes H2 �H2 then M admits an F –structure. It follows that M

has zero minimal entropy and collapses with curvature bounded from below. We then
analyse whether or not M admits a metric whose topological entropy coincides with
the minimal entropy of M and provide new examples of manifolds for which the
minimal entropy problem cannot be solved.

37B40, 57M50; 22F30, 53D25

1 Introduction

A model geometry, in the sense of W P Thurston, is a complete simply connected
Riemannian manifold X such that the group of isometries acts transitively on X

and contains a discrete subgroup with a finite volume quotient. The maximal four
dimensional geometries were classified by R Filipkiewicz [12]. In this note we will focus
on the minimal entropy problem for smooth 4–manifolds M which are geometrisable
in the sense of Thurston; M is diffeomorphic to a connected sum of manifolds which
admit a decomposition into pieces which are modelled on a Thurston geometry.

The minimal entropy h.M / of a closed smooth manifold M is the infimum of the
topological entropy htop.g/ of the geodesic flow of g over the family of C1 Riemann-
ian metrics on M with unit volume. A metric g0 is entropy minimising if it achieves
this infimum htop.g0/D h.M /. When such a metric exists we say the minimal entropy
problem can be solved for M .

The minimal entropy h.M / of an n–manifold M is related to its simplicial volume
jjM jj, volume entropy �.M / and minimal volume MinVol.M / according to the
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inequalities noticed by M Gromov [14], A Manning [28] and by G Besson, G Courtois
and S Gallot [4] and G P Paternain [33]:

nn=2

n!
jjM jj � �.M /n � h.M /n � .n� 1/n MinVol.M /:

The simplicial and minimal volumes were defined by Gromov in the seminal paper [14].
Both the simplicial volume and volume entropy are known to be homotopy invariant;
see I K Babenko [2] and M Brunnbauer [5]. However, L Bessières [3] has shown
that the minimal volume MinVol.M / depends on the differentiable structure of M .
In fact D Kotschick has proven that even the vanishing of MinVol.M / depends on
the differentiable structure [23]. As the question of whether the minimal entropy is a
homotopy invariant is still unresolved, it is interesting to calculate it and compare it
with the invariants mentioned above.

The instrument we will use to show that these invariants vanish is a generalisation of a
local torus action, called an F –structure. J Cheeger and Gromov showed in [6] that if
a manifold M admits a polarised F –structure then MinVol.M /D 0. The simplest
example of a polarised F –structure is a free S1 –action on M . Paternain and J Petean
proved that if M admits any F –structure then h.M /D 0, M collapses with curvature
bounded from below and the Yamabe invariant of M is nonnegative [34].

In dimension four there exist smooth manifolds that admit F –structures and which are
homeomorphic to manifolds that do not admit them; see Paternain and Petean [34] and
C LeBrun [27]. The results in this paper provide a basis of examples with which to
compare manifolds in the same homeomorphism class.

The relevant definitions will be reviewed in the following sections.

Let H and V be the following sets of four dimensional geometries:

HD fH4;H2
�H2;H2

Cg

VD

8̂̂̂̂
<̂
ˆ̂̂:

S4 CP2 S3 �E H3 �EfSL2 �E Nil3 �E Nil4 Sol41
S2 �E2 H2 �E2 Sol4m;n Sol40
S2 �S2 S2 �H2 E4 F4

9>>>>=>>>>;
Together H and V constitute all the four-dimensional geometries that admit finite
volume quotients. Comprehensive descriptions of all these geometries have been
provided by J Hillman [16, page 133] and C T C Wall [43], where the relationship
between geometric and complex structures is explored.

Our first result is about compact manifolds which are modelled on a single geometry,
these are called geometric manifolds.
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Theorem A Let M be a smooth oriented and closed geometric four-manifold. The
following notions are equivalent:

(i) M is modelled on a geometry in V.

(ii) M admits an F –structure.

(iii) M has zero minimal entropy, h.M /D 0.

(iv) The simplicial volume of M vanishes, jjM jj D 0.

(v) M collapses with curvature bounded from below, VolK .M /D 0.

The main novel ingredient here is the proof that (i) implies (ii) and is shown in
Theorem 1. The other equivalences follow from the inequalities above and an applica-
tion of results of Gromov and Thurston shown in Proposition 2. This can be seen in
the next diagram which summarises the proof of Theorem A.

(i) M is modelled
on a geometry in V

Theorem 1

��
(ii) M admits
an F–structure

Paternain–Petean
Theorem

��

(v) M collapses with
curvature bounded

from below

Contrapositive to
Proposition 2

ai

(iii) h.M /D 0

Inequalities of
asymptotic invariants

19
(iv) jjM jj D 0

Theorem 1
and Proposition 2

PX

The definitions and properties of these terms will appear in the following sections.
Relying on results of Thurston and Gromov [14] we can then see that the contents
of Theorem A can be rephrased in the following way: Let M be an oriented closed
smooth geometric four-manifold, then h.M / > 0 if and only if jjM jj ¤ 0 if and only
if M is modelled on a geometry in H.

J W Anderson and Paternain showed in [1, Theorem 2.9] that for a geometric 3–
manifold M it is equivalent for its simplicial volume, minimal entropy or minimal
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volume to vanish and for M to be a graph manifold. If a geometric 3–manifold M

admits a geometric structure modelled on a geometry which is not H3 then M is a
graph manifold. By the results of Besson, Courtois and Gallot [4] if M is modelled
on H3 then the minimal entropy of M is strictly positive and it is achieved by the
hyperbolic metric. In the same vein Theorem A shows that vanishing of the minimal
entropy is an obstruction to the manifold being of hyperbolic type in the extended sense
of it being modelled on a geometry in H.

A manifold M is said to admit a geometric decomposition if it admits a finite collection
of 2–sided hypersurfaces S such that each component of M � S is geometric. A
manifold is geometrisable in the sense of Thurston if it is diffeomorphic to a connected
sum of manifolds with a geometric decomposition. After inspecting every possible
geometric decomposition and every type of geometrisable smooth four-manifold, we
can extend Theorem A to the geometrisable case. The main result of this paper is the
following theorem.

Theorem B Let M be a closed orientable smooth four-manifold which is geometris-
able in the sense of Thurston. If all of the geometric pieces of M are modelled on
geometries in V then M admits an F –structure. Consequently h.M /DVolK .M /D0.

Therefore all closed geometrisable smooth four-manifolds M which are known to have
kM k D 0 also have h.M /D 0. It should be noted that there are no known examples
of manifolds with zero simplicial volume and positive minimal entropy. So Theorem B
also shows that such an example can not be constructed in dimension four by means of
geometric decompositions.

The minimal entropy problem for geometric four-manifolds has been treated by Pater-
nain and Petean in [35]. They have shown that if M admits a geometric structure mod-
elled on a geometry in Z WD fS4; CP2; S3�E; Nil3�E; Nil4; S2�E2; S2�S2; E4g

then M admits a metric with zero topological entropy. Whereas if M is modelled on
S2 �H2 , H3 �E, fSL2 �E, H2 �E2 , Sol41 , Sol40 or Sol4m;n then the fundamental
group of M has exponential growth. This implies that any smooth metric on M has
positive topological entropy by a result of Manning [28]. It follows from Theorem A
that the minimal entropy problem cannot be solved for a manifold M modelled on any
of these geometries, since we can endow them with T –structures.

On the other hand, for manifolds modelled on H4 and H2
C the work of Besson, Courtois

and Gallot implies that the minimal entropy problem is solved by their respective
hyperbolic and locally symmetric metrics [4]. Moreover, finite volume manifolds
modelled on these two geometries have positive simplicial volume. The minimal
entropy problem for manifolds M modelled on the geometry H2 �H2 remains open.

Algebraic & Geometric Topology, Volume 9 (2009)
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A possible candidate for an entropy-minimising metric on M could be the product
metric on H2 �H2 inherited by M as a quotient. Modulo the case of H2 �H2

manifolds, Theorem A provides a complete solution to the minimal entropy problem
for geometric four-manifolds:

Corollary C Let M be a closed orientable smooth geometric four-manifold, which is
not modelled on H2 �H2 . Then the minimal entropy problem can be solved for M if
and only if M is modelled on a geometry from H or Z.

We show in Lemma 21 that if an orientable 4–manifold M admits a proper geometric
decomposition then its fundamental group �1.M / is not trivial and has exponential
growth. So the only manifolds considered in Theorem B with nontrivial fundamental
group for which the minimal entropy can be solved are the geometric ones modelled
on a geometry from Z. Furthermore if M is simply connected and is a connected sum,
then by another result of Paternain and Petean in [34] there exist only two such closed
orientable 4–manifolds which admit a metric of zero topological entropy, CP2 # CP2

and CP2 # CP2 . In the context of these results Theorem B implies:

Corollary D Let M be a closed orientable geometrisable four-manifold with a proper
geometric decomposition into pieces modelled on a geometry in V or nontrivial con-
nected sums of manifolds modelled on a geometry in V. Then the minimal entropy
problem can be solved for M if and only if M is diffeomorphic to CP2 # CP2 or
CP2 # CP2 .

On the organisation of this paper Section 2 contains definitions and the statement
of Theorem 1. Proposition 2 is shown in Section 3. The proof of Theorem 1 is a case
by case analysis of the geometries in V and it occupies Sections 4 to 12. All the results
are collected in Section 13, where the proofs of Theorems 1, A and B can be found.
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2 Preliminaries

The simplicial volume jjM jj of a closed orientable manifold is defined as the infimum
of †i jri j where ri are the coefficients of a real cycle representing the fundamental
class of M .

For a closed connected smooth Riemannian manifold .M;g/, let Vol.M;g/ be the
volume of g and let Kg be its sectional curvature. We define the following minimal
volumes as in [14]:

MinVol.M / WD inf
g
fVol.M;g/ W jKgj � 1g

VolK .M / WD inf
g
fVol.M;g/ W Kg � �1g

If VolK .M / is zero then the simplicial volume of M is also zero. This follows from
Bishop’s comparison theorem; see Paternain and Petean [34].

A T –structure on a smooth closed manifold M is a finite open cover fUig
k
iD1

of
M with a nontrivial torus action on each Ui such that the intersections of the open
sets are invariant (under all corresponding torus actions) and the actions commute. A
T –structure is called polarised if the torus actions on each Ui are locally free and in
the intersections the dimensions of the orbits (of the corresponding torus action) are
constant. The structure is called pure if the dimension of the orbits is constant.

By definition an F –structure on a closed manifold M is given by:

(1) A finite open cover fU1; : : : ;UN g;

(2) �i W
eUi ! Ui a finite Galois covering with group of deck transformations �i ,

1� i �N ;

(3) A smooth torus action with finite kernel of the ki –dimensional torus: �i W T
ki !

Diff. eUi /, 1� i �N ;

(4) A homomorphism ‰i W �i! Aut.T ki / such that


 .�i.t/.x//D �i.‰i.
 /.t//.
x/

for all 
 2 �i , t 2 T ki and x 2 eUi ;

(5) For any finite subcollection fUi1
; : : : ;Uil

g such that Ui1���il
WDUi1

\� � �\Uil
¤∅

the following compatibility condition holds: let zUi1���il
be the set of points

.xi1
; : : : ;xil

/ 2 zUi1
� � � � � zUil

such that �i1
.xi1

/ D � � � D �il
.xil

/. The set
zUi1���il

covers ��1
ij
.Ui1���il

/ � zUij for all 1 � j � l . Then we require that �ij

leaves ��1
ij
.Ui1
� � � il/ invariant and it lifts to an action on zUi1���il

such that all
lifted actions commute.
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An F –structure is said to be pure if all the orbits of all actions at a point, for every
point have the same dimension. We will say an F –structure is polarised if the smooth
torus action �i above is fixed point free for every Ui . A T –structure is simply an
F –structure where all the coverings �i in .2/ are trivial. In this case .4/ is satisfied
and .5/ just means the respective actions commute on overlaps. The existence of a
T –structure implies the existence of an F –structure.

The existence of a polarised F –structure on a manifold M implies the minimal volume
MinVol.M / is zero [6]. The interested reader is invited to consult further examples
there as well. One of the main contributions of this paper is the proof of the following
result, which is found in the last section.

Theorem 1 Let M be a closed orientable geometric four-manifold modelled on a
geometry in V. Then M admits a F –structure.

3 Geometric manifolds of positive simplicial volume

Proposition 2 If M is a closed oriented geometric four-manifold modelled on a
geometry in H then kM k> 0.

Proof First assume M is closed, oriented and modelled on either H4 or H2
C . Then

M admits a metric of negative sectional curvature and by the Thurston–Inoue–Yano
theorem in [14; 18] we have that kM k> 0. In fact this shows that any M with finite
volume modelled on H4 and H2

C has positive simplicial volume.

Let M be a closed manifold modelled on H2�H2 . We can use Gromov’s Proportion-
ality Principle from [14] to see that kM k> 0. If the universal coverings of two closed
Riemannian manifolds M and N are isometric then kM k=Vol.M /D kN k=Vol.N /.
Consider the product of two closed hyperbolic surfaces N D S1 �S2 . The smooth
manifold N is modelled on H2 �H2 . Because the simplicial volume of a product of
closed manifolds is bounded from below by the product of their respective simplicial
volumes we have kN k � CkS1kkS2k> 0 for some constant C . Therefore kM k> 0

for any closed manifold M modelled on H2 �H2 .

4 Circle foliations

Proposition 3 Let M be a closed manifold foliated by circles. Suppose M admits a
metric such that the circles are geodesics. Then M admits a polarised T –structure.

Algebraic & Geometric Topology, Volume 9 (2009)
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Proof By a theorem of A W Wadsley [42], the foliation by circles gives rise to an
orbifold bundle or Seifert fibration. This means that locally we have the following
model for the foliation near a fixed leaf L [11, Theorem 4.3]. There exists a finite group
G � O.n/ (where dim M D nC 1) and a homomorphism  W �1.L/ D Z! O.n/.
Let zL be the covering of L corresponding to the kernel of  . That zL is compact
follows from [11, Theorem 4.3]. Then G acts on zL by deck transformations and we
can consider the quotient . zL�Dn/=G , where Dn is the unit ball in Rn . Theorem 4.3
in [11] asserts the existence of G and  and a diffeomorphism between . zL�Dn/=G

and a neighbourhood of L preserving the leaves. When L is S1 , zL is also a circle
and G can only be a cyclic group Zm . The obvious circle action on S1 �Dn clearly
descends to a circle action on .S1�Dn/=G and thus locally we always have a locally
free circle action, whose orbits are precisely the leaves of the foliation.

If one can coherently orient all the leaves we would have a circle action on M , but if
not, we still have a T –structure, since “opposite” actions still commute. Let us make
this a bit more precise: The leaf space B is an orbifold and M is an orbifold bundle
over B . So we may cover B with compatible open sets such that the transition maps
of the bundle have values in O.2/ (the fibres are circles and Diff.S1/ deformation
retracts onto O.2/). But given h 2 O.2/ we obviously have hlh�1 2 SO.2/ for any
l 2 SO.2/. Thus if we conjugate the obvious circle action of S1 on itself by an element
of O.2/ we obtain a new circle action commuting with the original one. Thus M has
a T –structure.

Some of the four dimensional geometries are foliated by R. These foliations descend
to circle foliations on their geometric manifolds, and define a T –structure.

Theorem 4 Every closed geometric four-manifold M modelled on any of the geome-
tries X4 in fS3 �E; H3 �E; fSL2 �E; Nil3 �E; Sol3 �E; Nil4; Sol41g admits a
polarised T –structure.

Proof In each of the geometries S3 �E, H3 �E, fSL2 �E, Nil3 �E or Sol3 �E
we have a trivial foliation given by the product with the Euclidean factor. In the case
of Nil4 D R3 Ë� R, with �.t/D .t; t; t2=2/, it is given by the R factor on the right
hand side of the semidirect product. For the remaining geometry of solvable Lie type

Sol41 D

( 
1 a c
0 ˛ b
0 0 1

!
W ˛; a; b; c 2R; ˛ > 0

)
;

the R we are interested in is given by elements of the form ˛ D 1; a D b D 0 and
c 2 R. This foliation on X4 descends to a foliation F on any quotient M D X4=�

under the action of a discrete group of isometries � and the leaves of F are all circles.
By Proposition 3 M admits a polarised T –structure.
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5 Seifert fibred geometries

5.1 Seifert fibrations

Let S be a closed geometric manifold modelled on S2 �E2 , H2 �E2 , fSL2 �E1 ,
Nil4 , Sol3�E1 or S3�E1 . It was shown by M Ue in [39; 40] that S is a Seifert fibred
space. We will review the description of these structures locally—in a neighbourhood
of a point in S —this will allow us to furnish these manifolds with T –structures. We
refer to [39; 40] throughout this section for details. The reader familiar with this data
may want to skip to Lemma 6 and then straight to Theorem 7 which are the main results
of this section.

Definition 5 A smooth oriented 4–manifold S is Seifert fibred if it is the total space
of an orbifold bundle � W S ! B with general fibre a torus over a 2–orbifold B .

Notice that the class of Seifert 4–manifolds contains all the compact complex surfaces
diffeomorphic to elliptic surfaces X with c2.X /D 0 and also contains examples which
do not admit any complex structure [43].

Let � W S !B be a Seifert fibration, with S a geometric manifold modelled on one
of the geometries mentioned above and B the orbifold base of the fibration. Denote
by T 2 be the standard torus and G � O.2/ a discrete subgroup, viewed as a group
of Euclidean isometries. For any point p 2 B there exists a neighbourhood U of p

such that ��1.U / is diffeomorphic to .T 2�D2/=G for some G �O.2/. Here T 2 is
parametrised by two unit complex circles S1�S1 �C2 , D2 is the open unit complex
disk jzj � 1 in C and G is the stabiliser at p , which acts freely on T 2 �D2 .

5.2 Local description

For G nontrivial, there are three cases to consider, cyclic groups of rotations Zm ,
reflection groups Z2 and dihedral groups D2m .

(1) G Š Zm Š h�i, where � is a rotation of 2�=m. This isotropy subgroup
corresponds to cone points of cone angle 2�=m. The action �W T 2 �D2 !

T 2�D2 is given by �.x;y; z/D .x�a=m;y�b=m; e2�i=mz/, where x;y 2S1

and z 2D2 with gcd.m; a; b/D 1. The fibre over p D 0 is called a multiple
torus of type .m; a; b/.

(2) G Š Z2 Š h`i, where ` is a reflection on the second factor of T 2 and on D2 .
Now the action `W T 2�D2! T 2�D2 is given by `.x;y; z/D .xC 1

2
;�y;xz/.

This is the isotropy subgroup corresponding to points on a reflector line or circle.
In this case the fibre over p is a Klein bottle K and ��1.U / is a nontrivial
D2 –bundle over K .
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(3) G ŠD2m D h`; � W `
2 D �m D 1; `�`�1 D ��1i, for m 2Z. This is a dihedral

group, the isotropy subgroup of corner reflector points of angle �=m, with the
actions �; `W T 2 �D2! T 2 �D2 given by,

�.x;y; z/D .x;y � b=m; e2�i=mz/; `.x;y; z/D .xC 1
2
;�y;xz/:

Informally, the fibre over p is a Klein bottle whose fundamental domain is
.1=m/–times that of the fibre of the reflector point near p . We call this fibre a
multiple Klein bottle of type .m; 0; b/.

5.3 Local S 1–actions

Lemma 6 Let � W S!B be a Seifert fibration for the 4–manifold S . For every point
p 2B there exists a neighbourhood U of p diffeomorphic to D2=G with G �O.2/
such that ��1.U / Š .T 2 �D2/=G admits an S1 action which commutes with the
action of G on T 2 �D2 .

Proof Take U �B such that ��1.U / is diffeomorphic to .T 2 �D2/=G . Here we
can define an S1 –action. We will do this by first lifting the quotient by G to .T 2�D2/

and then showing that the S1 action commutes in .T 2 �D2/ with the actions of all
the different possible isotropy groups G . Hence this S1 –action will be well defined
in the quotient .T 2 �D2/=G Š ��1.U /� S . This defines a local S1 –action on S .
Define 'W S1� .T 2�D2/! .T 2�D2/ by '.�;x;y; z/D .xC�;y; z/. For each of
the three cases for G short computations show that ' commutes with the generators
of G as described in Section 5.2.

So we now know that given an orbifold chart U of B , we can construct an S1 –action
on its preimage ��1.U / which is equivariant with respect to the action of G on
T 2 �D2 .

5.4 Description along the singular set

The following picture along the reflector circles is taken from [39; 40]. Let l and h be
the curves in T 2 represented by R=Z� f0g and f0g �R=Z respectively. A choice of
such a pair .l; h/ is called a framing for T 2 . The boundary of B consists of a disjoint
union of circles Ci , each of which we call a reflector circle. Let Ni be an annulus
bounded by Ci and a curve 
i parallel to Ci . In order to clarify the structure of S

near Ci we now describe ��1.Ni/. Say the corner reflectors p1; : : : ;ps on Ci are
of type .m1; 0; b1/; : : : ; .ms; 0; bs/, with respect to the framing .li ; hi/ of the general
fibre over some base point of Ni .
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Understanding the fibres over these corner reflectors is simplified if we consider the
double cover DB of B , with the projection pW DB! B obtained by identifying 2
copies of B along the reflector circles. Let DNi be the suborbifold of DB covering Ni

and D� W DS!DB be the fibration induced from � W S!B . Then S is the quotient
of DS by a free involution � which is the lift of the reflection l which switches both
copies of DB . The action of � on the reflection point near the base point is identical to
that of l in case (3) above. In the presentation of �1.S/ in [39] the map � satisfies

(?) �2 D l and �h��1
D h�1:

The corner reflector point pj is covered by a cone point qj 2DB and the fibre over
qj is a multiple torus of type .mj ; 0; bj /.

�x
 ��1
p1

˛1

ps
˛s

x


p1

ps




�

Figure 1: Local picture along a reflector circle

Take the oriented meridional circle j̨ centered at pj as in figure 1. Then the lifts
z̨1; : : : ; z̨s of the curves ˛1; : : : ; ˛s can be taken to satisfy in �1.S/ the following
relations:

z̨
mi

i hbi D 1 .i D 1; : : : ; s/;

�z̨s�
�1
D z̨
�1
s ; �z̨s�1�

�1
D z̨
�1
s z̨

�1
s�1 z̨s; : : : ; �z̨1�

�1
D z̨
�1
s z̨

�1
s�1 � � � z̨

�1
1 z̨2 � � � z̨s:

We can describe the monodromy of the fibration along a reflector circle. Let V denote
the union of small disk neighbourhoods around each corner reflector point pj and take
x
 and �x
 ��1 as in figure 1. Then the curve represented by x
�1˛1˛2 � � �˛s�x
 �

�1 is
null-homologous in DN �V . Hence the monodromy matrix A along x
 with respect
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to the framing .l; h/ must satisfy JAJ�1 DA where

J D

�
1 0

0 �1

�
is a monodromy matrix for �. Then we must have that AD˙I , where I is the identity
matrix.

Another piece of information that we need in order to describe the Seifert fibration is the
obstruction to extending the fibration over a neighbourhood of each reflector circle Ci .
This is called the Euler class of Ci . Consider a lift z
 of 
 , which also determines a
lift �z
 ��1 . Then we have the relation z
�1 z̨1 � � � z̨s�z
 �

�1 D lahb in �1.S/. The Euler
class .a; b/ of Ci is the obstruction to extending 
 [ �
 ��1[˛1[� � �[˛s to the cross
section on ��1.DN �V /. We have that aD �1 if the monodromy A around 
 is
�I and aD 0 if AD I . The value of b depends on the choices of the lifts z
 , z̨i of

 , ˛ .

5.5 Global description of a Seifert fibration

We can now give a global description of our Seifert fibred manifold S .

Let Ni be a tubular neighbourhood of each reflector circle Ci , with boundaries Ci and

i as in the figures above. Fix a base point near Ci and a framing .l; h/ of the general
fibre satisfying (?). Denote by jBj the topological space underlying the orbifold B .
Let pi be a cone point and Di a disk neighbourhood of pi . If we fix the lift z
i of 
i ,
then the fibration over the complement B0 D B �[iNi is described by the following
information:

(1) The monodromy matrices Ai ;Bi 2 SL.2;Z/ along the set of standard genera-
tors si , ti (for i D 1; : : : ;g/ of �1jB0j if jB0j is orientable.

(1’) The monodromy matrices A0i 2 GL.2;Z/ with det A0i D �1 along the set of
standard generators vi (for i D 1; : : : ;g/ of �1jB0j if jB0j is nonorientable.

(2) The type .mi ; ai ; bi/ of the multiple torus over the cone point pi , (for i D

1; : : : ; t/.

(3) The obstruction .a0; b0/ to extending a section over B0 to a section over all of B

(see Ue [39; 40]).

The fibration over Ni is described as before with respect to the framing .li ; hi/ of the
general fibre on Ni and the lift �i of the reflection along Ci (where .l1; h1/D .l; h/)
satisfying �2i D li and �ihi�

�1
i D h�1

i .
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Then �1.Ni/ is attached to ��1.B0/ so that .li ; hi/D .l; h/Pi for some Pi 2SL.2;Z/
with P1D Id. This implies that if we take the lift zıi of the curve ıi , then the monodromy
along zıi is Bi D PiJP�1

i J with respect to .l; h/. It is possible to take zıi so that
�i D zıi�, because �izıi��1 D zı�1

i and so zı�izıi��1 D lsC1ht for some s; t 2 Z (recall
that �2 D l ).

As a final step, we describe the relations between the monodromies. Let Ii D ˙ Id
be the monodromy along Ci , and Ai ;Bi (or A0i in case B0 is not orientable) be the
monodromies along the standard curves on B0 as before. Then

Q
ŒAi ;Bi �

Q
Ii D Id

(or
Q

A2
i

Q
Ii D Id). The Seifert fibration of S is determined by the information

above. Using this description we can now show the existence of T –structures on
Seifert fibred four-manifolds.

5.6 Seifert Fibrations and polarised T –structures

Theorem 7 Every smooth closed and oriented Seifert fibred four-manifold S admits
a polarised T –structure.

Proof Let � W S ! B be a Seifert fibred smooth 4–manifold, over the orbifold B .
So S is the total space of an orbifold bundle with general fibre a torus, over the 2–
orbifold B . Let Ni be open annular neighbourhoods of the circle reflectors Ci of B .
Take B0 D B �

Sr
iD1 Ni . Let U be an open covering for B0 such that for U in U

we have that ��1.U /Š .T 2�D2/=G as in Lemma 6 above. So G is either trivial or
isomorphic to Zp . As B0 is compact we may choose a finite subcovering fUig of U .

Notice that for G trivial we have that .T 2 �D2/=G D T 2 �D2 and for G Š Zp ,
we have that .T 2 �D2/=G is diffeomorphic to T 2 �D2 . Denote ��1.B0/ by S 0 ,
the restriction �jS 0 W S 0 ! B0 is an orbifold bundle with fibre T 2 . The singular
points of B0 are all cone points. For each p 2 Ui \Uj call the local trivialisations
ˆi W �

�1.Ui/ ! T 2 � D2 and ĵ W �
�1.Uj / ! T 2 � D2 . These give rise to the

transition functions ĵ ıˆ
�1
i .x;y; z/D .‰ij .z/; z/:

Let .l; h/ be a framing for the general fibre T 2 Š R2=Z2 , as explained above. The
diffeomorphism group Diff.T 2/ of T 2 retracts to T 2 Ë GL.2;Z/. So the transition
functions ‰ij .z/ can be regarded as elements of GL.2;Z/ and the structural group
of the orbifold bundle reduces to this linear one. Showing that the actions 'i and 'j

commute in the intersections ��1.Ui/\�
�1.Uj / is an easy exercise in linear algebra.

Therefore they define a T –structure on ��1.B0/.

Now we exhibit a T –structure on the neighbourhoods Ni of the reflector circles Ci .
Consider xNi , the closure of Ni . Each Ni is covered by open subsets in which we
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defined the circle actions. We extend these to cover xNi and take a finite subcovering
fVkg. Let 
i denote the boundary of Ni which is not Ci . We claim that the correspond-
ing actions in the sets Uj in B0 and Vk in Ni commute in the intersection of these
sets. This follows from the fact that the fibration on Ni is described with respect to the
framing .li ; hi/ of the general fibre on Ni , as we will now see. Recall that ��1.Ni/

is attached to ��1.B0/ so that .li ; hi/D Pi.l; h/ for some Pi 2 SL.2;Z/, following
the global description of a Seifert bundle above. Once more the matrices involved
here behave well with respect to the actions we defined on ��1.Ni/ and ��1.B0/,
meaning that the actions commute in the intersection of these sets. Therefore we have
a T –structure on the Seifert fibred 4–manifold S, which is polarised since T 2 acts
freely on itself.

Corollary 8 Every closed geometric four-manifold M modelled on one of the geome-
tries S2 �E2 , H2 �E2 , fSL2 �E1 , Nil4 , Sol3 �E1 or S3 �E1 admits a polarised
T –structure.

6 Solvable Lie geometries

We have already dealt with the geometries Sol41 and Sol3 �ED Sol4n;n in Theorem 4
where we gave manifolds modelled on them a locally free S1 –action. We will now focus
on the remaining cases. Recall that if we glue two manifolds along components of their
boundary using isotopic diffeomorphisms the resulting manifolds are diffeomorphic
(see for example Hirsch [17]).

Theorem 9 If M is an orientable geometric four-manifold modelled on Sol40 or
Sol4m;n when .m¤ n/, then M admits a polarised T –structure.

Proof By results of Hillman [16] and Cobb [7, page 176] M is diffeomorphic to
Mf D .T

3�I/=s, where .x; 0/s.f .x/; 1/ for some diffeomorphism f of T 3 . Its fun-
damental group is Z3ÌAZ for some A2SL.3;Z/ since M is orientable. Corollary 20
shows that any diffeomorphism of T 3 is isotopic to an affine transformation; see also
Ivanov [19]. In this case f is isotopic to the transformation induced by A on T 3 .
Denote by MA the mapping torus of T 3 under the transformation induced by A.
That Mf is diffeomorphic to MA follows from the fact that mapping tori of isotopic
diffeomorphisms are diffeomorphic. Let 't denote the action of T 3 on T 3 �ftg by
translations, and 't the lift to R3 . In order to define a T –structure on MA using the
actions 't , we must now verify that '0 commutes with '1 when conjugated by the
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transformation induced by A on T 3 . A simple calculation (which is a particular case
of Lemma 18 below) shows

A�1
ı'1 ıA ı'0 D '0 ıA�1

ı'1 ıA:

Therefore '0 commutes '1 on MA . Notice that the dimension of every orbit is 3 and
that the action 't is locally free. Hence we have endowed MA , and therefore M , with
a polarised T –structure.

7 Sphere foliations

We will now see that when a compact closed manifold M is modelled on a geometry
of type S2 �X2 , where X2 is a 2–dimensional geometry, M admits a T –structure.

Theorem 10 A smooth orientable closed 4–manifold which is foliated by S2 or RP2

admits a T –structure.

Proof Suppose M is a smooth orientable closed 4–manifold which admits a codi-
mension 2 foliation with leaves S2 or RP2 . If all the leaves are homeomorphic then
the projection to the leaf space is a submersion and M is the total space of an S2

or an RP2 bundle over a surface. Then M is known to admit effective S1 –actions
(see Melvin [30] and Melvin and Parker [31]). Assume that the leaves are not all
homeomorphic. Having such a foliation is equivalent to having an S2 orbifold bundle
over a 2–orbifold (see Ehresman [10], Epstein [11], Eells and Verjovsky [9] and Molino
[32]), as such a foliation is Riemannian.

Denote by F the orbit space of the foliation and � W M ! F the orbifold bundle.
Ehresman’s structure theorem [10; 11] implies its singularities may only be isolated
points and provides the following description; for any point p 2 F and a small
neighbourhood U of p , ��1.U / is diffeomorphic to .S2 �D2/=G . Here G is a
discrete subgroup of O.2/ which acts freely on S2�D2 . Because Z2 is the only such
group that acts freely on S2 the only possible singularities for the orbifold bundle
correspond to projective planes RP2 over the set of singular points pi 2 F .

Consider an open neighbourhood Vi of pi , let V D [Vi . Then the restriction of �
to E D F �V is a fibre bundle with total space N �M and fibres S2 . Melvin and
Parker have shown that N admits an S1 action given by rotations in the fibres [30;
31]. Moreover, they show that the structure group of N ! E is contained in O.2/.
Since Diff.S2/ retracts to O.3/ and preserves fibres, the transition maps are either
isotopic to the identity or the antipodal map.
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We will now show that this is also the case for M ! F . This will allow us to extend
this action to a T –structure on M . Let r˛ denote the rotation of S2 with respect to
the axis ˛ and a the antipodal map. An easy exercise in linear algebra shows these
two transformations commute, that is r˛ ıaD a ı r˛ . Therefore the following diagram
commutes,

S2 r˛
�! S2

# #

RP2
rŒ˛�
�! RP2

where rŒ˛� denotes the rotation of RP2 with fixed point the class of ˛ .

For a neighbourhood Vi of a singular point pi , we can lift the preimage ��1.Vi/

to S2 �D2 . The action of r˛ on S2 �D2 commutes with the quotient of Z2 , thus
defining an S1 action on .S2 �D2/=Z2 which is diffeomorphic to ��1.Vi/.

The holonomy around @Vi is Z2 , so that the maps that attach ��1.Vi/ to N in order
to obtain M are either isotopic to the identity or to the antipodal map. In the case of the
identity there is nothing to prove. If the attaching map is isotopic to the antipodal map
it suffices to note that the rotations on S2 which are defined on N and ��1.Vi/ both
commute with the antipodal map a. Therefore they define a T –structure on M .

Conveniently enough, Hillman has shown that if a manifold M admits a geometric
decomposition into pieces modelled on geometries of the type S2 �X2 then M is
foliated by S2 or RP2 [16]. We use this description to see that we have also proved
the following two results.

Corollary 11 Any smooth orientable 4–manifold M with a geometric decomposition
into pieces of the type S2 �X2 admits a T –structure.

Corollary 12 A closed manifold M modelled on a geometry of type S2�X2 , where
X2 is a 2–dimensional geometry, admits a T –structure.

In these cases it is the best we can hope for. In general such a manifold M might not
admit a polarised T –structure because M could have positive Euler characteristic
�.M / > 0 and therefore its minimal volume could not vanish.

8 Geometric decompositions

Definition 13 We say that an n–manifold M admits a geometric decomposition if it
has a finite collection of disjoint 2–sided hypersurfaces S such that each component
of M �

S
S is geometric of finite volume.
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In other words, each component of M �
S

S is homeomorphic to X=� , for some
geometry X and a lattice � . We shall call the hypersurfaces S cusps and the compo-
nents of M �

S
S pieces of M . The decomposition is proper if the set of cusps is

nonempty.

8.1 Dimension four

Hillman [16, page 138] brought together various results and organised them to show
that if a closed 4–manifold M admits a geometric decomposition then either

(1) M is geometric,

(2) M has a codimension 2 foliation with leaves S2 or RP2 ,

(3) the pieces of M have geometry H4 , H3 �E, H2 �E2 or fSL2 �E,

(4) the pieces of M have geometry H2
C or F4 or

(5) the pieces of M all have geometry H2 �H2 .

This follows from inspecting the various possible types of cusps that appear in a
geometric decomposition.

Geometry Cusps Reference
Hn flat Eberlein [8]

H3 �E; H2 �E2 and fSL2 �E flat Hillman [16]
S2 �H2 S2 �E–manifolds Hillman [16]

F4 Nil3–manifolds Hillman [16]
H2

C Nil3–manifolds Goldman [13]
irreducible H2 �H2 Sol3–manifolds Shimizu [38]
reducible H2 �H2 graph manifolds Shimizu [38]

These are the only geometries we need to consider, because if a geometry is of solvable
or compact type every lattice has compact quotient [36].

8.2 Geometrisable 4–manifolds and positive simplicial volume

A manifold is called geometrisable if it is diffeomorphic to a connected sum of mani-
folds which admit geometric decompositions. Given a manifold N with a geometric
decomposition, if the fundamental group of the hypersurfaces of the decomposition
injects into �1.N / we say that the geometric decomposition is �1 –injective.
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In dimension 4, Hillman observed that, except for reducible pieces modelled on the
geometry H2 �H2 , the inclusion of a cusp into the closure of a piece induces a
monomorphism on the fundamental group. So modulo reducible H2 �H2 –pieces,
every geometric decomposition in dimension four is �1 –injective [16, page 139].

Proposition 14 Let M be a geometrisable smooth four-manifold. If a piece of the
decomposition of M is modelled on H4 or on H2

C then kM k> 0.

Proof Let N denote a piece of M modelled on H4 or H2
C . The manifold N has

finite volume and negative curvature, which implies kN k> 0. The cusps of manifolds
modelled in the geometries H4 and H2

C are either flat or Nil3 –manifolds, respectively.
This implies that we can cut the cusps S of N off from M (by Gromov’s Cutting-Off
theorem [14, page 58]), because the fundamental group of any cusp of N is amenable.
This means the simplicial volume of M is not affected when we take the cusps of
N off. In other words, if N 0 WDM � .N

S
S/ then the cutting off theorem implies

kM k D kN 0kCkN k. Therefore kM k � kN k> 0.

Conjecture 15 If a smooth orientable four-manifold M admits a proper geometric
decomposition into pieces modelled on H2 �H2 then h.M /¤ 0.

Remark The issues of uniqueness of a decomposition, or even uniqueness of the
pieces involved in a decomposition are subtle open questions (but they are not directly
relevant to the results of this paper). In the work of M Kreck, W Lück and P Teichner
topological and smooth counterexamples to the Kneser conjecture can be found [24].
However, they have also shown that given a splitting of the fundamental group of a
smooth four-manifold M there does exist a unique stable decomposition of M [25].
Here stable means up to adding copies of S2 �S2 .

9 Mixed Euclidean cases H3 � E, H2 � E2 and eSL2 � E

In this section we will deal with the manifolds in case .3/ of Hillman’s Theorem which
do not have pieces modelled on H4 .

9.1 Generalities on the isometry group of X

Definition 16 A Riemannian manifold M is reducible if M is isometric to the
Riemannian product M1 �M2 of two manifolds, M1 and M2 of positive dimension.
If M is not reducible, then it is said to be irreducible.
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In general if we have a simply connected Riemannian product N �M where M is
Euclidean and N is irreducible (a de Rham decomposition in the notation of [8]) then
Iso.N �M /D Iso.N /� Iso.M / (see Kobayashi and Nomizu [22, page 240]). Thus
Iso.H3�E/D Iso.H3/�Iso.E/, Iso.H2�E2/D Iso.H2/�Iso.E2/ and Iso.fSL2�E/D
Iso.fSL2/� Iso.E/.

The identity components of these groups are:

Iso0.H
3
�E/D PSL.2;C/�R;

Iso0.H
2
�E2/D PSL.2;R/� IsoC.E2/;

Iso0.fSL2 �E/D Iso0.fSL2/�R:

9.2 Lattices

Let � � Iso.X/ be a discrete subgroup which acts freely on X such that M WDX=�
is a complete orientable manifold with finite volume.

By a theorem of Wang (cf [36, 8.27]) the lattice � meets the radical R of the connected
Lie group Iso0.X/ in a lattice. The radicals are Euclidean and may be described as
follows. For H3 �E, the radical is the copy of R given by the translations on the
E factor. For H2 �E2 , the radical is a copy of R2 given by the translations on the
E2 factor. For fSL2 �E it is also R2 , with one copy of R coming from translations
on the E factor and the other coming from the center of Iso0.fSL2/. Thus � \R is
isomorphic to Z or Z2 .

9.3 F –Structures on flat manifolds

The isometry group of En is the semidirect product of Rn and O.n/. Let �W O.n/!
Aut.Rn/ be the map �.B/.x/ D Bx . Let � � Iso.En/ be a cocompact lattice and
M WD En=� a compact flat manifold. Let pW � ! O.n/ be the homomorphism
p.t; ˛/D ˛ , where .t; ˛/ 2 Rn �O.n/. The Bieberbach theorem guarantees that �
meets the translations in a lattice (ie the kernel of p is isomorphic to Zn ) and p.�/ is
a finite group G . Then M is finitely covered by the torus Rn=ker.p/ and the deck
transformation group of this finite cover is G .

Note that for any ˛ 2G , �.˛/ maps ker.p/ to itself because

.u; ˛/ ı .s; I/ ı .u; ˛/�1
D .�.˛/s; I/

and thus if .s; I/ 2 � , then .�.˛/s; I/ 2 � .

Hence the map �W O.n/!Aut.Rn/ induces a map  DW G!Aut.TnDRn=ker.p//.
As an action � of Tn on Rn=ker.p/ we take x 7! x C t . To see that this defines
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an F –structure we check the condition ˛.�.t/.x// D �. .˛/.t//.˛.x// for ˛ 2 G

which just says ˛.xC t/D ˛.x/C˛.t/.

9.4 Ends of hyperbolic manifolds

The following description may be found in Eberlein [8]. Let � � Iso.Hn/ be a lattice
and let M WDHn=� . If M is not compact, then it has finitely many ends (or cusps)
and the ends are in one-to-one correspondence with conjugacy classes of subgroups
of � that contain parabolic elements. For each end there is a point x 2H.1/ (the
sphere at infinity) such that if we let �x be the stabiliser of x , then �x consists only of
parabolic elements which leave every horosphere L at x invariant. The horosphere L

is flat with the induced metric (this can be easily seen in the upper-half space model with
horospheres given by xn constant) and thus N WDL=�x is a compact flat manifold.
A horocyclic neighbourhood U of the end is given by the projection of open horoballs
in Hn . The set U is a warped Riemannian product of the flat metric on N and .0;1/
whose metric is given by e�2t ds2

N
C dt2 .

9.5 F –Structures on quotients of H3 � E and ends

Let � be a lattice in Iso.H3 �E/. By the discussion in Section 9.2, there exists s0

such that � \R contains the translations generated by .x; t/ 7! .x; t C s0/ (and only
them).

Consider the projection homomorphism Iso.H3�E/ 7! Iso.E/ 7!Z2 (recall that Iso.E/
is the semidirect product of R with O.1/ D Z2 ). Then we have a homomorphism
� 7! Z2 . Its kernel is an index 2 subgroup �0 � Iso.H3/�R. The manifold M0 D

X=�0 is a 2-1 cover of M . But M0 admits a circle action since the action of R,
.x; t/ 7! .x; t C s/ descends to a circle action on M0 . The action may not descend
to M , but M is still foliated by circles. In any case we obtain in this way an F –
structure on M . Where ‰W Z2! Aut.S1/ on the non trivial element of Z2 is just
t 7! �t .

Let us now take a look at the ends of M . Let p1W Iso.H3 �E/! Iso.H3/ be the
projection on the first factor. The group p1.�/ is a lattice in Iso.H3/ isomorphic to
�=Z. The ends of M arise from the ends of the hyperbolic 3–orbifold H3=p1.�/.
Note that the action of p1.�/ on H3 is not necessarily free and the fixed points create
the orbifold nature of the quotient. By Selberg’s lemma [37], p1.�/ does contain a
finite index subgroup which acts freely on H3 .

For each end of M , there is a point x 2H3.1/ and a horosphere L through x . The
set P D L�E is a copy of Euclidean 3–space which inherits the flat metric from
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H3 �E. If we let �P be the elements of � which project under p1 to Stab.x/, then
the horocyclic neighbourhood V D P=�P � .0;1/ is the end of M . Then, on V we
have a canonical F –structure given by Section 9.3.

Note that the F –structure we defined on M before using the R–action on the E–factor
is compatible with the one we just described at the ends. In fact on V the R–action
does descend to a circle action leaving P=�P invariant.

9.6 Gluing H3 � E pieces

In this subsection we suppose that M is a closed orientable geometrisable 4–manifold
with pieces modeled on H3 �E and we show how to put a polarised F –structure
on M .

In order to prove this, the situation we need to consider is the following. Let Mi D

H3 �E=�i for i D 1; 2 and suppose Mi has one end of the form Pi � .0;1/ for
i D 1; 2 and f W P1! P2 is a diffeomorphism. The manifolds Pi are flat. We wish to
show that M DM1[f M2 has an F –structure. The diffeomorphism type of M only
depends on the isotopy class of f . We will use the fact that on a flat 3–manifold any
diffeomorphism is isotopic to an affine map, so from now on we will suppose that f is
affine (this follows from either [29] or [26]).

Now according to the previous subsection we have F –structures on each of the ends.
These structures will be compatible when the gluing map is affine. Indeed we only
need to observe that in Rn , an affine map has the form f .x/ D Ax C b , where A

is an invertible matrix and b 2 Rn a fixed vector. Hence if we conjugate by f the
Rn –action by translations x 7! xCu we obtain x 7! xCAu and these two actions
commute. So we have a polarised F –structure on M .

9.7 F –Structures on quotients of H2 � E2 and ends

Let � be a lattice in Iso.H2 � E2/. By the discussion in Section 9.2 above, there
exist linearly independent vectors w1; w2 2R2 such that � contains the translations
generated by .x;y/ 7! .x;yCwi/, for i D 1; 2 (and only them).

Consider the projection homomorphism Iso.H2 �E2/! Iso.E2/! O.2/ (recall that
Iso.E2/ is the semidirect product of R2 with O.2/). Then we have a homomorphism
� 7! O.2/ with image a finite group G . Its kernel is a finite index subgroup �0 �

Iso.H2/ �R2 . The manifold M0 D X=�0 is a finite cover of M with G as deck
transformation group. But M0 admits a 2–torus action since the action of R2 , .x;y/ 7!
.x;yCu/ descends to a 2–torus action on M0 . The action may not descend to M ,
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but M is still foliated by tori. In any case we obtain in this way an F –structure on M ,
where ‰W G! Aut.T 2/ is given exactly by the ‰ of Section 9.3.

Let us now take a look at the ends of M . Let p1W Iso.H2 �E2/! Iso.H2/ be the
projection on the first factor. The group p1.�/ is a lattice in Iso.H2/ isomorphic to
�=Z2 . The ends of M arise from the ends of the hyperbolic 2–orbifold H2=p1.�/.

For each end of M , there is a point x 2H2.1/ and a horosphere L through x . The
set P D L�E2 is a copy of Euclidean 3–space which inherits the flat metric from
H2�E2 . If we let �P be the elements of � which project under p1 to Stab.x/, then
the horocyclic neighbourhood V D P=�P � .0;1/ is the end of M . Then, on V we
have a canonical F –structure given by Section 9.3.

Note that the F –structure we defined on M before using the R2 –action on the E2 –
factor is compatible with the one we just described at the ends.

9.8 F –Structures on quotients of eSL2 � E and ends

Let � be a lattice in Iso.fSL2 �E/. Since fSL2 does not admit orientation reversing
isometries and M is orientable we see that � � Iso.fSL2/�R. Recall that we have
the sequence

0!R! Iso.fSL2/! Iso.H2/! 1

and R is central in Iso0.fSL2/. Hence Iso.fSL2/�R contains a copy of R2 . By the
discussion in Section 9.2, there exist linearly independent vectors w1; w2 2R2 such
that � intersects R2 in the lattice Zw1CZw2 .

We have a homomorphism

�! Iso.fSL2/! Iso.H2/! Z2 D Iso.H2/=PSL.2;R/:

The kernel of this homomorphism gives an index 2 subgroup �0 � Iso0.fSL2/�R and
the manifold M0DX=�0 is a 2-1 cover of M . But M0 admits a 2–torus action since
the action of R2 on fSL2 �E descends to a 2–torus action on M0 . The action may
not descend to M , but M is still foliated by tori. In any case we obtain in this way an
F –structure on M , where ‰W Z2! Aut.T2/ is given by .t1; t2/ 7! .�t1; t2/.

Let us now take a look at the ends of M . Let p1W Iso.fSL2 �E/! Iso.H2/ be the
composition of the projection on the first factor with Iso.fSL2/! Iso.H2/. The group
p1.�/ is a lattice in Iso.H2/ isomorphic to �=Z2 . The ends of M arise from the
ends of the hyperbolic 2–orbifold H2=p1.�/. For each end of M , there is a point
x 2 H2.1/ and a horosphere L through x . The Lie group fSL2 is an R–bundle
over H2 . So inside fSL2 we now get a copy F of Euclidean 2–space given by those
R–lines over L.
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The set P D F � E is a copy of Euclidean 3–space which inherits the flat metric
from fSL2�E. If we let �P be the elements of � which project under p1 to Stab.x/,
then the horocyclic neighbourhood V D P=�P � .0;1/ is the end of M . Then, on
V we have a canonical F –structure given by Section 9.3. As in the other cases, the
F –structure we defined on M before using the R2 –action on fSL2 �E is compatible
with the one we just described at the ends. In fact, on V we do have a 2–torus action
leaving P=�P invariant.

Theorem 17 A closed orientable and geometrisable 4–manifold with pieces modelled
only on H3 �E, H2 �E2 or fSL2 �E admits a polarised F –structure.

Proof Sections 9.5, 9.7 and 9.8 exhibit F –structures on each piece, such that at the
flat ends we have the canonical F –structure defined in Section 9.3. Gluing by affine
diffeomorphisms ensures compatibility on the overlaps as explained in Section 9.6. By
inspection we see that the structure is polarised.

10 Manifolds which decompose into F4–pieces

10.1 The geometry F4

Suppose we have a finite volume manifold M modelled on F4 . The fundamental
group � of M is a lattice in R2 Ë SL.2;R/. It must meet R2 in Z2 , otherwise the
volume of M would not be finite. Denote by S� the image of � in SL.2;R/ and
notice that S� D �=Z2 . We can now see that M D F4=� is an elliptic surface over
B DH2=S� , where B is a noncompact orbifold [43, page 150].

The identity component of Iso.F4/ coincides with IsoC.F4/ and is given by the
semidirect product R2 Ë˛ SL.2;R/, with ˛ the natural action of SL.2;R/ on R2 . Let
� � IsoC.F4/ be a lattice, so that M D F4=� is a finite volume manifold modelled
on F4 . Let pW R2 Ë˛ SL.2;R/! SL.2;R/ be the projection homomorphism. By
the same theorem of Wang [36, 8.27] which we used in Section 9.2, � meets R2 in
a lattice isomorphic to Z2 . The quotient �=Z2 is isomorphic to p.�/. As in the
case of flat manifolds, the structure of semidirect product implies that if A 2 p.�/,
then A maps � \R2 to itself. Thus we have an induced homomorphism  W p.�/!

Aut.T2 DR2=.� \R2//. The manifold M is T2 �H2 modulo the action of p.�/,
where it acts on T2 via  and on H2 in the usual way. The quotient B WDH2=p.�/

is a hyperbolic orbifold of finite volume and hence M is an orbifold bundle over B .
If B is smooth, ie p.�/ acts without fixed points, then M is a torus bundle over B

with structure group SL.2;Z/ and  is precisely its holonomy.
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The ends of M arise from parabolic elements in p.�/. If L�H2 is an appropriate
horosphere left invariant by a parabolic element A 2 p.�/, then the cusp will have
the form P � .0;1/, where P D .T2 �L/=Z, and this Z is generated by A. This
exhibits the boundary of the ends as torus bundles over the circle.

10.2 Affine transformations of Lie groups

Let G be a Lie group and Aut.G/ be the group of continuous automorphisms of G .
Then the group Aff.G/ of affine transformations of G is isomorphic to the semidirect
product A.G/ WDG Ë Aut.G/ with the operation,

.g1; ˛1/.g2; ˛2/D .g1˛1.g2/; ˛1˛2/; g1;g2 2G; ˛i 2 Aut.G/:

It has a Lie group structure and acts on G by .g; ˛/x D g˛.x/ for .g; ˛/ 2 A.G/,
x 2G .

The left inverse of .g; ˛/ is .g; ˛/�1 D ..˛�1.g//�1; ˛�1/.

.g; ˛/�1.g; ˛/D ..˛�1.g//�1; ˛�1/.g; ˛/

D ..˛�1.g//�1˛�1.g/; ˛�1˛/D .e; Id/

It was first noticed by Kamber and Tondeur in [20] that the action of A.G/ on G defines
an isomorphism i W A.G/! Aff.G/. The following lemma is useful for computations.

Lemma 18 Let G be a Lie group, � and � elements of the centre of L and A 2

Aff.G/. Then A�1�A� D �A�1�A.

Proof Let �A D A�1�A, where A D .g; ˛/ in A.G/ Š Aff.G/, � D .�; Id/ and
� D .�; Id/. If � is in the centre of G then for an ˛ in Aut.G/ and a g in G we have
that �g D g�) ˛.�g/D ˛.g�/) ˛.�/˛.g/D ˛.g/˛.�/.

We now compose the above elements to see that �A D .˛
�1.�/; Id/:

�A DA�1�ADA�1Œ.�; Id/ ı .g; ˛/�

DA�1
ı .�g; ˛/D ..˛�1.g//�1; ˛�1/ ı .�g; ˛/

D ..˛�1.g//�1˛�1.�g/; ˛�1˛/D ..˛�1.g//�1˛�1.g�/; Id//

D ..˛�1.g//�1˛�1.g/˛�1.�/; Id//D .˛�1.�/; Id/

The above calculation implies:

�A� D .˛
�1.�/; Id/ ı .�; Id/D .˛�1.�/�; Id/

D .�˛�1.�/; Id/D .�; Id/ ı .˛�1.�/; Id/D ��A

Therefore A�1�A� D �A�1�A:
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10.3 T –Structures on manifolds with decomposition into F4–pieces

Theorem 19 Let M be a closed orientable complete four-manifold with a geometric
decomposition into orientable pieces modelled only on F4 . Then M admits a T –
structure.

Proof First we will see how the F4 –pieces of the geometric decomposition on M

admit a T –structure. Let N denote one such F4 –piece. Then N is an open elliptic
surface over the base B . Let m be the number of cusps of B and pi one such cusp.
Denote by Ei the end of N corresponding to the cusp pi of B . We know that Ei is
a Nil3 –manifold and �1.E/ is isomorphic to �ki

as above, for some ki 2 Z.

Consider a small horocyclic neighbourhood U of pi . Let B0 WDB�U and N 0!B0

be the corresponding elliptic surface obtained by restriction. Identify the boundary @N 0

of N 0 with itself using the identity to form the double DN 0 of N 0 . Now DN 0 is a
compact elliptic surface over the double of B0 , so DN 0 admits a T –structure whose
orbits are the elliptic fibres [34, Theorem 5.10]. When we restrict the T –structure on
DN 0 to N 0 we obtain a T –structure on N 0 . Recall that Ei is a T 2 –bundle over
S1 with geometric monodromy

�i D

�
1 ki

0 1

�
2 SL.2;R/:

The monodromy around the boundary of U is also �i . This allows us to extend the
T –structure on N 0 to N , because the action of T 2 on the elliptic fibres behaves
well with respect to any element of SL.2;Z/. This holds in particular for �i and the
corresponding actions will commute after conjugation by �i .

A collar neighbourhood of Ei in N is diffeomorphic to Ei � .0;1/, which is
Nil3=�ki

� .0;1/ WD V . Both actions leave V invariant, as they leave every slice
Ei �ftg invariant for every t 2 .0;1/. As translations along the z axis in Nil3 , given
by Œx;y; z� �7! Œx;y; zC ��, � 2R are central in Nil3 . They descend to an S1 –action
� on V given by .Œx;y; z�; t/ �7!.Œx;y; zC ��; t/: On N \V the structures � and �
commute:

��.Œx;y; z�; t/D �.Œx;y; zC ��; t/D .ŒxC �1;yC �2; zC ��; t/

D �.ŒxC �1;yC �2; z�; t/D ��.Œx;y; z�; t/

Assume N1 and N2 are two F4 –manifolds which are glued along E1 and E2 , com-
ponents of their respective boundaries. Let hW E1!E2 be the gluing diffeomorphism;
we will see in the next section that h is isotopic to an affine transformation ˛W E1!E2 .
When we use isotopic diffeomorphisms to identify boundary components we obtain
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diffeomorphic manifolds [17]. So it is enough to work with ˛ , as we are interested in
the existence of a T –structure up to diffeomorphism.

Define �˛ WD ˛�1�˛ , we need to show that �˛� D ��˛ for the S1 –actions �; �
on E1 and E2 which are induced by translations along the z–axis of Nil3 . The
affine transformation ˛ lifts to an affine transformation A of Nil3 which is �1.E1/–
invariant. That is A sends �1.E1/–orbits to �1.E1/–orbits in Nil3 . Both � and �
lift to translations along the z–axis of Nil3 , which we will call z� and z� . Therefore
�˛� D ��˛ follows from z�Az� D z� z�A on Nil3 , where again z�A WDA�1z�A. This was
shown in Lemma 18, as both z� and z� are central in Nil3 . By repeating the same
procedure on each geometric piece of M and on each pair of identified cusps, we give
M a T –structure.

11 Diffeomorphisms of flat 3–manifolds and Nil3–manifolds

In his review on problems in low dimensional topology [21, page 137], R Kirby points
out that the following is a consequence of the results of P Scott and W Meeks [29].
Let M be a 3–manifold modelled on R3 or Nil3 , Aff.M / denote the group of affine
transformations of M and Diff.M / the group of diffeomorphisms of M . The inclusion
Aff.M / ,! Diff.M / induces an isomorphism on components

�0.Aff.M //
Š
,! �0.Diff.M //:

Remark It follows that every diffeomorphism of a compact flat 3–manifold or Nil3 –
manifold is isotopic to an affine transformation.

A proof of this result can be reproduced by induction from the results on periodic
diffeomorphisms shown in [29]—this was communicated to the author by Scott. An
alternative approach has been suggested by A Verjovsky [41]. It uses the following
deep fact about closed one forms on 3–manifolds. Laudenbach and Blank showed in
[26] that two closed nonsingular 1–forms on a 3–manifold are isotopic if and only if
they are cohomologous.

Corollary 20 Any diffeomorphism g of T 3 is isotopic to an affine transformation.

Proof (Verjovsky) The map g induces a linear map on H 1.T 3/. Composing g

with the inverse of this linear map, we can assume that g�W H 1.T 3/! H 1.T 3/ is
the identity. Let pW T 3 D S1 �S1 �S1! S1 be the projection onto the first factor
and let ! D ��.d�/, where d� denotes the metric on S1 . The form ! is a closed
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nonsingular 1–form on T 3 . Since g�! is cohomologous to ! , by the Laudenbach–
Blank theorem, g�! and ! are isotopic through an isotopy .ht /f0�t�1g such that
h0 D Id and h�

1
.g�!/D ! .

The map f D g ı h1 , fixes ! in cohomology and therefore fixes each torus T� D

fe2� i�g � T 2 . Let f� be the restriction of f to T� . The map � 7! f� defines a
loop S1! Diff.T 2/; in fact the image of this loop lies in Diff0.T

2/, the subgroup
of diffeomorphisms isotopic to the identity, because f� induces the identity in the
cohomology of T 2 . Because Diff0.T

2/ retracts to the group of translations and
therefore we can retract our loop to a map S1 ! T 2 . This map is homotopic to a
constant, since it is the identity in (co)-homology.

12 Fundamental groups of geometrisable manifolds

Let M be an orientable smooth four-manifold which admits a proper geometric decom-
position. A standard argument using the Seifert–van Kampen theorem shows �1.M /

is isomorphic to an amalgamated product A�C B or to an HNN–extension A�
�
C

. Here
A is the fundamental group of one of the geometric pieces.

A free product with amalgamation A�C B where C is a subgroup of both A and B is
nondihedral if the two inclusions C �A and C �B are strict and if, moreover, the index
of C is not 2 in both A and B . An HNN–extension A�

�
C

, where � is an isomorphism
from some subgroup C of A onto some subgroup C 0 of A is nonsemidirect if at least
one of the inclusions C �A or C 0 �A is strict.

It was shown by P de la Harpe that if a group � is isomorphic to either a nondihedral
amalgamated product A�C B or to a nonsemidirect HNN–extension A�

�
C

, then � is
of exponential growth [15]. A straightforward consequence is:

Lemma 21 The fundamental group of a smooth four-manifold M with a proper
geometric decomposition has exponential growth. So for any smooth Riemannian
metric g on M we have that htop.g/ > 0.

Recall that the fundamental group of a connected sum is the free product of the
fundamental groups of the summands. If A and B are two finitely generated groups,
then the free product A �B contains a free product of rank 2 unless A and B are
trivial, A is trivial and B is of order 2, or A and B both have order 2. Therefore
if M and N are differentiable manifolds with �1.M / D A and �1.N / D B , then
�1.M # N / will grow exponentially and again htop.g/ > 0 for any smooth metric g

on M # N , unless �1.M / and �1.N / are trivial, �1.M / is trivial and �1.N / has
order 2, or �1.M / and �1.N / both have order 2. These arguments complete a proof
of Corollary D.

Algebraic & Geometric Topology, Volume 9 (2009)



392 Pablo Suárez-Serrato

13 Proofs of the main results

13.1 Proof of Theorem 1

Proof In each case we can construct an F –structure.

For S4 and CP2 , the only manifolds modelled on these geometries are S4 and CP2 .
These two manifolds have S1 –actions so they admit a T –structure.

If M is modelled on S3 �E, H3 �E, fSL2 �E, Nil3 �E, Nil4 or Sol41 , then M is
foliated by geodesic circles. By Theorem 4, this foliation allows us to define a polarised
T –structure.

In the case of M being modelled on S2 �E2 or H2 �E2 , M is Seifert fibred and
hence M admits a polarised T –structure. We saw in Theorem 7 how to define circle
actions in the fibres which behave well with respect to the Seifert fibration, in that they
commute with the structure group and so define a T –structure.

When M is modelled on Sol4m;n or Sol40 , M is actually diffeomorphic to a mapping
torus of T 3 . With this description M can be given a polarised T –structure, as was
explained in Theorem 9.

We have constructed in Corollary 12 a T –structure on foliated manifolds whose
leaves are S2 or RP2 , which includes all the cases of type X2 �S2 with X2 a two-
dimensional geometry. The idea here is that the S2 leaves can be rotated consistently,
endowing M with a T –structure.

As shown in Section 9.3, all flat manifolds admit an F –structure.

Therefore if M is modelled on a geometry in V then M admits a T –structure.

13.2 Proof of Theorem A

Proof (i)) (ii) This is content of Theorem 1.

(ii)) (iii) This is Theorem A of Paternain and Petean in [34].

(iii)) (iv) Follows directly from the string of inequalities between the asymptotic
invariants mentioned in the introduction.

(iv)) (v) If M is modelled on H then jjM jj > 0 by Proposition 2. Therefore
jjM jj D 0 implies M is modelled on a geometry in V.

It follows from Theorem 1 that M admits a T –structure and by Paternain and Petean’s
Theorem A in [34], M collapses with curvature bounded from below.
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(v)) (i) Again we will show the contrary. Let M be a manifold modelled on a
geometry in H. Then Proposition 2 implies jjM jj> 0. As a consequence of the results
in [34] and [6], jjM jj bounds VolK .M / (up to some constants depending only on the
dimension n) from below. Therefore for some constant cn we have

0< jjM jj � cnVolK .M /

so M can not collapse with curvature bounded from below.

13.3 Proof of Theorem B

Proof If the connected sum components of M admit a T –structure then this extends
to M under the connected sum. The same is true for F –structures if one of the open
sets of the F –structure has a trivial covering [34, page 437]. In all the cases in V we
may achieve this as can be seen from the proofs of Theorems 1, 12, 17 and 19.
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