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The Burau estimate for the entropy of a braid

GAVIN BAND

PHILIP BOYLAND

The topological entropy of a braid is the infimum of the entropies of all homeomor-
phisms of the disk which have a finite invariant set represented by the braid. When
the isotopy class represented by the braid is pseudo-Anosov or is reducible with a
pseudo-Anosov component, this entropy is positive. Fried and Kolev proved that
the entropy is bounded below by the logarithm of the spectral radius of the braid’s
Burau matrix, B.t/ , after substituting a complex number of modulus 1 in place of
t . In this paper we show that for a pseudo-Anosov braid the estimate is sharp for
the substitution of a root of unity if and only if it is sharp for t D�1 . Further, this
happens if and only if the invariant foliations of the pseudo-Anosov map have odd
order singularities at the strings of the braid and all interior singularities have even
order. An analogous theorem for reducible braids is also proved.

37E30; 37B40, 20F36, 20F29

1 Introduction

Artin’s braid group and its Burau representation have been extensively studied by many
researchers from many points of view. In dynamical applications a braid is often used
to describe the motion of a collection of points in the two-dimensional disk. Since
the braid depends only on the motion of the points, it is describing an isotopy class
of homeomorphisms on the complement of the points. Thus, the interpretation of the
braid group on n–strings, Bn , as a mapping class group of the n–punctured disk is
frequently used, and so Thurston’s classification theorem for surface isotopy classes is
an important tool.

The (reduced) Burau matrix, B.t/, of a braid ˇ 2 Bn , is an .n� 1/� .n� 1/ matrix
with entries in ZŒt; t�1�, ie the entries of the matrix are Laurent polynomials over the
integers. In the early 1980s two different but closely related dynamical interpretations
of the Burau matrix emerged. Using the construction in Franks’ paper [14], the Burau
matrix can be interpreted as the signed, linking matrix of a certain Axiom A flow
associated with the braid. The signed, linking matrix is an enhanced Markov transition
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matrix which records the linking of the Markov boxes with the strings of the braid as
well as the orientations of their images.

The second dynamical interpretation comes from the machinery in Fried’s paper [15].
In this case the Burau matrix of a braid arises as the induced action of the associated
mapping class on a Z-cover, where the first homology of the cover is given the structure
of a module over ZŒt; t�1� (this is a standard description, see, for example, Birman
and Brendle [4]). In the more general setting of twisted cohomology, Fried showed
that after using the appropriate representation of the fundamental group, the spectral
radius of the induced action gives a lower bound on the topological entropy. While
these interpretations of the Burau matrix were not explicit in either of these two papers,
the two authors were certainly aware of them (P B personal communication, 1984).
See Boyland [7] for an introductory exposition of these two interpretations.

Because the topological entropy of a self-map measures a certain kind of exponential
growth it is natural to expect that, at least in certain cases, it is detectable from the
growth rates of induced maps on various algebraic objects associated with the underlying
space. Thus, for example, the growth rate of the induced map on first homology (ie
its spectral radius) gives a lower bound for the topological entropy (Manning [21]), as
does exponential growth rate of word length in the fundamental group under iteration
by f� (Bowen [6] and Fathi–Laudenbach–Poénaru [12]).

These lower bounds only depend on the homotopy class of the map, and so it is also
natural to ask whether the bounds are attained, ie is there a map in the homotopy class
that realises the lower bound? For surface homeomorphisms this question was answered
by Thurston. One consequence of his classification theorem is that any isotopy class
of surface homeomorphisms contains a map with entropy equal to the growth rate on
the fundamental group (Thurston [30] and [12]). While this result is invaluable in
theory, in practice, the computation of word length growth in non-Abelian groups is
very difficult. On the other hand, computations in homology are much more tractable,
but frequently give only trivial lower bounds. A fundamental idea in Fried’s paper [15]
is that there is a middle ground between these two theories provided by the action on
twisted homology. In the most concrete case this amounts to providing a systematic
way to examine the growth rate of the action on homology in a collection of finite
covers.

Thus one sees that the Burau representation provides a lower bound for the topological
entropy of the isotopy class represented by a braid. Specifically, if h is a homeomor-
phism of the n–punctured disk which is represented by the braid ˇ 2 Bn with Burau
matrix B.t/, then

(1–1) htop.h/� supflog sr.B.�// W � 2 S1
g
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where sr.B.�// is the spectral radius of the complex matrix B.�/ obtained by substi-
tuting the complex number � with j�j D 1 into the Burau matrix. This estimate was
obtained directly with different methods by Kolev [20]. The estimate in (1–1) and its
alternative version in (4–1) below will be called the Burau estimate. If the inequality
in (1–1) is an equality for �D �0 , then the Burau estimate is said to be sharp at �0 .

Since a braid represents an isotopy class, we may use Thurston’s classification scheme
to classify braids. Thus a braid is said to be pseudo-Anosov, finite order or reducible if
its corresponding isotopy class is. If a braid is finite order or reducible with all finite
order components, there is a map in the class with zero topological entropy, and so the
Burau estimate is already sharp at � D 1. The main result here for pseudo-Anosov
braids is the following Theorem.

Theorem 1.1 For a pseudo-Anosov braid ˇ , the Burau estimate is sharp at the root
of unity �0 only if �0 D �1. Further, sharpness at �1 happens if and only if the
invariant foliations for a pseudo-Anosov map in the class represented by ˇ have odd
order singularities at all punctures and all interior singularities are even order.

A portion of this theorem was obtained in Song, Ko and Los [26] (see Remark 5.2
below). An immediate consequence of the theorem is that the Burau matrix contains
nontrivial information about the invariant foliations of a pseudo-Anosov braid ˇ : if
the Burau estimate for ˇ attains a maximum at a root of unity other than �1, then the
invariant foliations for ˇ either have an odd-order interior singularity or an even-order
puncture singularity (or both). This kind of geometrical information is often difficult
to obtain. The substitution of complex numbers on the unit circle which are not roots
of unity requires different methods. In a subsequent paper we will show that for a
pseudo-Anosov braid, sr.B.e2�i� // < � for all � 62Q.

There is an analogous theorem for reducible braids with at least one pseudo-Anosov
component. Its full statement is rather complicated (see Theorem 6.2 below), but one
useful consequence is the following.

Theorem 1.2 For any braid ˇ on n strings with at least one pseudo-Anosov com-
ponent, the Burau estimate is sharp at the root of unity �0 only if �0 is of the form
e2�ij=k for some even k � 2

3
n and some odd j with 0< j < k .

There are two main components in the proof of these theorems. The main algebraic tool
is Lemma 3.2 which shows that the union of the spectra obtained by substituting all the
k th roots of unity into the Burau matrix B.t/ yields essentially the entire spectrum of
the action on first homology of a lift of the corresponding mapping class to the k –fold
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cover. This is coupled with information about the connection of entropy, the Thurston
normal form, the action on homology, and the orientability of the invariant foliations
of a pseudo-Anosov map.

The investigations of this paper were partly inspired by recent work using the Burau
estimate to get lower bounds on the entropy of fluid flows by applying the Burau
estimate to the braids generated by large collections of points moving with the fluid
(Thiffeault [28], Gouillart, Thiffeault and Finn [17] and Thiffeault and Finn [29]). For
these applications a good understanding of “sharpness” of the estimate is necessary
and this paper provides a first step. In addition, questions surrounding the Burau
representation provide an important, special case of the more general question of
dynamics on abelian covers of surfaces which we investigate in subsequent papers.

2 Preliminaries

2.1 Standing hypotheses and conventions

In this paper surfaces X will always be orientable, perhaps with boundary, and compact
except perhaps for a finite number of punctures. We fix a Riemannian metric on X

which allows us to speak of the lengths of tangent vectors. Self-homeomorphisms of
the surface f W X ! X are always orientation-preserving. If no coefficient ring for
homology is specified, it is assumed to be the integers Z, and so H1.X / WDH1.X IZ/.
The induced map of the homeomorphism f on first homology is denoted f� . If M is
a square, complex matrix, then sr.M / denotes its spectral radius.

The classification theorem for regular connected covering spaces identifies each such
cover with a normal subgroup of the fundamental group of the connected base space
X , or equivalently, with an epimorphism �1.X /!G , where G is the group of deck
transformations of the cover (see, for example, Fulton [16]). In this paper G will always
be abelian, and so we often designate a cover zX by an epimorphism �W H1.X /!G ,
with the Hurewicz homomorphism �1.X /!H1.X / being implicit.

More generally, we shall also need to consider disconnected covers over connected and
disconnected base spaces. In these cases it will be convenient to continue to designate
the cover by a homomorphism �W H1.X /! G , which perhaps is not surjective. As
this is less commonly encountered, we describe the cover zX associated to such a
homomorphism � . First suppose X is connected, and let G0 D im � � G . Then �
induces an epimorphism �0W H1.X /!G0 with the same domain as � but with range
G0 , and so as above it determines a connected covering space zX0 over X with deck
group G0 . We define zX to be the disjoint union of copies of zX0 , one such copy for
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each coset of G0 in G . The action of G0 by deck transformations on each copy of zX0

extends to an action of G on zX , in such a way that for any g;g0 2G , the element g

sends the copy of zX0 corresponding to g0CG to that corresponding to gCg0CG0 .
Then zX=G ŠX , and so this makes zX a covering space over X with deck group G .
Finally, if X is disconnected, we define zX to be the disjoint union, over all connected
components Y of X , of the covering space zY corresponding to �jH1.Y / as above.

In all cases every homeomorphism of the base f W X !X will satisfy �f�D � , which
implies that f lifts to zf W zX ! zX which commutes with all deck transformations
g 2G .

2.2 The braid group and the Burau representation

In this section we briefly survey relevant results from the point of view of Dynamical
Systems. The classic references are Artin [2] and Birman [3], and see Birman and
Brendle [4] for a survey including recent developments and Boyland [8] for a survey
of dynamical applications. Fenn’s book [13] and the classic paper [22] of Milnor are
good sources of information on homology of cyclic covers.

The braid group on n strings, Bn , is defined using generators and relations as

Bn D
˝
�1; : : : ; �n�1j�i�k D �k�i if ji � kj> 2; �i�iC1�i D �iC1�i�iC1

˛
:

In this paper we shall be principally concerned with Bn interpreted as a mapping class
group, namely, the group of isotopy classes of homeomorphisms of the n–punctured
disk where all homeomorphisms and all isotopies are required to fix the boundary
pointwise. Letting xj D j=.nC 1/ for j D 1; : : : ; n and Dn D fz 2 C W jz � 1=2j �

1=2g n fx1; : : : ;xng, the generator �i of Bn corresponds to a homeomorphism that
switches xi and xiC1 in a counter-clockwise direction. When we indicate a braid
ˇ 2 Bn we will always be identifying it with its corresponding isotopy class, and so
for example, h 2 ˇ 2Bn means that h is a homeomorphism of Dn that is contained in
the isotopy class corresponding to ˇ .

As with the braid group we shall need an interpretation of the Burau representation with
dynamical content, as the action on homology in a particular cover. To construct the
Z–cover relevant to the Burau representation, we fix a basepoint x0 2Dn , and around
each puncture xi we take a small clockwise loop �i which we then homotope so it
begins and ends at x0 . Then �1.Dn;x0/ and H1.Dn/ are freely generated by the set
f
ig of homotopy/homology classes of the �i ’s. Let � be the epimorphism of H1.Dn/

onto Z generated by �.
i/D 1 for all i ; the resulting cover is called the Burau cover
and is denoted D.1/ . By construction the deck group of D.1/ is isomorphic to Z,
and we call its generator T . An orientation-preserving homeomorphism h of Dn must
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permute the punctures of Dn and will therefore act as a permutation on the generators
of H1.Dn/, and so �h� D � . Thus any orientation-preserving homeomorphism h

of Dn will lift to a homeomorphism zhW D.1/ ! D.1/ and further, each lift of h

commutes with all deck transformations, or T j zhD zhT j for all j 2 Z. Note that by
definition, any h 2 ˇ 2Bn is a homeomorphism that fixes the outside boundary of Dn

point-wise and this yields a preferred lift of h to D.1/ , namely, the lift which fixes
the lift of the outside boundary of Dn point-wise. Unless indicated otherwise any lift
to D.1/ of an h 2 ˇ will be this preferred lift.

Next note that the first homology group H1.D
.1// has a natural structure as a module

over R WD ZŒt˙1�, the ring of all Laurent polynomials with coefficients in Z, ie the
group ring of Z. To describe this structure, lift all the loops �i to arcs z�i 2D.1/ with
all z�i starting at some point zx0 and ending at the point T zx0 . Thus for i D 1; : : : ; n�1,
�i WD Œz�iC1�

z�i � 2H1.D
.1//. For a Laurent polynomial p.t/D

P
aj tj 2R, p.t/�i

represents the class
P

aj T j�i 2H1.D
.1//, and so as an R–module, H1.D

.1//Š

Rn�1 . Now since the lift of a homeomorphism, zh, commutes with T , we see that that
zh acts on H1.D

.1// by an R–module isomorphism. So with respect to the R–module
basis f�ig of H1.D

.1//, zh acts by a matrix B.zh/ 2 GL.n� 1;R/.

For a braid ˇ 2 Bn , pick h 2 ˇ and its preferred lift zh to D.1/ . The matrix B.ˇ/D

B.zh/ is called the reduced Burau matrix of ˇ , and the corresponding homomorphism
Bn! GL.n� 1;R/ the reduced Burau representation of the braid group Bn . When
the braid ˇ is fixed, we often will write its Burau matrix as B.t/. The full Burau
representation will not be used here, but for completeness we note that it can be defined
similarly using the action of zh on the relative homology group H1.D

.1/;F /, where
F is the fiber above the basepoint x0 (which in this case must be a fixed point of h).

Since our results work for all n> 2, we fix once and for all such an n and suppress the
dependence of objects on n when possible. So, for example, we write just D not Dn .

2.3 The Nielsen–Thurston normal form

Since we have identified the braid group Bn with a surface mapping class group,
Thurston’s classification theorem will be of central importance here. This theorem
identifies “simplest” representatives in any isotopy class. See Fathi–Laudenbach–
Poénaru [12] and Thurston [30] for more information. There are minor differences in
the literature in how punctures, boundary and the reducible case are handled in stating
Thurston’s results. The version we give in Theorem 2.1 is adapted to our use with the
braid group.

The two main ingredients in Thurston’s classification are finite order and pseudo-Anosov
maps. A map � is finite order if �nD id for some n� 1. The map � is pseudo-Anosov
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if there are a pair of transverse, � -invariant measured foliations1, Fu and F s . Under
the action of � the transverse measures are expanded and contracted by a number
� > 1, which is called the expansion factor of the pseudo-Anosov map. This fact is
usually indicated by the notation ��Fu D �Fu and ��1

� F s D �F s . The supporting
surface of a pseudo-Anosov map � may be connected or disconnected, but in the latter
case we require that � cyclically permutes the components.

z2 z3

.a/ .b/

Figure 1: (a) Constructing prongs; (b) a boundary three prong.

Since the structure of the singular points in a measured foliation is central here we
describe it in more detail. Near a regular point a measured foliation looks locally
like the foliation of R2 by horizontal lines. A measured foliation is also allowed to
have a finite number of non-regular or singular points which are required to have a
very a specific local structure which is characterized by the order of the singularity,
ie by the number of leaves coming directly into the point. The local structure can be
succinctly described using covers branched over 0 2C. Starting with the foliation of C

by horizontal lines and projecting under z 7! z2 , we get the local structure of an order
one or one-prong singularity at 0 (see Figure 1(a)). Lifting the one-prong by the map
z 7! zn for n > 2 gives an order n or n–prong singularity. An order n–punctured
singularity is formed by removing the singular point from an n–prong, and an order
n–boundary singularity is obtained by replacing this puncture with a boundary circle
(see Figure 1(b)).

The invariant foliations associated with a pseudo-Anosov map have a few special
additional qualifications. They can have punctured or boundary one-prongs, but interior
one-prongs do not occur as they will not persist under isotopy. An interior two-prong
is a regular point and is not considered a singularity, but a punctured or boundary
two-prong is considered a singularity. Given a measured foliation F on a surface X

1The designation “measured foliation” is the standard shortening of the more proper, and much longer
name, “foliation with conical singularities with a holonomy invariant transverse measure”.
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with genus g , the Euler–Poincaré–Hopf formula says that

(2–1) 2� 2g D
X

.1� �i=2/;

where the sum is over singularities of all types (interior, boundary and punctured) of
F , and �i is the order of the i th singularity.

Now recall that any homeomorphism h2ˇ2Bn must fix the boundary of Dn pointwise,
a property that is not shared by the Thurston representatives under the usual definitions.
In addition, the isotopies used in the braid group must fix the boundary pointwise.
These two facts require a small alteration in the designation of Thurston representative
in an isotopy class. Here is a version of Thurston’s classification theorem adapted to
our situation. It follows, for example, by altering the constructions in Boyland [9].

Theorem 2.1 (Thurston) Let f be a homeomorphism of the possibly disconnected,
possibly bordered surface X , compact except for a finite number of punctures, and
assume that f fixes the boundary of X pointwise. Then there is a homeomorphism ˆ

isotopic to f by an isotopy which fixes the boundary pointwise, and a decomposition

X DA[

m[
jD1

Xj

of X into pairwise disjoint ˆ-invariant sets, with the following properties.

(1) A is a finite disjoint union of embedded open annuli. The waist curve of such an
annulus is never null-homotopic; nor are the waist curves of two annuli mutually
homotopic. If the waist curve of an annulus a 2A is homotopic to a boundary
component b of X , then b is a component of @a (and by convention we include
b in a).

(2) Each Xj is the union of a collection of connected components of X nA which
are permuted cyclically by ˆ; and the restriction of ˆ to Xj is either finite order
or pseudo-Anosov.

(3) The restriction of ˆ to A has zero topological entropy.

2.4 Branched covering spaces and oriented foliations

Given a finite set B �X , the triple pW Y !X is a called a covering space branched
over B if p is onto and restricts to a covering map (ie a surjective local homeomorphism
which is evenly covered over any small neighborhood, cf Fulton [16]) of Y np�1B

over X nB . Now let F be a measured foliation on the surface X . The foliation F
is orientable provided there is a vector field ‡ on X , zero at the singularities of F ,
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and everywhere else nonzero and tangent to F . When F is not orientable, it is often
useful to orient it by lifting it to a two-sheeted branched cover constructed as follows.
Start by puncturing X at the singularities of the foliation and denote the resulting

space by X 0 . Now define
�!
X 0 as the space of unit tangent vectors to F in X 0 with

the topology induced as a subspace of the unit tangent bundle of X . It is evident that
�!
X 0 is a two-sheeted cover over X 0 . By sewing back in the punctures, we obtain a
two-fold branched cover �!p W

�!
X ! X , and pulling back F , we obtain a measured

foliation
�!
F on

�!
X . The space

�!
X equipped with the pulled back foliation

�!
F is called

the orientation double-cover of the non-orientable foliation F .

If 
 is a smooth loop in X 0 , then since X is an orientable surface, the tangent bundle
restricted to 
 is trivial and so there is a well defined monodromy as we pull along

 the unit vectors tangent to F . If this monodromy brings a vector back to itself, we
say that the foliation is oriented along 
 , and if it brings a vector back to its opposite,
the foliation is disoriented along 
 . It is evident from the definition of the orientation
double cover that in the first case 
 lifts to a pair of disjoint loops in

�!
X , while in the

latter case, 
 is covered by a single loop z
 � X 0 , and the covering map induces a
degree-two map z
 ! 
 . Thus a foliation is oriented if and only if it is oriented along
every loop in the complement of the singularity set, and if �!� W H1.X

0/! Z2 is the

epimorphism associated to the cover
�!
X 0 , then the foliation is oriented along 
 if and

only if �!� .Œ
 �/D 0.

The next lemma gives a simple criterion for checking when the foliation is oriented
when lifted to a cover. Its proof is standard and we omit it. Implicit in the statement of
(ii) is the fact that if 
 is a small loop surrounding a singularity P , then �!� .Œ
 �/D 0, if
P has even order, and �!� .Œ
 �/D 1, if P has odd order. Thus if all interior singularities
of a measured foliation on X are of even order, then we may treat �!� as being defined
on H1.X /.

Lemma 2.2 Assume that X is a possibly disconnected, possibly bordered surface X ,
compact except for finitely many punctures, and that F is a measured foliation on X .
Let �W H1.X /!G be a homomorphism of H1.X / to a finite abelian group G and let
zX be the corresponding covering space of X . The following are equivalent:

(i) The lift of F to zX is orientable;

(ii) All singularities in the interior of X have even order, and there exists a homomor-
phism ı W im �! Z2 such that ı ı �D�!� , where �!� is the morphism defining
the orientation cover of F .
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3 Finite covers and substituting roots of unity

In this section we show that the substitutions of k th roots of unity into the Burau
representation of a braid give all the essential spectral information about the action
of the braid’s mapping class on homology in the k –fold cover. The reducible case
considered in Section 6 requires us to work with more general subsurfaces of D and,
in fact, the results of this section apply to fairly general topological spaces.

Let h WX !X be a homeomorphism of the perhaps disconnected space X . Suppose
that �W H1.X /! Z is some homomorphism which satisfies �h� D � , and denote by
p.1/W X .1/!X the covering space associated to � as in Section 2.1. The covering
p.1/ is thus generated by a deck group isomorphic to Z, and we denote the generator
of this deck group by T . Let h.1/ be a lift of h to X .1/ . The condition �h� D �

implies that h.1/ commutes with T and hence also with every other element of the
deck group.

The main example for our purposes is where X DD is the n–punctured disk, hW D!D

is a representative of the braid ˇ 2 Bn , and �D � is the homomorphism defining the
Burau cover D.1/ of D (see Section 2.2). To deal with reducible braids we will also
have to consider certain h-invariant subsurfaces of D (which may be disconnected).
In general, what we shall assume about the space X is that (in addition to having
a universal cover over each component) it has the homotopy type of a compact 1–
dimensional cell complex.

To construct cyclic covers, for each integer k > 0, let �k W Z! Zk be the quotient
homomorphism and define �k D �k ı � . Let p.k/W X .k/!X be the covering space
associated to �k , so X .k/ D X .1/=T k . Let q.k/W X .1/ ! X .k/ be the covering
projection. The image under q

.k/
� of H1.X

.1// is a subgroup of H1.X
.k// which we

denote by S .k/ .

The map h.1/ pushes down to a well-defined lift h.k/ of h on X .k/ . Also, the deck
group generator T of X .1/ pushes down to a generator of the deck group for p.k/ ,
which we also denote by T . Both h

.k/
� and T� leave S .k/ invariant by definition.

As in Section 2.2, we write RD ZŒt˙1� for the ring of all Laurent polynomials with
coefficients in Z (ie the group ring of Z) and we treat the integral homology group
H1.X

.1// as a module over R. The next lemma generalizes Section 2.2 to show that,
just as for the case of the Burau cover D.1/ , the first homology of X .1/ is a free
module of finite rank over R.

Lemma 3.1 Suppose H1.X / is a free Abelian group of rank r1 , and let r0 be the
number of connected components X0 � X such that �jH1.X0/ is not identically 0.
Then H1.X

.1// is a free R–module of rank r D r1� r0 .
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Proof First assume X has one connected component, and let �W K!X be a homo-
topy equivalence from a one-dimensional cell complex K , having only one vertex, to
X . Let x 2 X be the �–image of the vertex of K and for 1 � i � r1 let 
i be the
�–image of the i th edge of K , regarded as a path in X . Let zx be a lift of x to X .1/

and for each i let z
i be a lift of 
i with initial point zx . Also set Z D .p.1//�1.x/

so that zx 2 Z . Because � is a homotopy equivalence, the relative homology group
H1

�
X .1/;Z

�
may be identified with the chain group of the appropriate covering space

over K , and it follows that H1.X
.1/;Z/ is freely generated as an R–module by the

homology classes Œz
1�; : : : ; Œz
r1
�.

Since Z is discrete H1

�
X .1/

�
may be regarded as the kernel of the boundary operator

@W H1

�
X .1/;Z

�
!H0.Z/. Because X is connected H0.Z/ is freely generated as an

R–module by zx . We claim that im @�H0.Z/ is a free submodule, ie that it is either 0

or generated by a single element. To see this, note that @.z
i/D .t
�.
i /�1/ � zx for each i .

If � is identically zero on H1.X / then this implies im @D 0. Otherwise, let g denote
the greatest common divisor of the nonzero elements in the list j�.
1/j; : : : ; j�.
r1

/j.
Then for each i with �.
i/ > 0 we have

(3–1) t�.
i /� 1D
�
tg
� 1

���.
i /=g�1X
jD0

tjg

�

so that tg�1 divides t�.
i /�1. A similar expression holds when �.
i/ < 0. Moreover
using (3–1) and an expression for g as a linear combination of the �.
i/’s, it is not
hard to write tg � 1 as an R–linear combination of the .t�.
i /� 1/. This shows that�
tg � 1

�
� zx is a generator of im @, and hence im @ is free and of rank 1.

Since im @ is free, the exact sequence

0 // H1

�
X .1/

�
// H1

�
X .1/;Z

� @ // im @ // 0

splits. Therefore H1

�
X .1/

�
is a direct summand of the free module H1

�
X .1/;Z

�
,

hence free2 by Swan [27]. The rank of H1

�
X .1/

�
is r1 minus the rank of im @, ie

r D

(
r1� 1 if � 6� 0

r1 Otherwise:

This completes the proof when X is connected.

2One can also produce a free basis for H1

�
X .1/

�
explicitly by applying Gaussian elimination to the

columns of the matrix of @ .
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Finally, if X has more than one connected component, the lemma follows by writing
H1

�
X .1/

�
as the direct sum of H1

�
.p.1//�1.Y /

�
over all connected components Y

of X , and applying the above calculation to each such component.

Let �1; : : : ; �r be a basis for H1.X
.1//. With respect to this basis, the module

isomorphism h
.1/
� is given by a square matrix M DM.t/ 2 GL.r;R/ with entries in

R. Note that M depends on the morphism � used to define X .1/ , on the homotopy
class of h, and also on the choice of lift of h to X .1/ . If X DD is the n–punctured
disk, h is a representative of the braid ˇ on n strings, � is the homomorphism � of
Section 2.2 and h.1/ is the preferred lift of h to D.1/ , then we have M DB.ˇ/, the
reduced Burau matrix of ˇ .

For a complex number � 2 C, denote by M.�/ the complex matrix obtained from
M by substituting � in place of t . If � ¤ 0 then this matrix is invertible, just as
M is, and so it acts as a linear isomorphism of Cr to itself. We denote by S

.k/
C

the
complexification of S .k/ and treat S

.k/
C

as a subspace of H1.X
.k/;C/.

The next lemma connects the action on the k –fold cover to substitutions of complex
k th roots of unity into the matrix M.t/. It is based on well-known, elementary facts.
Depending on the chosen perspective, it follows, for example, from the splitting of
a representation of Zk into the sum of irreducibles, or from the invertibility of the
order–k discrete Fourier transform. Rather than abstract the necessary algebra and
then apply it to the situation at hand, it is simpler to maintain an algebraic topology
perspective and give a direct proof using the invariance of an eigen-decomposition.

Lemma 3.2 Let T be the generator of the deck group for the covering p.k/W X .k/!

X , and let h.k/ and h.1/ be the lifts of h to X .k/ and X .1/ . The eigenvalues
of T� restricted to S

.k/
C

are 1; �k ; �
2
k
; : : : ; �k�1

k
where �k D e2�i=k . Denote by

E0; : : : ;Ek�1 the corresponding eigenspaces in S
.k/
C

. Then each subspace Em is
h
.k/
� –invariant, and the action of h

.k/
� on Em is given by the matrix M.�m

k
/, obtained

by substituting �m
k

into the matrix M.t/ of h
.1/
� .

Proof Let R
.k/
C

be the ring of all complex Laurent polynomials in a variable s which
satisfies skD1, so R

.k/
C

is isomorphic to the group algebra CŒZk � . As with H1.X
.1//,

we can treat H1.X
.k/;C/ as a module over R

.k/
C

. Note that T� and h
.k/
� act by module

isomorphisms, and S
.k/
C

is an R
.k/
C

-submodule that is invariant under both T� and
h
.k/
� .

Since T� has order k its eigenvalues are as given. Letting �.k/j D q
.k/
� .�j /, a general

element of S
.k/
C

has the form
P

i2Zk
si
�Pr

jD1 ai;j�
.k/
j

�
, for complex numbers ai;j 2C.
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For mD 0; : : : ; k � 1, let Em be the set of elements which when written in this form
satisfy aiC1;j D ��m

k
ai;j for each i 2 Zk and all j . Since T� acts on S

.k/
C

by
multiplication by s , the set Em consists of eigenvectors of T� with eigenvalue �m

k
.

Further, the dimension of Em as a complex vector space is r and so E0˚� � �˚Ek�1D

S
.k/
C

.

Since h
.k/
� commutes with T� , each Em is h

.k/
� -invariant. By definition, the matrix

M 2GL.r;R/ is the matrix of h
.1/
� WH1.X

.1//!H1.X
.1// relative to the chosen

basis f�ig of H1.X
.1//. We decompose this matrix as

M D
X
i2Z

t iMi ;

with each Mi 2Mat.r;Z/. Projecting this action to S
.k/
C

we have that h
.k/
� acts as an

R
.k/
C

–module homomorphism on S
.k/
C

by the matrix

(3–2) M.s/ WD
X
i2Zk

si

�X
l2Z

MlkCi

�
2 GL.r;R.k/

C
/:

On the other hand, since �k
k
D 1, the matrix M.�m

k
/ is given by

(3–3) M.�m
k /D

X
i2Z

�mi
k Mi D

k�1X
iD0

�mi
k

�X
l2Z

MlkCi

�
:

If v 2Em then by (3–2) and (3–3) we have

h
.k/
� .v/D

X
i2Zk

si

�X
l2Z

MlkCi

�
� v

D

X
i2Zk

�X
l2Z

MlkCi

�
� �mi

k v

DM.�m
k / � v

as claimed.

Although H1.X
.k// is larger than S .k/ , the next lemma indicates that all of the growth

of h
.k/
� on H1.X

.k// occurs in S .k/ .

Lemma 3.3 With notation as above, the eigenvalues of h
.k/
� acting on H1.X

.k// are
those of its restriction to S .k/ together with some roots of unity. In particular, the
spectral radius of h

.k/
� equals that of its restriction to S .k/ .
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Proof We return to treating H1.X
.k// and S .k/ as Abelian groups. For each con-

nected component Y of X .k/ , any element c 2H1.Y / can be represented by a closed
loop in Y . This loop lifts to a loop in X .1/ if and only if � ıp

.k/
� .c/D 0. Moreover,

suppose zc 2H1.X
.1// is a general element of .q.k/� /�1.c/ and represent zc as a sumP

�i of weighted simplices. By applying a deck transformation of .q.k//�1.Y / over
Y to each �i , we may modify zc within .q.k/� /�1.c/ so that all its simplices lie in one
and the same component, say zY , of X .1/ covering Y . Then zc may be represented by
a loop in zY which, as we have shown, is possible if and only if � ıp

.k/
� .c/D 0. This

shows that S .k/\H1.Y / is the kernel of the map � ıp
.k/
� jH1.Y / . Since im �� Z, we

get that H1.Y /=.S
.k/\H1.Y // is either trivial or isomorphic to Z.

Writing H1.X
.k// as the direct sum of the first homology groups of the components

of X .k/ , we obtain H1.X
.k//=S .k/ Š Z˚ � � �˚Z where each factor corresponds to

a connected component of X .k/ on which � ı p
.k/
� is not identically zero. Since h

permutes the components of X .k/ , it acts on this splitting by permuting the factors.
Thus h

.k/
� may be represented by a matrix of the form�

A B

0 C

�
in which A represents the action of h

.k/
� on S .k/ , and C is a permutation matrix

representing the action of h
.k/
� on H1.X

.k//=S .k/ . The eigenvalues of C are all roots
of unity, so this proves the lemma.

Lemma 3.3 together with Lemma 3.2 yields the following.

Theorem 3.4 Let hW X ! X be a homeomorphism of the locally path-connected,
semi-locally simply connected space X having the homotopy type of a compact 1–
dimensional cell complex. Suppose �W H1.X /!Z is a homomorphism which satisfies
�h� D � , and let X .1/ and X .k/ D X .1/=T k denote the covering spaces over X

corresponding to � and �k ı � , with covering projection q.k/W X .1/ ! X .k/ . Let
h.1/ and h.k/ denote lifts of h to these covering spaces. If M DM.t/ 2 GL.r;R/

denotes the matrix of h
.1/
� WH1.X

.1//!H1.X
.1// as an R–module isomorphism,

then the action of h
.k/
� on the invariant subspace S

.k/
C
D q

.k/
� .H1.X

.1/;C// is given
by the direct sum

h
.k/
� DM.1/˚M.�k/˚ � � �˚M.�k�1

k /

where M.�
j

k
/ denotes the complex matrix obtained by substituting �j

k
D e2�ij=k into

M . Furthermore, any eigenvector of h
.k/
� not lying in S .k/ has eigenvalue which is a

root of unity.
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4 Entropy and first homology

The topological entropy, htop.f /, is a well-known measure of the complexity of the
dynamics of a self-map f of a compact metric space. See Adler, Konheim and
McAndrew [1], Denker [11] or Katok [18] for more information. The next well-known
lemma contains part of the main idea in Fried’s paper [15]: passing to a finite cover
often allows one to detect more growth on homology.

Lemma 4.1 If f W Y ! Y is a continuous map of the compact manifold Y , then

htop.f /� sup
˚
log
�
sr
�
zf�
��	

where the supremum is over all lifts, zf , of f to a finite cover zY and zf� is the action
of zf on first homology of the cover H1. zY IR/.

Proof The lemma follows directly from two classic results. Manning proved in [21]
that htop.f / � log.sr.f�// for any continuous f W Y ! Y and Bowen proved in [5]
that entropy is preserved under finite to one factors, in particular, htop.f /D htop. zf /

for any lift zf of f to a finite cover.

For a braid ˇ we define htop.ˇ/D inffhtop.h/ W h 2 ˇg. Now Theorem 3.4 says that
the maximal spectral radius of B.e2�ij=k/ for 0� j < k gives the spectral radius on
the first homology of the lift to the k –fold Burau cover D.k/ of an h 2 ˇ . Thus by
Lemma 4.1 we have what was referred to in the Introduction as the Burau estimate.

htop.ˇ/� sup
˚
log.sr.B.e2� ij=k/// W j=k 2Q

	
:

Since the entries in B.t/ are polynomials, sr.B.t// is continuous in t . Thus we have
the result of Fried [15] and Kolev [20].

Lemma 4.2 If ˇ 2 Bn with Burau representation B.t/, then

(4–1) htop.ˇ/� supflog.sr.B.�/// W � 2 S1
g:

A fundamental result in Nielsen–Thurston theory says that htop.ˇ/D htop.ˆ/ where
ˆ as given in Theorem 2.1 is the Thurston representative in the isotopy class ˇ . A
natural question is whether this value is detected by the action on homology in some
finite cover, or in the current context, whether the estimate in (4–1) is ever sharp.

To investigate this question we must first understand a simpler question, namely, for
a pseudo-Anosov map � of a surface X , when is htop.�/D sr.��/? In other words,
when is Manning’s estimate in [21] sharp for a pseudo-Anosov map? The answer

Algebraic & Geometric Topology, Volume 7 (2007)



1360 Gavin Band and Philip Boyland

turns out to depend exactly on the orientability of the �–invariant foliations. It is
well-known that the oriented, measured foliation Fu gives rise to a homology class
v 2H1.X IR/, for example, as an asymptotic direction as in Schwartzman [25] or a
geometric current as in Ruelle and Sullivan [23]. Briefly, v is the average direction
in homology obtained from flowing along the one-dimensional leaves of Fu . This
average exists and is unique because the unstable foliation of a pseudo-Anosov map is
uniquely ergodic [12].

Now if the unstable foliation Fu gives rise to vu 2H1.X IR/, then since ��FuD�Fu ,
on first homology we have ��vu D �vu . Thus vu is an eigenvector of �� with
eigenvalue �, and so sr.��/� �. On the other hand, since pseudo-Anosov maps have
entropy equal to the logarithm of their expansion constant, Lemma 4.1 yields that
�� sr.��/. Thus when the invariant foliations are orientable we see that the spectral
radius on first homology gives the entropy of a pseudo-Anosov map. The converse of
this fact doesn’t seem as well-known so we include a proof below for completeness.

Lemma 4.3 Suppose �W X ! X is a pseudo-Anosov homeomorphism of the ori-
entable surface X having ` connected components (which, according to the definition
of pseudo-Anosov map, must be permuted cyclically by � ), and let � be the expansion
constant of � .

(a) The pseudo-Anosov map � has orientable invariant foliations in some (hence
each) connected component if and only if sr.��/D �.

(b) Suppose � has oriented invariant foliations, and let �D˙1 according to whether
� preserves or reverses the orientation of the unstable foliation. Then each
complex number of the form �e2� ij=`� is a simple eigenvalue of �� , and every
other eigenvalue � satisfies j�j< �.

Proof We first suppose that X is connected, ie that `D 1, and prove 4.3 and then
4.3. The proof when ` > 1 is an easy modification.

When `D 1, 4.3 states that if the invariant foliations of � are oriented, then �� is a
simple eigenvalue of �� , and every other eigenvalue is smaller in modulus. Because
X is orientable, orientability of the unstable foliation of � is equivalent to orientability
of the stable foliation of � (see Camacho and Lins Neto [10]), so we need only talk
about orientability of the former.

In [24] Rykken shows that if the pseudo-Anosov map � has an orientable unstable
foliation, then except for zeros and roots of unity, the eigenvalues of its action on first
homology are the same as those of its Markov transition matrix, AP , with respect to

Algebraic & Geometric Topology, Volume 7 (2007)



The Burau estimate for the entropy of a braid 1361

any Markov partition P . Using this result 4.3 then follows from the Perron–Frobenius
Theorem applied to AP (see, for example, Kitchens [19]).

We noted above the theorem how one implication in 4.3 follows from treating the
foliation as an asymptotic cycle. We prove the contrapositive of the converse and

so assume that the unstable foliation Fu of � is not orientable. Let
�!
X
�!
p
! X be

the orientation double-cover of Fu constructed in Section 2.4; � lifts to a pseudo-
Anosov

�!
� of

�!
X with unstable foliation denoted

�!
F u . The leaves of

�!
F u of necessity

project under �!p to those of Fu . Since
�!
� also has expansion constant �, by part 4.3

�!
��W H1.

�!
X /!H1.

�!
X / has a simple eigenvalue equal to �� and all its other eigenvalues

have smaller modulus.

If we let � denote the generator of the deck group of
�!
X , then � will take leaves of

�!
Fu to leaves reversing the orientation while preserving the transverse measure, and so
��v

uD�vu . Now since �2D id, H1.
�!
X ;R/DVC˚V� with V˙ the eigenspace of ��

with eigenvalue ˙1. Moreover, we now show that V� is precisely the kernel of the map
induced on homology by the covering projection �!p�W H1.

�!
X ;R/!H1.X;R/. Suppose

� is a 1–cycle in
�!
X avoiding the singular points of

�!
F such that �!p�Œ� �D 0 2H1.X /.

Then we may write �!p�� D @� where �D
P

i ai�i is some 2–chain. Lift each �i

to a 2–simplex �0i in
�!
X and let

�!
� D

P
i ai

�
�0i C ��

0
i

�
. Clearly, @

�!
� D � C ��

proving that Œ� �C Œ�� � D 0 2 H1.
�!
X /. In other words Œ� � 2 V� . So ker�!p� � V� .

Conversely if v 2 V� , then 2�!p�.v/ D
�!p�.v/C

�!p�.�.v// D
�!p�.v/�

�!p�.v/ D 0, and
hence V� D ker�!p� as claimed.

Thus �� acting on H1.X;R/ is conjugate to
�!
�� acting on VC . Since vu 2 V� and the

eigenvalue �� is geometrically simple, it follows that every eigenvalue of
�!
�� having

an eigenvector lying in VC has modulus strictly smaller than �, so that sr.��/ < � as
required.

5 The Burau estimate for pseudo-Anosov braids

A braid ˇ 2 Bn is said to be pseudo-Anosov if in the Thurston normal form ˆ 2 ˇ of
Theorem 2.1 the set A consists of just one annulus a which is the collar of @D , and
the restriction of ˆ to the complement of a is a pseudo-Anosov map � . In this case
we will call ˆ a collared pseudo-Anosov map and consider its invariant foliations to
be those of � .

For simplicity of notation we let r.�/D sr.B.e2�i� // and just consider � 2 Œ0; 2�/.
If ˇ is pseudo-Anosov with expansion constant �D ehtop.ˆ/ , Lemma 4.1 shows that
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r.�/ � � for all � 2 Œ0; 2�/. In this section we investigate when the Burau estimate
(4–1) is sharp for a pseudo-Anosov braid and the substitution of a root of unity, that
is, when do we have r.j=k/ D � for some j=k 2 Q. The first observation is that
according to Theorem 3.4 when r.j=k/ D � occurs, then the action of h

.k/
� on the

first homology of the k –fold Burau cover H1.D
.k// has some eigenvalue of modulus

�. By Lemma 4.3, this eigenvalue must be either � or ��, it must be simple, and all
other eigenvalues of h

.k/
� must be of smaller modulus. So, in particular, r.`=k/ < �

for all ` 6D j .

The second observation is that the function r.�/ is periodic with period one and in
addition, since the coefficients of the Laurent polynomial entries of B.t/ are real,
sr.B.�//D sr.B.�//, where � denotes the complex conjugate of �. Thus r is an even,
one-periodic function and so it is even about 1=2.

Putting the two observations together we have that for a given k , r.j=k/D � for at
most one j and since r.1=2Cx/D r.1=2�x/, that can only happen if j=k D 1=2.
Thus if k is even, the only possibility for the Burau estimate to be sharp is that
r..k=2/=k/ D � and so r.j=k/ < � for other j . On the other hand, if k is odd,
r.j=k/ < � for all j , so the Burau estimate is never sharp for substitutions with k

odd.

In the next Proposition we connect these observations with the structure of the invariant
foliations from Section 2.4 and Lemma 4.3.

Theorem 5.1 Suppose ˇ 2 Bn is a braid represented by the collared pseudo-Anosov
map ˆW D!D having expansion factor � > 1. The following are equivalent:

(a) sr
�
B.e2� ij=k/

�
D � for some k > 0 and some 0� j < k ;

(b) sr
�
B.�1/

�
D � and �1 is the only root of unity for which this occurs.

(c) The invariant foliations Fu and F s have an odd-order singularity at each punc-
ture of D , and all singularities of Fu and F s in the interior of D have even
order.

(d) D.2/ is the orientation double-cover of Fu and F s (after removing the collaring).

Proof The observations above the Theorem prove the equivalence of 5.1 and 5.1.

Let ˆ.2/ be the preferred lift of ˆ to D.2/ and ˆ.2/� its action on H1.D
.2//. By

Theorem 3.4, the eigenvalues of ˆ.2/� are those of B.1/˚B.�1/, together with some
roots of unity. Since B.1/ is a permutation, � (or ��) is an eigenvalue of ˆ.2/� if and
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only if it is an eigenvalue of B.�1/. In addition, by Lemma 4.3, since ˆ.2/ is collared
pseudo-Anosov, one of � or �� is an eigenvalue of ˆ.2/� if and only the invariant
foliations of ˆ.2/ are oriented. Thus 5.1 holds exactly when the lift of Fu to D.2/ is
oriented, and so in particular 5.1 implies 5.1.

As remarked above Lemma 2.2, if 
 is a small loop surrounding a singularity P , then
recalling that �!� denotes the epimorphism defining the orientation double cover, we have
�!� .Œ
 �/D 1 iff P has odd order. On the other hand, the epimorphism �2W H1.D/!Z2

which yields the two-fold Burau cover D.2/ is defined by �2.Œ

0�/D 1 for 
 0 a small

loop around a puncture. This shows the equivalence of 5.1 and 5.1.

Now we will show 5.1 implies 5.1 by proving its contrapositive. If Fu has an interior
singularity of odd order, by Lemma 2.2 the lifted foliations to D.2/ are not oriented.
Now note that by Euler–Poincaré–Hopf formula (2–1), Fu always has a one-pronged
singularity at some puncture xi of D . If Fu has an even order singularity at some
other puncture xj , we consider the homotopy class ˛D 
�1

j 
i . We then have �!� .˛/D
0C 1 D 1 and �2.˛/ D �1C 1 D 0. Thus there can be no homomorphism ı with
ı ı �2 D

�!� , and so again by Lemma 2.2, the lifted foliations to D.2/ are not oriented.
Since we have just seen that 5.1 holds exactly when the lift of Fu to D.2/ is oriented,
we have that 5.1 implies 5.1.

Remark 5.2 Song, Ko and Los [26, Lemma 5 and Theorem 7] contain a portion of
the above Theorem in slightly different language, namely, the implications 5.1 H)
5.1 and 5.1 H) 5.1.

6 The Burau estimate for reducible braids

6.1 Pseudo-Anosov components and Burau orientability

The Thurston normal form ˆ D ˆ1 [ � � � [ˆm of a general braid ˇ 2 Bn can be
quite complicated. Using the notation of Theorem 2.1, there may be several reducing
annuli forming the set A, each component ˆi D ˆjXi

of ˆ may be either periodic
or pseudo-Anosov, and Xi itself may have one or more connected components. In
this section we will consider this more complicated decomposition and obtain general
results on the sharpness of the entropy bound provided by the Burau representation.

The simplest case is when each ˆi is periodic, and so htop.ˆ/ D 0. Since all the
eigenvalues of ˆ� are roots of unity, we have sr.B.1//D1, giving a sharp bound on the
entropy. Thus from now on we suppose that some component of ˆ is pseudo-Anosov,
and we let �D ehtop.ˆ/ . The main theorem of this section gives necessary and sufficient
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conditions for a root of unity ! to make the Burau estimate (4–1) sharp, ie to satisfy
sr.B.!//D �.

To state these conditions, we first define for each component ˆi a positive integer ai

expressing the manner in which the surface Xi on which ˆi is supported surrounds
the punctures of D . Begin by choosing a component ˆi of ˆ. The supporting
surface Xi of ˆi may have several connected components; by definition, these are
permuted cyclically by ˆi . Let Xi0 be one of these components. Thus Xi0 is a finitely
punctured subdisk of D from which a finite collection of open punctured subdisks have
been deleted (see Figure 2(a)). Let x1; : : : ;xr 0 denote the punctures in Xi0 , where
0� r 0 � n, and let Or 0C1; : : : ;Or be the deleted subdisks. For r 0 < j � r we write
mj for the number of punctures of D which lie in Oj ; and for 1� j � r 0 we define
mj D 1. Finally, we define ai by

(6–1) ai D gcd.m1;m2; : : : ;mr /:

Because ˆ permutes the connected components of Xi cyclically, and sends punctures
to punctures, this definition is independent of the choice of Xi0 .

.a/ .b/

�1;3;3

��1
4;3;3

ˆi

ˆi

Xi0 ˆi.Xi0/

x1 x2
O3

Figure 2: (a) A typical supporting surface Xi . Here r 0 D 2 , r D 3 , m3 D 2

and ai D 1 . (b) the braid ˇ3 and its Thurston decomposition.

The next lemma gives another interpretation of the number ai which follows from the
definition of the morphism � W H1.D/! Z associated to the covering space D.1/ .

Lemma 6.1 Let `i be the number of connected components of the supporting surface
Xi of ˆi , and let Xi0 be the chosen connected component of Xi as above. Write
X
.1/
i D .p.1//�1.Xi/ and X

.1/
i0
D .p.1//�1.Xi0/. The number ai just defined
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is equal to the number of connected components of X
.1/
i0

. Hence the number of

connected components of X
.1/
i is `iai .

Proof According to Thurston’s Theorem 2.1, the waist curve of any reducing annulus
a 2 A is neither null-homotopic nor homotopic to a puncture. It follows that the
inclusion Xi � D induces an injection H1.Xi/! H1.D/, and so we can consider
H1.Xi/ as a subgroup of H1.D/. Then X

.1/
i !Xi is (isomorphic to) the covering

space defined by the homomorphism � jH1.Xi / . By definition � sends a small clockwise
loop around the puncture xj (respectively, the hole Oj ) of Xi0 to mj 2Z, and therefore
ai is the generator of im � jH1.Xi0/ . This proves the first statement of the lemma. Since
h permutes the connected components of Xi cyclically and since �ˆ� D � , we have
that X

.1/
i has the same number of connected components above each component of

Xi , proving the second statement.

Let us say that a pseudo-Anosov component ˆi of ˆ is Burau orientable provided the
lifts of its invariant foliations to some D.k/ are orientable. The main theorem of this
section is the following.

Theorem 6.2 Let ˆD ˆ1 [ � � � [ˆm be the Thurston normal form of the braid ˇ ,
and for each i such that ˆi is pseudo-Anosov, let ai be as in (6–1).

(1) The pseudo-Anosov component ˆi is Burau orientable if and only if (with
notation as in the definition of ai ) the invariant foliations of ˆi have a singularity
of odd order at each puncture xj of Xi0 , a singularity of odd (respectively, even)
order on the boundary of each deleted disk Oj such that mj=ai is odd (even),
and all singularities in the interior of Xi0 are even order.

(2) Let I be the set of 1� i �m such that ˆi is pseudo-Anosov, Burau orientable,
and satisfies htop.ˆi/ D htop.ˆ/. Then the set of roots of unity ! for which
sr.B.!//D �, is equal to the union over i 2 I of the set of all ai th roots of �1.
In particular, if I is empty, then sr.B.!// < � for every root of unity ! .

Before embarking on the proof of Theorem 6.2, we will illustrate the theorem with
some examples.

6.2 Examples

It is convenient to use the following notation. Let n > 0. If i; n1; n2 are positive
integers with i C n1C n2� 1� n, we let �i;n1;n2

2 Bn denote the braid which moves
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the group of n1 consecutive strings starting at string i over the group of n2 consecutive
strings starting at string i C n1 :

�i;n1;n2
D .�iCn1�1 � � � �iCn1Cn2�2/.�iCn1�2 � � � �iCn1Cn2�3/ : : : .�i � � � �iCn2�1/:

In particular �i;1;1 D �i for all 1� i � n� 1.

Example 6.3 Let n0 � 1, and define a braid ˇn0 on 3n0 strings by setting

ˇn0 D �1;n0;n0��1
n0C1;n0;n0 :

Figure 2(b) shows ˇn0 when n0 D 3.

The Thurston normal form ˆ of ˇn0 reduces along 4 annuli ADA0[A1[A2[A3 :
there is one such annulus collaring the boundary of D , and one surrounding each
of the three groups of n0 punctures. The component of ˆ in the outer connected
component of D nA is pseudo-Anosov. Call this component ˆ1 and its supporting
surface X1 . The other component of ˆ is periodic, and it cyclically permutes the three
inner connected components of D nA. The Euler–Poincaré–Hopf formula (2–1) shows
that the invariant foliations of ˆ1 have four 1-pronged singularities, one at each of the
four boundary components of X1 , and no other singularities. According to (6–1) we
have a1 Dm1 Dm2 Dm3 D n0 , and hence ˆ1 is Burau orientable by the first part of
Theorem 6.2.

The growth rate of ˇn0 is �D ehtop.ˆ1/ � 2:618. Figure 3 shows the graph of the map
sending � 2 Œ0; 1� to the spectral radius of the substituted Burau matrix B.e2� i� / of
ˇn0 , in the two cases n0 D 8D 23 and n0 D 5.

Here is one part of the justification of Theorem 6.2 for this example. According to
Lemma 6.6 below, if k is a multiple of 2n0 , the invariant foliations of ˆ1 lift to
orientable foliations in the k –fold covering space X

.k/
1

of X1 . Moreover this covering
space has exactly n0 connected components, each fixed by the lift of ˆ. Therefore
by Theorem 3.4 and Lemma 4.3 we expect the matrices B.!/, for ! a k th root of
unity, to contribute exactly n0 eigenvalues equal to � or �� (counted with multiplicity).
Theorem 6.2 states, in addition, that it is precisely the n0 th roots of �1 which contribute
these eigenvalues, a fact clearly reflected in Figure 3.

Example 6.4 Let ˇ0
1
2 B9 and ˇ0

2
2 B8 be the braids

ˇ01 D �1;3;3 � �
2
4;3;3 � �

3
1;3;3 and ˇ02 D �1;3;3 � �4;3;2 � �4;2;3 � �

3
1;3;3:

Note that ˇ0
1

respects the grouping of the punctures into consecutive groups of three,
while ˇ0

2
respects the grouping of the punctures into two consecutive groups of three
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Figure 3: The Burau estimate (a) for ˇ8 and (b) for ˇ5 . The horizontal lines
represent the growth rate �� 2:618 .

and one of two. As for the previous example, the Thurston normal form ˆ of ˇ0i has
one reducing annulus around each of the three groups of punctures. Each such annulus
encloses a periodic (in fact fixed) component of ˆ. If X1 denotes the outer component
of X nA, then ˆ1 DˆjX1

is pseudo-Anosov with growth rate �� 5:828. Again the
invariant foliations of ˆ1 have a one-pronged singularity on each boundary component
of X1 .

Now for ˇ0
1

we have a1 Dm1 Dm2 Dm3 D 3, and so Theorem 6.2 shows that ˆ1

is Burau orientable. Therefore the Burau estimate is sharp at all of the cubic roots of
�1 (see Figure 4(a)). For ˇ0

2
, however, we have m1 Dm2 D 3 and m3 D 2, and so

a1 D gcd.2; 3/D 1. Thus the conditions of the first part of Theorem 6.2 fail to hold
and ˆ1 is not Burau orientable, so the Burau estimate is never sharp (see Figure 4(b)).

Example 6.5 Let ˇ00 2 B10 be the braid

ˇ00 D ˇ3 � �1;9;1 � �1;1;9

where ˇ3 2 B9 � B10 is as in Example 6.3 above3. See Figure 5(a). The Thurston
normal form ˆ of ˇ00 has one pseudo-Anosov component ˆ1 DˆjX1

, topologically
conjugate to the pseudo-Anosov component of the Thurston normal form of ˇ3 . By
Theorem 6.2 this component is Burau orientable and the Burau estimate is sharp at

3As is usual we regard B9 as the subgroup of B10 generated by the first eight generators �1; : : : ; �8 .
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Figure 4: The Burau estimate (a) for ˇ01 and (b) for ˇ02 . The horizontal lines
represent the growth rate �� 5:828 .

each of the cubic roots of �1. However, ˇ00 is distinguished from ˇ3 by the fact that
the eigenvalue of B.�e2�ij=3/ of modulus � is not always real (see Figure 5(b)). This
can be seen as follows. Lemma 6.6 below shows that for k a multiple of 6 the lift of
ˆ1 to the k –fold cover X

.k/
1

has orientable foliations. Because ˆ acts as a full twist

in the outer component of D , the three connected components of X
.k/
1

are permuted
cyclically by ˆ.k/ . So by Theorem 3.4 and Lemma 4.3, the matrices B.!/, for ! a
k th root of unity, contribute to ˆ.k/� exactly three eigenvalues of modulus �, differing
from each other by the cubic roots of unity. These eigenvalues are the extremal points
of the curve in Figure 5(b).

6.3 Proof of Theorem 6.2

We will prove Theorem 6.2 by a series of lemmas. The main idea of the proof, already
suggested by the above examples, is the following. As we lift a pseudo-Anosov
component ˆi of the Thurston normal form ˆ of the chosen braid ˇ into successive
covering spaces D.k/ , the supporting surface of the lift of ˆi may become disconnected.
If the lifted invariant foliations also become orientable, then Lemma 4.3 implies the
existence of several eigenvalues of modulus � (counted with geometric multiplicity).
By Theorem 3.4 these eigenvalues are distributed among those of the matrices B.!/,
where ! is an k th root of unity. An analysis of the action of ˆ.1/ on the first homology
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Figure 5: (a) The braid ˇ00 ; (b) the eigenvalues of B.e2�i� / for � 2 Œ0; 1� .
Here the rightmost axis represents the unit interval Œ0; 1� and the other two
axes represent the complex plane.

of X
.1/
i then shows that it is precisely the ai th roots of �1 which contribute such an

eigenvalue.

We begin with a lemma which provides a stronger version of the first part of Theorem
6.2. Let ˆDˆ1[� � �[ˆm be the Thurston normal form of the braid ˇ 2Bn , let ˆi be
a pseudo-Anosov component of ˆ, and let Fu and F s denote the invariant foliations
of ˆi . For k � 1 we consider the k –fold Burau covering space p.k/W D.k/!D and
write X

.k/
i D .p.k//�1.Xi/ and ˆ.k/i Dˆ

.k/j
X

.k/

i

. As in the definition of ai in (6–1),
let Xi0 be a connected component of Xi , and let x1; : : : ;xr 0 be the punctures in Xi0

and Or 0C1; : : : ;Or the deleted disks. Further, for each 1� j � r let �j be the order
of the singularity which Fu and F s exhibit at xj (if j � r 0 ) or on @Oj (if r 0 < j � r ).
We have the following Lemma.

Lemma 6.6 Let ˆi DˆjXi
be a pseudo-Anosov component of the Thurston normal

form ˆ of ˇ , and let ai be defined as in (6–1). Write aD ai and suppose that aD 2ua0

where a0 is odd. Then the following are equivalent:

(1) ˆi is Burau orientable, ie there exists k � 1 such that the lifts of Fu and F s to
X
.k/
i are orientable;

(2) The set of k for which the lifts of Fu and F s to X
.k/
i are orientable is the set

of multiples of 2uC1 ;
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(3) All singularities of Fu and F s in the interior of Xi0 have even order, and for
all 1 � j � r , mj=a� �j mod 2. In other words mj is an odd (respectively,
even) multiple of a whenever �j is odd (even).

Proof The implication 6.6 H) 6.6 is trivial; we will prove 6.6 H) 6.6 and 6.6
H) 6.6. Except for an application of Lemma 2.2, the proof is essentially algebraic
– it involves only the relevant morphisms of H1.Xi/ into Z and Zk . For 1 � j � r

let j̨ be the homology class of a small clockwise loop around the puncture xj (if
j � r 0 ) or around the disk Oj (if j > r 0 ). Then H1.Xi0/ can be identified with the
subgroup of H1.D/ generated by the j̨ ’s. By definition �. j̨ /Dmj for each j , and
�k. j̨ /D �k�. j̨ /Dmj mod k , where �k W Z! Zk is the quotient homomorphism.
When all singularities of Fu and F s in the interior of Xi have even order, we let
�!� W H1.Xi/! Z2 be the morphism associated to the orientation cover of Fu and F s .
Because ˆi preserves the foliations and permutes the components cyclically, �!� is
determined by its values on H1.Xi0/: namely �!� . j̨ /D �j mod 2 for all j .

According to Lemma 2.2 we know that for k � 1 the following two statements are
equivalent:

(i) The lifts of Fu and F s to X
.k/
i are orientable;

(ii) All singularities in the interior of Xi have even order, and there exists a homo-
morphism ık W im �k jH1.Xi /! Z2 such that ık ı �k D

�!� on H1.Xi/.

In addition, since �kˆ� D �k , the formula ık ı �k D
�!� holds on H1.Xi/ whenever it

holds on H1.Xi0/.

We note some elementary facts about cyclic groups. For q�1 odd, there is no nontrivial
homomorphism Zq 7! Z2 , while for q even there is only one such homomorphism:
namely, the homomorphism which sends odd multiples of the generator to 1 and even
multiples to 0 (a property which is independent of the choice of generator). And if q

is odd then every subgroup of Zq has odd order.

Suppose that 6.6 holds, that is, that ˆi is pseudo-Anosov and for some k > 0 the lifts of
Fu and F s to X .k/ are orientable. Since p.k/W X

.k/
i !Xi is ramified only around the

punctures, this implies that all singularities in the interior of Xi have even order. Since
im � jH1.Xi / D aZ, we have im �k jH1.Xi / D �k.aZ/D �k.a/Zk . The Euler–Poincaré–
Hopf formula (2–1) shows that Fu and F s have at least one 1–pronged singularity
in Xi0 , which must lie at a puncture or on the boundary of a deleted disk. Thus �!� is
onto, so from the previous paragraph we see that (ii) holds precisely when k is even
and for all 1� j � r we have: �k. j̨ / is an odd (even) multiple of �k.a/ iff �j is odd
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(even). If k is even then �k sends odd (even) multiples of a to odd (even) multiplies
of �k.a/ and so this implies the same statement in Z: that is, that 6.6 holds. Thus 6.6
H) 6.6.

On the other hand suppose 6.6 holds and set k D 2uC1 . Since a D 2ua0 where a0

is odd, we see that im �k jH1.Xi / is the subgroup f0; �k.a/g of Zk having order two.
Let ık be the isomorphism of this subgroup onto Z2 . Again, since k is even, to say
that �k.mj /D �k.a/ is to say that mj is an odd multiple of a. By .3/ this happens
precisely when �j is odd; hence ık�k D

�!� on H1.Xi/. Therefore since (i) H) (ii)
the lifts of Fu and F s to X

.k/
i are orientable. Therefore the set of k for which the

lifted foliations in X .k/ are orientable contains 2uC1 , and, it follows, also all multiples
of 2uC1 .

To complete the proof that 6.6 H) 6.6, suppose for a contradiction that 6.6 holds
and that for some k which is not a multiple of 2uC1 , the lifts of Fu and F s to X

.k/
i

are orientable. The last condition implies that k is even, so we must have u > 0.
Let ık be the homomorphism supplied by (ii). Since �!� is onto, ık must send the
generator �k.a/ of im �k jH1.Xi / to 1 2 Z2 . Now write k D 2u0

k 0 where k 0 is odd and
u0 � u. The order of �k.a/ in Zk is given as �D lcm.a; k/=aD lcm.a0; k 0/=a0 , which
is odd. But then 0D ık.0/D ık.��k.a//D �ık�k.a/D ık�k.a/D 1, a contradiction.
Therefore no such k can exist. This completes the proof.

To prove the second part of Theorem 6.2, we will require two more lemmas. The first
of these expresses H1.D

.1// in terms of the first homology groups of the X
.1/
i ’s.

Since each X
.1/
i is ˆ.1/–invariant, we will be able to use this lemma to factorize the

characteristic polynomial of the reduced Burau matrix B.ˇ/.

Lemma 6.7 Let ˆ D ˆ1 [ � � � [ˆm 2 ˇ be as above and let ˆ.1/ be the lift of
ˆ to D.1/ . Let X

.1/
i D .p.1//�1.Xi/ be the pull-back to D.1/ of the supporting

surface Xi of ˆi . Then, as an Abelian group, H1.D
.1// decomposes as a direct sum

of subgroups

(6–2) H1.D
.1//D

� mM
iD1

H1.X
.1/
i /

�
˚V

in which each H1.X
.1/
i / is ˆ.1/� –invariant, and V is a free abelian group of finite

rank.

Proof We use the Mayer–Vietoris sequence inductively. If D has a collar (ie an
annulus a 2A whose boundary contains @D ) we first remove it from D and from A
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and remove its pull-back from D.1/ . This does not affect the homology calculation.
Let A.1/ D .p.1//�1.A/ be the set of points of D.1/ covering the reducing annuli
in D . For 1� i �m define Ai to be the set of those connected components of A.1/

whose boundary intersects X
.1/
i , but does not intersect X

.1/
j for any j < i . Note that

AmD∅ because (since we removed the collar) the boundary of each reducing annulus
intersects two of the Xi . Write Zi DX

.1/
i [Ai , and for 0� i �m let Y 0i D

S
j>i Zj

and when i > 0 let Yi D Y 0i [Ai . We thus have a sequence of inclusions

∅D Y 0m D Ym � Y 0m�1 � Ym�1 � � � � � Y 01 � Y1 � Y 00 DD.1/:

Moreover, these spaces satisfy

Zi \Yi DAi ; Zi [Yi D Y 0i�1

for each 1� i �m. Since X
.1/
i is ˆ.1/ -invariant for each i , so too are Ai ;Zi ;Yi

and Y 0i .

For any reducing annulus a 2A, each boundary component of a is also the boundary
of some (possibly punctured) subdisk D0 of D . In fact, since no component of @a
is allowed to be null-homotopic, D0 must have at least one puncture and so we will
have �.Œ@D0�/¤ 0. It follows that any connected component of A.1/ covering a is an
infinite strip, isomorphic as a covering space to the universal cover of a. In particular
H1.Ai/D 0 for each i .

Therefore, regarding Zi and Yi as subspaces of their union Y 0
i�1

, the Mayer-Vietoris
sequence for the pair .Zi ;Yi/ contains the segment

(6–3) 0 // H1.Zi/˚H1.Yi/ // H1.Y
0
i�1
/

@ // H0.Ai/ // : : :

All groups in the above sequence are free abelian. Noting that X
.1/
i is a deformation

retract of Zi and that Y 0
i�1

is a deformation retract of Yi�1 , we have

H1.Yi�1/ŠH1.X
.1/
i /˚H1.Yi/˚Vi

where Vi is canonically isomorphic to im @ � H0.Ai/. Since Ai has finitely many
connected components, H0.Ai/ and Vi each have finite rank. The lemma is proved by
applying this formula inductively, starting with H1.Ym�1/DH1.X

.1/
m /, and setting

V D
Lm

iD1 Vi .

Corollary 6.8 For each 1� i �m let ˆ.1/i be the restriction of ˆ.1/ to X
.1/
i , and

denote by gi the action of ˆ.1/i on H1.X
.1/
i /. As in Section 3, regard H1.D

.1//

and H1.X
.1/
i / as modules over the ring R D ZŒt˙1�. Then

Lm
iD1 H1.X

.1/
i / is a
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submodule of H1.D
.1// of full rank. Moreover, the characteristic polynomial of the

module isomorphism h
.1/
� W H1.D

.1//!H1.D
.1// is given by

�.h
.1/
� /D

mY
iD1

�.gi/:

Proof Let G D
L

iD1 H1.X
.1/
i /. Because the R–module structure on H1.D

.1//

and on H1.X
.1/
i / are each defined using the same group of deck transformations

acting respectively on D.1/ and on X
.1/
i , they coincide, making G a submodule of

H1.D
.1//.

As an R–module, H1.D
.1// is free and of rank n�1. We claim that G �H1.D

.1//

also has rank n� 1. For suppose rank.G/ < n� 1. We may choose w 2H1.D
.1//

so that G [ fwg spans a free submodule of H1.D
.1// of rank strictly larger than

rank.G/. Since H1.D
.1// is free, it follows that wCG generates a free R–submodule

of H1.D
.1//=G . But in the notation of Lemma 6.7, we have H1.D

.1//=G Š V

as Abelian groups. Therefore H1.D
.1//=G has finite rank as an Abelian group, a

contradiction.

By definition h
.1/
� jG D

Lm
iD1 gi . Because G is a submodule of H1.D

.1//, the
characteristic polynomial of h

.1/
� jG divides the characteristic polynomial of h

.1/
� on

H1.D
.1//. Since G has full rank both polynomials have the same leading coefficient

xn�1 and so they are equal. This completes the proof.

The next lemma shows how the characteristic polynomial �.gi/ of gi reflects the
permutation induced by ˆ.1/i on the set of connected components of X

.1/
i .

Lemma 6.9 Let ˆi D ˆjXi
be a component of the Thurston normal form h of ˇ ,

and let ˆi
.1/ be the lift of ˆi to X

.1/
i . Let gi denote the action of ˆi

.1/ on
H1.X

.1/
i /. Suppose Xi has `i connected components, and let d 2 Z be chosen so

that .ˆ.1//`i .Y / D T d .Y / for any connected component Y of X
.1/
i . Then there

exists an integer e > 0 such that the characteristic polynomial of gi is of the form

(6–4) �.gi/D x`i e
C tdP1.t/x

`i .e�1/
C t2dP2.t/x

`i .e�2/
C � � �C tedPe.t/

where each Pj 2 ZŒt˙ai �.

Proof As before, we let Xi0 be a connected component of Xi and X
.1/
i0

its pull-

back to D.1/ . Let e be the dimension of H1.X
.1/
i0

/ as a module over ZŒt˙1�. Let

f�j W 1� j � eg be a basis for H1.X
.1/
i0

/. We choose this basis so that all of the �j ’s
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are represented by loops in one and the same connected component, Y say, of X
.1/
i0

.
Pushing forward this basis under each of the first `i iterates of gi , we obtain a basis
for H1.X

.1/
i /. With respect to this basis, the matrix of gi has block form

gi D

0BBBBBB@
0 : : : �

id 0

id 0
:::

: : :
: : :

id 0

1CCCCCCA ;

having `i�`i blocks each of dimension e�e , where � is some matrix in GL.e;ZŒt˙1�/.

The connected components of X
.1/
i0

are in one to one correspondence with the cosets

of aiZ in Z. Now .ˆ.1//`i sends the chosen connected component Y �X
.1/
i0

to the

possibly different connected component T dY of X
.1/
i0

, where d 2 Z is well-defined
up to adding a multiple of ai . It follows that the entries of � lie in the coset td ZŒt˙ai �

of ZŒt˙ai � in ZŒt˙1�.

Any product of j elements of � therefore lies in the coset tjd ZŒt˙ai � of ZŒt˙ai �. The
lemma is proved when we note that the characteristic polynomial of the matrix of gi is
of the form

x`i e
C!1x`i .e�1/

C � � �C!e

where for each 1 � j � e , !j is a sum of products of j elements of �, so that
!j 2 tjd ZŒt˙ai �.

Corollary 6.10 If .x; t/ is a root of �.gi/, so too is .�x; � t/ where � is any ai th
root of unity and � is any `i th root of �d . Hence the roots of �.gi/ are naturally
divided into sets each of `iai roots.

Proof Let .x; t/ 2 C�C and let � and � be as in the statement. A quick calculation
using (6–4) shows that the value of �.gi/ at .�x; � t/ is exactly �ed times its value at
.x; t/. In particular if .x; t/ is a root so too is .�x; � t/.

Proof of Theorem 6.2 Lemma 6.6 establishes the first part of Theorem 6.2. To prove
the second part, recall that I is the set of 1� i �m such that ˆi is pseudo-Anosov,
Burau orientable, and satisfies htop.ˆi/D htop.ˆ/. For k > 0 we write �k D e2� i=k .
Also, for each i we write ˆ.k/i Dˆ

.k/j
X

.k/

i

and g
.k/
i Dˆ

.k/
� jH1.X

.k/

i
/

as above.
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Let i 2 I . With notation as above, the number of connected components of X
.1/
i is

`iai . Since �k D �k� , the same statement is true if we replace X
.1/
i by Xi

.k/ , for
any k which is a multiple of ai .

Suppose in fact that k is a multiple of 2ai . By Lemma 6.6, the invariant foliations of
ˆ
.k/
i in Xi

.k/ are orientable. The `iai connected components of Xi
.k/ are permuted

by ˆ.k/i in cycles all having the same number of components. Suppose the number of
such cycles is L, so that each cycle contains `iai=L components. Lemma 4.3 applies
to each such cycle, and we conclude that g

.k/
i has exactly `iai=L eigenvalues of

modulus �, each having geometric multiplicity L. Indeed �� is one such eigenvalue,
where � 2 f1;�1g is chosen according to whether ˆ.k/i preserves or reverses the
orientation of its unstable foliation. Counted with geometric multiplicity, there are
exactly `iai eigenvalues of modulus �.

Theorem 3.4 now implies that these `iai eigenvalues are distributed among the eigen-
values of the matrices M.�

j

k
/, where M denotes the matrix of gi W H1.X

.1/
i / !

H1.X
.1/
i / as in Section 3. Because M.�

j

k
/ is obtained by substituting �j

k
into M ,

an eigenvalue x of M.�
j

k
/ corresponds to a root of �.gi/ of the form .x; �

j

k
/. In

particular, setting k D 2ai , we conclude that there is some 0 � j0 < 2ai such that
.��; �

j0

2ai
/ is a root of �.gi/.

Meanwhile, since by Lemma 6.6 the lifts of Fu and F s to X
.ai /
i are not orientable, a

similar argument shows that no ai th root of unity can occur in such a root of �.gi/.
Therefore j0 must be odd. By Corollary 6.10 we now see that every element of the set

Ji D f.���; �
j0Cj
2ai

/jj is even and and � is an `i th root of �jd
2ai
g

is a root of �.gi/, where d is as in Lemma 6.9. Since j0 is odd, the roots of unity
occurring in elements of Ji are precisely the ai th roots of �1.

For k a multiple of 2ai , we have thus accounted for all of the `iai eigenvalues of
g
.k/
i of modulus �. Furthermore, every root of unity can be written as a k th root of

unity for some k which is a multiple of 2ai . It follows that Ji is precisely the set of
roots .x; �/ of �.gi/ such that � is a root of unity and jxj D �.

By Corollary 6.8, the characteristic polynomial of B.ˇ/ is the product of those of the
gi . Therefore the set of roots of �.B.ˇ// is the union of those of the gi . For i 2 I ,
we have just accounted for all of the roots .x; �/ of �.gi/ with jxj D � and � a root
of unity. For i 62 I a similar argument shows that �.gi/ can have no such roots. This
completes the proof.
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Proof of Theorem 1.2 Fix ˇ 2Bn and let ˆDˆ1[� � �[ˆm be its Thurston normal
form, and as above let I be the set of indices for which ˆi is pseudo-Anosov, Burau
orientable, and satisfies htop.ˆi/D htop.ˆ/. For i 2 I let Xi be the supporting surface
of ˆi and Xi0�Xi a connected component. Adopt the notation of Lemma 6.1 and the
definition of ai . In particular r denotes the number of punctures and disks deleted from
Xi0 and `i the number of connected components of Xi . Because ˆi is pseudo-Anosov,
we must have r � 3 by the Euler–Poincaré–Hopf formula. Since ai � infj mj andP

j mj � n=`i by definition, we therefore have ai � n=r`i � n=3.

By Theorem 6.2 the Burau estimate is sharp at the root of unity �0 if and only if �0 is
an ai th root of �1, for some i 2 I . Any such root is of the form �0 D e2�ij=k where
k D 2ai and 0< j < k is odd, and k � 2

3
n as we have just shown.

Remark 6.11 We remark that if n D 3n0 where n0 is a power of two, then for the
braid ˇn0 2Bn constructed after Theorem 6.2, the Burau estimate is sharp at each root
of �1 of order 1

3
n but not at any root of unity of order less than 2

3
n. Thus for some

braids the bound on k in Theorem 1.2 is attained.
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