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Generating family invariants for Legendrian links of unknots

JILL JORDAN

LISA TRAYNOR

Theory is developed for linear-quadratic at infinity generating families for Legendrian
knots in R3 . It is shown that the unknot with maximal Thurston–Bennequin invariant
of �1 has a unique linear-quadratic at infinity generating family, up to fiber-preserving
diffeomorphism and stabilization. From this, invariant generating family polyno-
mials are constructed for 2–component Legendrian links where each component is
a maximal unknot. Techniques are developed to compute these polynomials, and
computations are done for two families of Legendrian links: rational links and twist
links. The polynomials allow one to show that some topologically equivalent links
with the same classical invariants are not Legendrian equivalent. It is also shown
that for these families of links the generating family polynomials agree with the
polynomials arising from a linearization of the differential graded algebra associated
to the links.

53D10; 57M25

1 Introduction

A basic problem in contact topology is determining when two Legendrian knots or links
are equivalent. Two Legendrian links that are topologically equivalent can sometimes
be distinguished via the classical Legendrian invariants of the rotation and Thurston–
Bennequin numbers for the components. In recent years, new invariants for Legendrian
links have come from Legendrian contact homology, (see Chekanov [3], Etnyre, Ng
and Sabloff [10], and Eliashberg, Givental and Hofer [6]). One can use the theory of
holomorphic curves to associate a differential, graded algebra (DGA) to a Legendrian
link. It is sometimes possible to associate an invariant polynomial to a Legendrian
link by means of this DGA (see, for example, [3], Ng [12], and Ng and Traynor [13]).

New invariants for some Legendrian links have also come from the theory of generating
families. The theory of generating families, also known as generating functions, is
quite classic; some history can be found, for example, in Eliashberg and Gromov [7].
In the early 1990’s, the technique of generating functions received renewed attention
due to the work of Viterbo [20]. Viterbo found that the 0–section of a cotangent bundle
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has a unique quadratic at infinity generating family. A careful proof of this uniqueness
statement was carried out by David Théret in [15]. This uniqueness result has many
interesting symplectic applications; see, for example, [20], Theŕet [16], and Traynor
[17]. By some standard identifications, this uniqueness result leads to a uniqueness
result for quadratic at infinity generating functions of the Legendrian 1–jet of the zero
function in J 1 .M /. From this uniqueness result in the contact setting, it is possible
to construct invariant polynomials for two component links in J 1

�
S1
�

when each
component is Legendrian isotopic to the 1–jet of a function f W S1! R (see Traynor
[19]).

The particular focus of this paper is to associate a pair of invariant polynomials to a
specific type of two-component Legendrian link, one in which each component is a
Legendrian unknot with maximal Thurston–Bennequin number of �1. We will call
such an unknot a maximal unknot. Figure 1 shows a maximal unknot; the image of this
under any contact isotopy will also be a maximal unknot.

Figure 1: A maximal Legendrian unknot

We will now look at two families of Legendrian links that can be constructed from
maximal unknots. The first type, called a rational link, is topologically a closure of a
rational tangle, and we use a vector notation to describe it. Similar notations for rational
tangles and for another type of Legendrian link are found in Ernst [8] and Traynor
[19], respectively. We define the link L D .2wn; kn; : : : ; 2w1; k1; 2w0/ ; wi ; ki > 0,
recursively as follows. For nD 0, the link has 2w0 “horizontal” crossings, as illustrated
in Figure 2 for the case w0 D 2. For n � 1, the link .2wn; kn; : : : ; 2w1; k1; 2w0/ is
formed from the link .2wn; kn; : : : ; 2w1/ by adding k1 “vertical” crossings and 2w0

“horizontal” crossings as shown in Figure 3. For example, see Figure 4 to see how we
build the link .4; 2; 2; 1; 2/ from the link .4; 2; 2/.

We will call a second type of link under consideration a twist link. Topologically, twist
links are formed by clasping together two unknots, twisting each component a number
of times, and then clasping the knots together again. We will let Lj ;k D .ƒ1; ƒ0/

represent the twist link with left component (ƒ1 ) twisted so it has j crossings, and
right component (ƒ0 ) twisted to have k crossings; see Figure 5.
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ƒ1

ƒ2

Figure 2: The Legendrian link LD .4/

.2wn;kn; : : : ;2w1/
2w0

k1

.2wn;kn; : : : ;2w1/

Figure 3: The link .2wn; kn; : : : ; 2w1; k1; 2w0/ is built from the link .2wn; kn; : : : ; 2w1/ .

ƒ0

ƒ1

ƒ0

ƒ1

.4; 2; 2/ .4; 2; 2; 1; 2/

Figure 4: The link .4; 2; 2; 1; 2/ is built from the link .4; 2; 2/ .

These links of maximal unknots will be studied via the technique of generating families.
The type of generating families we use to study these links is different from the generat-
ing families used in Traynor [19] to study links of topologically nontrivial components
in J 1

�
S1
�
. Previously Traynor associated a quadratic at infinity generating family to

each link component ƒi . That is, given ƒi , there exists a function Fi W S
1�RNi !R
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ƒ1 ƒ0

j crossings k crossings

Figure 5: The twist link Lj ;k

for some Ni � 0, such that

ƒi D f.x; @xFi .x; v/ ;Fi .x; v// j @vFi .x; v/D 0g and

Fi .x; v/�Q .v/ outside a compact set,

where Q is a nondegenerate quadratic function. However, it is not hard to see that when
a component ƒi is a knot in R3 , it cannot be defined by a function that is quadratic
at infinity. We will see that it is sometimes possible to define a Legendrian knot by a
“linear-quadratic” at infinity generating family, abbreviated as an LQ generating family.
A function Fi W R�

�
R�RNi

�
! R is an LQ generating family for ƒi � J 1.R/D R3

if

ƒi D f.x; @xFi .x; l; v/ ;Fi .x; l; v// j @lFi .x; l; v/D 0 and @vFi .x; l; v/D 0g

and Fi .x; l; v/� J .l/CQ .v/ outside a compact set,

where J is a nonzero linear function and Q is a nondegenerate quadratic function.

In order to use LQ generating families to construct polynomial invariants, we need
existence and uniqueness results. The following three theorems, proved in Section 3,
are modeled after David Théret’s results in the symplectic category [15].

Theorem 1.1 (Existence Theorem) Let ƒ be a maximal Legendrian unknot. Then
ƒ has an LQ generating family.

An LQ generating family can be explicitly constructed for some configurations of a
maximal unknot, such as the one shown in Figure 1. Since any maximal unknot can be
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isotoped to look like the one in Figure 1, the existence theorem is a direct result of the
following theorem, in the case where �n is zero dimensional.

Theorem 1.2 (Serre Fibration Structure Theorem) (See Theorem 3.3) Let F be
the set of LQ generating families and let L be the set of Legendrian submanifolds
of J 1 .M /. Then the map � W F ! L is a smooth Serre fibration, up to equivalence.
More precisely, if the smooth map f W �n ! L has a smooth lift F W �n ! F and
if .ft W �n! L/t2Œ0;1� is a smooth homotopy of f D f0 , then there is a smooth
homotopy .Ft W �n! F/t2Œ0;1� such that F0 D F up to equivalence (that is, up to
stabilization and fiber-preserving diffeomorphism), and � ıFt D ft for every t 2 Œ0; 1�.

It is clear that, if a LQ generating family exists, it is not unique. However it is unique
up to a certain equivalence.

Theorem 1.3 (Uniqueness Theorem) (See Theorem 3.6.) Let ƒ be a maximal Leg-
endrian unknot. Then all LQ generating families for ƒ are equivalent up to stabilization
and fiber-preserving diffeomorphism.

The operations of stabilization and fiber-preserving diffeomorphism are explained in
Definition 2.1.

In Section 4, in analogy with [19], we apply the existence and uniqueness results from
Section 3 to associate polynomials, �˙

�
.�/, to a two-component Legendrian link where

each component is a maximal unknot. Normalized versions of these polynomials give
Laurent polynomials �˙.�/ that are shown to be invariants of a Legendrian link. In
fact, �C.�/ is determined by ��.�/: �C.�/D � ���.�/. The following theorems
give the calculations of �� for rational links and twist links.

Theorem 1.4 (See Theorem 5.4) Let L be the Legendrian link

.2wn; kn; : : : ; 2w1; k1; 2w0/

as described in Figure 3. Then

�� .�/ ŒL�D w0�
0
Cw1�

�k1 Cw2�
�.k1Ck2/C � � �Cwn�

�.k1Ck2C���Ckn/:

Theorem 1.5 (See Theorem 5.9) Let Lj ;k be a Legendrian twist link as described in
Figure 5. Then

�� .�/
�
Lj ;k

�
D �0

C��jj�kj:
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The topological link type of a twist link is dependent only on the value of j C k . So
as a direct result of Theorem 1.5, we are able to use generating family polynomials
to distinguish several Legendrian twist links with the same topological link type; see
Corollary 5.11.

Generating family polynomials can also be used to show that a link is ordered. LD

.ƒ1; ƒ0/ is ordered if it is not equivalent to L D .ƒ0; ƒ1/. In fact, a necessary
condition for a link to be unordered is that the �� polynomial must be the same, up to
a shift, if � is replaced by ��1 .

Theorem 1.6 (See Theorem 4.11) Let LD .ƒ1; ƒ0/ be a Legendrian link where ƒ1

and ƒ0 are maximal unknots. If there does not exist an l 2 Z such that �� .�/ ŒL�D
�l ���

�
��1

�
ŒL�, then the link L is ordered.

The rational links are always topologically unordered, but by the above polynomial
calculations we show:

Theorem 1.7 (See Corollary 5.6) Let L D .ƒ1; ƒ0/ be the rational Legendrian
link .2wn; kn; : : : ; 2w1; k1; 2w0/. If the vector .2wn; kn; : : : ; 2w1; k1; 2w0/ is not
palindromic, then the link L is ordered.

Another use of generating family polynomials is in distinguishing rational links that
differ by a Legendrian “flyping” operation. Flypes are discussed in Section 5. Both
horizontal and vertical flyping procedures, when applied to a Legendrian link, result
in a link of the same topological link type. It is shown by Traynor [19] that vertical
flypes when applied to a Legendrian link LD .2wn; kn; : : : ; 2w1; k1; 2w0/ preserve
the Legendrian link type. However polynomial calculations for horizontal flypes show
that nonequivalent Legendrian links may be produced.

Theorem 1.8 (See Theorem 5.7) Let LD
�
2wn; kn; 2w

pn�1

n�1
; : : : ; k1; 2w

p0

0

�
be the

Legendrian link obtained by doing pi horizontal flypes to the wi horizontal entry of the
rational link .2wn; kn; : : : ; k1; 2w0/. For j D 0; 1; : : : ; n�1, let � .j /D 1C

Pj
iD0

pi

mod 2. Then

�� .�/ ŒL�D �m
�

h
w0�

0
C

nX
iD1

wi�
Œ.�1/�.0/k1C���C.�1/�.i�1/ki �

i
;

where m is chosen so that �� has degree zero.

For an example of a rational link that is not equivalent to a flyped version of the link,
see Figure 6.
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6D

Figure 6: The link .2; 1; 4/ is not equivalent to its flyped version,
�
2; 1; 41

�
Finally, we compare generating family polynomials to decomposition number polyno-
mials and homology polynomials obtained from the DGA. The decomposition number
polynomials are quite different from the generating function polynomials. However,
for both rational links and twist links, the (negative) generating family polynomials are
the same as the (negative) DGA homology polynomials; see Theorem 6.4.
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2 Background information

If M is an n–manifold, then the 1–jet space of M , J 1 .M / D T �.M / � R, is a
.2nC 1/–manifold with a contact structure �std on J 1 .M /D f.x;y; z/g given by the
kernel of the 1–form ˛Ddz�ydx . There are no integral j –dimensional submanifolds
of the .2nC1/–dimensional J 1.M / when j > n. However, there are numerous
integral n–dimensional submanifolds. Such submanifolds are called Legendrian. For
example, for any f W M ! R, j 1 .f / WD

˚�
x; @f

@x
; f .x/

�
j x 2M

	
is a Legendrian

submanifold of J 1.M /. We will pay special attention to the 3–dimensional contact
manifold J 1.R/D R3 .

A Legendrian knot is a closed and connected 1–dimensional Legendrian submanifold
in a 3–dimensional contact manifold. A Legendrian link is the union of one or more
non-intersecting Legendrian knots. The front of a Legendrian curve is its image under
the front projection given by �xz .x;y; z/D .x; z/. Given a Legendrian curve L in
J 1.R/, let �xz .L/ D C . C is an immersed curve with nonvertical tangents and
semi-cubic cusps (see Figure 7), which generically has only double points. If L is free
of self-intersections, any crossing of C must be a transverse intersection. Conversely,
any such curve in R2 determines a Legendrian curve in R3 . We may use the fact that
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y D dz
dx

for any .x;y; z/ 2L, a condition imposed by the contact structure, to recover
the third coordinate of L.

zp

p

xp

C

Figure 7: A semi-cubic cusp is a point p 2 C for which there exist co-
ordinates xp; zp such that p D .0; 0/ and C D

˚
.xp; zp/ j z

2
p D˙x3

p

	
in a

neighborhood of p .

The main question in the study of Legendrian links is whether or not two links are
equivalent. We say two links LD .ƒn; : : : ; ƒ0/, eL D .eƒn; : : : ; eƒ0/ are equivalent if
there exists a smooth, one-parameter family Lt of Legendrian links such that L0 DL

and L1 D
eL , or, equivalently, there exists a contact isotopy of the ambient space

taking ƒi to eƒi for i D 0; : : : ; n. Two topologically equivalent Legendrian links
will be distinct if, for some i , components ƒi and eƒi do not have the same classical
Legendrian integer invariants given by the rotation and Thurston–Bennequin numbers.
For more background on Legendrian knots and links, see, for example, Etnyre [9].
In the following, we will extend the work in [19] and construct new invariants for
Legendrian links using the technique of generating families.

Generating families provide a way to encode a Legendrian submanifold of J 1.M / by a
real-valued function on M �Rk . Suppose we have a smooth function F W M �Rk!R ,
.x; v/ 7!F .x; v/ ; such that 0 is a regular value of the map . @F

@v1
; : : : ; @F

@vn
/W M �Rk!

Rk . We define †F , the critical locus of F , as

†F WD
˚
.x; v/ 2M �Rk

j
@F
@vi

.x; v/D 0 for i D 1; 2; : : : ; k
	
:

By the preimage theorem, †F is a one-dimensional submanifold of M �Rk . Define
an immersion iF W †F ! J 1 .M / by

iF .x0; v0/D .x0; @xF .x0; v0/ ;F .x0; v0// :

When iF is an embedding, L WD iF .†F / is a Legendrian submanifold of J 1 .M /.
We say that F generates L, or F is the generating family for L. In the following, we
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will start with a Legendrian submanifold L� J 1 .M / and seek a generating family
F W M �Rk ! R for L.

Clearly the choice of a generating family for a given Legendrian L � J 1 .M /, if
one exists, is not unique. If F W M �Rk ! R generates L then so does, for example,
F 0W M � RkC1 ! R, where F 0 .x; v1; : : : ; vk ; vkC1/ D F .x; v1; : : : ; vk/ C v

2
kC1

.
Therefore we wish to work with equivalence classes of families rather than with the
families themselves.

Definition 2.1 Two generating families Fi W M �Rki ! R , i D 1; 2 are equivalent if
and only if they can be made equal after a succession of fiber-preserving diffeomor-
phisms and stabilizations; these operations on the generating family are defined as
follows:

(1) Given a generating family F W M �Rk ! R, suppose ˆW M �Rk !M �Rk

is a fiber-preserving diffeomorphism, i.e., ˆ.x; v/D .x; �x .v// for diffeomor-
phisms �x . Then F 0DF ıˆ is said to be obtained from F by a fiber-preserving
diffeomorphism.

(2) Given a generating family F W M �Rk!R , let QW Rj!R be a quadratic func-
tion. Define F 0W M �Rk �Rj ! R by F 0 .x; v1; v2/D .F ˚Q/ .x; v1; v2/D

F .x; v1/CQ .v2/. Then F 0 is said to obtained from F by a stabilization.

If two families are equivalent, we can get from one to another by performing one
stabilization followed by one diffeomorphism (see Théret [15]).

There is a parallel theory of generating families in the symplectic category. In a
symplectic manifold, Lagrangian submanifolds are objects of central importance, and
the theory of generating families gives one a way to encode some Lagrangians in
T � .M / by a function F W M �RN ! R. In this version, the same procedure is used
to construct �F , but now the associated immersion iF does not include the value of F .

In both the contact and symplectic settings, these generating families are defined on
noncompact domains. Analytically it is convenient to consider functions that are
“well-behaved” outside of a compact set. A common convention has been to consider
generating families that are “quadratic at infinity.” This means that outside of a compact
set, F .x; v/DQ .v/, where Q is a nondegenerate quadratic function. See, for example,
Viterbo [20] and Théret [15].

Quadratic at infinity generating families can generate only particular Legendrian or
Lagrangian submanifolds. It is not hard to see, for example, that the maximal Legendrian
unknot pictured in Figure 1 does not have a quadratic at infinity generating family.
However, this Legendrian knot will have a “linear-quadratic” at infinity generating
family, abbreviated as an LQ generating family.
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Definition 2.2 A generating family F W M �R�Rk ! R, k � 0 is linear-quadratic
at infinity if we have F .x; l; v/D Jx .l/CQx;l .v/ outside a compact set, where Jx

is a nonzero linear function of l for each x and Qx;l is a nondegenerate quadratic
function of v for each pair .x; l/ 2M �R . F is special linear-quadratic at infinity if
F .x; l; v/D J .l/CQ .v/ outside a compact set for some nonzero linear function J

and some nondegenerate quadratic function Q.

Note that the added requirement for a special LQ generating family is that the linear
and quadratic parts be independent of the base point x 2M . In fact, any LQ generating
family is equivalent to a special LQ generating family. This can be proved following
the argument of the proof of [15, Proposition 2.12].

Figure 8 sketches the graphs of two LQ generating families for the maximal Legendrian
unknot. Note that the generating families differ by a stabilization, and hence they are
equivalent.

(a) (b)

Figure 8: The LQ generating families shown in (a) and (b) generate the same
maximal unknot, which is sketched in with a broken line. The generating
family in (b) is a stabilization of the one in (a).

3 Existence and uniqueness of LQ generating families

In Sections 3.1 and 3.2, we prove that if we have a Legendrian L� J 1.Rm/ with a
unique LQ generating family then '1 .L/ also has a unique LQ generating family for
any contact isotopy 't of J 1.Rm/. SubSection 3.3 contains the proof of uniqueness
of an LQ generating family for the maximal unknot in J 1.R/D R3 pictured in Figure
1. Théret’s work in [15] forms a basis for the theorems and proofs in this section.
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3.1 Persistence of LQ generating families under isotopies

Let us first introduce some notation for use in this subsection and the next. Let M be
Rm or �n �Rm�n � Rm where �n is the standard n–simplex in Rn . Results in this
section will also apply to the case where M is a closed manifold but this setting will not
be needed in this paper. Let L be the set of Legendrians in J 1 .M /. For each integer
k � 0, let Fk be the set of all LQ generating families defined on M �R�Rk . If k is
not specified we will simply use F . Let � W F ! L be the map taking a generating
family f to the Legendrian in L generated by f .

The main result of this subsection is that the map � W F!L is a smooth Serre fibration
(up to equivalence). In particular, this implies that if 
 W Œ0; 1�! L is a path and 
 .0/
has a generating family (i.e. there exists F 2 ��1 .
 .0//), then there is a lift of the
path to z
 W Œ0; 1�! F such that z
 .0/D F up to equivalence and � .z
 .t//D 
 .t/ for
all t 2 Œ0; 1�. More generally, if f W �n!L has a smooth lift F W �n!F , then for any
smooth homotopy ft W �n! L of f there exists a smooth homotopy Ft W �n!F of
(perhaps an equivalent version of) F satisfying � ıFt D ft . We will prove this Serre
fibration property in two stages. We will first show that the above path lifting property
holds (see Theorem 3.1). This follows from a Legendrian version of “Chekanov’s
formula”. We will then prove a lemma (Lemma 3.2) that allows us to view a homotopy
of Legendrians as a single Legendrian in a larger space. Theorem 3.1 will then be
applied again.

Theorem 3.1 Let M be Rm or �n � Rm�n � Rm , and let ƒ be a Legendrian
submanifold of J 1 .M /. Let .�t /t2Œ0;1� be a compactly supported contact isotopy of
J 1 .M /, �0 D id. Assume that ƒ has an LQ generating family F W M �R�Rk ! R .
Then there exists an integer j � 0 and a path .Ft /t2Œ0;1� of LQ generating families
defined on M �R�Rk �Rj such that

(1) F0 .x; l; v; w/ D F .x; l; v/CQ .w/, where Q is a nondegenerate quadratic
function on Rj I

(2) Ft D F0 outside a compact set;

(3) Ft generates �t .ƒ/ for t 2 Œ0; 1�.

Proof [18, Theorem A.1] is an analogous theorem with quadratic (rather than linear-
quadratic) at infinity conditions. A careful check of the equation shows that the proof
of Theorem A.1 generalizes to the LQ situation. The following is a brief summary of
the proof.

The first step is to realize that even when M D �n � Rm�n we can work in the
setting of J 1 .Rm/ rather than in J 1 .M /. �n �Rm�n naturally lies in Rm . By an
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extension of F to Rm�R�Rk , we have that ƒ embeds into a Legendrian submanifold
ƒm � J 1 .Rm/. As shown in [18, Proposition A.2], �t extends to a compactly
supported contact isotopy �m

t of J 1.Rm/, and to show �t .ƒ/ has an LQ generating
family it suffices to prove that �m

t .ƒ
m/� J 1 .Rm/ has an LQ generating family.

Next we translate the problem into a symplectic situation by looking at a certain
RC–equivariant Lagrangian Lƒ in T �

�
Rm �RC

�
that corresponds to a Legendrian

ƒ� J 1 .Rm/ (see [18, Equation A.3]). If ƒ� J 1 .Rm/ has an LQ generating family,
then so does Lƒ � T �

�
Rm �RC

�
.

Next we associate a symplectic diffeomorphism ‰� of T �
�
Rm �RC

�
to a contact

diffeomorphism � isotopic to the identity. This has a corresponding Lagrangian
submanifold e�‰� of T �

�
R2mC1 �RC

�
. When the diffeomorphism ‰� is sufficiently

close to the identity, these Lagrangians have simple generating families. Then by
“Chekanov’s formula,” generating families for Lƒ and e�‰� can be “composed” to
obtain a generating family for ‰� .Lƒ/ D L�.ƒ/ (see [18, Proposition A.5] or [17,
Section 4]). A careful analysis of these equations shows that if the generating family
for Lƒ is LQ, then the family for ‰� .Lƒ/ will also be LQ. By breaking the isotopy �t

into a composition of small diffeomorphisms, this procedure produces an LQ generating
family for L�t .ƒ/ for all t . See, for example, [17, Section 4].

Lastly, [18, Proposition A.6] shows that if G is an LQ generating family for Lƒ �
T �

�
Rm �RC

�
, then a “slice” of G will be an LQ generating family for ƒ. Hence

since L�t .ƒ/ has an LQ generating family for all t 2 Œ0; 1�, �t .ƒ/ has an LQ generating
family, say Ft , for all t 2 Œ0; 1�. We can see through checking the proofs in [18] that
the remaining conditions on Ft are satisfied.

The next lemma shows, in particular, that from a family of Legendrian submanifolds of
J 1.R/ parameterized by points in �n one can construct a single, .nC 1/–dimensional
Legendrian submanifold of J 1 .�n �R/. The lemma is the Legendrian version of [15,
Lemma 4.3]. Note that when we say S W �n �M �R�Rk ! R is linear-quadratic at
infinity, we mean it is linear in the R variable and quadratic in the Rk variable.

Lemma 3.2 Note first that J 1 .�n �M /Š T � .�n/�J 1 .M /.
Let �W J 1 .�n �M /! J 1 .M / be the associated projection.

(a) Let f W �n �B! J 1 .M / be a differentiable map such that each fa , defined
by fa .s/D f .a; s/ is a Legendrian embedding of B in J 1 .M /. Then there is
a map vW �n �B! .Rn/� such that

L WD f.a; v .a; s/ ; fa .s// j a 2�n; s 2 Bg � T � .�n/�J 1 .M /
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is a Legendrian submanifold in J 1 .�n �M /. Furthermore, if SaW M �R�

Rk ! R is a smooth family of LQ generating families of La WD f .fag �B/,
then the total family S W �n �M �R�Rk ! R is an LQ generating family for
the Legendrian L given above.

(b) Conversely, if F W �n�B!J 1 .�n �M / is a Legendrian embedding, transver-
sal to the spaces Wa WD fag � .R

n/� �J 1 .M / and having an LQ generating
family S W �n�M �R�Rk!R , then La WD .� ıF / .fag �M / is a Legendrian
in J 1 .M / with LQ generating family Sa D S

�
fag �M �R�Rk

�
.

Proof First, J 1 .�n �M / Š T � .�n/ � J 1 .M / by a reordering of coordinates
as follows: .a;x; w;y; z/ � .a; w/� .x;y; z/ for .a; w/ 2 T � .�n/ and .x;y; z/ 2
J 1 .M / ; since the contact form on T � .�n/�J 1 .M / and J 1 .�n �M / is given
by ˛ D dz�ydx�wda.

To verify (a), let f W �n �B ! J 1 .M /, .a;x/ 7! fa .x/ be a differentiable map
so that each fa is a Legendrian embedding of B in J 1 .M /. Write fa .s/ D�
f x

a .s/ ; f
y

a .s/ ; f
z

a .s/
�
. Then if we let v .a; s/D @f z

a

@a
�f

y
a .s/ �

@f x
a

@a
,

LD
˚�

a; f x
a .s/ ; v .a; s/ ; f y

a .s/ ; f
z

a .s/
�	
� J 1 .�n �M /

is a Legendrian submanifold. It is straightforward to check that if SaW M �R�Rk!R

is a smooth family of LQ generating functions of La WD fa .M /, a 2�n then the total
function S W �n �M �R�Rk ! R is an LQ generating family for L as given above.

To verify (b), let F W �n�B! J 1 .�n �M / be a Legendrian embedding transversal
to the spaces Wa WD fag � .R

n/� �J 1 .M / and having an LQ generating function
S W �n �M �R�Rk ! R. For a 2�n , let La WD .� ıF / .fag �M / and let Sa WD

S
�
fag �M �R�Rk

�
. Let L D F .�n �M /. Since L is transversal to each Wa ,

L\Wa is a submanifold of J 1 .�n �M / that projects to La�J 1.M /. It is straight
forward to show that Sa generates La .

We are now ready to state and prove the main result of this subsection. The theorem
and its proof are nearly identical to Théret’s Theorem 4.2 and its proof in [15].

Theorem 3.3 The map � W F ! L is a smooth Serre fibration, up to equivalence.
More precisely, if the smooth map f W �n ! L has a smooth lift F W �n ! F and
if .ft W �n! L/t2Œ0;1� is a smooth homotopy with f D f0 , then there is a smooth
homotopy .Ft W �n! F/t2Œ0;1� such that F0 D F up to equivalence, and � ıFt D ft

for every t 2 Œ0; 1�.
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Proof Applying (a) from Lemma 3.2, for each t 2 Œ0; 1�, the family ft .�n/ parame-
terized by points in �n can be used to construct a Legendrian Lt in J 1 .�n �M /.
Thus we get a path xf W Œ0; 1�! L

�
J 1 .�n �M /

�
whose initial point xf0 admits a

generating family xF0 . By part (b) of Lemma 3.2, it is sufficient to prove that we can
lift the path xf from the initial point xF0 . By Theorem 3.1, we can lift the path xf , as
desired.

3.2 Uniqueness of LQ generating families

We say a Legendrian L has the uniqueness property if any two of its LQ generating
families are equivalent. Here we prove that if L has the uniqueness property and L1 is
obtained from L through a Legendrian isotopy, then L1 has the uniqueness property
as well. We first prove a lemma which allows us to get a path in ��1 .L1/ between
any two LQ generating families of L1 . This lemma corresponds to [15, Lemma 5.2].

Lemma 3.4 Suppose that L0 2 L is a Legendrian with the uniqueness property and
that L1 is obtained from L through a Legendrian isotopy. Let f and f 0 be two LQ
generating families for L1 . Then up to equivalence, f and f 0 can be connected by a
path in ��1 .L1/.

Since the proof is identical to that in [15], only the following sketch is given. Let
f0 and f 0

0
be two LQ generating families for L1 . From the path of Legendrians

between L0 and L1 , we construct a contractible loop of Legendrians based at L1 .
Using Theorem 3.1 (the path lifting property) and the fact that L0 has the uniqueness
property, we know this loop is covered by a path of generating families with endpoints
at (equivalent versions of) f0 and f 0

0
. Since the loop is contractible, by Theorem 3.3

(with nD 1) we get our desired result.

We now get the following uniqueness theorem, which corresponds to [15, Theorem 5.1].

Theorem 3.5 Let L0 be a Legendrian with the uniqueness property. Suppose that
L1 D '1 .L0/ where .'t /t2Œ0;1� is a Legendrian isotopy of J 1 .M /. Then any two
LQ generating families of L1 are equivalent.

Again, since the proof is nearly identical to the proof of [15, Theorem 5.1], we will
only sketch the argument. If f and f 0 are two LQ generating families for L1 , then
we know by Lemma 3.4, up to equivalence, f and f 0 can be connected by a path
in ��1 .L1/. Therefore it suffices to show that if .ft /t2Œ0;1� is a smooth path of LQ
generating families that generate a fixed Legendrian, then there exists a fiber-preserving
isotopy ˆt such that ft ıˆt D f0 for all t 2 Œ0; 1�. By differentiating this equation
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with respect to t , we get an equation for the vector field Xt that generates this isotopy.
It is easy to find a solution for this Xt outside the fiber critical set †t D† of ft . We
then apply Hadamard’s Lemma to find a solution for Xt near †. These two solutions
are then pasted together by the choice of an appropriate bump function.

3.3 Uniqueness of the LQ generating family for a basic unknot

So far we have proved that existence and uniqueness of LQ generating families persist
under Legendrian isotopies. We will now prove that the maximal unknot in J 1.R/

shown in Figure 1 has the uniqueness property. The proof of this theorem is philosophi-
cally the same as [15, Theorem 6.1] where it is proved that the Lagrangian 0–section of
T �M , for M an arbitrary closed manifold, has a unique quadratic at infinity generating
family. Some differences between the proofs are pointed out in Remark 3.8 after the
proof.

Theorem 3.6 Let L� J 1.R/D R3 be a maximal Legendrian unknot. Then any two
LQ generating families of L are equivalent.

Proof By Theorem 3.5, it suffices to prove the theorem in the case where L is the
unknot pictured in Figure 1. Let f; g be two LQ generating families for L. By applying
fiber-preserving diffeomorphisms and stabilizations, we can assume the following:

� f and g have the same domain R�R�RnDf.x; l; v/g; we will let fx;gx W R�

Rn! R denote the associated fiber functions.

� The critical points of fx agree with the critical points of gx ; we will let Cx �

R�Rn denote this set of critical points. Assuming that the two cusp points of
�xz.L/ occur at .0; 0/ and .1; 0/, we see that C0 and C1 consist of a single
point with critical value 0, Cx for x 2 .0; 1/ consists of two nondegenerate
critical points with nonzero critical values, and Cx D∅ for all other x . By a
Morse theoretic argument (see, for example, the proof of Proposition 4.3), for
x 2 .0; 1/, we can write Cx D fv0 .x/ ; v1 .x/g where v1 .x/ has index kC 1,
v0 .x/ has index k , and

fx .v1 .x//D gx .v1 .x// > 0> fx .v0 .x//D gx .v0 .x// .

� f and g are special; that is, outside a compact set of R�Rn they are strictly
linear-quadratic, with linear and quadratic parts independent of the base point
x 2 R.

We next show that for all x , we can assume fx D gx on a neighborhood U .x/ of Cx

in R�Rn .
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Lemma 3.7 There exists a neighborhood U of [x2RCx in R�R�Rn so that for
U .x/ D U \ .fxg �R�Rn/, after fiber-preserving diffeomorphisms fx D gx on
U .x/, and all gradient trajectories of fx and of gx intersect U .x/ in a connected set.

Proof From Arnol’d, Guseı̆n-Zade and Varchenko [2], we know that after applying
fiber-preserving diffeomorphisms, in a neighborhood of C0 in R � R � Rn we can
assume f .x; l; v/ D g .x; l; v/ D l3 � xl C Q .v/, where Q is a nondegenerate
quadratic function. A similar statement holds in a neighborhood of C1 . Thus there is
the desired neighborhood of C0[C1 .

To see that there is a such a neighborhood for [x2RCx , we first note that with a generic
choice of metrics, fx (and gx ), x 2 .0; 1/, forms a family of functions whose gradient
flows satisfy the Morse-Smale conditions. We will now argue that for all x 2 .0; 1/,
there is a single isolated gradient trajectory of fx from v1 .x/ to v0 .x/. Since the
gradient trajectories of fx satisfy the Morse-Smale conditions, for all x 2 .0; 1/,
W u .v1 .x// (the unstable manifold of v1 .x/), W s .v0 .x// (the stable manifold of
v0 .x/), and f �1

x .0/ intersect transversally in a finite number of points. Since near
x D 0, this intersection consists of a single point, for all x this intersection consists
of a single point. It follows that for all x 2 .0; 1/ there is a single gradient trajectory
of fx in W u .v1 .x//\W s .v0 .x//. The analogous argument shows that there is a
single gradient trajectory of gx from v1 .x/ to v0 .x/ for all x 2 .0; 1/.

It is not hard to show that by applying a diffeomorphism of R1Cn , we can assume
fx D gx on neighborhoods V0 .x/, V1 .x/ of v0 .x/ and v1 .x/, respectively. This
can be proved using the Morse Lemma to obtain a diffeomorphism equating fx and gx

on neighborhoods of v0 and v1 and then extending this diffeomorphism to all of R1Cn

via the isotopy extension theorem using the fact that any embedding of two disjoint
balls must be isotopic to the identity.

By applying this neighborhood diffeomorphism together with the fact that there is a
single gradient trajectory from v1 .x/ to v0 .x/, after applying diffeomorphisms, we
can assume that

� v0 .x/, v1 .x/ 2 R� f0g and I .x/ WDW u .v1 .x//\W s .v0 .x//� R� f0g;

� For neighborhoods V1 .x/, V0 .x/ of v1 .x/, v0 .x/, fx D gx on V1 .x/ [

I .x/[V0 .x/.

Now, there exist tubular neighborhoods Tf .x/ and Tg .x/ of the open interval I .x/

consisting of gradient trajectories of fx;gx that intersect V1 .x/ and V0 .x/. Viewing
each tubular neighborhood as a family of parameterized disks, we see that after applying
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a diffeomorphism, we can assume Tf .x/D Tg .x/D T .x/ and fx D gx on U .x/D

V0 .x/[T .x/[V1 .x/.

The desired U can be constructed from the above described neighborhoods of C0 , C1 ,
and Cx , x 2 R. This completes the proof of the lemma.

We will be using the gradient flows of fx and gx to define the diffeomorphism 'x of
R�Rn such that fx ı 'x D gx . In particular, we will be working with the orbits of
the gradient flows.

To become familiar with the construction, suppose we have a situation where every orbit
of the gradient flow of both fx and gx intersect U .x/. In this case, our diffeomorphism
'x is defined by leaving all points in U .x/ fixed, while mapping points outside of
U .x/ in the following way. For w … U .x/, flow along the orbit of w by the positive
(negative) gradient flow of gx until you reach a reference point w0 2U .x/. Then flow
from w0 by the negative (positive) gradient flow of fx until you reach a point w00 such
that fx .w

00/D gx .w/: since fx D gx on U .x/, it is not difficult to verify that the
fx –orbit containing w0 takes on the same values as the gx –orbit containing w0 and
thus w00 must exist. Define 'x .w/D w

00 , so then fx ı'x D gx .

To see that this map is well-defined, suppose we choose a different reference pointew0 in U .x/. Then w0 and ew0 are in the same orbit with respect to the gradient flow
of gx . Moreover since w0; ew0 2 U .x/ and fx D gx on U .x/, we also know that
w0; ew0 are in the same orbit with respect to the gradient flow of fx . Thus they both
result in the same w00 , so 'x is well-defined.

In practice, we will usually have to consider the case where not every orbit intersects
U .x/. In this case, we will see that every orbit will intersect either U .x/ or a “negative
infinity level set,” where a negative infinity level set for f (respectively for g ) is defined
to be f �1

x .c/ (respectively g�1
x .c/) for some fixed c� 0. Let L

f
�1 WD f

�1
x .c/ and

let L
g
�1 WD g�1

x .c/. Since f and g are assumed to be special, L
f
�1 and L

g
�1 do

not depend on x . In fact, since f is linear-quadratic at infinity,

L
f
�1 D

˚
.l; v1; : : : ; vn/ 2 R1Cn j l � v2

1
� � � � � v2

j C v
2
jC1
C � � �C v2

n D c
	

D
˚�

cC v2
1
C � � �C v2

j � v
2
jC1
� � � � � v2

n; v1; v2; : : : ; vn

�
2 R1Cn

	
:

Therefore L
f
�1 is an embedded image of Rn in R�Rn , as is L

g
�1 . To see that each

orbit of the gradient flows of fx (gx ) intersects U .x/ or L
f
�1 (Lg

�1 ), observe that
an orbit will either terminate at a critical point or enter the region of R�Rn where fx

(gx ) is standard linear-quadratic function. In the first case the orbit intersects U .x/,
and in the second case the orbit intersects L

f
�1 (Lg

�1 ).
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The idea now is to define a diffeomorphism similar to the one above, but using reference
points in U .x/[L

f
�1 and U .x/[L

g
�1 . However we must be careful to be sure

that the map is well-defined with respect to the reference point chosen. The difficulty
here is when we have orbits of the gradient flows of fx (gx ) that intersect both U .x/

and L
f
�1 (Lg

�1 ), and thus we have reference points in both U .x/ and L
f
�1 (Lg

�1 ).
We will now show that the map is, in fact, well defined.

Shrink U.x/ slightly to a closed set D.x/�U.x/ that satisfies the conditions on U.x/

specified by Lemma 3.7. Consider the set of orbits that intersect both D.x/� U .x/

and L
f
�1 (or L

g
�1 ). Let W f .x/ (W g .x/) denote a transverse slice of these orbits

so that each orbit with respect to the gradient flow of fx (gx ) intersects W f .x/

(W g.x/) precisely once. In fact, W f .x/ (W g .x/) can be chosen to be closed
n–dimensional disks. Since fx D gx on D.x/ � U .x/, it is possible to choose
W .x/ WDW f .x/ DW g .x/ � D.x/ � U .x/. For w 2W .x/, let wg; wf be the
orbits of w with respect to the gradient flows of gx; fx respectively. Note wg \L

g
�1

and wf \L
f
�1 are each single points, call them w�1g and w�1

f
respectively. Let

W1.x/D[w2W .x/w
�1
g , W2.x/D[w2W .x/w

�1
f

, and consider �x W W1.x/!W2.x/

defined by �x

�
w�1g

�
D w�1

f
for each w 2 W .x/. Then by an application of the

isotopy extension theorem, �x extends to a diffeomorphism ‚x W L
g
�1!L

f
�1 .

Now we proceed to define 'x . As before, 'x leaves all points in D.x/ � U .x/

fixed. For w … D .x/, flow along the orbit of w by the positive (negative) gradient
flow of gx until you reach a reference point w0 2D .x/[L

g
�1 . If w0 2D .x/, let

w00 D w0 . If w0 2 L
g
�1 , let w00 D ‚x .w

0/. Now flow from w00 by the negative
(positive) gradient flow of fx until you reach a point w000 such that fx .w

000/D gx .w/.
Define 'x .w/D w

000 , so that fx ı'x D gx . It is straight forward to verify that 'x is
well-defined.

Now for each x 2R we have a diffeomorphism 'x of R�Rn such that fx ı'x D gx .
By construction, 'x varies smoothly with x . Thus we have a diffeomorphism ˆ of
R�R�Rn such that f ıˆD g . Hence f and g are equivalent.

Remark 3.8 The above proof and Théret’s proof of uniqueness of generating families
for the Lagrangian 0–section have some differences. In Théret’s setting, the construction
of the set U .x/ containing the fiber-critical point where the function is standard is an
easy consequence of Morse Theory. Also, in Théret’s work, he uses a ��–level set
where above we use a �1–level set. When using the ��–level set, it is more immediate
that the fiber diffeomorphisms constructed via gradient flows are well defined. However,
Théret must spend a great deal of effort to prove that for two generating families f
and g , there is a global diffeomorphism between f �1 .��/ and g�1 .��/ that is a
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diffeomorphism on each fiber slice. This difficulty is avoided in the above proof with
the use of �1–level sets.

4 LQ generating family polynomials

We now use the existence and uniqueness results of the previous section to define
invariant polynomials for two component Legendrian links in R3 where each component
is a maximal unknot. Much of this material parallels the results from Traynor [19];
however, in that paper links live in J 1.S1/ and each component of the link was
Legendrian isotopic to the 1–jet of a function.

Definition 4.1 Given two functions fi W R�R1Cni !R , i D 0; 1, let �W R�R1Cn1�

R1Cn0 ! R be given by �.x; l1; v1; l0; v0/D f1 .x; l1; v1/�f0 .x; l0; v0/. Then �
is the difference function of f1 and f0 . Furthermore, if f1 and f0 generate ƒ1 and
ƒ0 , respectively, then � is a difference function of LD .ƒ1; ƒ0/.

Note the following facts about the critical points of a difference function �. First, if �
is a difference function for a link LD .ƒ1; ƒ0/, then the critical points of � are in one-
to-one correspondence with points of the form ..x0;y0; z1/ ; .x0;y0; z0// 2ƒ1 �ƒ0 .
This can be seen by calculating the derivative of � in terms of the derivatives of f1

and f0 , where fi generates ƒi (i D 0; 1). Therefore a critical point of � can be
identified in the front projection of L as a pair of points, one point on each ƒi , where
the points have the same x coordinate and the same slope. Second, if LD .ƒ1; ƒ0/

is a link, the components of L do not intersect, and thus 0 is not a critical value of �.

We will now proceed to define homology groups for �, where �W R�R1Cn1�R1Cn0!

R is a difference function for L. For c 2 R, c a noncritical value of �, let

�c
WD f.x; l1; v1; l0; v0/ j�.x; l1; v1; l0; v0/� cg .

Note that for every link L and difference function �, there exists some constant m> 0

such that all the critical values of � are in the interval Œ�mC �;m� �� for some � > 0.
Then we define

�1 WD�m, ��1 WD��m.

Now the homology groups for � are defined as follows.

Definition 4.2 Let � be a difference function for a Legendrian link LD .ƒ1; ƒ0/.
The total, positive, and negative homology groups of L with respect to � are defined
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as

Hk

�
�
�
DHk

�
�1; ��1

�
,

HC
k

�
�
�
DHk

�
�1; �0

�
,

H�k
�
�
�
DHk

�
�0; ��1

�
,

for k 2 Z, where the relative homology groups are calculated with coefficients in
Z=2Z.

If � and �0 are two difference functions for a link L, then their homology groups will
be related as follows. If � and �0 differ only by a fiber-preserving diffeomorphism,
then they will have the same homology groups. However if � and �0 differ by a
stabilization, then there exists i 2 Z such that

HkCi .�/DHk

�
�0
�
; HC

kCi
.�/DHC

k

�
�0
�
; H�kCi .�/DH�k

�
�0
�
:

In fact, the total homology groups do not carry any information about a particular link.

Proposition 4.3 Let LD .ƒ1; ƒ0/ be a Legendrian link of maximal unknots. Given
a difference function � for L, Hk .�/' 0 for all k 2 Z.

To prove this proposition, we will use the following lemma. The lemma is similar to
[19, Lemma 3.10], and can be proved following the argument presented there.

Lemma 4.4 Consider a smooth 1–parameter family of difference functions �t W R�

R1Cn1 �R1Cn0 ! R , t 2 Œ0; 1�, where each �t is the difference of two LQ generating
families. Given paths ˛; ˇW Œ0; 1�! R such that, for all t , ˛ .t/ ; ˇ .t/ are noncritical
values of �t with ˛ .t/<ˇ .t/. Then for any t 2 Œ0; 1� and k 2Z, Hk

�
�
ˇ.0/
0

; �
˛.0/
0

�
'

Hk

�
�
ˇ.t/
t ; �

˛.t/
t

�
.

Using this, we now prove Proposition 4.3:

Proof Recall that if � and �0 are two difference functions for L, then there exists
some i 2 Z such that HkCi .�/'Hk .�

0/. Therefore if the theorem is true for one
particular difference function of L, then it is true for every difference function.

By hypothesis, each strand of L can be individually isotoped so that it is the maximal
unknot shown in Figure 1. Choose isotopies of the strands ƒt

1
; ƒt

0
, t 2 Œ0; 1�, so that

ƒ0
1
Dƒ1 , ƒ0

0
Dƒ0 , and when t D 1, ƒ1

1
and ƒ1

0
are maximal unknots translated so

that .x1;y1; z1/ 2ƒ
1
1

and .x0;y0; z0/ 2ƒ
1
0

implies that x1¤ x0 ; in other words, ƒ1
1

and ƒ1
0

have no base points in R in common. Consider Lt D .ƒ
t
1
; ƒt

0
/, t 2 Œ0; 1�. If
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L is a nontrivial link, this is not a link isotopy, but at each t , there will be a difference
function, �t , for Lt (which may have 0 as a critical value). Since critical points of �t

correspond to points ..x0;y0; z1/ ; .x0;y0; z0//2ƒ
t
1
�ƒt

0
, �1 has no critical points at

all. Therefore Hk .�1/' 0 for all k 2Z. It remains to show that Hk .�0/'Hk .�1/.
For the family of difference functions �t , choose paths ˛; ˇW Œ0; 1�! R such that
˛ .t/ is negative and less than all critical values of �t and ˇ .t/ is positive and greater
than all critical values of �t . By Lemma 4.4, Hk .�0/ ' Hk .�1/ for all k 2 Z.
Therefore Hk .�0/' 0 for all k 2 Z.

As we will see, the positive and negative homology groups do carry information about
a particular link. We will use polynomials �˙

�
to encode information about the set of

homology groups of a difference function �. Define

�C
�
.�/D

1X
kD0

dimHC
k
.�/ ��k ;

��� .�/D

1X
kD0

dimH�k .�/ ��
k .

As noted above, if � and �0 are two difference functions for a link L, then there exists
some i 2 Z such that �˙

�
.�/ D �˙

�0
.�/ � �i . Thus we define positive and negative

homology polynomials for L as normalized versions of the positive and negative
homology polynomials for �, where � is some difference function for L.

Definition 4.5 Let L D .ƒ1; ƒ0/ be a Legendrian link of maximal unknots with
difference function �. Define the positive and negative homology polynomials of L

by

�C .�/ ŒL�D �C
�
.�/ ��i ,

�� .�/ ŒL�D ��� .�/ ��
i ,

where i 2 Z is chosen so that �� .�/ ŒL� has degree zero.

Remark 4.6 An alternative to looking at a normalized version of the polynomials is
to consider a vector encoding the dimensions of the homology groups. For example, if
dimH�

k
.�/D 0 if k <A or k > B and H�

A
.�/ and H�

B
.�/ are nontrivial, then we

construct the negative homology vector�
dimH�A .�/; dimH�AC1.�/; : : : ; dimH�B .�/

�
:

Similarly, one can construct the positive homology vector.
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In fact, the homology polynomials are invariants of L.

Theorem 4.7 �˙ .�/ ŒL� are well-defined invariants of a Legendrian link L D

.ƒ1; ƒ0/ of maximal unknots.

Proof We have already seen that the homology polynomials for L do not depend
on the choice of difference function. It remains to show that the polynomials do not
change as L undergoes a Legendrian isotopy.

Suppose Lt , t 2 Œ0; 1� ; is a 1–parameter family of Legendrian links made of two
maximal unknots. By Theorem 3.1, there exists a difference function �t for each Lt

such that �0 D�t outside a compact set. We will show that for each t 2 Œ0; 1�, we
have

HC
k
.�t /'HC

k
.�0/ ; H�k .�t /'H�k .�0/ ;

for all k 2 Z. Choose paths ˛; ˇ; 
 W Œ0; 1�! R such that ˛ .t/ is negative and is less
than all critical values of �t , ˇ .t/� 0, and 
 .t/ is positive and is greater than all
critical values of �t . Then by construction (and since 0 is never a critical value of
�t ), ˛ .t/, ˇ .t/, and 
 .t/ are noncritical values of �t for all t . Thus by Lemma 4.4,
the above result holds.

In the remainder of this section, we will prove a few facts about the homology groups
and homology polynomials for a Legendrian link made of two maximal unknots.

The following lemma will be used to relate the positive and negative homology polyno-
mials for L and to calculate polynomials for particular links in Section 5. This Lemma
agrees with [19, Lemma 3.13] and the proof can be found there.

Lemma 4.8 For a function �W R�R1Cn1�R1Cn0!R , and a; b; c noncritical values
of � with a< b < c , there is a long exact sequence

� � �
@�
�!Hk

�
�b; �a

� i�
�!Hk

�
�c ; �a

� ��
�!Hk

�
�c ; �b

� @�
�!Hk�1

�
�b; �a

� i�
�! � � � :

Theorem 4.9 Let LD .ƒ1; ƒ0/ be a Legendrian link where ƒ1 and ƒ0 are maximal
unknots. Then �C .�/ ŒL�D � ��� .�/ ŒL�.

Remark 4.10 Notice that in the vector notation described in Remark 4.6, this says
that our links will have the same negative and positive homology vectors. Because of
this dependence of �C.�/ŒL� on ��.�/ŒL�, in the following result statements, usually
only ��.�/ŒL� will be discussed.
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Proof Let � be a difference function for L. Then by Proposition 4.3, Hk .�/' 0

for all k 2Z. Choose m2R large enough so that all the critical values of � are within
the interval Œ�mC �;m� �� for some � > 0, and recall that 0 is a noncritical value of
�. Therefore by Lemma 4.8 we have the following exact sequence, for any k 2 Z.

� � �
i�
�!Hk

�
�m; ��m

� ��
�!Hk

�
�m; �0

� @�
�!Hk�1

�
�0; ��m

� i�
�! � � � :

Note that
Hk.�

m; ��m/'Hk.�/' 0;

Hk.�
m; �0/'HC

k
.�/;

and Hk.�
0; ��m/'H�k .�/:

Thus the above sequence can be rewritten as

� � �
i�
�! 0

��
�!HC

k
.�/

@�
�!H�k�1 .�/

i�
�! 0

��
�! � � � :

Hence the @� maps are all isomorphisms, which tells us that for all k 2Z, HC
kC1

.�/'

H�
k
.�/.

Finally, we will end the section by showing how the negative homology polynomials
can sometimes detect if a link is “ordered”. We say a link LD .ƒ1; ƒ0/ is ordered if
it is not Legendrian equivalent to LD .ƒ0; ƒ1/.

Theorem 4.11 Let LD .ƒ1; ƒ0/ be a Legendrian link of maximal unknots. If there
does not exist an l 2 Z such that �� .�/ ŒL� D �l � ��

�
��1

�
ŒL�, then the link L is

ordered.

Remark 4.12 In terms of the vector notation, the above corollary says that a link L is
ordered if the vector associated to �� is not symmetric. For example, it will be shown
that the rational link LD .2; 1; 4/, which is shown on the left side of Figure 6, has
�� .�/ ŒL�D 2�0C��1 and so a corresponding vector of .1; 2/, and therefore it must
be ordered. However the rational link L0 D .2; 1; 2/, with �� .�/ ŒL0�D �0C��1 or
vector equal to .1; 1/ is potentially unordered.

Proof Let LD .ƒ1; ƒ0/, LD .ƒ0; ƒ1/. We will show that there exists an integer
l 2 Z such that �� .�/ ŒL�D �l ���

�
��1

� �
L
�
. Let F1;F0 be LQ generating families

for ƒ1 and ƒ0 , respectively. Then �D F1�F0 is a difference function for L and
�D F0�F1 D�� is a difference function for L. Then if N denotes the dimension
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of the domain of �, we have

HC
k
.�/DHk.�

C1; �0/'H N�k.�C1; �0/

'HN�k

�
�

0
; �
�1�
DH�N�k.�/:

Therefore the homology polynomials of � and the homology polynomials of � are
related as follows:

���
�
�
�
D �N

��C
�

�
��1

�
Since the homology polynomials of L and L are normalized versions of the polyno-
mials of � and �, there exists an integer l 0 such that

�� .�/ ŒL�D �l 0
��C

�
��1

��
L
�
:

By Theorem 4.9, �C
�
��1

� �
L
�
D ��1 ���

�
��1

� �
L
�
. Therefore

�� .�/
�
L
�
D �l 0

��C
�
��1

��
L
�
D �l 0

���1
���

�
��1

��
L
�
:

5 Polynomial calculations

In order to calculate the homology polynomials for a given Legendrian link L D

.ƒ1; ƒ0/, it will sometimes be sufficient to know the nondegenerate critical points of a
difference function for L, as well as the critical values and indices of the critical points.
Recall that a critical point corresponds to a point ..x0;y0; z1/ ; .x0;y0; z0//2ƒ1�ƒ0 ,
and the critical value is equal to z1� z0 . Thus we can find all critical points and their
values from looking at the front projection of L , without finding the difference function
� explicitly. In this section we explain how we can also recover the index of a critical
point, up to a shift, from the front projection of L. The definitions and propositions in
this section are based on those found in [19, Section 5].

We begin with some definitions for use with the front projection of a knot or link. Given
a Legendrian knot ƒ�J 1.R/, let �xz .ƒ/ be the front projection of ƒ. Let C be the
set of points in ƒ whose image under �xz is a cusp point. We define the branches of
ƒ to be the connected components of ƒnC . Branches B0 , B1 are said to be adjacent
if their closures, B0 and B1 , intersect. Given two adjacent branches B0 and B1 , we
say B1 > B0 if there exists some b 2 B0 \B1 and a path 
 W Œ0; 1�! �xz .ƒ/ such
that 


�
0; 1

2

�
� �xz .B0/, 


�
1
2
; 0
�
� �xz .B1/, and 


�
1
2

�
D �xz .b/ where �xz .b/ is

an up-cusp along the path.

Now we will describe a way of assigning integers, called branch indices, to each branch
of a knot. Let ƒ�J 1.R/ be a maximal unknot, and choose p0 to be a marked point of
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ƒ such that �xz .p0/ is not a cusp point of �xz .ƒ/. Let fBig be the set of branches
of ƒ such that B0 is the branch containing p0 . We say B0 is the initial branch of ƒ.
We then define the branch index iBr W fBig ! Z as follows:

(1) iBr .B0/D 0, and

(2) iBr .Bi/� iBr

�
Bj

�
D 1 if Bi , Bj are adjacent with Bi > Bj .

Note that given a marked point, the branch index is well-defined for all branches of
ƒ. Recall that for each point on a branch, there is a corresponding critical point of
the generating family restricted to a fiber. As explained in [19, Proposition 5.3], there
is some integer so that the branch index of a point corresponds, up to a shift by this
integer, to the index of the corresponding fiber critical point.

The final piece we need to calculate indices of critical points of a difference function
� is called the graph index of a critical point.

Definition 5.1 Let ƒ1; ƒ0 �J 1.R/ be Legendrian knots with branches B1;B0 with
.x0;y0; z1/ 2B1 and .x0;y0; z0/ 2B0 . Then there exists a neighborhood U of x0 in
R and functions g1;g0W U !R such that near .x0;y0; z1/, �xz .B1/D f.x;g1 .x//g

and near .x0;y0; z0/, �xz .B0/ D f.x;g0 .x//g. Note that x0 is a critical point of
� D g1 � g0 . We say ..x0;y0; z1/ ; .x0;y0; z0// 2 ƒ1 �ƒ0 is nondegenerate if x0

is a nondegenerate critical point of g1�g0 . The graph index i� of a nondegenerate
critical point x0 is the Morse index of g1�g0 at x0 .

The following proposition allows us to calculate the indices of critical points of a
difference function �.

Proposition 5.2 Let LD .ƒ1; ƒ0/ be a Legendrian link of maximal unknots, and let
� be a difference function for L. Suppose q 2 R�R1Cn1 �R1Cn0 is a nondegenerate
critical point of � with corresponding point ..x0;y0; z1/ ; .x0;y0; z0// 2 ƒ1 �ƒ0 .
Say that B1;B0 are the branches of ƒ1; ƒ0 containing .x0;y0; z1/ ; .x0;y0; z0/, re-
spectively. Then, for any choice of initial branches for ƒ1 and ƒ0 , there is a c 2 Z

such that the index of q is equal to iBr .B1/� iBr .B0/C i� .x0/C c .

We will often refer to the integer iBr .B1/� iBr .B0/C i� .x0/ as the relative index
of q ; this relative index is only well-defined up to a constant depending on the choice
of initial branches. Proposition 5.2 can be proved with minor adaptions to the proof of
[19, Proposition 5.5].

The following lemma will be our main tool for calculating the homology polynomials
of particular links. This is essentially [19, Proposition 4.2]. The proof found there
consists of studying a number of long exact sequences as given by Lemma 4.8.
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Lemma 5.3 Suppose the Legendrian link LD .ƒ1; ƒ0/ of maximal unknots has a
difference function �W R�R1Cn1 �R1Cn0 ! R with critical values c˙

0
; c˙

1
; : : : ; c˙n

and noncritical values a0; a1; : : : ; an; b0; b1; : : : ; bn satisfying

a0 < c�0 < a1 < c�1 < � � �< an < c�n < 0< cCn < bn < � � �< cC
1
< b1 < cC

0
< b0.

If

(1) For j D 0; 1; : : : ; n, there exist wj nondegenerate critical points with value cCj
and wj nondegenerate critical points with value c�j ;

(2) For a given labeling of branch indices, all critical points of value cCj have relative
index ij C 1 and all critical points of value c�j have relative index ij ;

(3) For j D 1; 2; : : : ; n, H�

�
�bj ; �aj

�
D 0 for all � 2 Z;

Then

�� .�/ ŒL�D �h
�

nX
jD0

wj�
ij ;

where h is chosen so that �� .�/ ŒL� has degree 0.

We can now state and prove formulas for the homology polynomials for several types of
links. The first links we consider are the rational links .2wn; kn; 2wn�1; : : : ; k1; 2w0/

as described in Section 1. Theorem 5.4 is similar to [19, Theorem 6.1], and the proof
follows the same format.

Theorem 5.4 Let LD .2wn; kn; 2wn�1; : : : ; k1; 2w0/ (see Figure 9). Then

�� .�/ ŒL�D w0�
0
Cw1�

�k1 Cw2�
�.k1Ck2/C � � �Cwn�

�.k1C���Ckn/:

Remark 5.5 Using the vector notation, this says that the negative homology polyno-
mial of LD .2wn; kn; 2wn�1; : : : ; k1; 2w0/ is given by the vector

.wn; 0; : : : ; 0; wn�1; 0; : : : ; 0; w0/

where there are precisely .kj � 1/ zeros between wj and wj�1 .

Proof It is possible to isotope L so that it has a difference function �W R�R1Cn1 �

R1Cn0 ! R with 2 .w0Cw1C � � �Cwn/ nondegenerate critical points. In particular,
we can choose the branch indices such that, for i D 0; 1; : : : ; n, we have the following:
� has wi critical points with critical value cCi > 0 and relative index 1 if i D 0, or
relative index 1�

Pi
jD1 kj otherwise, and wi critical points with critical value c�i < 0
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ƒ1

ƒ0

2w0

kn�1

2wn�1

kn

2wn

Figure 9: The link LD .2wn; kn; : : : ; 2w1; k1; 2w0/

and relative index 0 if i D 0, or relative index �
Pi

jD1 kj otherwise. Furthermore the
critical values are related as follows:

c�0 < c�1 < � � �< c�n < 0< cCn < � � �< cC
1
< cC

0

Figure 10 illustrates one such construction for the link .2; 1; 4/.

cC0

c�0

cC0

c�0

cC1

c�1

0

1

Figure 10: A portion of the Legendrian link .2; 1; 4/; the upper branch of
ƒ1 is completed to have sufficiently positive slope on the left side so that its
difference function � has 2 .2C 1/ nondegenerate critical points, represented
by pairs of points ..x0; 0; z1/ ; .x0; 0; z0// 2 ƒ1 �ƒ0 . In this figure, each
pair is joined by a directed line segment, and the label (c˙

0
or c˙

1
) near each

pair denotes the critical value. An initializing choice of branch labels is
indicated.
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Now for all j , 1� j � n, choose noncritical values aj and bj such that

c�j�1 < aj < c�j < 0< cCj < bj < cC
j�1

;

for j D 0, we choose noncritical values a0; b0 satisfying

a0 < c�0 < 0< cC
0
< b0:

For all j , we may apply a deformation argument as in the proof of Proposition 4.3
to construct a 1–parameter family of functions �t such that aj ; bj are noncritical
values of �t for all t 2 Œ0; 1�, �0 D�, and �1 has no critical points with values in
Œaj ; bj �; this isotopy is not an isotopy of links but rather eliminates the 2wnC� � �C2wj

crossings. Thus by Lemma 4.4, H�
�
�

bj
0
; �

aj
0

�
' H�

�
�

bj
1
; �

aj
1

�
D 0 for all � 2 Z.

The theorem now follows from Lemma 5.3.

Theorem 5.4 (Remark 5.5) together with Theorem 4.11 (Remark 4.12) then prove

Corollary 5.6 Let LD .ƒ1; ƒ0/ be the rational Legendrian link

.2wn; kn; : : : ; 2w1; k1; 2w0/ :

If the vector .2wn; kn; : : : ; 2w1; k1; 2w0/ is not palindromic, then the link L is ordered.

Homology polynomials for “flypes” of links will also have a nice formulation. A
vertical or horizontal flype is a move wherein a portion of a link is rotated 180ı about
a vertical or horizontal axis (see Figure 11). For more background on flypes see, for
example, Adams [1], Conway [5] or Traynor [19]. It is known that flypes produce
topologically equivalent links, but we will use the polynomials to show that these flypes
can produce nonequivalent Legendrian links.

Rational links give us many opportunities to apply flypes. As mentioned in the Intro-
duction, we will only consider horizontal flypes since vertical flypes produce equivalent
links. Given the rational link L D .2wn; kn; 2wn�1; : : : ; k1; 2w0/, we may apply
one or more horizontal flypes using the horizontal crossings represented by the terms
2w0; 2w1; : : : ; 2wn�1 . Let

�
2wn; kn; 2w

pn�1

n�1
; : : : ; k1; 2w

p0

0

�
represent L after it has

undergone pi horizontal flypes using the set of 2wi horizontal crossings of L, where
0� i � n� 1. See, for example, Figure 12, where the boxed portion of the link is the
part rotated in the flype.

Theorem 5.7 Let L D
�
2wn; kn; 2w

pn�1

n�1
; : : : ; k1; 2w

p0

0

�
. For j D 0; 1; : : : ; n� 1,

let � .j /D 1C
Pj

iD0
pi mod 2. Then

�� .�/ ŒL�D �m
�

h
w0�

0
C

nX
iD1

wi�
Œ.�1/�.0/k1C���C.�1/�.i�1/ki �

i
,
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(a) (b)

(c) (d)

F

F
F

F

F

F
F F

Figure 11: (a) a topological vertical flype, (b) a topological horizontal flype,
(c) a Legendrian vertical flype, (d) a Legendrian horizontal flype

Figure 12: The rational link .2; 1; 4/ undergoes a horizontal flype and be-
comes

�
2; 1; 41

�
. These links have different negative homology polynomials.

where m is chosen so that �� has degree zero.

Remark 5.8 To construct the vector corresponding to the polynomial for L D�
2wn; kn; 2w

pn�1

n�1
; : : : ; k1; 2w

p0

0

�
, one starts by writing a w0 and then one goes back-

ward (if p0 is even) or forward (if p0 is odd) k1 places to write w1 . Then one repeats
this procedure continuing in the same forward/backward direction as in the previous
step if p1 is even while changing direction if p1 is odd, and adding the entries if one
arrives at a position in the vector already visited. For example, if LD .2; 1; 4/ then the
negative homology vector is .1; 2/ (or, equivalently, �� .�/ ŒL�D 2�0C��1 ); after
applying one horizontal flype, we have the link L0 D

�
2; 1; 41

�
which has negative

homology vector .2; 1/ (equivalently �� .�/ ŒL0�D �0C 2��1 ). So even though L

and L0 are topologically equivalent and have the same classical Legendrian invariants,
they are distinct Legendrian links; see Figure 12.

Proof This proof follows the proof of [19, Theorem 6.2]. We will give a sketch of the
proof here. The key is to show the existence of a difference function � for L such that �
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has 2 .w0Cw1C � � �Cwn/ nondegenerate critical points, and for 0� i �n each of the
2wi critical points correspond to a pair of points ..x0;y0; z1/ ; .x0;y0; z0//2ƒ1�ƒ0

on branches W i
1
�ƒ1 , W i

0
�ƒ0 where

(1) the distance function di W R ! R given by di .x/ D jz1 .x/� z0 .x/j, where�
x;yi

j .x/ ; z
i
j .x/

�
2 ƒj is a point on branch W i

j for j D 0; 1, achieves a
relative maximum at x0 for each i and

(2) iBr

�
W i

1

�
� iBr

�
W i

0

�
D

�
0 if i D 0,
.�1/�.0/ k1C � � �C .�1/�.i�1/ ki if 1� i � n.

The existence of such a function is proven by induction, using the proof of Theorem
5.4 to prove the base case. Once we’ve proved the existence of a suitable difference
function �, the rest of the proof follows using the same reasoning as in the proof of
Theorem 5.4.

Theorem 5.9 Let Lj ;k be a twist link as described in Figure 5. Then

�� .�/
�
Lj ;k

�
D �0

C��jj�kj:

Remark 5.10 When j ¤ k , the homology vector of Lj ;k is .1; 0; : : : ; 0; 1/ where
there are jj � kj � 1 zeros, while if j D k , the homology vector is .2/.

Proof It is possible to isotope Lj ;k so that it has a difference function �W R�R1Cn1�

R1Cn0 ! R with four nondegenerate critical points, as follows. The critical values of
the critical points are cC

1
; c�

1
and cC

0
; c�

0
with the relative indices of the critical points

(with an appropriate labeling of branch indices) 1; 0 and j �kC1; j �k , respectively.
Moreover the critical values satisfy the inequalities

c�0 < c�1 < 0< cC
1
< cC

0
:

Figure 13 illustrates one such construction for the link L2;3 .

Choose noncritical values ai ; bi of �, i D 0; 1, such that

a0 < c�0 < a1 < c�1 < 0< cC
1
< b1 < cC

0
< b0.

As in Theorem 5.4, we may deform �D�0 (by pulling apart the bottom portions of
the knots) so that a1; b1 are never critical values of �t , and �1 has no critical values in
Œa1; b1�. Again using Lemma 4.4, we conclude that H�

�
�

b1

0
; �

a1

0

�
'H�

�
�

b1

1
; �

a1

1

�
D

0 for all � 2 Z. Also notice that H�
�
�b0 ; �a0

�
DH�

�
�
�
D 0 by Proposition 4.3. So

by Lemma 5.3,
��.�/ŒLj ;k �D

�
�0
C�.j�k/

�
��h;

where h is chosen so that ��.�/ŒLj ;k � has degree zero. The result follows.
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cC
0

c�0

cC
1

c�
1

0
0

Figure 13: The Legendrian link L2;3 can be positioned so that its difference
function � has four nondegenerate critical points, represented by pairs of
points ..x0;y0; z1/ ; .x0;y0; z0// 2 ƒ1 � ƒ0 . In this figure, each pair is
joined by a line segment and the label (c˙

0
or c˙

1
) next to each pair indicates

the critical value. An initializing choice of branch indices is indicated.

It is easy to see that j C k determines the topological type of the link Lj ;k . Theorem
5.9 then implies

Corollary 5.11 Let m � 2. If m is even, the following links are topologically but
not Legendrianly equivalent: L1;m�1;L2;m�2; : : : ;L m

2
;m

2
. If m is odd, the following

links are not Legendrianly equivalent: L1;m�1;L2;m�2; : : : ; L m�1
2
;mC1

2

.

6 Comparison to other results

In this section, we first compare the results of the homology polynomial calculations
with various decomposition number invariants and then with a polynomial invariant
that comes from a link’s differential, graded algebra (DGA).

6.1 Decomposition invariants

There is a close relationship between generating families and the decomposition in-
variants of Chekanov [4], and Chekanov and Pushkar [14]. Briefly, an admissible
decomposition of a front projection of a Legendrian link is a choice of the crossings in
the front projection so that the front obtained by resolving all the crossings is a union
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of two cusped “eyes” that satisfy a set of conditions. For a precise definition, see [4].
In fact, as pointed out by Chekanov and Pushkar in [14, Section 12], the definition
of an admissible decomposition is obtained by axiomatizing combinatorial structures
arising on the front of a Legendrian submanifold defined by a generating family.

Chekanov showed that there are a number of decomposition invariants that can be
associated to a Legendrian link L. For example, one can count the total number of
admissible decompositions of any front of L. Also, one can count the total number
of Maslov (also known as graded) admissible decompositions: one can associate a
Maslov index to each branch of the front projection and then restrict to decompositions
arising from resolving crossings of branches having the same Maslov index. One can
also look at associated decomposition and Maslov decomposition polynomials: the
decomposition polynomial is D

�
Lj ;k

�
D
P
� zj.�/ , where the sum is taken over all

allowable decompositions � of a front of Lj ;k , and j .�/ is the number of left cusps
in the decomposition minus the number of crossings resolved in the decomposition.
The Maslov indices for the branches depend on a choice of initial value for a branch of
each component, and different choices for the Maslov branch indices lead to different
Maslov crossings for a 2 or more component link. Hence the Maslov decomposition
number of a multi-component link is a set of decomposition numbers and the Maslov
decomposition polynomial is a set of polynomials.

In our explorations, all these decomposition invariants are quite different than the
invariants we have found through our use of generating families. As an illustration, we
will just mention the decomposition invariants for the twist links.

Proposition 6.1 Let Lj ;k be the twist link; see Figure 5. Then

(1) for any j ; k , the decomposition number of Lj ;k is 4, and the decomposition
polynomial of Lj ;k is z�2C 2z0C z2 ;

(2) if j D k , the set of Maslov decomposition numbers of Lj ;k is f1; 4g, and the set
of Maslov decomposition polynomials equals fz2; z�2C2z0Cz2g; if j ¤k , the
set of Maslov decomposition numbers of Lj ;k is f1; 2g, and the set of Maslov
decomposition polynomials equals fz2; z0C z2g.

Proof First let us examine the non-Maslov decomposition numbers. Consider the
front projection of Lj ;k as given by Figure 5. For any j ; k , there are 4 allowable
decompositions: one must resolve all the j C k self-strand crossings, and then one
has the choice to resolve none of the other crossings, the 2 uppermost crossings, the
2 lowermost crossings, or both the 2 uppermost and 2 lowermost crossings. For the

Algebraic & Geometric Topology, Volume 6 (2006)



Generating family invariants for Legendrian links of unknots 927

particular front projection of Lj ;k as given by Figure 5, the number of left cusps is
given by j C kC 2, and thus we see that

D.Lj ;k/D z.jCkC2/�.jCkC0/
C 2z.jCkC2/�.jCkC2/

C z.jCkC2/�.jCkC4/

D z2
C 2z0

C z�2:

Now consider the Maslov versions. All the self-strand crossings are Maslov. When
j D k , either none of the inter-strand crossings are Maslov, or all the crossings are
Maslov. With the first type of labels, there is only one admissible decomposition. With
the second type of labels, there are the same 4 as were seen above. Thus when j D k ,
the set of Maslov decompositions is f1; 4g and the Maslov decomposition polynomials
are

D�.Lj ;k/D fz
2; z2
C 2z0

C z�2
g:

When j ¤ k , there are essentially three ways to label the branches: either none of the
inter-strand crossings are Maslov, or only the top two inter-strand crossings are Maslov,
or only the bottom two inter-strand crossings are Maslov. With the first type of labels,
we have one admissible decomposition. With either the second or third type of labels,
we have two admissible decompositions. Hence the set of Maslov decomposition
numbers is f1; 2g. The set of associated Maslov decomposition polynomials is

D�.Lj ;k/D fz
2; z2
C z0
g:

See Figure 14.

In particular, we see that these decomposition invariants cannot distinguish, for example,
the topologically equivalent Legendrian links L1;4 and L2;3 which can be distinguished
by the generating family polynomials. It would be interesting to see if the decomposition
invariants can be further refined so that they do capture the same information as the
generating family polynomials.

6.2 DGA invariants

First we will briefly outline the process by which a differential, graded algebra (DGA)
is associated to a link, and a polynomial is in turn associated to the algebra. This set-up
is analogous to the work of Ng [12].

The first step is to associate an algebra to the front projection of a link. The algebra A
is given to be the free, unital, associative algebra with coefficients in Z=2Z generated
by the crossings and right cusps of the front projection of the link. Each generator is
assigned a degree, which extends to all of A by multiplicativity. The degree of each
cusp is 1, while the degree of each crossing is calculated using a simple procedure
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labelings

(a)
4

3 3

2
2

1

2

1

1

0

(b)
4

3 3

2
2

1

3

2

2

1

admissible decompositions

(1)

(1)

(2)

Figure 14: In (a), the branches of L2;1 are labeled so that no inter-strand
crossings are Maslov. The unique Maslov admissible decomposition is shown.
In (b), the branches are labeled so that only the bottom set of inter-strand
crossings are Maslov. The two Maslov admissible decompositions are shown.
Note that a third labeling is possible, in particular one in which only the top
set of inter-strand crossings are Maslov. The two admissible decompositions
in that case are symmetric to those in the second labeling.

described in [12, Section 2.2]. The degree depends upon a choice of marked points on
each component of the link: a change in the choice of marked points may shift some
of the degrees by an integer. In Ng and Traynor [13], there was a canonical choice for
the marked points, but not for the links in R3 that we are considering.

The second step is to calculate a map @W A! A, called a differential, having the
properties that @2 D 0 and @ lowers degree by one. @ is defined over Z=2Z on the
generators of A by counting certain immersed disks in the front projection. For details,
see [12, Section 2.2].

In order to use the DGA to distinguish links, we use additional structure properties
described in [13, 2.4], which is essentially Mishachev’s relative homotopy splitting
from [11]. We break up A into components A1;1;A0;0;A1;0; and A0;1 , where the
idea is to separate the generators based on how strands from the link components ƒ1
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and ƒ0 contribute to each generator. For example, A1;0 is the module over Z=2Z

generated by words of the form ai1
� � � aim

where the overstrand of ai1
is in ƒ1 and the

understrand of aim
is in ƒ0 , and the understrand of aip is in the same link component

as the overstrand of aipC1
. A1;1 (A0;0 ) is generated by analogous words together with

an indeterminate e1 (e0 ). The map @ is altered to be defined on Ai;j , and we call the
new differential @0 . On A1;0 and A0;1 , @0 agrees with @, while on A1;1 (A0;0 ) there
is the slight modification that any 1 term is replaced by e1 (e0 ). Thus we have a link
DGA given by .A�;�; @0/, and explicitly defined in [13, Definition 2.13].

Once we have a link DGA for a link L, we may use it to calculate a polynomial
invariant of L, up to equivalence. A full description of this process is given in [12,
Section 2.2] or [13, 2.5]. It involves defining an augmentation � , which is a map from
A to Z=2Z. Using this augmentation, we calculate @0�W V

i;j

k
! V

i;j

k�1
, where V

i;j

k
is

the graded vector space over Z=2Z generated by the generators of Ai;j of degree k .
In particular, V

1;0
k

is generated by degree k crossings with an overstrand in ƒ1 and
an understrand in ƒ0 . Define

ˇ
1;0
k
.�/D dim

ker @0�W V
1;0

k
! V

1;0
k�1

im@0�W V
1;0

kC1
! V

1;0
k

;

and define
�1;0
� .�/ ŒL�D

X
k

ˇ
1;0
k
.�/ ��k .

Then �1;0
� is one of the split Poincaré–Chekanov polynomials of L with respect to � .

Polynomials �1;1
� , �0;0

� , and �0;1
� can be defined similarly. The polynomials �1;0

� and
�

0;1
� depend on the grading of the link; in particular, changing the choice of marked

points on the components has the potential to shift the degree of the polynomials up or
down by some integer. We will focus on normalized versions of the �1;0

� polynomials.
Therefore we will define the normalized negative Poincaré–Chekanov polynomial as

��� D �
1;0
� ��

m;

where m is chosen so that ��� has degree 0. The set
˚
���
	

arising from different
choices of � is an invariant of a Legendrian link .ƒ1; ƒ0/. In the cases studied in this
paper, there will always be a unique polynomial and so the set notation will be dropped.

We first compute the normalized negative Poincaré-Chekanov polynomial of a Legen-
drian rational link; compare Theorem 5.4.

Theorem 6.2 Let LD .2wn; kn; : : : ; 2w1; k1; 2w0/ (see Figure 9). Then

��� .�/ ŒL�D w0�
0
Cw1�

�k1 Cw2�
�.k1Ck2/C � � �Cwn�

�.k1Ck2C���Ckn/.
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Proof We use ci ’s and vi ’s to denote generators arising from right cusps and vertical
crossings, respectively. Let h1; h2; : : : ; h2

P
wi

be the 2
Pn

iD0wi generators arising
from the horizontal crossings, numbered right to left. For example, Figure 15 shows
the generators for LD .2; 1; 4; 2; 2/.

ƒ1

ƒ0

h1h2

h3h4h5h6

h7
h8

c1

c2

c3

c4

c5

v1

v2

v3

Figure 15: The generators of A for LD .2; 1; 4; 2; 2/ are labeled using ci ’s,
vi ’s, and hi ’s, and the �’s on each component of L indicate the choice of
marked points.

Since we are calculating ��� , we focus on generators in V 1;0 , namely fhm jm is eveng.
We can choose marked points so that the degrees of the hm are as follows:

deghm D

8̂̂̂̂
ˆ̂<̂
ˆ̂̂̂̂:

�Pn
iD1 ki

�
.�1/mC1 if 1�m� 2wn�Pn�1

iD1 ki

�
.�1/mC1 if 2wnC 1�m� 2 .wnCwn�1/

:::
:::

.k1/ .�1/mC1 if 2
�Pn

iD2wi

�
C 1�m� 2

�Pn
iD1wi

�
0 if 2

�Pn
iD1wi

�
C 1�m� 2

�Pn
iD0wi

�
For example, in the link LD .2; 1; 4; 2; 2/ with marked points as indicated in Figure
15, we have the following:

deghm D

8̂̂̂̂
<̂
ˆ̂̂:

3 if mD 1

�3 if mD 2

2 if mD 3; 5

�2 if mD 4; 6

0 if mD 7; 8:
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This link has a unique augmentation � , for which � .hm/D 0 for all m. Each hm is in
the kernel of the @0� map of the appropriate degree, but no hm s are in the image of any
@0� map. Thus we have

�1;0
� .�/ ŒL�D

1X
jD�1

N .hm; j / ��
j ,

where N .hm; j / is the number of generators hm 2A1;0 of degree j . Hence, checking
the degrees of the hm given above, we have

�1;0
� .�/ ŒL�D w0�

0
Cw1�

�.k1/Cw2�
�.k1Ck2/C � � �Cwn�

�.k1Ck2C���Ckn/.

Since this polynomial is of degree 0, it is in fact equal to ��� .

Lastly, we compute the normalized negative Poincaré–Chekanov polynomial of a
Legendrian twist link; compare Theorem 5.9.

Theorem 6.3 Let Lj ;k be the twist link described in Figure 5. Then

��� .�/ ŒLj ;k �D �
0
C��jj�kj:

Proof Use ci ’s and si ’s to denote generators arising from the right cusps and self-
strand crossings of Lj ;k , respectively. Use x1;x2;x3 , and x4 to denote generators
arising from the four interstrand crossings, numbered from top to bottom. See Figure
16 for an example of how to label generators.

ƒ1
ƒ0

c1

c2

c3

c4

c5

c6

c7

s1

s2

s3

s4

s5

x1

x2

x3

x4

Figure 16: Labeling of generators of A for the link L3;2 , where the �’s on
each component of L3;2 indicate the choice of marked points

Note that A1;0 is generated by fx1;x3g. We can choose marked points so that
deg.x1/D 0 and deg.x3/D k�j . We have a unique augmentation � . Calculating @0� ,
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we find that both x1 and x3 are in the kernel of the @0� map of the appropriate degree,
and neither is in the image of a @0� map. Thus we have

�1;0
� .�/ ŒLj ;k �D �

0
C�k�j .

The formula for the normalized Poincaré–Chekanov polynomial follows.

Summarizing the results from Theorems 5.4, 6.2, 5.9, and 6.3, we find:

Theorem 6.4 Let L be a Legendrian link that is either a rational link or a twist link.
Then the negative homology polynomial of L is the same as its normalized negative
Poincaré–Chekanov polynomial.
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