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Ozsváth–Szabó and Rasmussen invariants
of doubled knots

CHARLES LIVINGSTON

SWATEE NAIK

Let � be any integer-valued additive knot invariant that bounds the smooth 4–genus
of a knot K , j�.K/j � g4.K/ , and determines the 4–ball genus of positive torus
knots, �.Tp;q/ D .p � 1/.q � 1/=2 . Either of the knot concordance invariants
of Ozsváth-Szabó or Rasmussen, suitably normalized, have these properties. Let
D˙.K; t/ denote the positive or negative t –twisted double of K . We prove that if
�.DC.K; t//D˙1 , then �.D�.K; t//D 0 . It is also shown that �.DC.K; t//D 1

for all t � TB.K/ and �.DC.K; t// D 0 for all t � �TB.�K/ , where TB.K/
denotes the Thurston-Bennequin number.

A realization result is also presented: for any 2g� 2g Seifert matrix A and integer
a , jaj � g , there is a knot with Seifert form A and �.K/D a .

57M27; 57M25

1 Introduction

Two recently discovered smooth knot concordance invariants, the Ozsváth-Szabó
invariant � , [8], and the Rasmussen invariant s , [10], have opened up powerful new
perspectives on the study of concordance. For instance, each is sufficient to prove
the Milnor conjecture determining the smooth 4–ball genus of torus knots, and each
demonstrates the existence of non-slice Alexander polynomial one knots. Unfortunately,
the computation of � is not algorithmic and s , though algorithmic, is difficult to compute
for classes of knots. The only classes for which general results are known are alternating
knots and torus knots (Ozsváth-Szabó [8], Rasmussen [10]), and quasipositive knots
(Livingston [5], Shumakovich [12]). Related results are included in Eftekhary, Hedden–
Ording, Owens–Strle and Plamenevskaya [3; 4; 7; 9]. Of special relevance here are the
recent results for doubles of .2; n/–torus knots by Matt Hedden and Philip Ording [4],
discussed further in an addendum to this paper.

The three observations of this note grew out of efforts to compute � and s . In [5],
methods for computing � were developed and used to prove that some untwisted doubles
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of knots have non-vanishing � . The results of [5] depended on only three properties of � :
(1) �.K#J /D �.K/C�.J /, (2) j�.K/j � g4.K/, and (3) �.Tp;q/D .p�1/.q�1/=2

for all torus knots Tp;q with p; q > 0. The invariant s shares these properties of �
when suitably normalized; more precisely, �s=2 has these three properties. Thus, for
this paper we refer to an arbitrary knot invariant having these three properties as � .

Let D˙.K; t/ denote the positive or negative t –twisted double of K . Since D˙.K; t/

bounds a surface of genus 1, j�.D˙.K; t/j � 1. Our results are the following.

Theorem 1 If �.DC.K; t//D˙1, then �.D�.K; t//D 0.

Associated to a knot K there is an integer-valued invariant called the Thurston-
Bennequin number, TB(K ), first defined in Bennequin [2]. This invariant was initially
defined in terms of Legendrian structures, but there is the following combinatorial
definition. Every knot has some diagram so that in a neighborhood of each crossing
the projection consists of two segments, one with slope 1 and the other of slope �1.
Furthermore it can be arranged that the segment with slope 1 passes under the other
segment. For such a diagram, the Thurston-Bennequin number is the writhe of the
diagram minus the number of right cusps (maximum points with respect to projection
onto the x–axis). The Thurston-Bennequin number of the knot is the maximum value
of this difference, taken over all diagrams satisfying the crossing criteria.

For further details about the Thurston-Bennequin number, see Ng [6]. Note that
TB.�K/¤�TB.K/; in fact, for all K , TB.�K/CTB.K/� �1.

Theorem 2 For each knot K there is an integer tK such that �.DC.K; t//D 1 for
t � tK and �.DC.K; t//D 0 for all t > tK . The value of tK satisfies TB.K/� tK <

�TB.�K/

Similar results hold with the roles of DC and D� reversed.

Techniques related to those we use here to study doubled knots also quickly yield the
following.

Theorem 3 For any 2g� 2g Seifert matrix A and integer a, jaj � g , there is a knot
K bounding a genus g Seifert surface with Seifert form A and �.K/D a.
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2 Band modifications and 4–genus

A Seifert surface for a knot, viewed as a disk with bands attached, can be modified
by removing one of the bands and reattaching it in the same place, perhaps twisted
and knotted in a different way. We call this operation band modification. For example,
the first diagram in Figure 1 illustrates the knot DC.K; t/: the band on the right has
framing t . A band modification is performed on the left band to yield D�.K; t/. A
band modification is then performed on the right band to yield D�.�K;�t/, and we
note that D�.�K;�t/D�DC.K; t/.

t
K t K

-t
–K

Figure 1: DC.K; t/; D�.K; t/; and D�.�K;�t/D�DC.K; t/

Theorem 4 If a knot K0 is constructed from a knot K by performing a single band
modification, then K#�K0 has smooth 4–genus 0 or 1.

Proof For any knot J , removing a single band in the Seifert surface yields a 2–
component link L, and there is a genus 0 cobordism from J to L. In our setting
removing the corresponding bands from K and K0 yields the same link L. Gluing
the two cobordisms together along L yields a genus 1 cobordism from K to K0 . The
standard construction of removing the neighborhood of an arc from K to K0 on that
cobordism yields a punctured surface of genus 1, bounded by K#�K0 , embedded in
B4 .

We assume now and for the rest of the paper that � is an integer-valued additive knot
invariant satisfying j�.K/j � g4.K/ for all K and �.Tp;q/D .p�1/.q�1/=2 for all
torus knots Tp;q with p; q > 0.

Corollary 5 If K0 is constructed from K by a band modification, then j�.K/ �
�.K0/j � 1.

Proof Since K0# � K0 is slice, j�.K0/ C �.�K0/j D j�.K0# � K0/j D 0 and so
�.�K0/D��.K0/. By Theorem 4 we then have j�.K/��.K0/j D j�.K#�K0/j � 1.
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3 Knot invariants and doubles

Theorem 1 If �.DC.K; t//D˙1 then �.D�.K; t//D 0.

Proof We have that �.�DC.K; t//D�1. From the example illustrated in Figure 1,
we see that D�.K; t/ can be constructed from DC.K; t/ and also from �DC.K; t/

by a single band modification. Thus, by Corollary 5, �.D�.K; t// differs from both 1

and �1 by at most 1, so it must be 0.

Theorem 2 For each knot K there is an integer tK such that �.DC.K; t// D 1 for
t � tK and �.DC.K; t// D 0 for t > tK . The value of tK satisfies TB.K/ � tK <

�TB.�K/.

Proof The construction here is much the same as one originated by Rudolph [11] as
formulated in [5]; we only summarize it here.

For any t � TB.K/, K can be isotoped to be on a minimal genus Seifert surface for
some positive torus knot, Tp;q , with self-framing t . It follows that a genus one Seifert
surface for DC.K; t/ embeds on a torus knot Seifert surface. By results of [5] one
then has �.DC.K; t//D 1.

Similarly, for t � TB.�K/, �.DC.�K; t// D 1. By Theorem 1, it follows that
�.D�.�K; t// D 0. Taking the mirror image, �.DC.K;�t// D 0. Equivalently,
�.DC.K; t//D 0 if t � �TB.�K/.

As proved in [5], the three conditions satisfied by � imply that changing a positive
crossing to a negative crossing in a knot diagram cannot increase the value of � (and
can decrease it by at most 1). The knot DC.K; t/ results from DC.K; t C 1/ when a
negative crossing in the knotted band is changed into a positive crossing; notice that
the crossings in a positively twisted band are negative crossings, since the strands are
oriented in opposite directions. Thus, �.DC.K; t// is a non-increasing function of
t . The integer tK is defined to be the largest integer for which �.DC.K; t//D 1. Its
bounds follow from the results of the previous two paragraphs.

Example For the right-handed trefoil we have TB(T2;3/D 1 and TB(�T2;3/D�6

(see [6]). Thus, �.DC.T2;3; t// D 1 for t � 1 and �.DC.T2;3; t// D 0 for t � 6.
(See the addendum for remarks on recent work of Matt Hedden and Philip Ording [4]
concerning the values of � and s for twisted doubles of .2; n/–torus knots.)

Remark The asymptotic limiting behavior of � for doubled knots holds for more
general families of companions. Suppose that J is a winding number 0 knot in the
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solid torus that meets a meridinal disk transversely in exactly two points. Given any
knot K , one can form the t –twisted satellite, J.K; t/, using J as the companion.
As t is increased, J.K; t/ is changed by adding negative crossings. Thus, the value
of �.J.K; t// is non-increasing by a result of [5]. On the other hand, the genus of
J.K; t/ is bounded above by the genus of a surface bounded by J in the solid torus,
so �.J.K; t// is bounded below by the negative of that genus. It follows that the value
of �.J.K; t// has some finite limit as t increases.

In the case that J intersects the meridinal disk in more than 2 points, this argument
does not work. Further properties of � as it relates to surfaces in CP2 , proved in [8],
can be applied to recover the asymptotic behavior in this case, but no similar argument
is known for s .

4 Realization result

We now restate and prove the realization result:

Theorem 3 Given a 2g � 2g Seifert matrix A, there are knots Ki ; �g � i � g ,
bounding Seifert surfaces of genus g each with A as its associated Seifert matrix, such
that �.Ki/ D i .

Proof It is essentially an observation of Rudolph, the Trefoil Insertion Lemma in [11],
that by repeatedly adding trefoils to the bands of the Seifert surface in such a way
that the framings of the bands, and thus the Seifert form, is unchanged, one eventually
arrives at a surface S that is isotopic to an embedded surface on a minimal genus
Seifert surface for some positive torus knot. According to [5], for K D @S ,

�.K/ D g4.K/ D g3.K/ D g.S/:

Apply this construction for the Seifert matrix A to build a knot KC that bounds a
genus g Seifert surface SC having Seifert form A and �.KC/D g . Similarly, build a
knot K� with genus g Seifert surface S� , Seifert form �A and �.K�/D g . Then
KC and �K� both bound genus g Seifert surfaces (SC and �S� , respectively) with
Seifert form A, where �.KC/D g and �.�K�/D�g .

A series of 2g band modification converts SC into �S� : just replace the bands for
SC with those of �S� one at a time, maintaining the Seifert form at each step, as
described in the following paragraph. Since each of the modifications changes the
value of � by at most 1, and the 2g modifications decrease � by 2g , it follows that
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each step reduces � by exactly one. Thus the sequence of knots arising from the series
of modifications yields the desired examples.

To conclude the proof, we indicate the process of trading bands from those of the first
surface to those of the second while maintaining the Seifert form. Given knots K and
K0 with the same Seifert form, we can assume both are built from the same disk D by
adding bands, fb1; : : : b2gg and fb0

1
; : : : b0

2g
g. We can further assume that the attaching

maps for bi and b0i are the same, and that all the bands are disjoint. The band b1 can
be removed and replaced with b0

1
. However, the linking numbers associated to b0

1
with

the other bands can differ from that of b1 . This is corrected by stretching b0
1

to add
clasps between it and the bi ; i � 2. Using an isotopy, b0

1
can be returned to its original

position, at the expense of moving the bi ; i � 2. This procedure can now be repeated,
with b2 and b0

2
, and so on, until the desired result is achieved.

Addendum (March, 2006) Since this paper was circulated, Hedden and Ording [4]
have proved that the Ozsváth-Szabó invariants and the Rasmussen invariant are distinct.
Let t� .K/ and ts.K/ denote the greatest value of t for which �.DC.K; t// D 1 or
s.DC.K; t// D �2, a value which exists by the results of this paper. Hedden and
Ording compute t� .T2;3/ D 1 but ts.T2;3/ � 2. More generally, they show that
t� .T2;2nC1/D 2n�1 and computations of Rasmussen (usng Bar-Natan’s program [1])
show that ts.T2;5/� 5, and ts.T2;7/� 8.
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