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Calabi quasi-morphisms for some non-monotone
symplectic manifolds

YARON OSTROVER

In this work we construct Calabi quasi-morphisms on the universal cover Ham (M)
of the group of Hamiltonian diffeomorphisms for some non-monotone symplectic
manifolds. This complements a result by Entov and Polterovich which applies in
the monotone case. Moreover, in contrast to their work, we show that these quasi-
morphisms descend to non-trivial homomorphisms on the fundamental group of
Ham(M).

53D05, 53D12, 53D45; 20F69

1 Introduction and results

Let (M,w) be a closed connected symplectic manifold of dimension 2n. Let
Ham (M, w) denote the group of Hamiltonian diffeomorphisms of (M, ®) and let
I-/Igr/n(M ,w) be its universal cover. A celebrated result by Banyaga [3] states that for
a closed symplectic manifold, Ham (M, w) and ﬁafn(M ,w) are simple groups and
therefore they do not admit any non-trivial homomorphism to R. However, in some
cases, these groups admit non-trivial homogeneous quasi-morphisms to R. Recall
that a (real-valued) quasi-morphism of a group G is a map r: G — R satisfying the
homomorphism equation up to a bounded error, i.e. there exists a constant C > 0 such
that
Ir(g182) —r(g1) —r(g2)| = C, forevery g1,82€G.

A quasi-morphism r is called homogeneous if »(g") = nr(g) for all g € G and
n € Z. The existence of homogeneous quasi-morphisms on the group of Hamilton-
ian diffeomorphisms and/or its universal cover is known for some classes of closed
symplectic manifolds (see e.g. Barge—Ghys [4], Entov [9], Gambaudo—Ghys [13]
and Givental [14]). In a recent work [11], Entov and Polterovich showed — by using
Floer and Quantum homology — that for the class of symplectic manifolds which
are monotone and whose quantum homology algebra is semi-simple, %(M , W)
admits a homogeneous quasi-morphism to R. In addition to constructing such a
quasi-morphism, Entov and Polterovich showed that its value on any diffeomorphism
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supported in a Hamiltonianly displaceable open subset equals to the Calabi invariant of
the diffeomorphism (see Section 2 below for precise definitions). A quasi-morphism
with this property is called a Calabi quasi-morphism.

The notion “quasi-morphism” first appeared works of Brooks [7] and Gromov [15]
on bounded cohomology of groups. Since then, quasi-morphisms have become an
important tool in the study of groups. For example, the mere existence of a homo-
geneous quasi-morphism on a group G which does not vanish on the commutator
subgroup G’ implies that the commutator subgroup has infinite diameter with respect
to the commutator norm (see e.g. Bavard [5]). Two well known examples of quasi-
morphisms are the Maslov quasi-morphism on the universal cover of the group of
linear symplectomorphisms of R?”, and the rotation quasi-morphism defined on the
universal cover of the group of orientation-preserving homeomorphisms of S!. We
refer the readers to Bavard [5] and Kotschick [18] and the references cited therein
for further details on this subject. Recently, Biran, Entov and Polterovich [6], and
Entov and Polterovich [10] established several other applications of the existence of a
Calabi quasi-morphism regarding rigidity of intersections in symplectic manifolds. An
example of this type is given in Theorem 1.5 and Corollary 1.6 below.

In view of the work by Entov and Polterovich [11], it is natural to ask which classes of
symplectic manifolds admit a Calabi quasi-morphism. In a very recent work, Py [31]
constructed a homogeneous Calabi quasi-morphism for closed oriented surfaces with
genus greater than 1. In this note we concentrate on the case of non-monotone
symplectic manifolds. We will provide some examples of non-monotone rational ruled
surfaces admitting a Calabi quasi-morphism. More precisely, let

X, =(S*’xS% vy =wdrw), 1<reR,
where w is the standard area form on the two-sphere .S 2 with area 1, and let
Y, = (CP*#CP2, wy), 0<pu<l,

be the symplectic blow-up of CP? atone point (see e.g. McDuff [22], Polterovich [30]),
where w,, takes the value p on the exceptional divisor, and 1 on the class of the line
[CP!]. The manifold Y, is the region

{(21722) €C | p=|zlP 41zl < 1}
with the bounding spheres collapsed along the Hopf flow. It is known that any symplectic

form on these manifolds is, up to a scaling by a constant, diffeomorphic to one of the
above symplectic forms (see Lalonde—McDuff [19]).
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In the monotone case where A = 1 and u = % Entov and Polterovich [11] proved
the existence of a homogeneous Calabi quasi-morphism on the universal covers of
Ham (X)) and Ham (Yu). Moreover, they shows that these quasi-morphisms are
Lipschitz with respect to Hofer’s metric. For the precise definition of the Lipschitz
property of a quasi-morphism, see Section 2 below. Here we prove the following:

Theorem 1.1 Let (M, w) be one of the following symplectic manifolds:
(i) X) =(S*xS% w,), where 1 <ieQ.
(i) Y, = (CP*CP? w,), where +#pueQn(0,1).

Then there exists a homogeneous Calabi quasi-morphism 7 I:I;fn(M ,w) — R, which
is Lipschitz with respect to Hofer’s metric.

It can be shown in the monotone case that any homogeneous quasi-morphism on the
universal cover of Ham(X;) descends to a quasi-morphism on Ham (X7) itself [11].
This is due to the finiteness of the fundamental group (Ham(X 1 )) , which was proved
by Gromov in [16]. He also pointed out that the homotopy type of the group of symplec-
tomorphisms of S2 x S2 changes when the spheres have different areas. McDuff [21],
and Abreu and McDuff [1], showed that the fundamental groups, 7y (Ham(X})) and
T (Ham(Y,L)) , contain elements of infinite order for every 0 < ¢ < 1 and for every
A > 1. Thus, the above argument will no longer hold in these cases. Furthermore we
claim:

Theorem 1.2 Let M be one of the manifolds listed in Theorem 1.1. Then the
restriction of the above mentioned Calabi quasi-morphism 7" I-TaTn(M ,w) —> R to
the fundamental group (Ham(M , a))) C ﬁa;n(M ,w) gives rise to a non-trivial
homomorphism.

This differs from the situation described in [11] where it was proven that for M = CP"
endowed with the Fubini—Study form, or for M = S? x S? equipped with the split
symplectic form w @ w, the restriction of the Calabi quasi-morphism to the fundamental
group (Ham(M )) vanishes identically.

For technical reasons, we shall assume in what follows that M is a rational strongly
semi-positive symplectic manifold. Recall that a symplectic manifold M is rational if
the set {w(A) | A € m,(M)} is a discrete subset of R and strongly semi-positive if for
every A € (M) one has

2—n=<c¢1(A) <0= w(A4) <0,
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where ¢; € H?>(M, Z) denotes the first Chern class of M . The assumption that M is
strongly semi-positive is a standard technical assumption (see e.g. Piunikhin—Salamon-
Schwarz [29], Seidel [35]) which guarantees, roughly speaking, the good-behavior
of some moduli spaces of pseudo-holomorphic curves. Note that every symplectic
manifold of dimension 4 or less, in particular the manifolds listed in Theorem 1.1,
is strongly semi-positive. The rationality assumption is also a technical assumption.
It plays a role, for example, in Lemma 5.1 below, where for non-rational symplectic
manifolds the action spectrum is a non-discrete subset of R and our method of proof
fails.

In fact, the examples in Theorem 1.1 are special cases of a more general criterion for
the existence of a Calabi quasi-morphism. In [11], such a criterion was given for closed
monotone symplectic manifolds. This criterion is based on some algebraic properties
of the quantum homology algebra of (M, w). More precisely, recall that as a module
the quantum homology of M is defined as QHy«(M) = Hy(M) ® A, where A is the
standard Novikov ring

A={ZkAqA|kAe@, HAET | hg#£0, o(d)> ¢} < oo, VceR}.
Ael

Here I' = (M) / (kercy Nkerw), where ¢ is the first Chern class. A grading on
A is given by deg(q) = 2¢1(A). We shall denote by Ay all the elements in A with
degree k. We refer the readers to McDuff-Salamon [23] and to Subsection 3.1 below
for a more detailed exposition and for the precise definition of the quantum product on
QH.(M). In the monotone case, i.e. where there exists x > 0 such that v =« - ¢y,
the Novikov ring A can be identified with the field of Laurent series Y a;x/, with
coefficients in Q, and all «; vanish for ;j greater than some large enough jo. In
this case we say that the quantum homology QH« (M) is semi-simple if it splits with
respect to multiplication into a direct sum of fields, all of which are finite dimension
linear spaces over A . It was shown in [11] that for monotone symplectic manifolds with
semi-simple quantum homology algebra there exists a Lipschitz homogenous Calabi
quasi-morphism on the universal cover of the group of Hamiltonian diffeomorphisms.

In the non-monotone case the above definition of semi-simplicity will no longer hold
since A is no longer a field. However, it turns out that a similar criterion to the above
still exists in this case. More precisely, we focus upon the sub-algebra QH,, (M) C
QHy (M) over the sub-ring Ao C A. This sub-algebra is the degree component of the
identity in QH«(M ). Using the fact that in the non-monotone case the sub-ring A
can be identified with the field of Laurent series, we say as before that QH,, (M) is
semi-simple over Ay if it splits into a direct sum of fields with respect to multiplication.
Denote by Nps the minimal Chern number of M defined as the positive generator of
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the image ¢; (72(M)) € Z of the first Chern class ¢;. The following criterion is a
generalization of Theorem 1.5 from [11] to the rational strongly semi-positive case.

Theorem 1.3 Let (M,w) be a closed connected rational strongly semi-positive
symplectic manifold of dimension 2xn. Suppose that the quantum homology sub-
algebra QH,,(M) C QH.(M) is a semi-simple algebra over the field A and that
Njs divides n. Then there exists a Lipschitz homogeneous Calabi quasi-morphism
7 Ham(M, 0) — R.

For the manifolds X} and Y, listed in Theorem 1.1 the minimal Chern number Ny is
2 and 1 respectively. Thus, one of our main tasks is to prove that for these manifolds
the top-dimension quantum homology subalgebra QH4 (M) is semi-simple over the
field Ay.

As aby-product of Theorem 1.1, we generalize a result regarding rigidity of intersections
obtained by Entov and Polterovich in [10]. To describe the result, we recall first the
following definitions. For a symplectic manifold M denote by {-,-} the standard
Poisson brackets on C°°(M). A linear subspace A C C°°(M) is said to be Poisson-
commutative if {F,G} =0 for all F,G € A. We associate to a finite-dimensional
Poisson-commutative subspace A C C° (M) its moment map ® 4: M — A*, defined
by (®4(x), F) = F(x). A non-empty subset of the form CI>;11 (p), p e A*,is called
a fiber of A. A fiber X C M is said to be displaceable if there exists a Hamiltonian
diffeomorphism ¢ € Ham(M') such that ¢(X) N X = &. The following definition was
introduced in [10]:

Definition 1.4 A closed subset X C M is called a stem, if there exists a finite-
dimensional Poisson-commutative subspace A C C°°(M), such that X is a fiber of
A and each fiber of A, other than X, is displaceable.

In Theorem 2.4 of [10], Entov and Polterovich showed that for a certain class of
symplectic manifolds, any two stems have a non-empty intersection. What they used,
in fact, was only the existence of a Lipschitz homogeneous Calabi quasi-morphism
for manifolds in this class. Using the exact same line of proof, the following theorem
follows from Theorem 1.1 above.

Theorem 1.5 Let M be one of the manifolds listed in Theorem 1.1. Then any two
stems in M intersect.

An example of a stem in the case where M = X is the product of two equators. More
precisely, we identify X; with CP! x CP! in the obvious way. Denote by L C X;,
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the Lagrangian torus defined by
L={(z0: 71} [wo:wi)) €CP' x CP' | |z0] = |21, |wol = w: |

The proof that L is a stem goes along the same line as Corollary 2.5 of [10]. Since
the image of a stem under any symplectomorphism of M is again a stem we get:

Corollary 1.6 Let X, be one of the manifolds in the first class of manifolds listed in
Theorem 1.1 above. Then for any symplectomorphism ¢ of X; we have L Ng(L) #0.

Organization of the paper In Section 2 we recall some definitions and notations
related to the Calabi quasi-morphism. In Section 3 we briefly review the definition of
the quantum homology algebra QH.(M ). We then describe the quantum homologies
of our main examples and state some of their properties. In Section 4 we recall the
definition of Floer homology and some relevant notions. Section 5 is devoted to the
proof of Theorem 1.1 and Theorem 1.3. In Section 6 we discuss the restriction of
the Calabi quasi-morphisms on the fundamental group of Ham(M ). In Section 7 we
prove Theorem 1.2 and in the last section we prove the Poincaré duality type lemma
which is stated and applied in Section 5.
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2 Preliminaries on Calabi quasi-morphism

In this section we recall the definition of a Calabi quasi-morphism introduced in [11]. We
start with the definition of the classical Calabi invariant (see Banyaga [3] and Calabi [8]).
Let (M, w) be a closed connected symplectic manifold. Given a Hamiltonian function
H: S'xM — R, set H,:= H(t,-) and denote by ¢ the time-1-map of the Hamiltonian
flow {(p}l}. The group of Hamiltonian diffeomorphisms Ham(M, @) consists of all
such time-1-maps. Let I:I-EFH(M , w) be the universal cover of Ham (M, w). For a non-
empty open subset U of M , we denote by P’I;nU(M , w) the subgroup of Iﬁ;n(M , W),
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consisting of all elements that can be represented by a path {(p}l} refo,1] starting at the
identity and generated by a Hamiltonian function H; supported in U for all #. For
¢ € Hamy (M, w) we define Caly: Hamy (M, w) — R by

1
gOl—)/ d[[ H[C()n.
0 M

This map is well defined, i.e. it is independent of the specific choice of the Hamiltonian
function generating ¢. Moreover, it is a group homomorphism called the Calabi
homomorphism.

Recall that a non-empty subset U of M is called Hamiltonianly displaceable if there
exists a Hamiltonian diffeomorphism ¢ € Ham(M, @) such that ¢(U) NClosure(U) =
&. The following two definitions were introduced in [11].

Definition 2.1 A quasi-morphism on %(M , w) coinciding with the Calabi homo-
morphism Caly: Hamy (M, ®) — R on any open and Hamiltonianly displaceable set
U is called a Calabi quasi-morphism.

Definition 2.2 A quasi-morphism r: Ham(M, ) — R is said to be Lipschitz with
respect to Hofer’s metric if there exists a constant K > 0 so that

lr(er) —r(pr)| < K-|H— Fllco

For the relation of |H — F||co to the Hofer distance between the corresponding
Hamiltonian diffeomorphisms ¢g and ¢z see e.g. [11].

3 The Quantum homology of our main examples

3.1 The quantum homology algebra

In this section we briefly recall the definition of the quantum homology ring of
(M 2”,w). We refer the readers to [23] for a detailed exposition on this subject.
Let M be a closed rational strongly semi-positive symplectic manifold of dimension
2n. By abuse of notation, we shall write w(A) and ¢ (A4) for the integrals of @ and
¢y over A € my(M). Let T be the abelian group

(3.1.1D I'=m(M) / (kercy Nkerw).
We denote by A the Novikov ring
(3.12) A= {ZAAqA A €Q, #{AET | Ag#0, w(A)>c} < oo, vCeR}.

Ael
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This ring comes with a natural grading defined by deg(¢?) = 2¢;(A4). We shall
denote by Ay all the elements of A with degree k. Note that A;, = @ if k is not an
integer multiple of 2Ny, where Njs is the minimal Chern number of M defined by
¢y (m2(M)) = Ny Z.

As a module, the quantum homology ring of (M, w) is defined as
QH(M) = QH«(M,A) = Hs(M, Q) ® A.

A grading on QH,(M) is given by deg(a ® g) = deg(a) + 2¢1(A), where deg(a)
is the standard degree of the class a in the singular homology of M . Next, we define
the quantum product on QHy (M) (cf [23], [32]). For a € H;(M) and b € Hj (M)
we define axb € QH;yj_2,(M) as

axb= Z(a*b)A ®q_A,
AeTl

where (a*b)4 € Hiyj_2p42¢,(4)(M) is determined by the requirement that
(axb)gy o c=Dy(a,b,c) forall c € Hi(M).

Here o is the usual intersection product on Hy(M), and ®4(a,b,c) denotes the
Gromov—Witten invariant that counts the number of pseudo-holomorphic curves repre-
senting the class A and intersecting with a generic representative of each of a, b, c €
H,(M). The product * is extended to Q Hx (M) by linearity over the ring A . Note
that the fundamental class [M] is the unity with respect to the quantum multiplication.

It follows from the definitions that the zero-degree component of a * b coincides with
the classical cap-product @ N b in the singular homology. Moreover, there exists a
natural pairing A: QHp (M) x QH,,_; (M) — A defined by

A (ZaA ®q".> bp ®qB) = > (Z(Cl—B 0bB+A))61A-

c1(4)=0 B

The fact that the inner sums on the right hand side are always finite follows from the
finiteness condition in (3.1.2). Moreover, the pairing A defines a Frobenius algebra
structure, i.e. it is non-degenerate in the sense that A(w, 8) = 0 for all 8 implies
a=0,and A(x, B) = A(x*f,[M]). Notice that A associates to each pair of quantum
homology classes «, f € QH«(M) the coefficient of the class P = [point] in their
quantum product. We also define a non-degenerate Q)—valued pairing IT to be the zero
order term of A, i.e.

(3.13) M (Y as0q? Y bpeg®) =) (a_pobs).
B
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Note that IT(c, 8) = I[T(a * B, [M]) for every pair of quantum homology classes o and
B . Furthermore, the finiteness condition in the definition of the Novikov ring (3.1.2)
leads to a natural valuation function val: QHx (M) — R defined by

(3.1.4) val(z ag ®qA) =max{w(A4) | ag # 0}, and val(0) = —oo.
AeT

3.2 The case of S2x S?2

Let X3 = S? x S? be equipped with the split symplectic form w) = » ® A w, where
A > 1. In this subsection we discuss several issues regarding the quantum homology
of the manifold X and in particular we show that the quantum homology subalgebra
QH4(X)) C QH«(X)) is a field for every A > 1.

Denote the standard basis of Hy(X3) by P =[point], 4 =[S?xpoint], B =[pointxS?]
and the fundamental class M = [X}]. The quantum homology of X} is generated
over the Novikov ring A by these elements. Since A > 1, it follows that I' = 5 (Xj}),
where the last is isomorphic to the free abelian group generated by A and B. From
the following Gromov—Witten invariants (see e.g. [11], [23]):

by (P, P,P)=1, ®g(A,B,M)=1, ®4(P,B,B)=1, dp(P,A4,A)=1,
one finds the quantum identities:
(3.2.1) AxB=P, A>’=M®q B B*=Meq .

Next, instead of the standard basis {4, B} of I, we consider the basis {e¢1,¢e,} =
{B— A, A}. Set x = ¢°! and y = ¢°2. In this notation, the quantum product of the
generators of O Hy (X)) becomes

(3.2.2) AxB=P, A*=Max 'y !, BP=Mxy L
It follows from the definition of the Novikov ring (3.1.2) that
A= {Zk“’ﬂ -xay'B ‘ Aa,g € @} ,

where each sum satisfies the following finiteness condition:
#{(a,ﬂ) | Aa,p 70, a(k—1)+ﬁ>c} <00, YceR.

Taking into account the above mentioned grading of A we get

Ay = {Zka,ﬁ-x“y eA ‘ 4B = 2ci(ae; + Bes) :4k}

={Zxa-x°‘yk} #a | hg £0, a(h—1)> d} < oo, VdeR}.
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The finiteness condition above implies that A, vanishes for large enough o ’s.
Lemma 3.1 For any A > 1, the subalgebra QH4 (X)) C QH« (X)) is a field.

Proof Let 0# y € QH4(X;). Since QH4 (X)) = Hi4(X3) @ Ag + Hp(X;) ® Ay,
it follows that

y = M®Zkal X%+ P®y2ka2 X%,
where A, and Ay, vanish for large enough oy and o respectively. Next, let 8 =P®y
be a formal variable. From the above multiplicative relations (3.2.2), we see that
B? =M ® x~!. Hence, we can consider the following ring identification:

QH, (X)) ~RIBI/ T,

where 7 is the ideal generated by 2 —x~! and R = QJ[[x] is the ring of Laurent
series ) a; x/, with coefficients in @, and all o ; vanish for j greater than some large
enough jo. Note that for any Laurent series ®(x) € R, the maximal degree of ®2(x)
is either zero or even. Therefore R does not contain a square root of x~! and hence 7
is a maximal ideal. Thus, we conclude that Q H4(X}) is a two-dimensional extension
field of R. This completes the proof of the lemma. |

Remark 3.2 Note that the above statement no longer holds in the monotone case
where A = 1, since QH4(X) contains zero divisors (see e.g. [11], [23]).

3.3 The case of CP2#CP?2

Here we study the quantum homology algebra of Y, = (CP*#C P2, wy,), which is the
symplectic one-point blow-up of CP? introduced in Section 1. We will show that the
quantum homology subalgebra Q H, (Y ), which plays a central role in the proof of
Theorem 1.1, is semi-simple. It is worth mentioning (see Remark 3.4 below) that the
algebraic structure of QHy(Y),) turns out to be dependent on 1.

We denote by E the exceptional divisor and by L the class of the line [CP!]. Recall
that for 0 < u <1, w, is a symplectic form on Y, with wy(E) =p and w, (L) =1.
Denote the class of a point by P = [point] and set F = L — E. The elements P, E, F
and the fundamental class M = [Y},] form a basis of H.(Y).

The following description of the multiplicative relations for the generators of QH,(Y3)
can be found in [22].

PxP=(E+F)®q EF, ExP=F®qF,
PxF=M@q EF, ExE=-P+EQq E+MeqF,
ExF=P—-EQqE, F«xF=E®q E.
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Consider the rational non-monotone case where % # 1€ QN (0,1). Note that in this
case ' ~ Z® Z. As in the previous example of S2 x S2, we apply a unimodular
change of coordinates and consider the following basis of I"

Span,{F —2E, E}, 0<p<3
I' >~
Span,{2E — F, E}, 1<p<l

Denote ¢y = F—2FE, e = E When0<u<% and ey = 2E — F, e = E when
% <pm<1.Set x =¢° and y = ¢°2. From the definition of the Novikov ring (3.1.2)
we have

A= {Zxa,ﬂx“yﬂ | A € @},

where each sum satisfies the following finiteness condition:
#{(a,ﬁ) | Aa,p 70, a3 — 1|+ Bu > c} <00, YceR.

The graded Novikov ring has the form

Ay = {Z)\a,ﬂ-x"‘y €A |28 =2ci(ae; +,Bez)=2i}

z{ZAa-x“yi | #{o| A #0, a3 —1] > d} < oo, Vde[R{}.

Next we present the quantum product of QH,(Y)) with respect to the above basis of
r.

PxP=(E+F)®xy™%, ExP=F®x“y2

PxF=MQ@x“y3, ExE=—-P+EQ®y '+ Mx“y?2,
ExF=P—E®y L, FxF=EQy™!,
Where/c=sgn(3,u—1),i.e.lc=lfor%<u<1,andx=—1 f0r0<,u<%.

Lemma 3.3 The subalgebra QH4(Y,) C QH«(Y,) is semi-simple.

Proof Since QH4(Y,) = Ha(Y) @ Ao+ Ha(Yy) ® Ay + Ho(Yy,) ® Ay, it follows
that for every 0 # 8 € QHy(Y,)

5=M®Zkalx“‘ +E®yZAa2x“2
+ F®yzka3xa3 +P®y22Xa4xa4,
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where Ay, vanish for large enough «; for i =1,2,3,4. Next, put ;1 = EQ® y,
B»=F®y and B3 = P ® y?. From the above multiplication table, we see that

BT =—B3+ B1 +x*,
B3 = B1.

B3 = x*(B1 + B2)
Bi1-B2=PB3—PBi1.

Bz - B3 = x*,

B1-Bz = x"Bs.

Thus, we have the following ring identification:

OH4(Yy) =~ R[B1, B2, B3]/ Z,

where R = Q[[x] is the ring of Laurent series ) «; x/ and 7 is the ideal generated
by the above relations. It is easy to check that the sixth equation follows immediately
from the second and the fifth equations and hence, it can be eliminated. Moreover, by
isolating B3 and 8, from the first and the second equations respectively, we conclude
that the above system is equivalent to the following one:

(B3 — B3 +x)* = x (B3 + B2)
(3.3.1) Bs =—B;5 +x*,
Bz (B — B3 +x*) = x,

Moreover, we claim that in fact

OH4(Yy) =~ R[B1,B2.831/ T ~ R[B2]l/ T

where 7 is the ideal generated by ,3‘2‘ + ,BS — x*. Indeed, the first equation in (3.3.1)
is obtained by multiplying the third equation by ,3% + B, and assigning the second
equation. The third equation is obtained from the second after multiplying it by 8, — 1.
Next, note that the polynomial ﬂg + ,Bg — x* does not share a common root with its
derivative since the roots of the derivative are 0 and —3/4. Thus, it has no multiple
roots in R and hence the quantum homology subalgebra QH,(Y),) is semi-simple as
required. |

Remark 3.4 Strangely enough, it follows from the above lemma that the algebraic
structure of the quantum homology subalgebra QH4(Y,,) depends on . More pre-
cisely, it can be shown that the polynomial ,33 + ,3; — x* is irreducible over R for
k =1 while reducible for « = —1. Thus, QH4(Y,,) is a field when % < u <1, while
for 0 < p < %, it is a direct sum of fields. We omit here the technical details because
for our purpose, it is sufficient that Q H4(Y),) is semi-simple.
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4 Preliminaries on Floer homology

In this section we give a brief review of Floer homology. In particular we present some
definitions and notions which will be relevant for the proof of our main results. We
refer the readers to [33] or [23] for a more detailed description.

Let (M, w) be a closed, connected and strongly semi-positive symplectic manifold. Let
J = {Jt}o<t<1 be a periodic family of w—compatible almost complex structures. We
denote by £ the space of all smooth contractible loops x: S' =R/Z — M . Consider a
covering L of £ whose elements are equivalence classes [x, u] of pairs (x,u«), where
x € L, u is a disk spanning x in M , and where

(x1,u1) ~ (x3,up) if and only if x; = x, and w(u#u,) = cq(ui#u,) =0.

The group of deck transformations of L is naturally identified with the group I" (3.1.1),
and we denote by
[x,u] = [x,u#A], Ael

the action of I' on £. Moreover, we denote by H the set of all the zero-mean
normalized Hamiltonian functions, i.e.

H= {H €C®(S'xM)| / H; 0" =0, forall ¢ €0, 1]}.
M
For H € 'H, the symplectic action functional Ag: L — R is defined as

AH([x,u]):=—/a)+/S1 H(x(t),t)dt.

Note that
Ag ([x, u#A]) = Ag ([x, u]) — o(A4).

Let Py be the set of all contractible 1—periodic orbits of the Hamiltonian flow generated
by H. Denote by 73; the subset of pairs [x, u] € L where x € Pg . 1t is not difficult
to verify that 7/3\1{/ coincides with the set of critical points of Ag . We define the action
spectrum of H , denoted by Spec(H), as

Spec(H) := {AH(x, u)eR|[x,u]e 73;} .
Recall that the action spectrum is either a discrete or a countable dense subset of R [26].

We now turn to give the definition of the filtered Floer homology group. For a generic
H € H and o € {R\ Spec(H)} U {oo} define the vector space CF} (H) to be

CRYH) ={ 3 Buealoul| Buea €@, n(w,u) =k, Ap(x.u)) <af,

[x,u]EP(H)
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where each sum satisfies the following finiteness condition:

# {[x, ul e /?;1/ | Brx,u] # 0 and Ag ([x, u]) > 8} < o0, forevery § € R.

Here w([x, u]) denotes the Conley—Zehnder index u: /?;1/ — 7 (see e.g. [33]) which
satisfies u([x, u#A]) — u([x, u]) = 2¢1(A). In particular, the Conley—Zehnder index
of an element x € Py is well-defined modulo 2Nps, where Njs is the minimal
Chern number of (M, ®). The complex CFZ°(H) is a module over the Novikov ring
A (3.1.2), where the scalar multiplication of § € CFZ°(H) with A € A is given by

Z Z aq - Ay ylx, u#Al.

A [x,u]

For each given [x, w] and [y, v] in Pr ., let M(H, J,[x,u],[y,v]) be the moduli space
of Floer connecting orbits from [x, w] to [y, v], i.e. the set of solutions u: Rx S — M
of the system

Osu + Jr(u)(0;u — Xg, (1)) =0,
limg—s_—oo u(s,t) = x(¢), limg_oou(s,t) = y(t),
wH#u#v represent the trivial class in I'.

It follows from the assumption of strongly semi-positivity and from Gromov’s compact-
ness theorem [16] that for a generic choice of J the moduli spaces M ([x, u], [y, v]),
for w([x,u]) — u([y,v]) = 1, are compact.

The Floer boundary operator d: CFZ(H) — CF}_, (H) is defined by

o(x. w) =Y n(lx, w].[y.v]) [y.v].

where the sum runs over all the elements [y, v] € Pg such that uly,v]=k—1 and
n([x, w], [, v]) denotes counting the (finitely many) un-parameterized Floer trajectories
with a sign determined by a coherent orientation. As proved by Floer in [12], the
boundary operator 9 is well defined, satisfies 3> = 0 and preserves the subspaces
CFY(H) (see [17]). Therefore, defining the quotient group by

CFl? (g, J)=CFt(H,J) ) CF&H,J) (—oo<a=<b=<o00),

the boundary map induces a boundary operator 9: CF. >,Ea’b](H ) — CF, ia’b](H ), and
we can define the Floer homology group by

HFEP (7 H) = (P (). 5).

We will use the convention HF,(H,J) = HFCV(H, J) and HF4(H,J) =
HF. i_oo’a]. The graded homology H Fy(H, J) is a module over the Novikov ring A,
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since the boundary operator is linear over A. Note that these homology groups have
been defined for generic Hamiltonians only. However, one can extend the definition to
all H € 'H using a continuation procedure (see e.g [11]). A key observation is that the
Floer homology groups are independent of the almost complex structure J and the
Hamiltonian H used to define them. Moreover, if two Hamiltonian functions H;, H, €
‘H generate the same element ¢ € Iﬁ;n(M ,w), then Spec(H;) = Spec(H>) (see [25]
and [34]) and the spaces HF,&a’b](J, Hp) and HFﬂEa’b](J, Hj) can be canonically
identified. Therefore, we shall drop the notation J and H in HF.(H, J) and denote
HF,(p) = HF«(J, H) where ¢ € P/IEr/n(M, w) is generated by H .

We denote by 7q: HFy(¢) — HF@®](¢) the homomorphisms induced by the natural
projection CFoo(H)— CFoo(H)/CFy(H) of Floer complexes and by i: HFy (@) —
HF(¢) the homomorphism induced by the inclusion map i,: CFX(H) — CF°(H).
Note that the homology long exact sequence yields Kernel 7, = Image i, . There exists
a natural ring structure on the Floer homology groups named Pair-of-pants product
(see e.g. [29])

*pp: HFo(p) x HFg(Y) — HFoqp(0¥).

In [29], Piunikhin, Salamon and Schwarz constructed a homomorphism between the
Quantum homology groups QH« (M) and the Floer homology groups HF«(M).
Furthermore, they showed that the homomorphism ®: QH.(M) — HF«(H) is
an isomorphism which preserves the grading and intertwines the quantum product
on QHy(M) with the pair-of-pants product on HFy(H), i.e. ® (ig4p(§ *pp 1)) =
D (ig(8)x D (iﬂ(n)), for every &£ € HFy(p), n € HFg(y). In what follows, we will
refer to the isomorphism @ as the PSS isomorphism.

5 The existence of a Calabi quasi-morphism

Let (M 2", w) be a closed connected rational strongly semi-positive symplectic mani-
fold. Following the works of Viterbo [36], Schwarz [34], and Oh [27], we recall the
definition of a spectral invariant ¢ which plays a central role in the proof of Theorem
1.3. We refer the readers to [27] and [23] for complete details of the construction and
proofs of the general properties of this spectral invariant. A brief description of Floer
homology and the PSS isomorphism was also given in the above Section 4.

We define the spectral invariant ¢: QH. (M) X P’I;fn(M ,w) — R as follows. For the
elements 0 #£ a € QH«(M) and ¢ € Ham(M, w), we set

c(a,p) =inf{a € R | ®(a) € Image iy},
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where ®: QH, (M) — HF(¢p) is the PSS isomorphism between the quantum homol-
ogy and the Floer homology, and iy: HFy (@) — H F«(¢p) is the natural inclusion in the
filtered Floer homology. The non-trivial fact that —oo < ¢(a, ¢) < oo is proved in [27].
Moreover, c(a, ¢) has the following properties [27], [23]: For every a,b € QH.(M)
and every ¢, ¥ € ﬁar/n(M)

(P1) claxb,oy) =cla. @) +c(b, V),
P2) c(a, ) =val(a),
(P3) c(a.¢) = sup c(@™, ),

(P4) c(ag?,¢) =c(a, )+ w(A), forevery g4 e A,

where al™ is the grade-m—component of a, 1 is the identity in %(M ,w) and
val(-) is the valuation function (3.1.4) defined in Section 3.1.

The following lemma, which can be considered as a Poincaré duality type lemma,

enables us to compare the spectral invariants of ¢ and ¢~!. It is the analogue of

Lemma 2.2 from [11] in the rational non-monotone case .

Lemma 5.1 For every 0 # y € QH«(M) and every ¢ € %(M, )

e(y.p) = —inf {c(.¢™") | TI(5.7) # 0}

where T1(:,-) is the @-valued pairing (3.1.3) defined in Section 3.1.

The proof of the lemma is given in Section 8 below. In order to prove Theorem 1.3 we
will also need the following proposition. Assume that the subalgebra QH,, (M) C
QH,.(M) is semi-simple over the field Ay and let QH,, (M) = QHzln M)
Q’z‘ »(M) be a decomposition of QH,, (M) into a direct sum of fields. Then we have

Proposition 5.2 There exists a positive constant C € R such that for every 0 # y €
OH,, (M)

val(y) +val(y ") < C.

Postponing the proof of the above proposition we first present the proof of Theorem
1.3 and Theorem 1.1. In the proof of Theorem 1.3 we follow the strategy of the proof
used by Entov and Polterovich in [11].
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Proof of Theorem 1.3 Let QH,,(M) = QHzln M)ye---d le‘n (M) be a decompo-
sition of QH,, (M) into a direct sum of fields. Consider the map 7 ﬁa;n(M )—>R
defined by:
n
T(g) = —vol(M) - lim €19
n

—00 n

where e; is the unit element of QH21n (M). This is a standard homogenization of

the map c(eq, -): I-/Izr/n(M ) — R. We claim that 7 is a Lipschitz homogenous Calabi
quasi-morphism. The proof of the Calabi property and the Lipschitz property of 7
goes along the same lines as the proof of Propositions 3.3 and 3.5 in [11] with the
notations suitably adapted. Thus, we will omit the details of the proof of these properties
and concentrate on proving that 7 is a quasi-morphism. We will show that ¢(ey, -)
is a quasi-morphism, this immediately implies that its homogenization 7 is also a
quasi-morphism.

Notice that the upper bound follows easily from the triangle inequality (P1):

cler,o¥) =cl(erxe1,p¥) <c(er,p)tcler,¥).

Next, it follows from (P1) and Lemma 5.1 that

c(er,9) <cler.o¥) +cler, v =C(el,wl”)—azn(‘illfl#oc(aﬂ//)-

From the definition of the intersection pairing IT (3.1.3) we have that
{a|T(a.e) # 0} = {a | 1@, e1) # 0} = {a | TL(@? xer. M) # 0},
Combining this with the above property (P3) we may further estimate

(5.1) c(er,p) <cle;,p¥)— inf c(a[o],W).
a:T1(al0lxe; ,M)#0

Our next step is to find a lower bound for the term c(a[o], Y¥) provided that H(a[o] *
e1, M) # 0. For this, we shall first “shift” and then “project”, roughly speaking, the
element a[% € QHy(M) to the field QHzln (M). More precisely, since we assumed
that the minimal Chern number Njs divides 7, there exists an element ¢4 in the
Novikov ring A such that al®g4 € QH,,(M). Thus, it follows from properties (P1)
and (P4) that

(52) @ y) = c@g? y) —o(4) = cler xadlq y) —cler. 1)~ w(4).
Moreover, it follows from the assumption IT(al% % ey, M) £ 0 and from the definition

of the element ey, that e; *al%l¢4 € QH] (M)\ {0}. Hence, since QH} (M) is a
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field, e * al%g4 is an invertible element inside it. Using the triangle inequality (P1)
once again we get

cler.¥) = cler xa¥g? ) +e((er x4~ 1),
Here (e; >x<at[°]q’4)_1 is the inverse of e; *a[o]qA inside QHzln. Next, by substituting
this in the above inequality (5.2) and applying (P2) we can conclude

c(@®9) = e(er. ) —val ((er ¥alg™h)™") —val(er) — w(4).

By assigning this lower bound of ¢(al®, ) into (5.1) we further conclude

cler,p) <c(er,o¥)—cler,¥) + sup val ((el *a[o]qA)_l) +C’,
a:T1(al0lxe; ,M)#0
where C’ is the value val(e;) + w(A). The last step of the proof is to find a universal
upper bound for val((el * a[o]qA)_l) provided that TT(al% % e;, M) # 0. Note

that the condition TT(a!% % ey, M) # 0 implies that val (el * a[o]) > 0 and hence

val (el * a[o]qA) > —w(A). Therefore, it follows from Proposition 5.2 that val ((e1 *

a[o]qA)_l) < C 4+ w(A4). We have shown that c(eq, -) is a quasi-morphism, the proof
of the theorem is thus complete. a

Proof of Theorem 1.1 Let M be one of the manifolds (X}, ;) or (Y, ®w,) listed in
the theorem. It follows from Lemma 3.1 and Lemma 3.3 that the subalgebra QH4(M)
is semi-simple. Moreover, the minimal Chern number of (X;, ;) and (Y, ®y) is
2 and 1 respectively. Thus, it follows from Theorem 1.3 that there exists a Lipschitz
homogeneous Calabi quasi-morphism r: %(M ,w) — R as required. |

Remark 5.3 As mentioned in Remark 3.4 above, in the case of (¥, ®,) where
O<pu< %, the subalgebra QH4(Y),) splits into direct sum of two fields. Thus, using
the units of these fields alternately, Theorem 1.3 implies the existence of two Calabi
quasi-morphisms. We do not know whether they are equivalent or not.

We return now to the proof of Proposition 5.2. We will follow closely Lemma 3.2
in [11].

Proof of Proposition 5.2 From the definition of the graded Novikov ring it follows
that Ao can be identified with the field R = Q[[x] of Laurent series Y a;jx/ with
coefficients in Q and «; = 0 for large enough j ’s. Moreover, it is not hard to check
that QHy (M) is a finite dimensional module over Ay. We denote by 0: R — Z
the map which associates to a nonzero element > «;x/ € R the maximal j, such

Algebraic € Geometric Topology, Volume 6 (2006)



Calabi quasi-morphisms for some non-monotone symplectic manifolds 423

that orj # 0. We set 0(0) = —oo. For k € R, put |[k|; =exp o(k). Thus, |-|; isa
non-Archimedean absolute value on R and moreover, R is complete with respect to
|-]1 . For preliminaries on non-Archimedean geometry we refer the readers to [2]. Since
the field QH21 (M) can be considered as a finite dimensional vector space over R, the
absolute value |- |; can be extended to an absolute value |- |, on QHzln (M) (see [2]).
Note that |- |, induces a multiplicative norm | - ||, on QHzln (M). On the other hand,
we can consider a different norm on QHzln (M) defined by ||y |5 = exp val(y). Since
all the norms on a finite dimensional vector space are equivalent, there is a constant
C; > 0 such that

l¥lls < Ci-llylla, for every 0 # y € QH,,(M).

Hence, for 0 # y € QH21n (M), we have

lyls-ly~ls < CE-lyllz- Iy~ = CF.

Therefore, val(y) 4+ val(y~!) < C where C = 21log C;. This completes the proof of
the proposition. a

6 Restricting 7 to the fundamental group of Ham(M)

In this section we discuss the restriction of the above mentioned Calabi quasi-morphism
T I:IE;n(M ) — R, where M is one of the manifolds listed in Theorem 1.1, to the
abelian subgroup 74 (Ham(M)) C ﬁ;r/n(M ). For this purpose, we follow [11] and use
the Seidel representation W: 77y (Ham(M)) — QH (M, R) (see e.g. [35], [20]), where
QH.,(M,R) denotes the group of units in the even part of the quantum homology
algebra of M with coefficients in a real Novikov ring. We start with the following
preparation.

6.1 Hamiltonian fibrations over the two sphere

There is a one-to-one correspondence between homotopy classes of loops in Ham (M)
and isomorphism classes of Hamiltonian fibrations over the two-sphere S? given by
the following “clutching” construction (see e.g. [35], [20]). We assign to each loop
@ = {¢:} € Ham(M) the bundle (M, w) — P, — S? obtained by gluing together the
trivial fiber bundles D* x M along their boundary via (¢, x) — (¢, ¢;(x)). Here we
consider S% as Dt U D™, where D¥ are closed discs with boundaries identified with
S!. Moreover, we orient the equator D™ N D™ as the boundary of D™ . Note that this
correspondence can be reversed.
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As noted in [35], there are two canonical cohomology classes associated with such
a fibration. One is the coupling class uy, € H 2(P¢, R) which is uniquely defined
by the following two conditions: the first is that it coincides with the class of the
symplectic form on each fiber, and the second is that its top power ug“ vanishes.
The other cohomology class is the first Chern class of the vertical tangent bundle
Cp = €1 (TPf“) € H?(P,,R). We define an equivalent relation on sections of the
fibration Py, — S 2 in the following way: First, equip S? with a positive oriented
complex structure j, and P, with an almost complex structure J such that the
restriction of J on each fiber is compatible with the symplectic form on it, and the
projection 7: P, — S? is a (J, j)~holomorphic map. Next, two (J, j)—-sections, v;
and vy, of m: Py — S? are said to be I'—equivalent if

”(p[VI(SZ)] = ”(p[VZ(Sz)L Colv (52)] = c(p[‘)z(Sz)]-

It has been shown in [35] that the set S, of all such equivalent classes is an affine
space modeled on the group I (3.1.1).

6.2 The Seidel representation

The following description of the Seidel representation, which is somehow different
from Seidel’s original work, can be found in [20]. For technical reasons, it will be more
convenient to work in what follows with a slightly larger Novikov ring than in (3.1.2).
More precisely, set Hg := HZS (M,R) / (kerc; N kerw), where HZS (M, R) is the
image of (M) in H,(M,R). We define the real Novikov ring as

AR:{Z Aag? 1 ha €@ #AET | Ay #0, w(A) > c} < o0, Vce[R},
A€HR

and set QHy (M) := QH«(M, Ar) = H«(M) ® AR to be the real quantum homology
of M.

Next, let ¢ be a loop of Hamiltonian diffeomorphisms and v be an equivalence class
of sections of Py. Set d = 2¢y(v). We define a Ag—linear map Wy, ,: QHx(M) —
OH, 4 4(M) as follows: for a € Hy(M,Z), Wy, is the class in QHy 4 4(M) whose
intersection with b € Hy(M, 7Z) is given by

Wy o(@) pb=Y np,(i(a).ib):v+i(B)g ",
BeH

where i is the homomorphism Hy(M) — Hx(P,), the intersection -ps is the lin-
ear extension to QH, (M) of the standard intersection pairing on H.(M,Q), and
np, (v, w; u) is the Gromov—Witten invariant which counts isolated J—holomorphic
stable curves in P, of genus 0 and two marked points, such that each curve represents
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the equivalence class © and whose marked points go through given generic repre-
sentatives of the classes v and w in Hy(Py,Z). When the manifold M is strongly
semi-positive, these invariants are well defined. Moreover, it follows from Gromov’s
compactness theorem (see [16]) that for each given energy level k, there are only
finitely many section-classes y = v +i(B) with w(B) < k that are represented by a
J —holomorphic curve in P,. Thus, W, , satisfies the finiteness condition for elements
in QH«(M).

For reasons of dimension, np, (v, w; n) = 0 unless 2¢y(p) + dim(v) + dim(w) = 2n.
Thus,

qj(p,v(a) = Zav,B q_B, ay,B € Hy(M),
where ay, g -p b =np,(i(a),i(D);v+i(B)), and
dim(ay,g) = dim(a) 4+ 2¢, (v +i(B)) = dim(a) + 2¢y(v) + 2¢1 (B).

Note also that Wy, ,4 4 = Vy, ® qA. It has been shown by Seidel [35] (see also [20])
that Wy, ,, is an isomorphism for all loops ¢ and sections v.

Next, we use W, to define the Seidel representation
U: i (Ham(M)) — QHy (M, Ag)™.

In order to do so, we take a canonical section class v, that (up to equivalence) satisfies
the composition rule v,y = vy #v, , Where v,y denotes the obvious union of the
sections in the fiber sum Py, = Py #P,. The section v, is uniquely determined by
the requirement that

Up(vy) =0 and cy(vy) =0.

Moreover, it satisfies the above mentioned composition rule. Therefore, we get a group
homomorphism

p: 1 (Ham(M)) — Homa, (QHx (M. Ag)).
It has been shown in [35] that for all ¢ € 71 (Ham(M)) we have
p(p)(a) = Yy, vp([M]) *pr a.
The Seidel representation is defined to be the natural homomorphism

V: 7y (Ham(M)) — QH. (M, AR)™,

given by ¢ = p(p)([M]).
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6.3 Relation with the spectral invariant

Throughout, 7 (Ham(M)) is considered as the group of all loops in Ham(M') based
at the identity 1 € Ham(M ). Let £ be the space of all smooth contractible loops
x: S!'=R/Z - M and L its cover introduced in Section 4. Let ¢ be a loop of
Hamiltonian diffeomorphisms. It is known (see e.g. [35]) that the orbits ¢;(x) of ¢ are
contractible. We consider the map 7,: £ — £ which takes the loop x(7) to ¢;(x(?)).
In [35], Seidel showed that this action can be lifted (not uniquely) to L. In fact it is
not hard to check that there is a one-to-one correspondence between such lifts of 7,
and equivalence classes of sections v € S,,. We denote by T(o,v the lift corresponding
to v € Sy. Next, let ¢ € my(Ham(M)) be a given loop generated by a normalized
Hamiltonian K € H. The following formula, which can be found in [35] and [20],
enables us to relate the Seidel representation with the spectral invariant ¢ used to define
the Calabi quasi-morphism 7

(6.3.1) (T:;,v)_l.AH —Agya = —uy(v), forevery H € H.

It has been shown in [35] that the isomorphism in the quantum homology level described
in Section 6.2, which is obtained by multiplication with W, v, ([M]) corresponds,
under the identification between the Floer and the quantum homology, to the isomor-
phism i: HFy(H) — HFy4u,w)(K#H) induced by the action of (7', ,) on £. The
following proposition can be found in [28] or [11].

Proposition 6.1 For every loop [¢] € my(Ham(M)) C ﬁafn(M ) and every a €
QH.(M) we have

c(a,[p]) = val(ax ¥(p)™").

Proof Let K € H be the normalized Hamiltonian function generating the loop [¢],
and let H € H be the zero Hamiltonian generating the identity. The proposition
immediately follows from (6.3.1) applied to H and K. |

7 Proof of Theorem 1.2

Recall that a homogeneous quasi-morphism on an abelian group is always a homomor-
phism (see e.g. [11]). Hence, in order to prove Theorem 1.2, we need to show that
for the manifolds listed in the theorem, the restriction of the Calabi quasi-morphism
T ﬁg;n(M ) — R on the fundamental group of Ham (M) is non-trivial. We will divide
the proof into two parts.
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7.1 The case of SZ x S2.

Let X; = S? x S? be equipped with the split symplectic form wy = w @ A @, where
1 < A. As mentioned in Section 1, there is an element [¢] of infinite order in the
fundamental group of Ham(X}) (see [21]). This element can be represented by the
following loop of diffeomorphisms

or(z,w) = (2. Tz (w)),

where Y, denotes the 277 —rotation of the unit sphere S2 around the axis through
the points z, —z. Seidel showed in [35] (see also [24]), by direct calculation, that

() = (4 - B) @ ¢*AHPB( Z ja-B)

where A and B in H, (X)) are the classes of [S? x point] and [point x S2] respectively,
and «, f € R were chosen such that 2¢y (¢4 + BB) =1 and w) (¢ A+ BB) = % + ﬁ.

Lemma 7.1 For every n € N we have

val (W(p]) ") = 1+ ﬁ

Proof First note that val((A — B)2”) = max{val(A% B*"~k)} where 0 < k < 2n.
Next, set of = A% B2n=k 1t follows from the quantum multiplication relations (3.2.1)
that val(ag4,) = val(ag) + (A —1) forevery 0 < k <2n—2. Thus,

val ((A— B)Z”) = max{val(A*"),val(A*""'B)} = —n + 1.
Set A = g*ATPB(322 14/ A=B)) Tt follow immediately that
val(A2”)—val( 2n(aA+ﬂB))_2n(1 1 ) +£.
6A 31
This completes the proof of the Lemma. a

It follows from Lemma 3.1 that the subalgebra QH,4 (X)) is a field. Thus, combining
Proposition 6.1 and Lemma 7.1, we conclude that
val (¥([g)™>") 1

F(¢) = —vol(X;) - lim L)
n—00 2n

We have shown that the restriction of the quasi-morphism 7 Ham (X3) — R on the
fundametal group of Ham(X} ) is non-trivial. This concludes the proof of Theorem
1.2 for the above case.
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7.2 The case of CP2#C P2

Let Y, = CP2#CP? be the symplectic one-point blow-up of CP? introduced in
Section 1, equipped with the symplectic form w,,, where % # € (0,1). We will use
here the same notation as in Subsection 3.3. It has been shown by Abreu—McDuff
in [1] that the fundamental group of Ham(Y,) is isomorphic to Z with a generator
given by the rotation

2 (21,22)—>(€_2mt21,22), 0<r=<Il.

The Seidel representation of ¢ was computed in [22], [24] to be

(1—p)?

72.1) W(o)) ' = P gE/2t3F/4-8(F-2E)  yhere § = .
(7.2.1)  ¥(lg) q 20+ )1 =370)

The following lemma can be immediately deduced from Lemma 5.1 and Remark 5.5
which both appear in [22].

Lemma 7.2 Let 5 # j € (0,1). Then

- — 1
(7.2.2) lim val(¥(e) ™) _ Sw(F—-2E), 3<p<l

k—o0 k

1228 w(F—2E), 0<p<i

Proof Denote by Q the element P ® ¢gF /2+3F/4 and consider its powers Qk where
k € N. It follows from the quantum multiplicative relations discussed in Subsection
3.2 that the only two possible cycles obtained by multiplication by Q are

P®qE/2+3F/4_> E®qF/2 _ F®qE/2+F/4_>M - P®qE/2+3F/4’

and
P®qE/2+3F/4 N F®qF/2 M ®qF/4—E/2 - P®qf.

Thus, since the first cycle does not change the valuation, while the second cycle
increases it by w(F/4 — E/2), we have that val(QX) is either bounded as k — oo
when w(F/4— E/2) <0 or linearly grows otherwise. Hence, we get that
C—-0kw(F-2E), %<M<1
val (¥ (g ™) =
C+Xo(F/A-—E/2)—w0@(F-2E)), 0<p<i,

where C is some universal constant. This completes the proof. a
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A straightforward calculation shows that the above expression (7.2.2) is strictly negative
for every 0 < < 1. Thus, it follows from Proposition 6.1 and the fact that val(axb) <
val(a) + val(b) that

val (o1« (i) ™) val (¢(ig) ™)

B > —vol(Yy) kli)rr;o A >0

7([¢]) = —vol(Y) Jim

Hence, the restriction of the quasi-morphism 7 ﬁafn(YM) — R on the fundamental
group of Ham(Y),) is non-trivial. The proof of Theorem 1.2 is now complete.

8 Proof of Lemma 5.1

Let (M, w) be a closed, rational and strongly semi-positive symplectic manifold of
dimension 2n. Note that for rational symplectic manifolds the action spectrum is
a discrete subset of R, and thus there are only a finite number of critical values of
the action functional Ay in any finite segment [a,b] C R. Let H(¢,x) € H be a
Hamiltonian function generating ¢ € ﬁaTn(M ), and denote by H (t,x)=—H(—t,Xx)
the Hamiltonian function generating the inverse symplectomorphism ¢~!. The set P
of critical points of Ag is isomorphic to P " via X (t) = x(—t), and [x,u] € 7;}1/

corresponds to [X, u] € 75\H’: where

u(s, 1) =u(=s,—1), p(x.ul)=2n—p(x.ul) and Ag(x.ul) =-Ag(x. u)).

We define a pairing L: CFj.(H) x CFZn_k(ﬁ) — Ay by

@1 L (Z U] - [, ul, Z ﬂ[’f,’ff] 1. 37]) = Z(Z lx,u] 'IB[x,uﬁ—A])qu

A [x,u]

where the inner sum runs over all pairs [x, u] € 73\1; and the outer sum runs over all
A €T with ¢1(A) = 0. The pairing L is well defined. Indeed, consider first the inner
sum, the finiteness condition in the definition of CFy(H) implies that it contains only
finitely many elements. Secondly, it follows from the same reason that the power series
on the right hand side of (8.1) satisfies the finiteness condition from the definition
of the Novikov ring (3.1.2). It is not hard to check that the pairing L is linear over
Ao and that it is non-degenerate in the standard sense. Thus, since the vector spaces
CFi(H) and CF,,_4 (ﬁ ) are finite dimensional over A, which is in our case a field,
the pairing L determines an isomorphism

CFy(H) ~Homp, (CFy_x(H), Ao) .
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From the universal coefficient theorem we obtain a Poincaré duality isomorphism
HFy(H) ~Homp, (HF2,—x(H), Ao) .

In [29] it has been shown that the pairing determined by this isomorphism, which by
abuse of notation we also denote by L, agrees with the intersection pairing A(, -)
on the quantum homology QH,.(M). More precisely, let ®: QH«(M) — HFy«(H)
be the PSS isomorphism described in Section 4. Then, for every a € HFj(H) and
be QH,,_; (M) we have

(8.2) AP Ya),b) = L (a, D(b)).

Next, we consider the filtered Floer homology complexes CF ,E_oo’a](H) and

CFz(;f’koo](ﬁ ). Note that these spaces are no longer vector spaces over Ay since
they are not closed with respect to the operation of multiplication by a scalar. We define

a Q-valued pairing L’: CFIE_OO’Q](H) X CFé(;fZ](ﬁ) — Q by

L (Z e[ ul, ) By 1 Tﬂ) = > @ Bpea)-

[x,u]

This pairing is well defined since any element in CF’ é;f;{oo](ﬁ ) is a finite sum. It is
straightforward to check that the pairing L’ is non-degenerate in the standard sense and
that it coincides with the zero term of L. In other words, denote by t: Ag — Q the
map sending ZaAqA to ag, then for any a € CF,i_OO’“](H) and b € CFZ,,_k(ﬁ)

we have
(8.3) tL (ia,H(a), b) = L’(a, n_a’ﬁ(b)).

By abuse of notation, we also denote by L’ the induced pairing in the homology level:

L: HF ]E_Oo’“](H )x HF Z(Zf;coo](l’:i ) — Q. Next, consider the following diagram:

<I>_1 .a, _
OH (M) «—— HE(H) < HFC® ()
XTI XL Xr
-

¢ jon-s —a,H — ~
QHyy (M) —— HFy, 4 (H) —5 HF, 4N (H)

| ! |

Q Q Q
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Combining equations (8.2) and (8.3) together we conclude that for every element
ae HFC™"(H) and b € QHyp— i (M) we have

8.4)

(™" 0ig,r(a),b) = tL(ia,mr(a), D(b)) = L'(a.7__ 77 0 ®(b))

We are now in a position to prove Lemma 5.1.

Proof of Lemma 5.1 We divide the proof into two steps.

ey

2

Fix an arbitrary ¢ > 0 and put « = ¢ —¢(y, ¢). It follows from the definition
of the spectral invariant ¢ that ®(y) ¢ Image i_4,,. Note that Image i_y,, =
Kernel 7n_gy , and thus & := 7_g4 4 0 (y) # 0. Since the pairing L’ is non-
degenerate there exists 7 € HFz(;fi’a] (¢~ 1) such that L'(n, £) # 0. From (8.4)

we have that T1(8g,y) # 0, where §o = ®~ ! o iy,p—1(n). It follows from the
definition that ¢(8, ¢~!) <« and hence

inf  ¢(S,97") <c@o.9 N <a=e—c(y,9)

8:T1(8.v)#0

This inequality holds for every € > 0, hence we conclude that

inf ¢, 97 ") < —c(y, ).
8:T1(8.)70
Fix an arbitrary € > 0 and put « = —e¢ —c(y, ¢). From the definition of c(,-) it
follows that ®(y) € Image i_q,, =Kernel m_4 . Hence, § ;=74 o0 ®(y)=0.
Assume by contradiction that there exists § satisfying I1(8, y) # 0 such that
c(8,¢~ 1) < a. We observe that ®(§) € Image Iy o1 Letne HFZ(;SZ’“](qo_I)
be such that ®(8) = i, ,—1(n). It follows from (8.4) that I1(8, y) = L'(n,£) =0.
This contradicts the above assumption that T1(8, ) # 0. Thus we must have

c(8,97 1) >« for every § satisfying I1(8,y) # 0. Hence,

inf  c(.97) >a=—e—c(y.9).

8:T1(8,v)#0

Again, since this inequality holds for every € > 0 we conclude that

inf ¢, 97 ") =—c(y.9).

8:T1(8.y)#0

The proof is now complete. a
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