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ON p-MAPS AND M-MAPS

By

Yun-Feng Bar and Takuo Mrwa

Abstract. We introduce new notions of p-maps and M-maps, and
investigate some of their basic properties, which are extensions of
corresponding properties of p-spaces and M-spaces.

1. Introduction

In this paper, we introduce new notions of p-maps and M-maps, and in
sections 3 and 4 investigate some basic properties of these maps and their
relationships with Cech-complete maps ([2]) and k-maps ([10], [2]). p-Maps and
M-maps are respectively extensions of p-spaces ([1]) and M-spaces ([11], [12]) to
the notions of continuous maps. Further, in section 5 we investigate these maps in
the realm of paracompact maps ([4]) and in section 6 their relations with
metrizable type (MT-)maps ([6]) is studied.

This branch of General Topology is now known as General Topology of
Continuous Maps or Fibrewise General Topology. For an arbitrary topological
space B one considers the category TOPg, the objects of which are continuous
maps into the space B, and for the objects f : X — Band g : Y — B, a morphism
from f into g is a continuous map 4 : X — Y with the property f = g o A. This is
denoted by 1: f — ¢g. A morphism A: f — g is said to be onto, closed, perfect,
quasi-perfect, if respectively, such is the map 4: X — Y. An object f : X — B of
TOPp is called a projection, and X or (X, f) is called a fibrewise space. We also
call a morphism A : f — g a fibrewise map when we write 1: (X, f) — (Y,g) or
A X—Y.

We note that the fibrewise category TOPp is a generalization of the to-
pological category TOP (of topological spaces and continuous maps as mor-
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phisms), since the category TOP is isomorphic to the particular case of TOPp in
which the space B is a singleton set.

Throughout this paper, we assume that all spaces are topological spaces, and
all maps and projections are continuous. For other terminology and notations
undefined in this paper, one can consult [7] about TOP, and [10] and [4], [5], [6]
about TOPg.

2. Preliminaries

In this section, we refer to the notions and notations in Fibrewise Topology,
which are used in latter sections.

Let (B, ) be a fixed topological space B with a fixed topology 7. Throughout
the paper we will use the abbreviation nbd(s) for neighborhood(s). We denote the
set of all open nbds of b€ B by N(b) and the set of all natural numbers by N.
Note that regularity of (B,7) is assumed in Proposition 2.12, Theorems 3.2,
3.4(2), 3.5, 3.7, 5.2 and 6.1, Corollaries 3.3, 6.2 and 6.3, and Lemma 5.4. Further,
in Theorem 3.8 it is assumed that B is regular and B satisfies the first axiom of
countability.

For a projection f: X — B and each point b € B, the fibre over b is the
subset X, = f~!(b) of X. Also for each subset B’ of B we regard Xz = f~'(B’)
as a fibrewise space over B’ with the projection determined by f. For a filter
(base) # in X, we denote by f.(Z) the filter generated by the set {f(F)|F € 7 }.
For a fibrewise map A: (X, f) — (Y,g) and a filter (base) # in X, we define
J+(Z) in the same manner. For a filter (base) ¢ in Y, we define 1*(¥9) as the
filter generated by the set {1~ (U)| U e %}.

We begin by defining some separation axioms on maps.

DEerINITION 2.1. A projection f : X — B is called a T;-map, i =0,1,2 (T» is
also called Hausdorff'), if for all x,x" € X such that x # x’ and f(x) = f(x’), the
following condition is respectively satisfied:

(1) i=0: at least one of the points x, x" has a nbd in X not containing the

other point;

(2) i =1: each of the points x, x" has a nbd in X not containing the other

point;

(3) i =2: the points x and x’ have disjoint nbds in X.

DeriNITION 2.2, (1) A Ty-map f : X — B is called regular if for every point
xeX and every closed set F in X such that x¢ F, there exists a nbd
W e N(f(x)) such that the set {x} and FN Xy have disjoint nbds in Xy .
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(2) A Ty-map f : X — B is called normal (resp. collectionwise normal) if for
every O €1, every closed (in Xo) disjoint sets {F}, F»} (resp. closed discrete (in
Xo) collection {F;|s e S}) and every b € O, there exists W e N(b), W < O such
that {F; N Xy, F, N Xy} (resp. {F;N Xy |s € S}) have disjoint nbds (resp. discrete
pairwise disjoint nbds) in Xy .

We now give the definitions of submap, compact map [16] and locally
compact map [14].

DeriNiTION 2.3, (1) The restriction of the projection f : X — B on a closed
(resp. open, type Gj, etc.) subset of the space X is called a closed (resp. open, type
Gy, etc.) submap of the map f.

(2) A projection f: X — B is called a compact map if it is perfect (i.e. it is
closed and all its fibres f~!(b) are compact). Note that in [10], Definition 3.1, the
space X is called fibrewise compact over B.

(3) A projection f: X — B is said to be a locally compact map if for each
x € Xp, where b € B, there exists a nbd W e N(b) and a nbd U = Xy of x such
that g: Xy NU — W is a compact map, where ¢ is the restriction of f on
XyNU.

Note that a closed submap of a (resp. locally) compact map is (resp. locally)
compact, and for a (resp. locally) compact map f : X — B and every B’ = B the
restriction f'| Xp : Xp — B’ is (resp. locally) compact.

DerINITION 2.4, (1) Foramap f: X — B, amap ¢(f) : ¢,/X — Bis called a
compactification of f if ¢(f) is compact, X is dense in ¢, X and c(f)|X = f.

(2) A map f:X — B is called a Ty-compactifiable map if f has a com-
pactification ¢(f) : ¢, X — B and ¢(f) is a T>-map.

The following holds.

ProposITION 2.5. (1) For i =0,1,2, every submap of a Ti-map is also a T;-
map. Every submap of a regular map is also regular.

(2) Compact Tr-map = normal map = regular map = Tr-map.

(3) ([10] Section 8) Every normal map is a Th-compactifiable map.

(4) ([10] Section 8) Every locally compact Tr-map is a T>-compactifiable map.

DeriNITION 2.6.  For the collection of fibrewise spaces {(X,, f;) |« € A}, the
subspace X = {t = {t,} € [[{X, : a € A} : fut, = fptp Vo, € A} of the Tychonoff
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product [] = [[{X. : « € A} is called the fan product of the spaces X, with respect
to the maps f,, « € A.

For the projection pr,: [ — X, of the product [] onto the factor X,, the
restriction 7z, on X will be called the projection of the fan product onto the factor
X,, «e A. From the definition of fan product we have that, f, on, = f3 o mp for
every o, € A. Thus one can define a map f : X — B, called the product of the
maps f,, a €A, by f = f,omn,, aeA. The fibrewise space (X, [) is called the
fibrewise product space of {(Xy, fy)| o€ A}.

Obviously, the projections f and 7n,, o € A, are continuous.

The following proposition holds.

PropoSITION 2.7. Let {(X,, f;)|a€ A} be a collection of fibrewise spaces.

(1) If each f, is T; (i=0,1,2), then the product f is also T; (i=0,1,2).

(2) If each f, is a surjective regular map, then the product f is also a regular
map.

(3) ([10] Prop. 3.5) If each f, is a compact map, then the product f is also a
compact map.

4) If each f, is a Tr-compactifiable map, then the product f is also
T>-compactifiable.

We shall conclude this section by defining the concept of paracompact map
([4], [5]), metrizable type (MT-)map ([6]), Cech-complete map ([2]), k-map ([10],
[2]) and b-filters (or tied filters) ([10]).

DeriNITION 2.8. (1) A map f : X — B is said to be paracompact if for every
point b € B and every open (in X) cover % = {U,|a € o/} of the fibre X, (i.e.
X» = | J{U,| v € o}), there exist W e N(b) and an open (in X) cover 7~ of Xy
such that Xy, is covered by # and 7" is a locally finite (in Xy) refinement of
{Xw} ANU.

(2) For a map f: X — B and be B, let % be an open (in X) cover of Xj.
The family ¥~ of subsets of X is said to be a b-star refinement of U if
VN X, # & for every Ve, Xy = )7 and there exists W e N(b) such that #
covers Xy and {st(V, 7)) |V eV} <UN{Xw}.

DeriNITION 2.9. (1) Let f: X — B be a map. The sequence #7, #3,... of
open (in X) covers of Xj, b € B, is said to be a b-development if for every x € X},
and every nbd U(x) of x in X, there exist ie N and W e N(b) such that
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x e St(x,#; A{Xw}) = U(x). The map f is said to have an f-development if it
has a b-development for every b e B.

(2) A closed map f: X — B is said to be a metrizable type (MT-)map if it is
collectionwise normal and has an f-development.

The following proposition was obtained in [6] and [4].

ProrosiTioN 2.10. The following implications hold in TOPg.
MT = paracompact T, = collectionwise normal = normal.

DeriniTION 2.11. (1) Let X be a topological space, and A a subset of X. We
say that the diameter of A is less than a family </ = {A}, ¢ of subsets of the
space X, and we shall write 6(A4) < ., provided that there exists an s €.S such
that 4 < A,.

(2) ([10] Section 4.) For a fibrewise space (X, f), by a b-filter (or tied filter)
on X we mean a pair (b, 7 ), where b € B and 7 is a filter on X such that b is a
limit point of the filter f,(%) on B. By an adherence point of a b-filter # (b€ B)
on X, we mean a point of the fibre X, which is an adherence point of & as a
filter on X.

(3) ([2]) A Th-compactifiable map f : X — B is said to be Cech-complete if
for each b € B, there exists a countable family {.«/,},.n of open (in X) covers of
Xp with the property that every b-filter # which contains sets of diameter less
than .o/, for every n e N has an adherence point.

The following result for Cech-complete maps is proved in [2] Theorem 5.1.

PropoSITION 2.12.  Suppose that B is regular. For a T,-compactifiable map
f:X — B, the following are equivalent:

(1) f is Cech-complete.

(2) For every Tr-compactification f': X' — B of f and each be B, X} is a
Gs-subset of X.

(3) There exists a Tr-compactification [': X' — B of f such that X, is a
Gs-subset of X, for each b€ B.

Finally we give the definition of k-map, see [10] Section 10 and [2] Section 6.

DeriNiTION 2.13. (1) Let f: X — B be a map. A subset H of X is said to
be quasi-open (resp. quasi-closed) if the following condition is satisfied: for each
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be Band V e N(b) there exists a nbd W € N(b) with W < V such that whenever
f|1K:K— W is compact, the subset HNK is open (resp. closed) in K.

(2) Let f: X — B be a T,-map. The map f is said to be a k-map if every
quasi-closed subset of X is closed in X or, equivalently, if every quasi-open subset
of X is open in X. (Note that in [10] X is said to be a fibrewise compactly
generated space over B.)

3. Definition and Basic Properties of p-maps

In this section, we define a p-map and investigate some of its basic
properties. The concept of p-maps is a generalization of p-spaces ([1]).

DEerFINITION 3.1. A T)-compactifiable map f : X — B is a p-map if for every
b € B, there exists a sequence {#,},.n Of open (in X) covers of X, with the
following properties: if x € X, and x € U, € %, for every ne N, then

(P1) ((),en Un) N X is compact.

(P2) For every open (in X) set U with () _x Us) N Xy < U, there exist

npeN and W e N(b) such that ((),.x Un)NXs = ()., U)NXw < U.

i<ng
For a p-map f: X — B, we can characterize it by using a compactification
of f as follows.

THEOREM 3.2. Suppose that B is regular. A map f : X — B is a p-map if and
only if there is a Th-compactification f': X' — B of [ such that for every b e B
there is a sequence {ZP,},.n of open families of X' satisfying the following
conditions:

(1) For every neN, X, = ) 2,,

(2) For every x e Xy, (), onSt(x,2:) N X, = X

PrROOF. [“Only If” part]: If f: X — B is a p-map, there exists a sequence
{5}, e~ of open (in X) covers of X}, satisfying Definition 3.1. Let f': X' — B be
a Tp-compactification of f. For every n € N, take a family 2, of open subsets of
X' such that 2, A{X} =U,, then X, < )2, for every ne N. We shall prove
that (2) holds. If not, there is x € X, and y € X]\ X, such that {x, y} < P, € 2,
for every neN. By Definition 3.1, F = (), yPxNX*)NX, is compact and
since y ¢ F, there is an open subset G of X’ such that F = G = G*' < X'\{y},
because f’ is compact and B is regular. Thus there exist np € N and W e N(b)
such that F < (), PN X*)NXw = G. Let V = ([, P)N(X'\G¥)N X},
then ¥ e N(y) and ¥ NX = ¢ which contradicts X' = X.
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[“If” part]: Let /' : X' — B be a T>-compactification of f such that for every
b € B, there is a sequence {#,}, .y of open families of X’ satisfying (1) and (2).
For every neN let #,={U: U is open in X,UNX, # & and UX < P for
some P € 2,}, then {%,},.n 18 a sequence of open (in X) covers of X;. We shall
now show that if x € X;, and x € U, € %, for every n e N, then conditions (P1)
and (P2) of Definition 3.1 hold.

(P1): For every neN there is P,e#?, such that U,* cP,.
Thus ((),cx TN X, < (), cn UX)NX, = (), cn UFX) N X, because from (2),
(N),en TXVNX, < (), en 51X, 24)) N X} < X, Consequently, ((),.x UX)N X,
is compact.

(P2): For every open subset U in X with ([, U)NX, = U, take an
open subset G of X’ such that U=XNG. Since X, is compact and
{G}U{X'\UX |neN} is an open cover of X/, there is n9pe N such that
X, c U[SHO(X’\U,X')U G. Since f’ is closed, there is W e N(b) such that
Xy e Xjy e o,y X\TX)UG and therefore, ((),.x UX)NXy = (), TF)N
Xy < U. ]

Since a locally compact T>-map f : X — B has an Alexandorff-type com-
pactification f’: X’ — B (Proposition 2.5(4)), and therefore X is open in X', we
have the following.

CoRrROLLARY 3.3. If B is regular, then a locally compact Th-map is a p-map.
For submaps of p-maps, we have the following.

THEOREM 3.4. For a p-map f:X — B, we have:

(1) If F is a closed subset of X, then the submap f|F is a p-map.

(2) Suppose that B is regular. If G is a Gs-subset of X, then the submap f|G is
a p-map.

Proor. (1) Since f:X — B is a p-map, for every be B there exists a
sequence {%,},.n of open (in X) covers of X, satisfying (P1) and (P2) of
Definition 3.1.

For every neN, let 9, ={FNU:U€%,}, then {%,},.N is a sequence of
open covers of F, in F. If x € F;, and x € G,, € 4, for every n € N, then there is an
element U, € %, with xe G, = U,NF < U, for every neN.

(ll) (mneN Glf) mFb = (mneN (_;I’IX) mXb < (ﬂneN Uj() n Xba Le. (ﬂneN Grf) n

Fp is closed in (("),.x UX)NX;, so that it is compact.
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(2’) For every open subset G in F with (), _yGF)NF, = G, take an open
subset U in X with G=UNF. Let Uy = UU (X\F), then U, is open in X and
(N,en UX)N Xy = Up. Then, there exist moeN and W e N(b) such that
(Naen U NXy = ([, UX)NXw < Uy and  therefore, ((),.x Gr) NFy =
(ﬂiénu GHYNFy = G.

It follows from (1) and (2) that f|F is a p-map.

(2) Since f:X — B is a p-map, from Theorem 3.2 there is a T5-
compactification f’: X' — B satisfying properties (1) and (2) of Theorem 3.2.

Since G is a Gj-subset of X, there exists a sequence {G,},.n of open subsets
in X’ such that G = ((),.xG:)NX. Obviously f/|GX :GX — B is a T»-
compactification of f|G. For every neN, let %, = {G,NG* NP : Pe ?,}. Then
the sequence {%,},.n Of open families of GX' satisfies:

(1) For every neN, Gy = | Un,

(2') For  every x€Gy,  ((),onSHx %) NGE <= (), cn(52(x, 2,) N
G,NGXNNX, = (), ex51xZ) NX)) N ((),,en G) NGY = X, NG = G

Thus, from Theorem 3.2, f|G is a p-map. ]

In connection with Theorem 3.4, note that a submap of a p-map is not
necessarily a p-map even when the submap is a closed and open map. For this,
see [9] Example 3.23. In this example, there is a p-space X in which a subspace Y
is not a p-space. It is then easy to see that the map f from X onto a singleton set
B gives the necessary example.

THEOREM 3.5. Suppose that B is regular. Let f,: X, — B be a p-map for
every n € N. Then the product map f =1z fu: 1z Xy — B is a p-map.

PrOOF. Since f, is a p-map for every n € N, from Theorem 3.2 there is a
compactification f,: X, — B of f, such that for every b € B there is a sequence
{Pwum}en Of open families of X, satisfying:

(1) For every meN, Xy < | Pum;

(2) For every x € Xy, ((),en 520X Pun)) N X, < Xop.

We can assume that 2, ,4,; is a refinement of £,,. Since f'=
1z /] : 11z X, — B is compact (Proposition 2.7(3)), f'|[1zXs: [[zX» — B is a
compactification of f.

For every meN, let 4, = 21, xg- xXg Pwm X5 ([[3X,)),om and %, =

m

4! | 115 Xn, then it is easy to see that %,, is an open family of [[; X, and %,, is
an open cover of ([[;zX,),. By Theorem 3.2 we only need to prove that for

every X = (x1,X2, ..., Xu,-.-) € ([Tp Xu)ps (Vyen 51X %) N ([15 X)p, = (15 Xan)p-
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Assume there is a point x’ = (x{,x5,....x},...) € ([, cn 52X, Gm) N (IT5 Xu)p)\
(I1z Xu)p, then there is some n € N such that x;, ¢ X,;. Since (ﬂmeN SH( Xy Prm)) N
X, © Xy, there exists m € N such that x;, ¢ st(x,, Zum). Let [ = max{m,n}, then

x" ¢ st(x,%;) which contradicts x" € (), _n5t(x, %) N ([15 Xn)- O

THEOREM 3.6. Let f: X — B and g: Y — B be maps and .: f — g be a
perfect morphism. If g is a p-map, then f is also a p-map.

PRrROOF. Since g is a p-map, for every b € B there is a sequence {¥,},.n Of
open covers of Y, satisfying (P1) and (P2) of Definition 3.1.

For every neN, let %, = {i_](V) :Vev,}, then {%,}, N is a sequence of
open covers of Xj,. Using the properties of {7,},.n We deduce the following
properties of {%,},.n- If x€ X, and xe U, € %, for every neN, there is a
V,ev, with U, = fl(Vn) for every neN.

(1) Since  ((),.xVa)NYs is  compact and () NUs)NXy =
(Maex A TN O Ys) = (Myen 4 TN (Ys) = 27((Nyen V) N ),
we conclude that ((), . Ux) N X, is compact from the perfectness of 1.

(2') If U is an open subset of X with ((), . Ux) N X, = U, then ([, . Un) N
X, =2 ((,en V1) N'Ys) < U and therefore, ((),.n V)N Y5 = Y\A(X\U). Let
V = Y\A(X\U), then V is open in ¥ and ((),.x Vu)NY, = V. Since g is a p-

map, there exist ng € N and W e N(b) such that (), x V)N Yy <= (();,, Vi) N
Yy < V. It is not difficult to see that ((), .y Un) N Xy < (ﬂis;m U)NXy c U.
Thus f is a p-map. O

If f:X — B is a paracompact p-map, the converse of Theorem 3.6 also
holds (see Theorem 5.2).

We shall conclude this section by studying the relations of Cech-complete
map, p-map and k-map, and sharpen Theorem 6.3 of [2] that a éech-complete
map is a k-map.

THEOREM 3.7. Suppose that B is reqular. If f : X — B is Cech-complete, then
f is a p-map.

ProOOF. Since B is regular and f is éech-complete, there is a 7»-
compactification f’ of f such that for every b € B there is a sequence {G,}, N of
open subsets of X' such that X, = ([, . Gu) N X;. Let 2, = {G,}, then {Z,}, n
satisfies conditions (1) and (2) of Theorem 3.2, so that f is a p-map. O



188 Yun-Feng Bar and Takuo Miwa

THEOREM 3.8. Suppose that B is regular and satisfies the first axiom of
countability. Then a p-map f:X — B is a k-map.

Proor. If f is not a k-map, there is a quasi-closed subset H in X which is
not closed, say x € H\H. Let b = f(x) and {W,},.n be a decreasing nbd base of
b with W, = W, for every neN. Since f is a p-map, there exists a sequence
{9,},cn of open (in X) covers of X, satisfying (P1) and (P2) of Definition 3.1.

For every neN choose U,e N(x) and G,€%, such that xe U, c
Uy ()., Gi then Ky = ((),cn Un) N X = (), en Un) N Xp = ([),,en Gn) N X5 is
compacti

If K1 N H is not closed in K, then for every W e N(b) and every W’ e N(b)
with W’ < W, K is fibrewise compact over W' (Definition 2.3 (2)) but K; N H is
not closed in K; which contradicts the fact that H is quasi-closed. Thus, in the
case that K; N H is not closed in Kj, the proof is complete.

If Ky N H is closed in K, then K; N H is compact and there is Vy € N(x) with
KiNHNVy= . For every ne N choose V, € N(x) such that xe V, <V, <
Vu_1. Let Kb = mneN(U”‘ nr,N XW”) NX, = mneN(U” n I7n ﬂXW”) N X,, then K,
is compact and K> N H = . We first prove that {U, NV, N Xy, }, Ny 1s a nbd
base of K> in X. If not, one can find a nbd U of K, and x, € (U, N V,,N Xy, )\U
for every neN. If {x,},.xNXs =, then ([, _Gn)NXp = X\{x,},cn and
theﬁore, there exists np e N such that ([, Ga)N X, = (ﬂl_g“ G)N Xy, <
X\{xs},cn Which contradicts x, € ([, <n O1) N Xy, for every n>np, so
{%n},enNXp # . Since {x,}, .U =, {xu},enNU =0, but {x,},.nN
X, ﬂneN(Un NV,NXw,)NX, =K, which is a contradiction.

For every neN take a point x,eU,NV,NXy NH. Since
{U,NV,NXw,},en 1s @ base of Ky, F, = K, U{x; : i > n} is compact and F, N H
is not closed in F, for every n € N. Thus, for every W e N(b), there exists n € N
such that W, = W and F, is fibrewise compact over W, (Definition 2.3 (2)), but
HNF, is not closed in F, which contradicts the fact that H is quasi-closed in X.
Thus, in the case that K; N H is closed in Kj, the proof is also complete. []

neN

4. Definition and Basic Properties of A-maps

In this section, we define an M-map and investigate some of its basic
properties. The concept of M-maps is a generalization of M-spaces ([11], [12]).

DerFmiTION 4.1. A T)-compactifiable map f: X — B is an M-map if for
every b € B there is a sequence {#%,},.n Of open (in X) covers of X, satisfying:
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(M1) If xe X, and x, € st(x,%,) N X, for every neN, then the sequence
{*n},cn has an accumulation point in X,
(M2) For every neN, %, is a b-star refinement of %,.

For submaps of M-maps, we have the following.

THEOREM 4.2. For an M-map f : X — B and a closed subset F of X, f|F is
an M-map.

Proor. Since f: X — B is an M-map, for every b € B there is a sequence
{5}, c~ of open (in X) covers of X} satisfying (M1) and (M2) of Definition 4.1.
For every neN, let 4, = %, A {F}. Since F is closed, {¥4,},.n is a sequence of
open covers of Fj which satisfies (M1) and (M2) of Definition 4.1 and therefore,
f|F is an M-map. O

THEOREM 4.3. For the maps f: X — B and g: Y — B, if there is a quasi-
perfect morphism A: f — g and g is an M-map, then [ is an M-map.

Proor. Since g: Y — B is an M-map, for every b € B there is a sequence
{?¥1},en of open (in Y) covers of Y, satisfying (M1) and (M2) of Definition 4.1.

For every ne N, let %, = 27 (#7,), then {%,},.x is a sequence of open (in X)
covers of X}, such that %, is a b-star refinement of %,, for every n e N. Let us
now show that if x € X, and x, € st(x,%,) N X, for every n € N, then the sequence
{*n},cn has an accumulation point in X,. If not, since A(x,) € st(A(x), 7») N Yy,
{A(xn)},cn has an accumulation point y e Y;. By countable compactness of
27'(y), we can assume that {x,},.xN 2" (¥) = . Since 1 is closed, there exists
V e N(p) such that {x,},.xNA"' (V)= and therefore, ¥ N{i(x,)},.x = O
which contradicts y € {A(x,)},on- O

5. Paracompact p-maps and M-maps

One can note that neither of the classes of p-maps and M-maps imply the
other. It is enough to consider the case when B is a singleton set and X a p-space
(resp. M-space) that is not an M-space (resp. p-space). In the realm of para-
compact maps, we prove in Theorem 5.1 that the notions of M-map and p-map
are equivalent, which corresponds to [1] Theorem 16. Further, we prove in
Theorem 5.2 that a perfect image of a paracompact p-map is also a paracompact
p-map which corresponds to [8] Theorem 1.
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THEOREM 5.1. A paracompact map f : X — B is an M-map if and only if it
is a p-map.

PROOF. [“Only if” part]: If f: X — B is an M-map, for every b € B there is
a sequence {%,},.n of open (in X) covers of X, satisfying (M1) and (M2) of
Definition 4.1.

We shall prove that the sequence {%,}, N satisfies the definition of p-map.
Let xe X, and x e U, € U, for every n e N. We show that (P1) and (P2) hold.

(P1) We need to show that ([
compact, the closed subspace (ﬂ

HeN U,)N X, is compact. Since f is para-

HeN U,)NX, of X, is paracompact. Next,

consider a sequence {x;};cn < ([, Un) N Xp. Since %, is a cover of X, for

neN
every i€ N there exists Uy, € %,y such that x; € Uy, and therefore, x; € U, =

st(Uyy1, Uny1). By (M2), there exists U, € %, such that st(U,y1,%,41) < U, and
hence, {xi},c.n = U,. Thus for every neN we can choose U, € %, such that
{xn,x} < U, and therefore, x, € st(x,%,) N Xj. It follows from (M1) that {x,}, N

has an accumulation point in Xj, so that () _\ U,) N X} is countably compact

neN
and therefore, compact.

(P2) Let U be open in X and () _xUs)NXp < U We first prove that
there exists ng € N such that (ﬂ U)ﬂXb c ﬂ <o U)NX, = U. If not, for

every neN there is x, € ([ )ﬂXb)\U For every ne N, since %, is a

i<n

cover of Xp, there is U, , €%,41 such that X,y € Uy, < st(Upi1, Uni1)-

Xn+1

Consequently, one can find U, € %, such that {x,;1,x} < st(Uys1, %n+1) < U,
because %, is a b-star refinement of #%,. Thus x,.| € st(x,%,) and {x,}, N has

an accumulation point xo € X;. Then xo € {xi},., < U, for every neN and
therefore, xo € ((),.n Us) N Xy = U which contradicts {x,},.xNU = &.

Since X, = X\ﬂl<n JUU and f is closed, there exists W e N(b) such
that X = Xy = (X\(),_,, U) U U and therefore, ((),_, U) N Xy = ([, U:)N
XW c U.

[“If” part]: If f is a p-map, then for every b€ B, there exists a sequence
{U,},cn of open (in X) covers of X, satistying (P1) and (P2) of Definition 3.1.

Since f is paracompact, from [4] Theorem 3.12, for every n € N there exists

i<ng

an open (in X) cover 94,1 of X, which is a b-star-refinement of %, A %1, where
%1 =4,. Obviously the sequence {¥%,} satisfies (M2), and we are only left
to prove that {¥%,} satisfies (M1). Let xe X, and x,est(x,9,) NX, for
every neN. Since ¥, is a b-star refinement of ¥;, there is G, e ¥; such
that x, € st(x,%,) < G). Inductively, for every n > 2 there is G, € %, such that
isn © Gy. For
every n e N there exists U, € %, such that G, < U,. If {x,},.n has no accu-

Xnt1 € SH(x,%,4+1) < G,. Then G,y < G, for every ne N, and {x;}
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mulation point in Xj, then {k|x; € ("), .x Un) N X5} is finite, so one can suppose
that {x,},cx N (((),ox Un) N X5) = &. Then since {x,},cn N (Xp\{Xn}nen) = &,
,ex UnN Xy = X\{x,},cn. From (P2), there is W eN(b) such that
(ﬂneN U,)NX, < (ﬂigno U)NXw = X\{x4},.n> Which contradicts {x;}
N, “n U;N Xy . Consequently, the sequence {x,},.n has an accumulation point

in Xb. O

i>ng <

The last theorem of this section relates to invariance of paracompact p-maps
under perfect morphisms.

THEOREM 5.2. Suppose that B is regular, f:X — B and g:Y — B are
T>-compactifiable maps, and there exists an onto perfect morphism A : f — g. If f
is a paracompact p-map then so is g¢.

To prove the theorem we need the following two lemmas.

LemmA 5.3. Let f: X — B and g: Y — B be Tr-compactifiable maps and
f":X"—= Band g': Y — B be Th-compactifications of [ and g, respectively. If
there exists an onto perfect morphism A: f — g, then there exists a morphism
A f!—g" such that

(1) 2| X =2 and A" is perfect;

2) V(X)\Xp) = Y/\Ys for every be B.

Proor. (1) Let u=eo i where e is the embedding of Y to Y’. Since
f":X'"— Band g': Y — B are Th-compactifications of f and g, X = X' and
for every b-filter # on X which is convergent in X', the b-filter u,.# has a unique
adherence point in Y'. For every b € B and every x € X, let 7, be the nbd b-
filter of x in X', and let y, be the unique adherence point of the b-filter u(Z,|X)
in Y. For every be B and every xe€ X/, let 2'(x) = yy, then 2': X' — Y’ is a
fibrewise continuous map and A'|X = 4 from [10] Proposition 4.6.

For every closed subset F of X', the map ¢'|A'(F): A (F) — B is compact
since f'|F: F — B is compact, and therefore 1'(F) is closed in Y’. Since Y] is
regular and A~!(y) is closed in X, , for every y e Y/, 2'~1(y) is compact for every
ye Y, so that 2" is perfect. Consequently, the proof of (1) is complete.

(2) If there exists be B and xe X/\X, such that A'(x)=yeY,, then
2«(Z%|X) is convergent to y, where 7, is the nbd b-filter of x in X'. Since 1 is
perfect, Z,|X is convergent to some point x’ € 2~ (y) in X ([10] Proposition 4.3).
Then x and x’ are different adherence points of #, in X', which contradicts the
fact that f’ is T>. Thus 2'(X/\X») = Y/\Y, for every b e B. O
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LemMA 5.4. Suppose that B is regular. For a paracompact Th-map
f:X — B, let f': X" — Bbea Tr-compactification of f. If U is an open cover of
Xy in X' for every b € B, then there exists an open (in X') cover 2 of X, satisfying:

(1) For every xe | )2, there exists U e U such that st(x, 2)X' < U;
(2) For every xe|)2, 2 is locally finite at the point x.

ProOF. Since B is regular and % is an open cover of X;, in X', for every
x € X; take Uy, € % with x € Uy, and let U, be an open nbd of x in X such that
xe U, c UX < Uy,. Let %, = {U,|x € X,}, then %, is an open cover of X}, in
X. Since f is paracompact, there exists an open (in X) cover %, of X, which is a
b-star refinement of %; in X. Then there exists W € N(b) and an open family %;
in X which is a locally finite (in Xy) cover of Xy and satisfies %3 < {Xw} A %>.
For every V' € %5 take an open set U(V) < X}, in X’ such that U(V)NX = V.
Let %4 ={U(V)|V €U} and G={xe X'| U4 is locally finte at x}. Then G is
open in X’ and Xy = G since X = X'. Let 2 ={GNU|U € %} which is an
open (in X') cover of X, and satisfies (2). For every xe ()2 let {Pe ?|x€ P} =
{Py,...,Pr}. For i <k take U(V;) € %4 such that P, = GNU(V;). Then since
Uv)NU(V;))NX # & for every i,j<k, we have V;NV;# & for every
i,j <k. Since %3 <{Xw} AU, and U, is a b-star refinement of %, in X,
there exists xo € X, and Uy, € %, such that U Vi € Uy,. Then, WX "=

i<k "t

st, 2 )N XX < U, Y < Uy, €, and (1) is satisfied. ]
We can now prove Theorem 5.2.

Proor (Theorem 5.2). Since f:X — B is a p-map, take a T»-
compactification f’: X’ — B of f such that for every b € B there exists a se-
quence {Z,},.n Of open covers of X, in X' satisfying:

(1) For every neN, X, = | )2y

(2) For every x € Xp, (), on51(x,25) N X} = X,

By Lemma 5.4 we can suppose the following.

(3) For every neN and xe U?f,,, 2, 1is locally finite at the point Xx;

(4) For every neN and xel|)Z,., there exists Pe 2, such that
st(x,P,1)X < P.

Furthermore, we show that the following (5), (6), (7) and (8) hold.

(5) For every be B if xe X/\X,, then () _\st(x,2,)NX, = X\ X,.

If not, there exist xo € X and P, € 2, for every n € N such that {x,xp} = P,.
Then x € (), 81(x0,2,) N X;, which contradicts (2).

(6) If F = X, is compact, then () _\st(F,2,)N X, < X,.
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If not, there exists xe (), _ys!(F,2,)N(X/\Xs). Then for every neN,
there exists P, e %, such that xe P, and P,NF # J. For every neN,
F,=FNst(x,2,)* is compact and F,,, c F, from (4). Therefore, there
exists xo € X, such that x e (), yFn However, x;e ﬂnemeﬂXb’ =
(), en S2(x,2,) N X, which contradicts (5).

(7) If F < X, is compact, then st(F,2,)Y < st(F,#,_,) for every neN.

For every neN, since %, is locally finite at every point of (]2, let
{Pe?,|PNF # J} ={Pi,...,Pr}. By (4), for each i < k there exists P/ € 2,_,
such that P;X' = P!. Thus st(F,2,)" = Uisk}T,-X/ < U Pl e st(F, P 1).

(8) For every he B and neN, let %, = {st("'(y),2,)|ye Ys}. Then
N,en St (), %) N X] = X, for every y e Y.

If not, there exist y, € Y, and xe ﬂneNst(/l_l(y),%n)ﬂ(X,I\X;,) such that
st (yp), 20NN () £ @ and  xest(A(y,),2,). Thus st(A'(p),2,)N
') # @ and st(x, 2)N AN y,) £ B, Let x, est(A (), 2)N A (),
xpest(x,2,)N 2" (ya) and Ty = (), .n5t(2 ' (),2,)¥)NX,. Then T; is
compact in X, and T} = ﬂneNst(/Tl(y),g’n))ﬂXb’ < X, from (6) and (7). Let
T, = (ﬂneNst(x,?]’n)X/)ﬂle. Then 7> is also compact in X, and T =
(), en s2(x, 2)) N X, = X\ X, from (4) and (5).

Let g': Y’ — B be a T,-compactification of ¢g and let A': f' — ¢’ be a

morphism extension of A satisfying properties (1) and (2) of Lemma 5.3. Then,
for the above subsets T} and 7> we have that A'(T}) and A'(7>) are compact in
Y, with 2/(T1)NA'(T») = &. Therefore, there exist nbds V; of A/(T;) (i=1,2)
such that "NV, = &.

Since y, €Y, and x, € sl(ifl(y),g’n) ﬂfl(yn) cXpc Xy, {Xu},en S X ©
X,. Then, there exists n; € N such that x, € )V’*I(Vl) for all n > n;. Otherwise, for
every n e N there exists k, > n such that x;, ¢ A~ (V}). Then {xx,},.xN A" (V1)
= & and therefore, {xt,},.xN4A"'(V1) = . Since {xt,},en S {Xn}uen © X/,
{Xk,},en has adherence points in X;. Suppose xo is such a point. From
D), st N(y), 2)Y st (y),2,1). Tt follows that {xi},n, © {Xi}ia, ©
st(27' (), 2,). Consequently, xoe€ {x; ti=n® <st(A7'(),2,)%X" and therefore,
x0 € (), en 512 (), 22)X N X} = Ty, which contradicts {xg, },.xN A" (V1) = &.

Since y, € Yy and x est(x,2,) N4 (y,) © Xp = X[, {x'},on © Xp < X].
Analogous to the above one can prove that there exists n, e N such that

X, € /IH(VZ) for every n>mny. Let np = max{n|,n,}, then for every n > ny,
x, € A7N(V) and x, e '(V2). Thus p,=2/(x,) = A'(x]) e V1NV, which
contradicts Vi NV, = .

Thus (8) is completely proved.
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Finally, for every neN let 4, = {G = Y\A'(X'\U) : U € «,}. Then

(1) For every ye Y, and ne N there exists U € %, such that "' (y) < U,
then ye G= Y\ (X'\U) €%, and hence, Y, = () %,

(2') Since A'"!(%,) is a refinement of %,, for every ye Yj,

AH(en st G N YE) = (x4 (5202, 90))) 0 X;

< (N,enStA 7 (3), 4))) N X, < Xo.
Hence ((),.nS1(1,%,))N Y] € Yy
Consequently, from (1), (2’) and Theorem 3.2, g is a p-map. Since par-
acompactness is preserved by closed maps ([5] Theorem 2.11), g is a paracompact
p-map. ]

In connection with Theorem 5.2, note that if f is not paracompact, the result
does not necessarily hold. For this, consider the case when B is the singleton set
and [3] Example 2.1.

6. Metrizable Type (M7-)maps and p-maps

In this section, we investigate the relations of MT-maps with (paracompact)
M-maps and some problems analogous to those encountered in the relations of
metrizable spaces with (paracompact) M-spaces.

THEOREM 6.1. Suppose that B is regular. If a T,-compactifiable map
f:X — B has an f-development, then it is a p-map.

Proor. Since f has an f-development, for every b € B there is a sequence
{,},cn of open (in X) covers of X} which is a b-development. For every n e N
and xe X, take U,e, and V,e N(x) such that xe Vy <V, < U,. Let
Vu={Vy|xeXp} and ¥ = {¥,},.n- For neN and x € X, if x € V,, € ¥;, there
exists U, € U, with xe V,, = V,, = Uy, so that ("), .\ Va) N X C (), cn Un) N Xp.

> " neN

If there exists xo € (X;\{x}) N (["),cn Va), then x € X\{xo} and xy € U, for every
neN. Since {%,},.n 18 a b-development, there exists nyp € N and W € N(b) such
that st(x,%,,) N Xw = X\{xo}, which is a contradiction. Thus (("), .\ Va) N X5 =
{x} is compact. From the definition of b-development, for every open subset U
of X with ((7),.xVa) N Xy ={x} = U, there exist neN and W e N(b) such
that {x} e st(x,%,) N Xy = U and therefore, (), V) N Xp = {x} € ([, Vi) N
Xy < U. Hence f is a p-map. ]

COROLLARY 6.2. If B is regular then every MT-map f :X — B is a para-
compact p-map.
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COROLLARY 6.3. Suppose that B is regular. Let f: X — B and g: Y — B
be maps and 7 : f — g a perfect morphism. If g is an MT-map, then f is a
paracompact p-map (and therefore, an M-map).

For two maps f: X — B and ¢g: Y — B, f is said to be (resp. closedly)
embeddable to g if there exists a morphism 4 : f — g such that A(X) is a (resp.
closed) subspace of Y.

We now cite two problems related to (paracompact) M-maps and para-
compact p-maps, that are analogous to results pertaining to (paracompact) M-
spaces ([11]) and paracompact p-spaces ([13]).

PrOBLEM 6.4. Let f:X — B be an M-map (resp. paracompact M-map).
Does there exist an MT-map ¢g: Y — B and a quasi-perfect (resp. perfect)
morphism A: f — ¢?

In this case, we call f the preimage-map of g under A.

PrROBLEM 6.5. Let f: X — B be a paracompact p-map. Can f be closedly
embeddable to a product of an M7T-map and a compact map?

The next theorem is a partial answer of Problem 6.5. It follows from this
theorem that if Problem 6.4 is affirmative, then so is Problem 6.5.

THEOREM 6.6. Let f: X — B be a map that is a preimage-map of an MT-
map ¢ : Y — B under a perfect morphism A: f — g. Then f is closedly embed-
dable to a product of g and a T>-compactification ' : X' — B of f.

Proor. First, since the MT-map g is a paracompact 7>-map, it follows from
[4] Proposition 4.4 that f is a paracompact 7>-map, and therefore f has a
T»-compactification f': X’ — B. Let u=2AAge: X — Y xp X’ be the map
defined by u(x) = (A(x),e(x)), where e : X — X’ is the fibrewise embedding. Then
= (Axpidy)o(idyAge) : X — X xg X' — Y xp X' is one-to-one. We now
prove that Z = (idy Age)(X) is closed in X xp X'. Let (x,x') € (X xp X" )\Z,
then e(x) # x’ and f(x) = f/(x'). Since f’(e(x)) = f'(x'), there exist U € N(e(x))
and Ve N(x') in X' such that UNV = . Then it is easy to see that
e N (U)xp V is a nbd of (x,x') satisfying (e”!(U) xp V)NZ = . Conse-
quently, Z is closed in X xp X’. Since 4 and idy. are perfect, A xp idy: is perfect,
and therefore (1 xp idy/)|Z is perfect. Thus u(X) is closed in ¥ xp X'. O
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