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GROUP PRESENTATION OF THE SCHUR-MULTIPLIER
DERIVED FROM A LOOP GROUP
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Masaya TOMIE

1. Introduction

In 1960s H. Matsumoto [2] considered the universal central extension and the
Schur-multiplier of a Chevalley group which is derived from an arbitrary field F
and an arbitrary Cartan matrix A4 of finite type. Then he showed that the
corresponding Steinberg group (we denote it by S#(4, F)) is its universal central
extension and gave a presentation of its Schur-multiplier for almost every field.
Now one sees this Schur-multiplier is an abelian group which is strongly con-
nected with this root system.

In general, a Chevalley group G(A4,R) over a commutative ring R is
constructed as a group using the functor represented by some Hopf algebra. And
there are many results about the structure of the associated K, group.

In this paper we take Laurent polynomial rings F[X,X~!]. A Chevalley
group over a Laurent polynomial ring is sometimes called a loop group. Then we
consider the structure of the K, group of a loop group and obtain the following
theorem, where K, will be given by generators and relations in section 3.1.2.

Theorem

Let A4 be a Cartan matrix of finite type. Then we have

K>(A,F[X, X ")) ~ Kz(4, F[X, X ']).

2. Preliminaries

In this section K is a field of characteristic 0. Let X = (X;;) (1 <i,j<n) be
an n x n symmetrizable generalized Cartan matrix. We denote a Kac-Moody Lie
algebra over K, the standard Cartan subalgebra, the associated root system, the
set of real roots obtained from X, by g(X), h, A, A™ respectively. Using this
notation we can decompose g(X) as follows:
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3 X)=b® (@D, .9,), where g,:={xeg|[hx]=alh)x Vheh'}.

We call this the root space decomposition with respect to [.

Now we introduce a nondegenerate, symmetric, invariant, bilinear form on
g(X) (cf. [12]). Using this we can identify ) with h* (here h* is the dual space
of ). We can take IT= {ay,...0,} =b* and 1= {hy,...h,} =} satisfying
(o, o)/ (o4, o) = Xy, where h; := 20;/(e, ;). Then IT and IT are called funda-
mental roots and fundamental coroots respectively.

Now we take o, (h):=h— (o;,h)h; (heb™ or bh). Then o, € Aut(h™) or
Aut(h). And the subgroup of Aut(h) or Aut(h*) generated by the g,, (1 <i < n)
is called the Weyl group of the g(X) (cf. [12]).

Next we take a Chevalley base {e,|axe A} of g and fix an integrable
representation (z, V) of g(X) with

n:g(X) — End(V).

We consider the group G := {x,(t)|te K, € A™) = Aut(V'), where x,(f) :=
Exp(n(te,)) € Aut(V). We call the group G a Kac-Moody group. In fact G is a
central quotient of G, (X,K) as in [1].

THEOREM 2.1 (Universal Kac-Moody group) [1]. Let F be an arbitrary field
and let X be an n x n symmetrizable generalized Cartan matrix. Then the universal
Kac-Moody group Gy.(X,F) (cf [1]) is isomorphic to the group generated by the
symbols x,(u) (for all u € F) and charactarized by the following defining relations:

(K1) xy () - x4 (1) = x5 (u + 1),

)
(K2) [xx(u), xp(1)] = Hzo(+j[fe Oup Xioct jp (N i jtt' ),
(K3) Wx(l)) ( )Wx( ) - X(Txﬁ(nozﬁﬁlv_ﬁ(hx))r
(K4) /s (0) o (w) = by (0w)

for all u,teF, v,weF* and o,fe A, where w,(v) = x,(v)x_,(—v"")x,(v),
Ny (V) = wy(v)wy(—1).

DEeriNITION 2.1 (Steinberg group) [10] [7] [1]. Under the same condition as in
Theorem 2.1, a Steinberg group of type X over F is the group which is generated
by the symbols X,(t) (for all t € F) and charatarized by the conditions (K1)—(K3).
Now we denote it by St(X,F).

In this paper the generators of a Kac-Moody group G,.(X, F) are denoted by
x,(u) (for all ue F* and o€ A™) and the generators of a Steinberg group
St(X,F) are denoted by X,(u) (for all ue F* and a e A™).
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Now 7, € {£l} is the number which satisfies exp(ade,) exp(—ade_,)-
exp(ade,)(ep) =1, ges,p- Then the following propositions hold (cf. [5]).

ProPOSITION 2.1. Let X be a symmetrizable generalized Cartan matrix and F
an arbitrary field. Then the following formulas hold in G(X,F) (cf. [4]) for all
u,v,t € F* and o, e A"

L wy (0)xp(0)wa(=0) = Xo,p(1m,, goP0)).
2. wy(V)wp(t)wa(—v) = we,p(tn, /jv’/}(hx)).
3. wy(0)hp()wa(—v) = ho,p(2).

4 b0 (0™ = xp(l),

5. hy(V)wp(D)hy(v1) = v/;(luﬁ(h*))

6. h

2(0)hp()ha(v71) = hp(2).
Here w,(v) = x,(0)x_,(—0")x,(v), hy(v) = wy(v)wy(—1).

PrOPOSITION 2.2. Let X be a symmetrizable generalized Cartan matrix and
F be an arbitrary field. Then the following formulas hold in St(X,F) for all
u,v,te F* and o, e A™.

L w,(v) Aﬁ(t)%(*v) = 5%1,8(% /ﬂf’”( ))

AR

» )
2(v ﬁ([)ila(v_ ) (luﬁ(h’ )il/ Hufh)),

ProPOSITION 2.3.  Notation is as above. Then the following formulas hold for
all o, e A

L1y g1y 65 = (_1)/3(111).

2. Moo = -1

3. Nu—o = —1.

DeriNITION 2.2 [11]. Let X be a symmetrizable generalized Cartan matrix
and F an arbitrary field Now we can define a natural group homomorphism
U SHX,F) — Gy (X, F) by ¥(x,(u)) = x,(u) for all w € A’ and u € F*. Then the
kernel of W is denoted by Ky(X,F). It is sometimes called the K, group of
Gy (X, F).

THEOREM 2.2 [1] [4] [11]. Let X be a symmetrizable generalized Cartan
matrix and F an arbitrary field, and let T1 be the set of fundamental roots obtained
from X. Now we shall consider the following exact sequence:
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{1} = Ky (X, F) — St(X,F) — Gy (X, F) — {1} (exact).

Then the following results hold.

1: Ko(X,F) = <hy, (u)hy, (v)h, (uv) |0 € T u,v € F*).

2: K»)(X, F) is an abelian group and if F is an infinite field, then St(X,F) is a
universal centaral extension of G(X,F).

3: K»(X,F) is isomorphic to the group which is generated by the symbols
Cy,(u,v) for all o; € I1 and u,v € F*, and charactarized by the following relations

i

(M1)—(MB). Usually we say that Kr(X,F) has a Matsumoto-type presentation:
(M1) Cy,(u,v)Cy,(uv, w) = Cy,(u, vw) Cy, (v, W),
(M2) Cy,(u,v) = Cy(v,ut),
(M3) Coc[(uv 1) - Ca,-(Lu) =1,
(M4) C,,(u,v) = Cy,(u, —uv),
(M5) Cy,(u,v) = Cy,(u, (1 — u)v) with (1 —u) e F*,
(M6) C,, (u, 0 ")) = C, (u*"),v) denoting it by C,y(u,v),
(M7) Cooy(uv, w) = Cypp (u, W)Cxiaj(v,w),
(MS8) Cc,_,.%.(u, vw) = Coy, (t,0) Copo;(u, w) for all u,v,w e F* and o;,0; € 1.

Here we can recognize that C,,(u,v) corresponds to hy, (u)hy, (v)h,, (uv) ™",

Furthermore A, (u)h,(v)h,(uv) ™" is in K>(4, F), for any real root o. We denote
it by C,(u,v).

As above, the group structure of K,(X,F) is well known in case of an
arbitrary field F. Now it is natural to study the group structure of K, group when
we take rings instead of fields. And there are many results about this quastion.
We introduce two of them.

In fact if X is a Cartan matrix of finite type, then we can obtain a certain
group functor G(X, )= Algz(Hz, ), using a Hopf algebra H, corresponding
to our finite dimentional Kac-Moody group here. Then, the group G(X, R) for a
commutative ring R is called a Chevalley group (cf. [1]).

DEerINITION 2.3 (Steinberg Groups over Rings). Let R be a commutative ring
and let X be a Cartan matrix of finite type. Let A be the root system obtained from
X. Then we consider the group generated by the symbols x,(t) for all t e R and
o € A, and charactarized by the relation (K1)—(K3) (see Theorem 2.1). We call it a
Steinberg group and denote it by St(X,R).

Now we can define a natural group homomorphism ¢ : St(X, R) — G,.(X, R)
by W(x,(u)) = x,(u), and we denote Ker(¥) by Kr(X,R) (cf. [11] [1] [10]). Then
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there is a natural question asking whether or not K(X,R) has a Matsumoto-
Type presentation.

THEOREM 2.3 [7]. Let X be a Cartan matrix of finite type, and let R be a
local ring whose residue field is infinite, and T1 the set of fundamental roots
obtained from X. Then we have following.

1: Ko (X, R) = <hy, (u)hy, () (uv) |0y € TT u,v € F*).

2: K»(X, R) is generated by the symbols C, (u,v) for all u,ve F* and o; € T1,
and has a Matsumoto-type presentation.

THEOREM 2.4 [13]. Let p be a prime number which is neither 2 nor 3, then
K>(A,, Z[1/p]) does not have a Matsumoto-type presentation for all 1 < n.

3. Mainresults

In this chapter we suppose that F is an arbitrary field and A4 is a Cartan
matrix of finite type, and 4% is the affine Cartan matrix obtained from 4 whose
tier number is 1. (For the definition of the tier number of A4, see [12].)

Now we consider the K, group obtained from a simply connected loop group
Gys(A,F[X,X71]), this is a universal Chevalley group generated by a Laurent
polynomial ring (cf. [9]). Then we have

1 — Ky (A, FIX, X ")) = St(4, FIX, X ")) = Gu(4, FIX, X ']) = 1 (exact).

In the above exact sequence, we want to determine a group presentation of
K (A, F[X,X71)).

It is known that Gy.(A4, F[X,X~!]) is generated by the symbols x,, (uX™) for
all ue F*, me Z, and o; € I1, where Il is the set of fundamental roots obtained
from A, and charactarized by the relations (K1)-(K4) as in Theorem 2.1 (cf. [9]

[3])-

3.1. The Case of A;

In this section {a} is the set of a fundamental root in the root system of A;.
And {a, o1} is the set of fundamental roots in the root system of Afﬂ .

It is known that G.(A;,F[X, X)) = SL(2,F[X,X"]) (cf. [13]). Now we
give a presentation of K,(4y, F[X,X~']) which satisfies the following exact se-
quence:

1 — K>(Ay,F[X, X7 ']) - St(4,,F[X, X" ') - SL(2, F[X, X ']) = 1 (exact).
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3.1.1. Exact Sequence of A; Type

Fig. 1]9]

]l —b K2(AfﬂaF) - St(AilﬁvF) - Gsc(Afﬁ.vF) — 1
D b d

1 —— Ky(Ay, F[X, X)) —— St(A;, FX, X)) —— SL(2, F[X, X)) —— 1

The above diagram is commutative, and each sequence is exact. Here ® and
Y are group homomorphisms given by

@ : S1(AY | F) — S1(4,, F[X, X))
Koo 4 (n1) (1) = X (2X7)
xna0+ (n—1)oy (1) — x_,(tX")
Wity +(n1)ay (£) = W (£X)
Wty (n—1)ay (1) > W (£X")

and

¥ G (AY F)— SL(2, F[X, X))

1 X"
xnao+("+1)%1(t)'_> 0 1

1 0
xna0+(”—1)“1(t) = X
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0 txn
Whog+(n+1)o (t) = iy 0
0 —xX
Whog+(n—1)ey (t) = (X" 0
t 0
hnao-&-(n-&-l)otl (t) = (0 1 )

10
Py 4 (n— o (£
0+(n—1) ( ) e ( 0 l)

for all e F* and n e Z, respectively (cf. [9])

Since the group presentations of St(A} 7 F) and St(A,,F[X,X""]) are well
known, it is easy to see that @ is an 1somorphism. And also it is easy to show
that ¥ is well-defined. Here we note that St(4;, F[X,X~!]) has a Bruhat de-
composition (cf. [4] [9]).

ProrosITION 3.1 [4] [2]. Notation is as above. Then Kz(Afﬁ LF) is the group
generated by the symols C,(u,v) for all u,ve F* and o € {ag, 1}, where C,(u,v) =
h(u)h(v)h~ (uv), and charactarized by the relations (L1)—(L7):

(L1) Cu(u,v)Cyluv, w) = Cy(u,vw)Cy(v, w),

(L2) Cofu, 1) = Gy(1, )— L

(L3) Cy(u,v) = Cu(v,u),

(L4) Ccc(u7 - ) =G (u U)

(L3) Cu(u,v) = Cu(u, (1—H) ) (if 1 —ueFr),

(L6) Cyy(u,v72) = Cy, (u2,v) (denoting it by Cyy,(u,v)),
(L7) Cypuy (u,v) is bimultiplicative

for all u,ve F* and o€ {og, 01 }.

PrROPOSITION 3.2 [6]. Notation is as above. Then SL(2,F[X,X"']) has a
Bruhat decomposition.

ProposiTION 3.3 [9]. Notation is as above. Then we have KerV¥ =

{hoy (DD, (1) | £ € F*}.

ProOF. Since both SL(2,F[X,X"!]) and G(4 A F) have Bruhat decom-
positions, and since ¥ preserves the Bruhat decomp051t10n, we can see Ker ¥ <
<hy(2)]0 < i< 1). Hence each element of Ker W can be written as hy, (¢)hy, ()
for some ¢ € F. Therefore we obtain the derived result. O
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3.1.2. Construction of Isomorphism
DEFINITION 3.1.  Now we recognize {u,v}, as a symbol for all u,ve F*. We

define the group Ky(Ay,F[X,X~']), whose generators are {u,v}, for all u,ve F*
and which is charactarized by the following relations (M'1)—(M’S):

(M D) {u, v}, {uv,w}, = {u,ow}, {v,w},,

(M2) {1}, = {Lu}, = 1,

(M'3) {u, U}oc = {U_lvu}acr

M 4) {u, —uv}a = {u,v}w

( ) {u,(l—u)v}“:{u,v}“ (lf (l—u)eF[X,X_l]*)

for all u,v,we F*.

PROPOSITION 3.4. Let 17 : Ky(4,, [ X)) — Ky (A1, FIX,X7Y) be a homo-
morphism with n({u,v},) = Iy () hy (0)hy(uv) ™", for all u,ve F*. Then the n is a
group homomorphism.

Proor. We only have to check (M’'l) to (M’S) (cf. [2]). ]

By the commutative diagram in Fig 1, we can see K)(4i, F[X,X7]) <
St(Ay, F[X,X!]) and Kz(Afﬂ,F) c St(Afﬁ,F). Hence we can conclude that

Ky (Ay, F[X, X)) = ®((Ker ¥, Ky (A F)Y)

= (g (0o, () Kal(A]" F) € F*),
We restrict @ to <iza0(l)fz,al(l)fl,Kz(Afﬂ,F) |te F*). Then we have

q)(cao (u U)) = Ca(uv _X)Cac(uv —UX),
(D(Cd] (u7 U)) = Coc(uv U),

(D(h“o([)/:l*m (t)il) = Cl(ta _X)ilcat([a _1)1

(Ko (AP F), hoy (0D, ()Y —— Ka(A1, FIX, X71)

Ko(4y, FIX, X)) /

Figure A
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where h_y(t) = hy(t2)hy(£)Cy(t,—1)"" and C_,(u,v) = Cy(u, —0)Cy(u, —1)~" for
all u,v,te F* (see Proposition 3.8, 3.9).

Now if the following correspondance & gives a group homomorphism, we
can see that Fig A is a commutative diagram. From that we can conclude that
K>(A,F[X,X"']) has a Matsumoto-type presentation.

& (K (AY Y, by (0)hy (1) | 1 € F*Y — Ky(A1, FIX, X))
(u,0) — {u, =X}, {u, —vX}
)

(u,v) — {u,v},

o

Cuy
C,,
oy (D ()7 = {1, =X}, {1,=1}, for all u,v,1¢€ F*. (1)

3.1.3. Well-definedness of &

CENTRAL EXTENSION. In this subsection, we make use of the theory of
centaral extensions to analyse abelian groups which have a Matsumoto-type
presentations (cf. [13]). Let R be a commutative ring. Let L be an abelian group
generated by the symbols {u,v) for all u,ve R*, and charactarized by the
relations (M'1)-(M’4) (as in Definition 3.1). Now we take the symbols C(r) for
all r € R*, and consider the set H := {C(r){u,v)|re R*,u,ve F*}. We define a
multiplication in H with the following defining relations:

C(r1)C(r) = C(rir2)<r1,12),
u,v)C(r) = C(r)<u,vy for all ri,r, € R* and u,ve F*.

LemMmA 3.1. H has a group structure.

Proor. To see the associativity of our multiplication in H is easy. The unit
of H is C(1). And the inverse element of C(r)<u,v) is C(r~")<{r,r > u,v) for
all r,u,ve R*. Hence we obtain the derived result. O

Now we obtain the following exact sequence:

l-L—H—R"—1 (exact).
And H is a central extension of R* by L.
Lemma 3.2. Let [,]: Hx H — L be the form defined by |x,y] := xyx~'y~!

for all x,ye H. Then it is bimultiplicative. Furthermore if b,ce L, then [x,y] =
[xb, yc|. Usually we say that [,] has a mod L stability.
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Proor. We have

[x,2][y,z] = xzx 'z lyzyp~ 127! (since x and zx'z7! are commutative)
= zx 1z xyzy 17! (since zx"'z7'x and yzy~'z7! are commutative)
= yzy Ix7lz7x (since yzy~'x7'z7! and x are commutative)
= xyzy x7lz7 =[xy, 2.
Therefore we obtain the desired result. O

LemMA 3.3. For all p,qe R*, we have [C(p),C(q)] = {p>, q).

Proor. We have

= C(pg)<p,>C(p~")p, p~ > Clg g g7
= C(pg)C(p~")Clg ) p.><p, p~ ) g™
= <pg: P a4 Y psa<p, p7 Y Kag !

= <p, =1 Np. ) <p. —9>-

Now we can see {p, py{p* q> = {p, pg><{p, q>.

Hence (p?,q> = <{p,—1>"'<p,—q>{p, ).
Therefore we obtain the desired result. O

LemMA 3.4, For all p,q,r € R*, we have {p>q,r> = {p*,r¥{q,r.

ProoF. Since
PP aXp > =<pP qr)
PP aXpP g ry = <p* qr)g, r,
we obtain {(p>q,r) = <{p*,r){g,r>. O
LemMA 3.5. For all p,qe R*, we have {p>,q> = {p,q*>.
ProoF. We see the left hand side = [C(p),C(g)], and the right hand

side = (g%, p~'> = [C(q), C(p~")] = [C(g), C(p)~'] for all p,qe R, since [,] has
a mod L stability.
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We put C(p):=X and C(q):=Y. Then XYX~ 'Y= YXY~'X~! so we
have [X,Y]=[Y,X"'l. 0O

PROPOSITION 3.5. In Ky(Ay, F[X, X)) (resp. in Ky(A1, F[X, X)), we have
{u,v*}, = {u?, v}, (resp. Cy(u,v?) = C,(u*v)) and {u*v,w}, = {u*,w},{v,w},
(resp. C,(uv?,w) = Cy(u,w)C,(v*,w)) for all u,ve R*.

Proor. From Lemma 3.4 and Lemma 3.5, this is easily shown. OJ

The result of Proposition 3.5 is stated in [10] [14] without proof, and the
proof of the proposition seems to be not trivial, so we give its proof here.

About Kz(A],F[X, Xﬁl])

LemMA 3.6. In St(AY F) we have

PROOF. Note [y, (1), h_y, (s)] = Cyy(1,52) and hy, (s)h, (s71) = C,, (s, —1) (cf.

(4])-
We have []:lao(l‘)il,/jlfal (5)7'] = [ilao(fl)jlm (s = C,

-
=
(¢}
—
a
-
=
o
=
o
w2
=
[oN
[¢]

K

S

—~
N

~—
=
|

R

—~
N

~

|
=
K

S

—~
~

~—
=S
|

RS

—
~

~—

|

= the right hand side. Therefore we obtain the desired result.
O
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From Lemma 3.6, the subgroup <K2(A;lﬁ‘,F),il%([)il,ll(t)71 |te F*) is a
central extension of {h,, (1)h_, (1)"" |t € F*} by the Kz(Afﬁ,F). So we can obtain
the group presentation of <K2(Afﬁ LF), by (Dhy, (1) | 1 € F*> from the group pre-
sentation of Kz(Afﬁ ,F) and the following ob:

Determine the Presentation of K>(A;, F[X, X))

o p) (as in (1)) is well-defined and & preserves & (as in
7

(2)), we can conclude that ¢ is well-defined.

If we prove that ¢ K

LemMa 3.7. Notation is as above. Then | Ko(a ) B well-defined.
7

Proor. It is sufficient to confirm that & K4 preserves the relations
(M1)-(M7) (as in Theorem 2.2).

We remark that C,, (u,v) for all u,ve F* satisfies the relations (M1)—(M5)
and our ¢, (47 ) Preserves the relation (M1)—(M5) in the case of C,, (u,v) for
all u,v e F*. Hence we consider the case of (M1)—(M5) for C,,(u,v) and the case
of (M6)-(M7) for both C,,(u,v) and C, (u,v) for all u,ve F*.
preserve the relation (M1)-(M5) in the

o)

First we prove that our ¢| Ko(A,F)
o,

case of C,(u,v) for all u,ve F*.

(M1):
We have

<(Coy (1, 1))E(Co (v, w))
= C(Coy (ut, ow))E(Coy (0, )
& {u, =X, Hu, —oX ), fuo, — X} {uv, —wX},
= {u, =X} {u, —owX}, v, =X}, o, —wX},
(using {u, v}, {uv, =X}, = {u, —0X},{v, = X},)
& {u, =X} u, v}, o, =X}, {uv, —wX},
= {u, =X}, {u, —owX}, v, =X}, o, —wX},

< {u, v}, {uv,—wX}, = {u,—owX} {v,—wX}, for all u,o,we F~.
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Hence we have shown that our ¢&| Ka(a? F) Preserves (M1) in the case of
Cy(u,v) for all u,ve F*. It is easily shown that our ¢ Ko(497,F) PTESETves the
relations (M1)-(MS5).

Next we show that our &| Ka(a®¥ ) PTEServes the relation (M6), (M7) for both
Cy(u,v) and C,, (u,v) for all u,ve F*.

(M6):
We have
E(Coy (w00 M))) = E(Cyy (™™, )
& &(Cyy(u,072)) = &(Cyy (u?,0))
& {u, =X} {u, —v72X}, = {u7 0},
& {u v}, = {u7, 0},

Hence our correspondence preserves (M6). Finally we discuss (M7).

(M7):
We have

E(Copay (1, W) = &(Cy (14, 1) Coyy (w1, w)) & {u727 vw}, = {”72, U}m{u727 W},

Hence our correnpondence preserves (M7). Therefore we obtain the desired
result. |

PrOPOSITION 3.6. Notation is as above. Then & preserves &.

Proor. We apply our ¢ to the left hand side and right hand side of the
above equation é. Now we have

&y (B3, (5)hoy (DR, (1)

& {5 =X s~ 14 X3 e -1),

= {st, =X}, st =13, {0, =X}, o, —sX ) 4o, =), e -1,

& {5, =X1, s, =1}, = {1, =X}, st =13, {1, —sX} {1, =5},
(using {t,s},{ts,—X}, = {t,=sX},{s, = X},)

A {Sv _X};l{sv _1}a = {Z,S}“{S, _X};I{Slv —1}“{1, _S};l
< {t,—s}t,{s, -1}, = {t,s},{st,—1}, for all s,re F*.
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Hence our & preserves . O

Hence the well-definedness of ¢ has be shown, and we obtain the following
theorem.

TueoreM 3.1. Notation is as above. Then we have Kz(Al,F[X,X*ID ~
K>y (4,, F[X, X71)).

3.2. General Case

3.2.1. Exact Sequence of General Case

In this section A is any Cartan matrix of finite type (4 # A;) and A% is the
affine Cartan matrix obtained from 4 whose tier number is 1. (For the definition
of the tier number of A4, see [12].) Let {«,...a,} be the set of fundamental roots
in the root system A of 4 and denote it by I, and {og,,...o,} is the set of
fudamental roots in the root system A,z of A% and denote it by I1,7. The set of
real roots in A% is denoted by AL’,; Furthermore W is the Weyl group obtained
from A4, and W,y is the Weyl group obtained from A%". We choose J € A,y as
a fundamental null root of A%, and @ is the highest root of A, and we put
h(} = 2(9/(6, 6)

Fig. 2[9]

1l — KA F) ——  SHAY F) —— G (A9 F) —— 1

1 —— Ky(A, F[X, X)) —— St(A4, F[X, X ']) —— Gy (A4, F[X, X ') — 1
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The above diagram is commutative and each sequence is exact. Here @ and
Y are group homomorphisms given by
@ : St(AY | F) — St(4, F[X, X))
Xnoa(1) = Xy (1X")
Wiota (1) 1 Wo (LX)

Pusia(t) = b (tX ") (X™)

and

Xnota(t) — X, (LX)
Wn(5+oc(l) — Woc(an)
hn6+x(l) — hoc(t)

for all te F*, ne Z and a € A, respectively.

ProposITION 3.7 [9]. Notation is as above. Then we have

Ker¥ = {hao(to)hoq (tl) o 'hﬁz(tl) |ht‘1(t()> = h“l(tl) o 'ha/(tl) € G(AaF[Xa Xﬁl])}'

Proor. Since G(AY | F) has a standard Bruhat decomposition, we see
Ker W < {hy (1) |i=0,1,...n t€ F*) = {hy(t0)hy, (t1) - - - o, (1) | t: € F*}.

Applying W to hy,(to) - - - hy (1), we have hy(to) = hy, (21) - - - o, (). O

ProrosITION 3.8 [4] [2]. Let a be in {og,o1,...0,}, and u, v, w in F*. Then

K> (AY | F) is generated by C,,(u,v) for all u,v e F* and o; € ., where C,,(u,v) =
izai(u)ilm,(v)},(uv)fl, and charactarized by the following relations (L1)—(L7):
(L1) Cy(u,v)Cy(uv,w) = Cy(u, vw) Cy(v, w),

( ) (u,l):Co,(l,v)zl,

(L3) Cylu,v) = Coc(U_lﬂ“’)a

(L4) Cu(

(L5) Cuf

—
~
0
=
|
<
S
N
|
O
2.
=
<
:—/
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(L6) Cy,(u, v ™)) = C, (u™) v) denoting it by Cyy,(u,v),
(L7) Cyy(u,v) is blmullzpllcatwe
Sfor all u,v,we F* and o;,05 € Ip.

Now we can recognize that C,(u,v) is the element corresponding to
By ()b (V) (uv) ™" for all o e A

3.2.2. Action of Weyl Group

PROPOSITION 39. In St(AY F), we have hyp(t) = hy(t"))hg(r) -
Cp(t: My, ) for all te F* and o, e A™.

PrOOF. Note that Ay 5(t)wy(1)ig,p(t) ™" = by, s (1) Wo(1)hg,p(£) (= 1)y (1).
Then we have

Wo(700)) = Iy p(OWa (1), p() ™ g ()02 (1) p(£) s (— 1)1 (1)
=t 5 (1) Cp(t, My g, ) Vs (1) Wa(1).
Hence we obtain the desired result. O

ProPOSITION 3.10. In St(AY,F), we have C,p(u,v) = Cg(u, vn)C/;(u,n)_l,
where 5 =mn, , 4, for all u,veF* and o,f e A"

3)

PrOOF. We see

Co (14, v) = ho p(u)h, (0) D5 (ur) ™!

= ho (™" g () o (0= g (0) g ()~ (e} )
x Cy(u,n) ™" Cy(v,n) ™" Cyluv, n)
(using the formula [h,(u), hp(v)] = Cop(u,v) (cf. [4]))
= I (0 b ) g (0) g a0) ™ ({0} )
x Cplu, )~ Cy(v,7) ™" Cplu, ) Cpa (1, v~
= C,(u™") =) Cy(u, v) Cy(u, 1)~ Cy(v, )~  Cylu, ) Cpo (11, v=0))

(using C, (") =)y = Cpo (™! v )y)

)



Group presentation of the Schur-multiplier derived from a loop group 371
= Cp,(u™, vy
= Cp(u,v) Cylu,n) ™' Cy(v, )" Cyluv, )
= Cp(u,vm) Cplu,m) ™"

Therefore we obtain the desired result. O

ProposITION 3.11.  Let o€ Ayy. Then there exist n e {£1} and o; € I such
that Cy(u,v) = Cy (1, v7)Cy,(u,7) " for all u,ve F*.

Proor. We take o =00, --0;(t)€ Weyp({ao---on}) ={w(f)|we Wy,

ﬂ € Hqﬁ‘}.
Now put

o= 004, o, (o)
(1) =aj, -0, ()

4(2) = 0, -0, ()

Then using (3) above, we have

Co(u,v) = Cy)(u, Uﬂl)ca(l)(%myl
1 _
= Coc(2)(u7 U’71’72)Ca(2)(“»’72) CZ(Z) (u7772)ca(2)(u77/1’72) :
= Coa) (ut, 07111,) Cogoy (1, my70) ™+

for some 7,7, € {£1}.
Therefore we obtain the desired result. O

DEFINITION 3.2. We define Ky(A,F[X,X ")) as a group whose generators
are the symbols C, (u,v) for all u,ve F[X,X™'] and o; € I1 and charactarized by
relations (M1)-(M7):

M1) G, (u, v) Gy, (uv, w) = Cy, (tt,vw) G,y (v, W),
(MZ) éot,-(uv 1) = Ca;(lav) =1,

M3) Gy, (u,v) = Cy, (v, u),

(M4) (:’a[(u, v) = C:a[(u, —uv),

(M35) Cy,(u,v) = Cy(u, (1 —u)v) (if 1 —ueF*),
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(M6) G, (u, 0" ")) = (:‘qi(u“f(/’7f>7v) denoting it by CA’WJ.(u, v),
(M7) CA'O(,.%.(u7 v) is bimultiplicative
Sor all u,v,we F* and o;,0; € TI. Note we can conclude that C,,(u,v?) = Cy,(u?,v)

and C,,(uv*,w) = C,,(u,w)C,,(v*,w) (as in Proposition 3.5).

ProposITION 3.12. We can define the action of the Weyl group on
Ky (A, F[X,X7Y) as follows:

0,(Cp(u,v)) := CA’ﬁ(u,v;yo(hga_ﬁ)CA’ﬂ(u7 n“ivgﬁ_ﬁ)fl for all uyve F*,6;€ W and [ eIl

PrOOF. Let f be a fundamental root. The statement is proved if we
show:

0y, 0y, -0, (f) = = Cg},lg;,z...g;,r(/;)(u, v) = Cg(u,v).

Now we see

Ca-,l G5,y () (u7 l))

-1
/f) Cayz s U,,,/)’(ua 7y, Gy, Tyy s rr-,,.[f)

>

a5, ~~-a,,,ﬂ(u7 uny, )

r

>

A -1
T30y, (u’ m/lyl 10719, "'U:/',-ﬂ”hv 993073 "'U:/'rﬂ) C”’»’s =0y, (P) (u’ ’772 10y, 03 '“‘T‘/,ﬁ)

-1 ¢
I3 '”Ul"r/))(l/h ;7)’1 0719y “'”;»/ﬂl}’z;grz O3 ‘“’7;',-/))) Oy30y, (B) (u’ ’77230720?3 “‘JJ=,-ﬁ)

I
oy

C"'/} gy, (u7 Unyl 10y, 0y ~-»a;,’,/f’7y2 10y, 03y ~-»(7;,’,/f)

X Copra, (1)U, 0, 0, s, o)
(continuing in this way ---)
= éﬂ(“» V1,065, B9, 6yy 0y 0 77 ’7%,5,,,_,3)
x C’/;(u, My1,0,,0yy0, 873,60,y 050, B r]y,.,o'}.’_/})_l'
Note that #, ;€ {1} satisfies
Exp(ade,) Exp(—ade_,) Exp(ade,)eg =1, s€s,p-
If we put w,(1) := Exp(ade,) Exp(—ade_,) Exp(ade,), then we have

je? (1)6’(,—}_1 910y = M0y, 03,0, €01, 0303,

Wy, ( 1 )ega'z A 7]”/2‘772 Tyy 0 6‘77'3 0 B
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(continuing in this way ---)

Wy, ( 1 )eﬂrﬁ = ;7)/,., a,-/}eﬂ’

Then we obtain
Wy, ( 1 )W}’z ( 1 ) Wy (1)651‘1 0y B
= 77y],o‘,lrf,-z~~~a}.rﬁ77y2,0,2073~~~o'7rﬂ My e, BEP where
0,0, -0, = implies o,0, ---0,f=p.

From the general theory of Kac-Moody groups, we can write w, (1)---
wy, (Dwy, (1) = hy, (=Dhy, (=1) - hy, (=1)  for some a;,...0; eIl Since
hy(u)eg = uPl)es, we can write

W}’,~(1)W}'z(1) e W"/l(l)eﬁ = hﬁl[l (_l)h%’z(_l) o 'hatf,,, (_l)eﬂ

x,-z >+”'+ﬁ(hx,m )

(_l)ﬂ(hx,-l )+B(h eg.

Hence we get

/}(hzf )+ﬂ(l LN )+“'+ﬂ(h1;m>
’73’1-,‘7;'1 ‘772""77,-57]7’21‘77’3‘773"'U;',-ﬂ o ”Vraarrﬂ = (_1) : " :

Claim: Let o, f be fundamental roots. Then we have

Cp(u, (—1)Phdpy = Cp(u,v) Cp(u, (—1)Pha)y.

(Proof of Claim)
In case of fi(hy) € 2Z, there is nothing to show.
In case of fi(hy) €2Z + 1, we have

éﬁ(% (—l)ﬁ(l’“>v) = Cy(u, (_v)/f(ha)vlfﬂ(hu)) — é/f(% (—v)ﬁ(h“))é/;(u, Ulfﬂ(hz))
= Cylat, (=1 Cyt, ")) Gy, 010
= Cp(u,v)Cplu, (-1)P™). O

From the above claim, we get

Cﬁ(“’ 0”711‘7710’72 '”ﬂryﬂnyzaa}'zﬂ}'g 0y, o ;7}%0'7,/})

1 A
Cﬂ(uv ’7;;, 10y, a'.,,zu-a.,r[fﬂyz, Gy Oy ~~-0'},,,[f’7y,,r77,",[$’) = C/;(H, U) :

Therefore we obtain the desired result. O
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DEFINITION 3.3.  For any a € A, there exist we W and i € {1,...n} such that

o= w(o), and for all u,ve F[X,X], we define the element C,(u,v) as follows:

Cy(u,v) == w(Cy,(u,0)).
By Proposition 3.12, the above is well-defined.

3.2.3. A Subgroup of St(A% F) Which is Isomorphic to K(A4, F[X, X))
Viewing the commutative diagram in Fig 2, we have St(4,F[X,X"!]) >
K>(A,FIX, X7 ']) ~ <Ky (AY | F), Ker ¥.

PROPOSITION 3.13.  If hyy(t0) Ny, (21) - - - Doy (21) € Ker ¥ for some t; € F*, then
we have

hay (10)ha, (1) -+ - By (11) = oy (20) B (t0) = By (t0)h—o(t0) ™" mod Ko(A“ F).

PrROOF. We remark that if oeA’™, then h,(1)h,(r") e Ky(AY F). By
Proposition 3.9 we see h_g(t) = hg(r 2)hg(t) = ho(r™") = ho(t)"' mod K>(4Y | F).

From the fact hy(to) = hy, (1) -+ -y (1) € Goe(A, FIX, X~']) (as in Proposition
3.7), it is easy to see the desired result. O

Hence we have
(K (AT F), Ker W) = (Ko(AY | F), by (Dho(t) | t € F*) = Ky(A, F[X, X)),

In Fig 2, due to @, the correspondance f between the subgroup (K>(A%  F),
hy, (0)hg(1)> and the subgroup K»(A,F[X, X)) is given as follows:

[ XKo(AY  F), oy (0ho (1) — Ko(4, F[X, X))
Cy, (1, 0) — C_g(u, X) ' C_p(u, vX)
Cy,(u,0) — Cy(u,v) (i #0)
By (B4 (1) = C (6, X)™" for all u,v,ze F*. (4)

From Definiton 3.3, we can realize C_g(u,v) with w,veF* in
K>(A, F[X,X71)).

3.24. About (Ky(AY F), hy()hy(1))

LemMMA 3.8.  Notation is as above. Then we have hy,(s)h_g(s) ™ hyy (£)h_p(1) ™"
= Cyy (5, 7)Y C_g(t,8)  hyy (st)h_g(s1) ™.



Group presentation of the Schur-multiplier derived from a loop group 375

Proor. We see:

Py (8)h—0() ™ g (00h—(1) ™" = Iy () hay ()R- ()" hg(£) ™' Cuy-a(t, )

Hence we obtain the desired result. O]

From Lemma 3.8, the subgroup (K»(A“' F) h, (0)hy(t)|t€ F*) is char-
actalized by the following two conditions:

(1) The Generators and relations of K>(AY | F),

(2) By ()1 () oy (VH=Y(£) = Ciy (5,71 C_p(t,8) oy (st)h=b(st)  for  all
s,te F*.

Now we define g as follows:

g: Ko(A, FIX, X)) = Ko(4, FIX, X))
Gyt 0) = Cy(u,0) (i #0).

Then g is well-defined (cf. [2] [7] [10]).
By the construction of C,(u,v) (see Proposition 3.10 and Definition 3.3) for
each real root o, we have

9(Co (1, ) = hy () by (v)hy (uv) ™"
By (4), we define H as follows:
H : (Ko (AT [ F), by (Dho(2)y — Ko(A, F[X, X7'])

Cy, (1, 0) — C_g(u, X) ' C_p(u, vX)

By (OR=5(1) — C_g(t, X)" for all u,v,1e F*.

If H is well-defined, then Fig B is commutative. Hence ¢ is bijective,
therefore we get K»(A, F[X,X']) ~ K»(A4, F[X,X"']). Thus our purpose is to
prove that H is well-defined.
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(Kr(A“T F), h,

ho(1)y —— Ka(4, F[X, X))
K>(4,F[X, X)) /
Figure B

3.2.5. Determine the Presentation of K>(A, F[X,X '])
We can see that <Ky(A“ | F), h,, (1)hy(1)| 1 € F*) is a central extension of F*
by Ky(AY F).

To prove our H is well-defined, it is sufficient that we show the following &
and &.

& H is well-defined when we restrict it to Ky(4Y, F). (5)
@ H(hay (s)h_o(s) ™ H (oo ()h_o(1)
= H(Cyy(1,5)C_g(t,5) " hyy (s)h_g(st)”"
About & ---(5)
For Cy(u,v) and C,,(u,v) (i #0) for all u,ve F*, it is easy to show the
consitions (M1)—(MS5). And if 7, j # 0, Then (M6) and (M7) are preserved by H
Now we see

for all s,te F*.

(6)

C{XO“; (u5 U) = CO(O (u7 ’DaO(h’)) Cfxi (uai(h;(O)7 v) and

C%'D!o (Ll, U) = Cﬂi(l’h U“i(hio))

Cy (™) p).

Hence it is sufficient that we show the following three statements b1, b2 and ¥

H(C,y u,0)) =

H(Coti(uai(hxo)7 U)) '

bl (7)
H(C,, (u, % "0))) = H(Cyy (u®™ ). ---b2 (8)
Cy0y (u,v) is bimultiplicative in u,v for all u,ve F* b 9)

Now we note oy(h;) = —6(h;) and o;(hy,)

iy :_ai(h9)~
About bl---(7) and b2---(8)

We only prove bl---(7) because the proof of b2---(8) is similar. If i =0

there is nothing to show, so we suppose that i # 0. Now it is sufficient to prove
the following formula:

C_o(u, X) ' Cg(u,v %" x) = C, (u ) v)  for all u,veF*,i+0.
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To prove this formula we use the so-called Extended Dynkin Diagrams in
Fig C.

By Proposition 3.12 and by the proof of Proposition 3.11, we let o4 € IT be
some long root. We have the following.

Coalut, X) " Cplu, v X) = € (u, X) ™ oy (1,07 "X ) for me {1},

Therefore it is sufficient that we prove the following formula.

C,, (u, Xn) ' G, (u, v ) xp)
= C,,(u ™ p) for all u,pe F* i#0 and 5 = +1. (10)

In the case of (a;,0) = 0, our result is trivial, Hence we consider the case of
(O(ia 9) # 0.

Lemma 39. If ai(hj) = oi(hi) = =1 for some o045 €1 (or Tluy), then
C,(u,v) = CA'aj(u, v) for all u,v e F* and it is bimultiplicative in u, v. Furthermore

for any o€ W(x), we have Cy(u,v) = C,,(u,v), and it is bimultiplicative in u, v.

Proor. The first statement is trivial by the fact C'aiaj(u,v) =C,(u,v") =
C‘aj(u’l,v). Also obviously we have that it is bimultiplicative in u, v.
Now if Cg(u,v) is bimultiplicative in u, v, then

Cop(u,v) = Cﬁ(u,vn)éﬁ(u, 77)71 = C'/g(u,v).

Hence we have that C‘aiﬂ(u,v) is also bimultiplicative. The statement of the
second part is also true. Hence we obtain the desired result. O

We prove (10) case by case.

(1) The case of A'(112)2’ DY, Eélgg

If (o;,0) # 0 then the left hand of (10) can be written as follows:

CA'OC,( (u, Xr])_l CA'Mk (u, v’g(h")X;y) = C’ak (u, Xiy)_1 ézk (u, U71X77)

Cy (u,v™") for all u,ve F* (by Lemma 3.9).

And the right hand is C, (u=%") v) = C, (u~",v) for all u,ve F*.

Hence by Lemma 3.9, in the case of A;lz)z, D,(ql), Eé"l)ﬁg, the statement bl

holds.
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Figure C Extended Dynkin Diagram
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(2) The case of B,

By Extended Dynkin diagrams in Fig. C we should only consider the case of
i=2. Then we have —0(h,,) = —1 and —oy(hp) = —1.

Now we suppose o is a long root. Then by the Extended Dynkin Diagram
of B\ and by the left hand side of (10), we have the following:

éﬁk(uv Xn)71 Cflk (uv Ule’?) = éﬁk(ua Ufl)'

Then the right hand side is C,,(u=") v) = C,,(u~",v) for all u,ve F*.
Because of o, being a long root, oy and oy are transitive by some element of
the Weyl group. Hence in the case of B\, the statement b1(---(7)) holds.

(3) The case of ciV.

We should only consider the case of i=1. Then —60(h)= -2 and
—O(l(/’lg) =—1.

Let o) be a fundamental long root. Then we have oy = «,. Then the left hand
side of (10) can be computed as follows:

C}k (u, X}y)fl C’ak (u, 072 Xn) = CA'% (u, X}y)fl CAQ (u,v2Xn)
=C,, (u,02) for all u,veF* and e {+1}.
Hence it is sufficient that we show C,, (1) v) = C, (u",v) = C, (u,v72).
We note C,, ,(u,0) = C, (u,072) = C,, (" 0v).
Also we see that o) and o, ; are transitive by some element of the Weyl
group. Therefore we have
CA'051 (', 0)=C, (u,v7?) for all u,ve F* ne{+l}.
Hence in the case of C., the statement b1(--- (7)) holds.

(4) The case of Fil).

We should only consider the case of i = 1. Then we have —6(h;) = —1 and
—oy(hg) = —1. Let oy € I be a long root. Then by the Extended Dynkin Diagram
of Ff) and Lemma 3.9 , the left hand side of (10) can be calculated as follows:

élk(ua Xﬂ)fl éﬁk(“v UilX”) = é“k(”v 1771) = éﬂ!] (u, Uﬁl)'
Also we see that the right hand side becomes C,, (1=, v) = C, (u™',v) =
C (u,v™") = G, (u,v") for all u,pe F*. Hence in the case of the F.', the
statement b1 holds.

(5) The case of Gg).
We should only consider the case of i=1. Then —6(h;)=—1 and
—O(1(h@) =—1.
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LemMmA 3.10. In the case of the Gé” (see Fig C), oy is a fundamental long
root, and Cy, (u,v) is bimultiplicative in u, v for all u,ve F*.

Proor. We note C,,,,(u,v) = C,, (u,v°) . Then we obtain

Cy (”7 U) = Gy (u7 U) éoq (u7 02)71

Also we see Cy,,(u,0) and C,, (u,0%)”" are bimultiplicative in u, v.
Therefore C,, (u,v) is bimultiplicative in u, v. Hence we obtain the desired
result. |

Now «; is the only element which is long and belongs to the set of fun-
damental roots. Therefore it is sufficient that we show the following:

Co (1, X3) " Gy (0,07 ' X97) = Gy (u,v™") for all u,ve F* and 5 e {£1},

which is trivial by the Lemma 3.10.

Hence we obtain that the statement b1(--- (7)) is true.

About f(---(9)).

To prove b, it is sufficient that C, (u~ %) v) is bimultiplicative in u, v for
any 1.

In the case of («;,6d) =0, it is trivial. Therefore we consider the case of
(o,6) # 0. More explicitely, we have the following:

A type - Co, (', 0)C,, (u !, 0),

B! type ------ C,(u™",v),

C, type -+ Cor (" 0),

D! type ------ C,,(u™,v),

E{ type ------ Co(u™,0),

Ej type ------ Con (™", 0),

Esl type ------ Cye (uflw)’

F| type -+ C,,(u™,v) for all u,ve F*.

Using Extended Dynkin diagrams, these can be written as C'xi“j(uil,v) for

some o, € I1.
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Therefore we obtain that both statements b1(---(7)) and f(---(9)) are true.
Hence the statement de(---(5)) is true.

About &.

We  prove  H(hy (s)h_g(s) ™ H (hy, (0Vh_g(1) ™" = H(hy, (st)h_g(st) " Cyy (1, 5) -
C_o(t,s)”" for all s,7e F*. We have the following:

The left hand side = C_o(s, X) ' C_o(t,X)”" for all 5,1 F*.
The right hand side = C_g(st, X) ' C_g(1, X) ' C_g(1,5X)C_y(t,5)"
= C_g(t,sX) ' C_y(s, X) " C_p(t, X) " C_y(t,5X)

= C_yg(t,X) ' C_y(s,X)”" for all 5,1¢F*.

Hence we get the statement #. Therefore we obtain the following theorem.

THEOREM 3.2. Notation is as above. Then we have K(A,F[X,X']) ~
K>(A,F[X, X~ 1)).

4. Applications

4.1. Motivations

First we note that the following theorem about K(A,F[X,X~']) is known.

TueOREM 4.1 [3] [8]. If A # C, (1 <n), then Ky(A,F[X,X ') ~ Kz(F) &
F* If A= C, (1 <n), then Ky(C,, FIX,X']) ~ K;Sp(F) ® P(F) with the exact
sequence:

1 = I*(F) = P(F) —» F* — 1,
where I(F) is the fundamental ideal of the Witt-ring W (F).
In the previous chapter we found the generators and the relations of
K>(A,F[X,X7'). In this chapter we will see how to split the elements in

K>(A,F[X,X7"]) into the elemtnts in K,(F)@® F* or the elements K>Sp(F) @
P(F). Using this, we will give the generators and the relations of P(F) and I?(F).

42. Case of A=C, (1 <n)

LemMmA 4.1. Notation is as above. Then we have Ky(C,,F[X,X]) ~
Ky(Ay, FIX, X7')).
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ProOF. Note that K»(C,, F[X, X ']) = <(C,,(uX",vX")|i=1,...n mne Z
u,ve F*).
Considering the action of the Weyl group, we have

Ky (G, FIX, X)) = (Cpy (uX"™", 0X") |m,n€ Z u,ve F*y ~ Ky(Ay, FIX, X7 )).
O

By Lemma 4.1, we can consider K>(4;,F[X,X"!]) instead of
K> (Cp, FIX, X71)).

Now we will split the generators C,, (uX",vX") for all u,v e F* and mne Z
of Kz(Al,F[X, X_l]).

Since

Co, (u, X™)Cypy (uX ™, 0X ™) = Cyy (u, v X ™) Gy (X ™ 0X )

and
Cy, (1, 0) Cyy (uv, X"™) = Cy, (u, X" Cyy (0, X,

we have
Cy (uX™ vX™)
= Gy, (u, X") 1 Cyy (1, v XY Cy (X X

= Cy, (u,v) Cy, (v, X" C,, (v, X'”*”)_l C,, (u, X'”)_1 Gy (XM vX™)

1

= Caq (u, U) C“l (um—O—nUm+n7 X) C“l (vnH-H’ X)*l Coq (um7 X)fl Cal (X, vamn)

= o (1,0) Coy (W0, X) oy (7, X) 7 oy (0, X) 7 Gy (<), X)
for all u,o,we F* and mneZ. ------ » (11)

Now we simplify the equation (11) case by case.

(1) The case of (m,n) = (0,0) mod 2.
We have

(- (11))
= Gy (1, 0) Gy (™0™, X) G,y (0", X) ™ Gy (0, X) ™ Co (07, X)
= C,, (u,0)C,, (u"v™", X) for all u,ve F*.

(2) The case of (m,n) = (1,0) mod 2.
We have
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(- (11))
= C,, (1, 0) Gy, (™0 X)Cyy (0", X) Ny (', X) T C, (07, X))
= Gy, (1, 1) Cy, (™10 =1 XV C, (v, X) Gy (0" X))
x Cy (0, X) ' Cy w1, X) 7' Cyy (0, X) ' C (07, X))
(note that m+n—1,m—1€2Z)
= Cy, (1, 1) Cy, (u", X) Cy (07", X) Co, (uv, X) Cy, (1, X) ' Cyy (0, X) 7!
(u, X) "' Cyy (v, X)™" for all u,veF*.

= C'051 (H, U) Cxl (unvimﬂ X) CO(1 (I/IU, X) CO(

1 1

(3) The case of (m,n) = (0,1) mod 2.
We have

(- (11))
= C,, (1, 1) Cy, (™" X)C, (0", X)) Cy (', X)) Cy (07, X))

= Coq (u’ U) Coq (un1+nflvm+n71’ X) C, (MU, X) C“l (Um+nfl , X)fl

|
X Cpy (0, X) ' Cp (", X) Gy (07, X)

= Gy, (1, 1) Cy, (™1 X) Cy, (™, X) 7' Cy (07, X) G (10, X) o, (v, X) 7!

= Cy, (1, 1) Cy, ("1, X) Copy (v, X) Cy (v, X ) Cyy (0, X) 7!

= Cy, (1, ) Cy, (u", X) Cyy (1, X) 7 Copy (v, X) Cyy (v, X) Cyy (0, X) 7

= Cy (u, ) Cyy u"v™, X) Cyy (uv, X) Cy (ut, X)flC'%1 (U,X)71 for all u,ve F*.

(4) The case of (m,n) = (1,1) mod 2.
We have

(- (11)
= Coy (14, 0) Gy (0", X) o (0", X) 7 Gy (0, X) ™' Gy (=07, X)
= C (1, 0) Cyy ("™, X) Gy, (™, X) ™ Cyp (—07", X)
(note that C, (u"™ X)C,, (u", x)!

= Coy (" X) Gy (w7, X) T Gy (™, X
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= Cp (", X)Cy (', X))

= Gy, (1, 0) Coy ("1, X) Cop (=07, X) Cy (u™ ", X) 7!

= Gy, (u,0) Cyy (—u" 0™ X) Cyy (u™", X) 7!

= Cy, (u, ) Gy, (" 0™ X)Cy (=0, X) Cyy (™', X)) 7!

= Cy (u,0) Gy (—u"v™", X)) Cy, (—uv,X)_1

LEMMA 4.2.  Notation is as above. Then we have Cy (—uv,X) 'C, (v, X)-
Co, ™, X) ™ = C, (w0, X)Cyy (0, X) 7' Cyy (0, X) ™' for all u,veF*.

Proor. Since
Co(—0,X) = Cp, (v, X) 7' Cyy (=1, X)AC, (', X) ' = Gy (u, X) 7' Cy, (4, X)),

we have
Coy (—up, X) ™ Cyy (=0, X) Gy (™', X) !

= Gy (—un, X) ',y (07", X) ' Cy (1, X) Gy (0, X) 1 Gy (1%, X)

= Gy (—uv, X) 7' Cyy (0, X) 7' Cyy (02, X) Cy (—1, X) Gy, (1, X) ' Cyy (4, X))

= Gy, (—uv, X) ' Cy (P02, X) Cyy (=1, X) Cyy (4, X) 7 Cyy (0, X) 7!
(v, X)™!

= G, (v, X)Cy (-1, X) 1y, (1P, X) Gy (=1, X) Gy (1, X) ' C

1 1

= Gy, (uv, X)Cy (u, X) 7' Cyy (0, X) 7"

Hence we obtain the desired result. O

Using Lemma 4.2, we have (11)= C,, (u,v)C,, (—u"v™"™",X) for all u,v € F*, in
the case of (m,n) = (1,1) mod 2.
Hence we obtain the following proposition.

PropoSITION 4.1.  In the case of (m,n) = (0,1),(1,0),(1,1) mod 2, we have
Cy, (uX™ vX™)
= Coy (1, 0) Coy (= 1)"™u"v ™", X) Cy (0, X) Cy (0, X) ' Cyy (1, X) ™

for all u,ve F*.
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In the case of (m,n) = (0,0) mod 2, we have

Cyy (uX™, 0X") = Cy (1, v) Cyy W"v™, X)  for all u,veF*.

Now we put S :=<C,,(u,v)|u,ve F*) and M :=<{Cy (u, X)|ue F*). We
define two group homomorphisms Wg : K>(A4y, F[X, X7!]) — S by Ws(C,, (uX™,
vX") = Cy(u,v) and War: Kp(A1, FIX, X)) = M by ¥un(C,(uX™ vX") =
Co (=1)™ ™™, X)Cy, (uv, X)Cyy (0, X) ' Cy (0, X)™' in the case of (m,n) =
(0,1),(1,0),(1,1) mod 2 and by W (Cy (uX™, vX")) = Cy, (u"v™™,X) in the case
of (m,n) = (0,0) mod 2.

Note that the group homomorphisms Wy and W, above are well-defined.

1

PROPOSITION 4.2.  Notation is as above. Let Ws ® Wy : Ko(Ay, FIX, X71]) —
S®M be a group homomorphism with Ws® Wy (Cy (uX,0X")) =
(Ps(Copy (uX™, 0X")), ¥Yu(Cyy (uX™, vX"))) for all u,ve F* and mne Z. Then
WYs ® Yy is an isomorphism.

Proor. Using Proposition 4.1, this is easily shown. O

Next we consider the group presentation of S and M.

About §

There is a natural one to one correspondance between S and K,(4;,F),
hence we have S ~ K»(A4,,F).

About M

We put C(u) := C,, (u, X) for all ue F* (these are the generators of M).

We put <u,v) := Cy, (uv, X)Cy, (0, X) "' Cy, (u, X)™" for all u,ve F*.

Lemma 4.3.  Notation is as above. Then for all u,v e F*, {u,v) satisfies the
relation (M1)-(MS5).

Proor. First we prove that {u,v) satisfies (M1).
(M1): We have

Su, vy<uv, w)
= C,, (uv, X)Cy, (v, X)71 Cy, (u, X)71 C,, (uow, X) Cy, (w, X)71 C,, (uv, X)71

= Cy, (uvw, X)Cy, (vw, X)_1 Cy, (u, X)_1 Cy, (vw, X)_1 Cy, (W, X)_l Cy, (v, X)_l

= u,vwH<{v,wy for all u,v,we F*.
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Hence for all u,ve F*, {u,v) satisfies (M1).
In the case of (M2), there is nothing to prove.
We will show that <{u,v) satisfies (M3)—(M5) are as follows.

(M3): We have
u,vy = o7l u)
& Cpy (uv, X) Coy (0, X) ' Cpy (u, X) ™' = Coy (071, X) Gy (u, X) 7' Coy (07!, X) 7
& Cpy (uv, X)Coy (0, X) ' = Cy (7', X) G,y (v, X) 7!
& Gy (u0, X)Cy (07'u, X) ' = €, (07", X) ' C (0, X)
& Gy, (1”2, X) = C,, (v}, X) for all u,veF~.
Hence for all u,ve F*, {u,v) satisfies (M3).
(M4): We have
{u,vy = {u, —uv)
& Cyy(uv, X)Cyy (0, X) 7' Cop (u, X) ™!
= Cy, (1?0, X) Cyy (—uv, X) ' Cy (u, X) ™
& Gy (uv, X)Cyy (0, X) ™' = Cyy (—u?0, X) Cyy (—uv, X) ™!
& Cyy (v, X) Cyy (—uv, X) = Cy (1?0, X) Cyy (v, X)
& Cy, (P, X)Cy, (u™ 071, X) Cy, (—uw, X)
= C,, (U0, X)Cyy (—v, X) Gy, (v, X)
& Gy, (uP?, X)Cyy (-1, X) = Cy (uv?, X)Cyy (=1, X)  for all u,ve F*.
Hence for all u,ve F*, {u,v) satisfies (M4).
(M5): We have
uyvy = {u, (1 —u)vy ((1—u)e F*)
& Cy, (uv, X) Cy, (0, X) 1 Cyy (u, X) 7!

= Cy, (u(1 — )0, X)Cy, (1 — )0, X) ' Cy (14, X)

1

& Cy (uv, X) Cy, (0, X) 71 = Gy (u(1 = u)v, X) Gy (1 — v, X) !
(since Cy, (u, (1 — u)v)Cy, (u(l — u)v, X)
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= Gy (u, (1 —u)pX) Gy, (1 — u)v, X))
& Gy, (uv, X) Cyy (0, X) ™' = Cyy (u, (1 — u)0) ' C,y (1, (1 — w)vX)

(since Cy, (u, (1 — u)v) " Cy, (u, (1 — u)0X) = Cy, (u, )" Cy, (1, vX))
& Cy (u,0) ' Cyy (w0, X) ™' = € (u,0X) 7 Cy (0, X) 7

Hence for all u,ve F*, {u,v) satisfies (M5).
Therefore we obtain the desired result. O

Now we see that M is generated by C(u) for all ue F*. To obtain the
relations among the generators C(u) for all u e F* in M, using Proposition 4.1
and 4.2, we rewrite the relations (M1)—(M5) in K»(4;, F[X, X~!]) to relations in
M. To rewrite the relations (M1)—(M5) in K»(4;, F[X,X"!]) to relations in M,
if (m,n) =(0,1),(1,0),(1,1) mod 2, we change the element C, (uX",vX") to
C((=1)"u"v™™)<{u,vy and if (m,n)=(0,0) mod 2, we change the element
Cy (uX™,vX™) to C(u"v™™) (see Proposition 4.1). Thus we obtain all relations
among the generators C(u) for all u e F* in M. The following lemma is trivial
but useful.

LemMA 4.4. Notation is as above. Then for all u,ve F, we have C(u*v) =
C(u*)C(v). This implies {u,v*) = e.

PrOOF. In Ky(Ay, F[X, X)), it is easy to see C, (u’v,X)= C, (u* X)-
Cy, (v, X).
Then we apply ¥y, to obtain C(u?v) = C(u*)C(v). [

First we rewrite the relation (M1) in K»(4;, F[X,X"!]) to relations in M.
(M1):

Gy, (uX ! 0X™) Cyy (uv X" wX™)
= C,, (uX!, owX™™ C, (vX™ wX™) for all u,v,we F* and m,ne Z.

(1) The case of (/,m,n) = (0,0,0) mod 2
We have

Cu"™v™ ) Cu"v"w™ =) = Cu™ " 'w= Y C(v"w™) for all u,v,we F*.

It is derived from Lemma 4.4.
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(2) The case of (I,m,n) =(0,0,1) mod 2
We have

Cuv™"YC (" w™" ") uv, w)
= C""ohw™ ) C("w™)<u, ow v, w)
& Cu™) Co™)Cu"v")Cw™) Clw")Cuv, wy
= Cu™)Cu")C™)Cw™)C")Cw™™)<v, wH<{u, vw)
& Clu"")Cu") ™ C") ™ v, wy = (o, wh<u, vw)
(using Lemma 4.4)
& C" o™ ) Cluw)C" ) )™ (") o)™ v, wy = Co,wy<u, ow)
& lu, v)uv,wy = u,owdlv,w)y  for all u,v,we F*.
It is derived from Lemma 4.3

(3) The case of (I,m,n) = (0,1,0) mod 2
We have

C(u"v™")u, vy C(u" " w1 uv, w
= C(u" "~ W) u, ow) C(o"w ™) v, w)
& Cu™Cw™HCw™)C)Cow™)C(w™)u, vy luv, w
= C(u™)C(u")Cw™YC(w™YC(w™)C(v") v, wH<u,vw) for all u,v,we F*.
It is derived from Lemma 4.4 and Lemma 4.3.

(4) The case of (/,m,n) = (0,1,1) mod 2
We have

C(u ")y v)C (=" w1 uw, w
= Cu" "o w)C(=v"w ™) <o, w)
& Cu™)C(o™)C(—u"s"w™ ) u, vy Cuv, w)
= Cu"™™" C™)Cw)C(=v"w™) <o, w)
& Cu™)C(—u"v"w™) Cu, vy<uv, wy = C(u™ ") C(—v"w™")<v, w)

& Cu™) Cu" " w1 C(—uvw)<u, vy<{uv, w)
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= Cu™M)C" w1 C(=ow)<v, w)

& Cu™)C" ") C(—uvw)u, vy<uv, wy = C(u™ ") C(—vw){v, w)

& Clu™" ) C(—uvw) (u, vy<uv, wy = C(U™™") C(—vw)<v, w)

& Cu™™)Cu™") C(—uvw)<u, vyuv, wy = Cu"™™") C(—vw)<v, w)

& C(u™")C(—uvw)<u, vy {uv, wy = C(—vw)<v, w)

& Clu")C(—uvw) = C(=vw)C(uvw)™' C(u)C(ow)

& C(uvw)C(—uvw) = C(—vw)C(ow)C(u~") " C(u)

(note that C(u™")"'C(u) = C(u?))

& Cuvw)C(—uvw) = C(—vw)C(vw)C(u*) for all u,v,we F*.

Hence we have C(uvw)C(—uvw) = C(—vw)C(ow)C(u?) for all u,v,w e F*.

(5) The case of (/,m,n) = (1,0,0)mod 2
We have

C(u"v™") u, vy C(u"v"w™" ") Cuv, w
= C(u" "W u, vwHC (" w™)
& C™)Cu™)Cu")C")Clw™™) C(w™)<u, v)<uv, w)
= Cu™)Cu")C(v~w ) C") C(w™)<u, vw)
& C(u)Cw™)u, vy<uv, wy = C(o™w™)<u,ow)
& Cu " HCw ") C () Cw)<u, vy <uv, w)
= C(o "'wHC(vw)lu,vw) for all u,v,we F*.
It is derived from Lemma 4.3.

(6) The case of (I,m,n) = (1,0,1) mod 2
We have

C(u"v™")u, vy C(—u"v" w1 Cuv, w
= C(—u" "™y Gy ow Y C (" W) o, W

e Cu™Cw e o w1 C(—uvw)
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= C(" 1y ) C(—uow) C(0") Clw™)

& C")C ) Cl—uvw) = Cu"s W™ C(—urw) C(") C(w ™)

e Cu™Cw™) = cw™Cw =) Cc(w™ Cw™™)C") for all u,v,we F*.
It is derived from Lemma 4.3 and Lemma 4.4.

(7) The case of (/,m,n) = (1,1,0) mod 2
We have

C(—u"v™"Yu, v)C(u"v"w™ )
= C(=u""o" ) (o, wyu, owy C(o"w ™)
& Clu" o N C(—uw)Cu")CW™)C(w™ ") u, v)
= Cu™ o=l C(—uow) C(0") Cw™) (o, wH<u, vw)
& C(=ur)Cu")C") Cw™")<u, 0>
= C(u"v™" ") C(—uvw) C(0") C(w ™) <o, w)<u, ow)
& C(=uv)C(w™" ) <u, vy = Cow™ 1) C(=uvw) C(w™") v, wH<u, ow)
& Cluvw) ™" Cuv) C(w) C(—uv) Clw™" ") = C(w™ 1) C(—uvw) C(w™)
& C(uvw) C(—uvw) = C(uv) C(w)C(—uv) C(w™YC(w =Y C(w™)
& Cluvw) C(—uvw) = C(uv) C(—uv)C(w)Cw™ )™
(using C(w™")™'C(w) = C(w?)
& Cluvw)C(—uvw) = C(uv)C(—uv)C(w?) for all u,v,we F*.

It is derived from Lemma 4.3, Lemma 4.4 and the equation which we obtain
in (4).

(8) The case of (I,m,n)=(1,1,1) mod 2
We have

C(—u"v™")u, vYC(u " w1 Cuv, w
= C(u"”'”v_lw_l)(v, wHu, owyC(—=v"w™™)
& Clu" o N C(—uw) Cu"") C(w™ )

= C(u"™ ™ C(w'whcw w1 C(—uow)
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PN C(uernflUflJrnflwfmfl)C(_uv) _ C(um+n071+n71meflfl)c(_vw)
PN C(um+nvfl+nwfmfl)C<u71U71)C(_uv)
= C(u"™ v rwm=h (v 'w Y C(—vw)  for all u,v,we F*.

Using the fact that C(u)C(—u~') = C(—1) for all ue F*, it is derived from
Lemma 4.3 and Lemma 4.4.

It is easy to see the relation (M2) is equivalent to C(1) =e.

Next we rewrite the relations (M3)—~(M5) in Ky(A4;, F[X, X !]) to relations
in M.

(M3):

Cy, (uX™ vX") = C,, (v ' X", uX"™) for all u,ve F* and m,ne Z.

(1) The case of (m,n) = (0,0) mod 2
We have
Cu"v™)=C(v™"™u") for all u,ve F*.

Nothing appears.

(2) The case of (m,n) = (1,0)(1,1)(0,1) mod 2
We have

C((=1)™u"v™")<u,vy = C((—=1)™"u"v™"™) v~ u) for all u,ve F*.
It is derived from Lemma 4.3.
(M4):
Cy (uX" vX") = Cpy (uX", —uvX™") for all u,ve F* and m,ne Z.

(1) The case of (m,n) = (0,0) mod 2
We have

Cwv™")=C""u"v™") = Cu"v™™) for all u,ve F*.

Nothing appears.
(2) The case of (m,n) = (1,0)(1,1)(0,1) mod 2
We have

C((=D)™"u"o™")<u, v)
= C((=1)"mmtmymin _pymy=my=my(y —ypy  for all u,ve F*.

It is derived from Lemma 4.3.
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(M5):
Cy, (u,vX") = Cpy (u, (1 —u)vX") for all u,ve F*;,1 —ueF* and ne Z.
(1) The case of n =0 mod 2

We have
Cu") = C(u")

Nothing appears.

(2) The case of n =1 mod 2
We have
Cu")Cu, vy = Cu")u, (1 = u)v).

It is derived from Lemma 4.3.

From the above argument we conclude that M is generated by the symbols
C(u) for all ue F* and charactarized by the following relation:

(1) C(u?v) = C(u*)C(v) C(1) =e for all u,ve F*.

(2) C(uvow)C(—uvw) = C(u*)C(vw)C(—vw) for all u,ve F*.

(3) We put Cu,v) := C(uv)C(u) ' C(v)™" for all u,v e F*. Then <u,v) for all
u,ve F* satisfies the relation (M1)-(M5) and {u,v?) = e.

LemmA 4.5.  Notation is as above. Then (2) follows from (1) and (3).

Proor. It is sufficient to confirm the following:
C(yx)C(—yx) = C(y*)C(x)C(~x) for all x,ye F*.
Indeed e =d(x,1) =d(x,—x') = C(=1)C(x) "' C(=x")"", hence we have
C(x)C(=x7") = C(-1),
C(—x)C(x 1) =C(=1), and C(—yx)=C(y 'xH'c(=1).
Then we have
C(yx)C(=yx) = Cyx)C(-1)C(y 'x )™ = C(»’x*)C(=1) = C(P)C(x*)C(-1)
= C()C(x ) C)C(=1) = C(») C(x) C(=x).
Hence we have the desired result. O

Now we put D := {u,v)|u,ve F*y =« M, then by [3] [8], we have M =
P(F) and D = I*(F).

ProPosITION 4.3.  Notation is as above. Then M is generated by the symbols
C(u) for all ue F* and charactarized by the following relation:
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(1) C(u?v) = C(u*)C(v) and C(1) =e for all u,ve F*.
(2) We put {u,v) := C(uv)C(u) ' C(v)™" for all u,ve F*. Then {u,v) for all
u,ve F* satisfies the relation (M1)-(MS5) and {u,v*) = e.

PropoSITION 4.4. D is generated by the symbols {u,v) and charactarized by
the relations (M1)—~(M5) and {u,v*) = e for all u,ve F*.

Now we obtain the group presentations of M = P(F) and D = I*(F).
4.3. Case of 4 #C,

LEMMA 4.6. Suppose A # C, Let a; €Il be a long root. Then we have
Ko (A, FIX, X)) = (C, (uX?,vX ) |u,v e F*, p,q € Z).

Furthermore for all u,vywe F* and p,q,reZ, we have C,(uX?,vX19)-

J

Coy(uXP?, wX") = Cy (uX?, owX 1*7) and Cy, (uX?, 0X)C, (WX, vX 1) =

J J J

C,, (uwX Pt vX1).

Proor. We choose oy, o € IT with oy () = —1, oy(h) = —1. Then we have

Cy (u,0) = C, (u’l,v’l)Cak(u’l7 U"k(”’)) = Cwl(u’l7 v) = Ca,(u""(h")7 v) = Cy,(u,v).

s

From this and seeing Dynkin-diagrams in Fig D, for some short root «, € Il and
long root o, e Il, we have

Ky (A, F[X, X ']) =<C,, (" 0", Cy, (uX ", 0X") |u,ve F*,m,n e Z).
From the fact that every Dynkin-diagrams in Fig D is connected, we have
Ky(A,F[X,X ")) = {Cpy(uX ", vX") |u,v e F*,m,ne Z).

The remaining result is easily obtained from the bimultiplicativity of C; as is
well-known.
Hence we obtain the desired result. O

Now we split the element C,, (uX"™,vX") for all u,v e F*, m,ne Z and o; € I1
long root as follows:

Coy(uX ™, 0X™) = Cy, (1, v) Cy, (u, X™") Cy (X, 0) Gy (X™, XT)

= Cdi(ua U)Cxi(un’ X)Cxi(v_mv X)C%’((_l)mnv X)

= Cy, (u,0)Cp, ((=1)™"u"v™"™ ) v).
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o (&) a3

—0—0—0
Op_2 Qp_1 Qp
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Up-3 Qp_2 Qn

Op—1 Qp
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(5] 9 Q3 (6%}

G

aq Qo

Figure D Dynkin-Diagram

ProPOSITION 4.5. The correspondance

YKy (A, FIX, X)) = Kx(4,F) ® F*

Cy,(uX™ 0X") = Cy,(u,v) @ (1) u"o™™

n=6,7,8

for all uyve F*, mne Z and o; € I1 (long) gives a group isomorphism.

Proor.
morphism. Now we define ® by

®:Ky(A,F)®F* — Ky(A,F[X, X))

Cy(u,0) @t — Cy,(u,v)Cy (2, X).

It is also easy to see the well-definedness of ® as a group homomorphism.
Then we see DoW = Id, ¥ o ® = Id. Hence we obtain the desired result.

Here we see the following convention between Dynkin-diagrams and Cartan

matrics.

It is easy to show the well-definedness of ¥ as a group homo-
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) O a;; = 0,a;; =0

Q5 Oéj

o——-=O0 aij = 71,(1]'1' = -1

(673 Oéj

o=——=0 aij = —1,a;; = -2

a; aj 1] sy Wy

o= aij = —1,a;; = -3

a; Ot]' 1] sy Wy
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