TSUKUBA J. MATH.
Vol. 30 No. 1 (2006), 81-102

SPACE-LIKE ISOTHERMIC SURFACES AND
GRASSMANNIAN SYSTEMS

By

Martha P. Dussan*®

Abstract. We show that space-like isothermic surfaces in the
pseudo-riemannian space R" ™/ are associated to O(n — j+1,j+ 1)/
O(n—j,j) x O(1,1)-system, and that the action of a rational
map with two simple poles on the space of local solutions of
On—j+1,j+1)/0(mn—j,j)x O(1,1)-system correspond to Rib-
aucour and Darboux transformations to space-like surfaces in R"7//.

1. Introduction

It is known that there is a connection between the theory of submanifolds
and the theory of solitons. Some examples are the well-known local corre-
spondence between pseudospherical surface and the solutions of the Sine-Gordon
equation ¢, =sin ¢, and the recent reformulation of the theory of isothermic
surfaces in R within the modern theory of completely integrable (soliton)
systems, given in [4]. A key point to study this connection is the existence of a
Lax Pair or a zero curvature representation which may give rise to an action of
an infinite dimensional group on the space of local solutions of the equation,
called the ““dressing action” in the theory of soliton equations.

There are several excellent articles where is study that connection, specially in
a recent work of Terng et al. ([9], [2]) is established a relationship between
integrable systems and submanifolds geometry. In those articles it is considered
a new integrable system the U/K-system and study the geometry associated to
the particular G, = O(m+n)/O(m) x O(n) and G\ , = O(m+n,1)/O(m) x
O(n, 1)-system. This study involved to find submanifolds in a certain symmetric
space whose Gauss-Codazzi-Ricci equations are given by these systems, as well as
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the geometric transformations associated to the dressing action of certain simple
elements.

The U/K-system is defined by Terng in ([9]) as the following PDE: Let U be
a semi-simple Lie group, ¢ an involution on U and K the fixed point set of o.
Then U/K is a symmetric space. The Lie algebra # is fixed point set of the
differential o, of o at the identity, in others words, it is the +1 eigenspace of o,.
Let 2 denote the —1 eigenspace of g,. Then we have # = # @ 2 and

(A, A e A, (AP P, [P,P) <A

Let .o/ be a maximal abelian subalgebra in 2, a;,ay,...,a, a basis for .« and
/* the orthogonal complement of .7 in the algebra % with respect to the Killing
form <,). The U/K-system is the following first order non-linear PDE for
v:R" - 2Nt

[ahvxj} - [aj’u»xi] = Haiva [Clj,l)]], l<i# J=n, (l)

where v, = £2. It is not difficult to show that v is a solution of the U/K-system if
7
and only if the connection 1-form

0, = Z(ai/l + [a;, v]) dx;. (2)

is flat for all 2eC, if and only if there exists an application E such that
E-VdE = 0,. 1f 0, is flat for all 2e C the 0y =Y [a;,v] dx; is a A -valued, flat
connection and hence there exists g : R"” — K such that g~! dg = 0. Suppose
K = K| x K, so we can write g = (g1,¢2) € K; X K». The two new systems given
by the flatness of the gauge transformation ¢g; x 6, and g, x 6, are called the
U/K-system 1 (II resp.).

In the study made in ([2]), it was obtained that the submanifolds geometries
associated to the G, and G ,-systems, include submanifolds in space forms
with constant sectional curvatufes, submanifolds admitting principal curvature
coordinates and isothermic surfaces in R”. Moreover, that the dressing action
of simple elements on the space of solutions of these systems correspond to
Backlund, Darboux and Ribaucour transformations for submanifolds.

In this note we are interested in to discuss the geometry of surfaces associated
to the O(n—j+1,j+1)/0(n—j,j)x O(1,1)-system as well as the geometric
transformations corresponding to dressing actions. We show that in this case, the
space-like isothermic surfaces in the pseudo-riemannian space R"™// for any
signature j are associated to O(n—j+1,j+1)/O(n — j,j) x O(1,1)-system 1II,
and that the Ribaucour and Darboux transformations to space-like surfaces
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correspond to the action of a rational map with two simples poles. In particular
we obtain that the space-like 2-tuples in R"™ of type O(1,1) are in corre-
spondence with the solutions of the O(n—j+1,j+1)/0(n—j,j)x O(1,1)-
system II, and that these correspond to an isothermic pair of space-like surfaces
in R"7/. Some results of this note appeared initially in the research report No.
60 in 2002, see ([7]).

We should recall that the topic of isothermic surfaces has been of increasing
interest to geometers because they can be reformulated within the soliton theory
([4]), or can be interpreted as the so-called curved flats in the symmetric space
0(4,1)/0(3) x O(1,1) ([3]), and because of the relation between a 2-tuple in R>
of type O(1,1) and an isothermic pair ([2]). So motivated by these relations and
the general results in R” ([1]), this note pay attention to the space-like isothermic
surfaces and its relation with integrable systems. Finally, we observe that as in the
classic situation, space-like minimal surfaces, space-like surfaces with constant
mean curvature and space-like surfaces of revolution in R*!, provide examples of
space-like isothermic surfaces in the Lorenztian space ([8]).

2. The associated geometry

First of all, we will find one maximal abelian subalgebra in the subspace %2
for which we obtain elliptic Gauss equations, which is correct for space-like
surfaces:

Let U/K=0mn—j+1,j+1)/O(n—j,j)x O(1,1), n— j =2, where

I . 0 L;; O
. . _ i An—j.j _ (=i
On—j+1,j+1) {XeGL(n+2)|X( 0 m)X < 0 11,1)}’

L 0 10
L= 0 -1) L= 0o 1)

So, O(n—j+1,j+1) is the Lie group of linear isomorphisms that leaves the
following bilinear form on R"*? invariant:

(X, YY) = X1Y1 +X0Y2 + - 4 XpejVnej — Xn—jr1 Vn—jt1
— o = XYVt Xntk 1 Vil — Xnt2Vnt2-

Let # =0o(n—j+1,j+1) be the Lie algebra of U and o: % — % be an
involution defined by ¢(X) = o éXI,,, ». Denote by 7", 2 the +1, —1 eigenspaces
of o respectively, i.e.,
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%:{()(;1 32)’Y1eo(n—j,j),Yzeo(Ll)}:o(n—j,j)xo(l,l),

P — 0 &
7= {(_Iljlfrlnj,j 0) ‘ é € %nxz}.

We define the matrices ai,ay € M (y12)x(n+2), DY

ay = —ejpt1 t+enr1,1, a2 = €212+ €ny22,

where ¢; is the elementary (n+ 2) x (n + 2) matrix, whose only non-zero entry is
1 in the ij™ place.

It is easy to see that the subalgebra .o/ = {aj,a;) is maximal abelian in 2.
Then using this basis {a;,a,}, the U/K-system (1) for this symmetric space is the
following PDE for

0 &1
& 0
E=| na "2 | R? = Mo,

'n—2.1 Tn=22

(ria)y, =rincy, i=1,...,n-2

(rin)y, =ri2&y, i=1,...,n=2 5
( l)vcl + (52));2 = _2;1;{72 ri1ri2 +Z?;127j71 Ti1ri 2,

( 2)x1 (é])xZ'

We now denote the entries of & by:

ri,1 2

0 51>
=F and : : =G.
(& 5 -
Fp-2,1 Tn-2,2

,1)-system II is the PDE for

The Omn—j+1,j+1)/0n—j,j) xO(1
1), where g/.(2) is the set of matrices

(F,G,B) : R* = gl.(2) X M (22 x O(1,
2 x 2 with diagonal elements zero,

i)y, =riaéy, i=1,...,n-2

i)y =rials, i=1,...,n—=2

D + (&) = =S5 P raria+ 050 riario
/)

(
(
(€
( i)x, = gkbikv k ;é]?
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h inh

where the matrix B = (b;) € O(1,1). Now we take B = C?S oS , and
sinhu coshu

use the fact that

= dB:( 0 & dxl—l-fzdxz)’

& dxy + & dxy 0

to have & =uy, & =u,, and that O(n—j+1,74+1)/0(n—j,j) x O(1,1)-
system II becomes in the set of partial differential equations for

(u,rl,l,rl,z,...,r,,_zyl,rn_zj);
(ria)y, = Tiaty, i=1,...,n=2
(rin)y, = File,, i=1,...,n—=2 5)
() + (), = = S 2 riaria + 000 i,

Next we identify the geometries of space-like surfaces corresponding to the
On—j+1,j4+1)/0(n—j,j)x O(1,1)-system 1I. We start by defining the space-
like 2-tuples in the pseudo-riemannian space R"™/ of type O(1,1):

DEFINITION 2.1.  Let O be a domain in R* and X; : O — R" ™/ an immersion
with flat and non-degenerate normal bundle for i = 1,2. (X1, X>) is called a space-
like 2-tuple in R"77 of type O(1,1) if:

(i) The normal plane of X,(x) is parallel to the normal plane of X,(x) for any
xed,

(ii) there exists a common parallel normal frame {es,..., e,}, where {e“}g_‘i
and {eu},';_j 41 are space-like and time-like vectors resp.

(i) x € O is a hyperbolic line of curvature coordinate system with respect to
{es,...,e,} for each Xj such that the fundamental forms of X are:

I = b}, dx} + b}, dx3,

n—2

Il = ¢ Z(bklgil dx? + bjogn dx3)eia, & =—& = 1, (6)
p)

for some O(1,1)-valued map B = (b;) and a M ,_y yr-valued map G = (gy).

Our first result, which gives us the relationship between the space-like 2-tuples
and the solutions of the O(n — j+1,j+1)/0(n — j, j) x O(1,1)-system II (5), is
the following:

THEOREM 2.1.  Suppose (u,r1 1,712, .., n—21,tn—22) s solution of (5) and F,
B are given by
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Fo 0 &\ [0 uy, B coshu sinh u
\& 0 \u, 0) “\sinhu coshu/’

Then: (a)
0 —&rdxy + & dxy ryypdxy - re_jo dXp —Fu_joy g dxy - —Fp_2,1 dxy
&y dxy — & dxy 0 radxy < Tu_ja2 dXy —Tu_j12dXy - —Fp_2,2 dx;
= —r1,1 dx —r1,2 dxy 0 e 0 0 --- 0
: : : 0 e :
—In2,1 dx —Tn-2,2 dx3 0 e 0 0 0 0

is a flat o(n— j,j)-valued connection 1-form. Hence there exists A:R> —
O(n— j,j) such that

A7 dA = o, (8)
where w is given by (7).
—dx; 0 0 -+ 0 0Y
(b) A( Oxl do 0 - 0 0>B1 is exact. So there exists a map
X :R?> = My such that
—~dx; 0 0 --- 0 0
dX = A4 B 9
(0 dX2O-~-OO) ®)

(¢) Suppose that all the entries of B are non-zero. Let Xj : R? — R" 7/ denote
the j-th column of X (solution of (9)) and e; denotes the i-th column of A. Then
(X1, X2) is a space-like 2-tuple in R"™7/ of type O(1,1). In fact,

(1) e, ey are space-like tangent vectors to X| and X, ie., the tangent planes
of X1, Xo are parallel.

(2) {es,...,es} is a parallel normal frame for X\ and X,, with {es,... e,_;}
and {en_ji1,...,e,} being resp. space-like and time-like vectors.

(3) the two fundamental forms for the immersions Xy are:

I = cosh? u dx} + sinh® u dx3
1 = Zf;lz(r,;l cosh u dx? + r; » sinh u dx3)e; 2
L, = sinh® u dx} + cosh® u dx3

Ih = — 5272 (riy sinh w dx? + 1, 5 cosh u dx2)e; 2.

PrOOF OF THEOREM 2.1. The proof follows from an argument similar to
those for Theorem 6.8 or 7.4 in [2]. [ |

REMARK 2.1.  We observe that, taking a generic b = (b;) € O(1,1), Theorem
(2.1) shows that I, II; are given by (6) and dX; are:
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dX) = —(by dxiey + b1y dxzer) dXo = (by dxje) + by dxzer).

We also note that Theorem (2.1) can be stated for a generic (F,G,B) solution of
the system (4).

Now we have the converse theorem.

TueorREM 2.2. Let (X1, X>) be a space-like 2-tuple in R" ™/ of type O(1,1),
{es,...,en} a common parallel normal frame and (x,x;) a common hyperbolic line
of curvature coordinates for X| and Xz, such that the two fundamental forms I, 11}
for Xj are given by (6). Set f; = ”f’ ifi#j, fi=0 and F = (fj)y. If all
entries of G are non-zero then (F,G, B) is a solution of (4).

Proor. From the definition of space-like 2-tuples in R" 7/, we have
wik) = —&rby dxy, wé"’ = —erhiy dx;

. k k
is a dual 1-frame for X and a)gé) = Gyuty—2.1 dx1, wéa) = 0,ry—2,2 dx; for each X,

where aafl ifao=3,....n—jand g, =—-1ifa=n—j+1,...,n. We observe
that wm ,i=1,2, o= 3 ,n are independent of k. We have the Levi-Civita
connection 1-form for the metric I is:
b b
oll) = )y o br2)y = 19 dxy — 9 s,
bia bi
(b bia), . .
where f Z;Z , 1(5 ) = % Since dco({;) = —wgg) /\a)g? and dcug;) =

—wg? /\w(ll;) (see appendix), we get

(bi2)y,  (re22)y, (bia)y,  (ra21)y,

b
bi Fy2.1 bis Fo2.2

(b
so fz(lk), fl(zk) are independent of k. Hence wgg) :cu<112> _ Gk dx 1“ dx,
for dxy — fio dxy = &y dxy — &) dxy. So the structure equatlons and the Gauss-
Codazzi equations for X;, X, imply that (F, G, B) is a solution of system (4).
|

THEOREM 2.3. The O(n— j+1,j+1)/0(n— j, j) x O(1,1)-system II (4) is
the Gauss-Codazzi equations for a space-like surface in R"™ such that:
n—2

I = sinh? u dx12 + cosh? u dx%, I =— Z(r,;] sinh u dxl2 +ripcoshu dx%)e,‘_»,_z.
i=1
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Proor. From the form of I and II, we have:
o) =sinhudx;, @, =coshudxy, =0,y 21dx|, =0, 22dxs,

where g, =1 ifa=3,....n—jand g, = -1l ifa=n—j+1,...,n. Now use the
structure equation to obtain: wiy = uy, dx; — Uy, dxp. Using the Gauss-Codazzi
equation (see appendix), we obtain that these are the following system for

(M, 1,712, .- ~,rn—2,1,rn—2,2)2

(ria)y, =riathy, i=1,...,n-2
(r[71)x2:r,~,2u4¥2, i=1,...,n-2 (10)

o n—j—2 n—2
Usyxy T Unyx, = — Zizl Fiilio + Zi:n_‘j—l Fi1li2.

Hence if we put

coshu sinh u 0 u "' ’
B=| ", , F= ), G= : : . (11
( sinh u  cosh u) (uxZ 0 ) : : (1)
"n—2.1 rn72,2

we see (F, G, B) is solution of the system (4). Conversely, if (F, G, B) is solution
of the system (4), and we assume B is as in (11), then from the fourth equation
of system (4) we get &) = uy,, & = uy,, 1.6, (F, G, B) is of the form (11). Finally
writing the O(n— j+ 1,7+ 1)/0(n— j, j) x O(1,1)-system II for this (F, G, B),
in terms of u and r; we get equation (10). [ |

Combining Theorems 2.1 and 2.3 we get

THEOREM 2.4. Let O be a domain of R*, and X, : O — R" 7/ an immersion
with flat normal bundle and (x,y) € O a hyperbolic line of curvature coordinates
system with respect to a parallel normal frame {es,... e }. Then there exists an
immersion X\, unique up to translation, such that (X1, X>) is a space-like 2-tuple in
R/ of type O(1,1). Moreover, the fundamental forms of X, X, are respectively:

I = cosh® u dx} + sinh? u dx3
I = S 2 (ri1 cosh u dx? + r; 5 sinh u dx})e;
I, = sinh® u dx} + cosh? u dx3

I = — Zl.”:_lz(ri,l sinh u dx? + r; > cosh u dx3)e;».

(12)

EXAMPLE 2.1.  Recall that given a space-like surface in R*' with curvature —1
and free of umbilic points, there exists a local coordinates system x|, x, such that
the two fundamental forms are ([11]):
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I = cosh? u dx} +sinh? u dx?, II = cosh u sinh u(dx? + dx3).

With respect to this coordinates system, the Gauss-Codazzi equation of the surface
is written in the following form (Elliptic sinh-Gordon equation):

Uy,y, + Ux,x, = sinh u cosh u.

This implies that (u,sinh u, cosh u) is a solution of 0(3,2)/0(2,1) x O(1, 1)-system
II (5). Let X(x1,x7) denote the immersion of M and es the unit normal of M. Then
(X, e3) is a space-like 2-tuple in R*' of type O(1,1), where es is a parametrization
of an open subset of pseudo-hyperbolic space H*(1) = {q e R*'|{q,q> = —1}.

Now we are interested in finding the connection between the space-
like isothermic surfaces in R"™ and the solutions of the O(n— j+ 1,/ +1)/
O(n—j,j) x O(1,1)-system II. We begin by defining space-like isothermic sur-
faces in R"™*/ just as in the classic situation of isothermic surfaces in R” ([1]).

DEFINITION 2.2 (Space-like isothermic surface). Let ¢ be a domain in R>.
An immersion X : O — R"™/ is called a space-like isothermic surface if it has flat
normal bundle and the two fundamental forms are:
n—2

I = ez"(dxl2 + dx%), I =e (gi1 dxl2 +9in dx%)e,-+2,

i=1

with respect to some parallel normal frame {e,}. Or equivalently (x1,x;)€ O is
conformal and line of curvature coordinate system for X.

It is not difficult to see that The Gauss-Codazzi-Ricci equation for space-like
isothermic surfaces in R"™/ is (10).

Our next result establishes the relation between space-like isothermic surfaces
and the space-like 2-tuples in R"// of type O(1,1).

PROPOSITION 2.1.  Suppose that (X1, X3) is a space-like 2-tuple in R"™7-/ of
type O(1,1). Let Zy =X1— X, and Z, = X1+ Xo. Then both Z, and Z, are
space-like isothermic.

ProOF. Let (u,7r1,1,71,2,---,Fs—21,74—2,2) be a solution of (10) associated to
(X1,X2). Set X = (X1, X2). Then by (9), we have:

{dX1 = —(cosh u dxje; + sinh u dxye;),
dX, = sinh u dxje; + cosh u dxze;.
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0 u
We note that F = ( (’;' ), Wia = Uy, dX] — Uy, dxy and wi, = oury_2; dX;
Uy, ’
where 6, =1, 0 =3,...,n—jand o, = -1, a=n—j+1,...,n. Now using (8),
we have that for o =3,...,n, de, = 0,(ry—2,1 dxie; + ry_22 dxse;). We compute

that

dZ, = dX, — dX, = —e"(dx1e1 + dxze;),
dz, =dX, +dX, = —e‘”(dxlel — dX282).

Hence the induced metric and the second fundamental form for Z; and Z, are,
respectively:

I = e®(dx? + dx3)

III = e” 2?2712(}’,"1 dx12 + V,'72 dx%)eiﬁ

b = e 2(dx} + dx?)

L =e E;:lz(r“ dxlz —Fi2 dx%)e,urz. |

We observe that the two immersions Z; and Z, given in proposition above
are isothermic dual surfaces, which we called a space-like isothermic pair in
R,

Now we will study the dressing action of a rational map with two simple
poles on the space of solutions of the O(n—j+1,j+1)/0(n— j,j) x O(1,1)-
system II.

Let Omn—j+1,j+41)®C=0n—-j+1,j+1;C) the complexified
Lie group. The symmetric space O(n—j+1,j+1)/0O(n—j,j)x O(1,1) is
determined by two involutions, namely 7,6:0(n—j+1,j+1;C)—
O(n—j+1,j+1;C) defined by: X +—1(X)=X and X — o(X) =11X],>,
resp. Then O(n— j+ 1,7+ 1)/0(n— j,j) x O(1,1)-reality condition is: ’

g(4) = g(4)
Li2g(—A) L2 = g(2) (13)

X In—‘,' 0 . In—',‘ 0
g(/b)f( 0]./ I]])g(ﬂ):< O././ Ill)

for a map g: C— Uc=0n—j+1,j+1;C).

We recall that a frame for a solution v of the U/K-system (II) is a
trivialization of the corresponding Lax connection 0; (0i') that satisfies the
U/K-reality condition.

Let
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G.={9:C—>0(n—j+1,j+1;C)|g is holomorphic and satisfies the
reality condition (13)}

G.={g9:S* = 0(mn—j+1,j+1,C)|g is meromorphic, g(c0) =1 and
satisfies the reality condition (13)}.

Now we find certain simple elements in G_ explicitly. Let W =
(wi,...,wy) e R" 9 Z =(z1,25)" e R} unit vectors and C"* be equipped with
the bi-linear form:

Lij; 0

U,V =0U'
< ) >2 ( 0 1171

) V =i + - + Uy jUn—j — Up—jy10p—j31

— e = UpUy + Upy1Upr] — Up2Upy2.

o w .
Let 7 the orthogonal projection of C"*? onto the span of (iZ) with respect

to {,>. So
L/ WW! —iwZ! IL,;; O
P ; " . (14)
2 lZWI zZ7Z! 0 1171

4 W
7 is the projection onto C( 7 ), which is perpendicular to (Z) So
i i

an=nn=0. Let seR, s # 0, and it defines

9s.x(2) <n+%l:s(1n)) <ﬁ+i+is(lﬁ)>.

A+ is A—1is

So substituting (14) to g, ., we get

1 .2 ) I—2Wthn_jj 0
) = I J.
gs,z(4) PR ALt ( 0 1-27Z7'1
0 WZ'I
25 ’ . 15
+ M(—ZW’I,,M 0 )] (15)

One can see that g, ,(4) (15) satisfies the O(n—j+ 1,7+ 1)/0(n— j, j) x
O(1, 1)-reality condition (13), therefore the element g, , € G_.

Now we get an explicit construction of the action of g, on the space of
solutions of the O(n—j+1,j+1)/0(n— j,j) x O(1,1)-system.

THEOREM 2.5. Let &:R* — M yy» be a solution of the On—j+1,j+1)/
O(n—j,j)x O(1,1)-system (3), and E(x,A) a frame of & such that E(x,1) is
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holomorphic for A € C. Let W and Z be unit vectors in R" 7/, RV respectively, n

W
the orthogonal projection onto C< Z> with respect to <, », and ¢y, the map
; :

defined by (15). Let 7(x) denote the orthogonal projection onto C( I/Zlf>(x) with
respect to {,»,, where !

o ®

Let W=-—-W and 7 =2, E(x,2) = gy 2(A)E(x, g, ;Z(x)(/l)fl,
W1, [4/' ’

E=¢-2s(WZ'I),, (17)

N ] (16)

where (3.); =9 if i # j, and ($.); =0, 1 <i<2 Let
E*(x,1) = E(x, l)gjl. (18)

Then
(a) & is a new solution of system (3).
(b) E* is a frame for E.

(©)
E(x,0) = (Aéx) B?x))’ E#(x,0) = (A#O(x) B#O(x))’

for some A, B, A*(x), B*(x), and
A* = A(I —2WW'I,_;;), B*=B(I—-2ZZ'I,). (19)

(d) (W,Z) is a solution of the system:

d(g)(x) - —6,-S<l.ﬁzf)(x)

where 0 is the Lax connection.

For proving this theorem we have the following lemma whose proof is quite
similar to the proof of Lemma 9.4 in [2] and which we omit.

LemMA 2.1. With the same conditions as in theorem above, we get

(i) W(x)eR", Z(x) eR%

(ii) ||W(x)\|n7j‘j = ||Z~(x)|\11 Vx and g,z satisfies the On—j+1,j+1)/
O(n— j,j) x O(1,1)-reality conditions (13), i.e. gsz€ G_.

(iii) E(x, ) is holomorphic in ) e C.
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ProOOF OF THEOREM 2.5. The computations give us
E ' dE =g, :E! dng}l — dgs_ﬁg‘;}z. (20)

But E-'dE =7 (a;\+a;,v]) dx;, E(x,2) is holomorphic in AieC
and ¢, :(4) is holomorphic at A= oo. So E'dE must be of the form:
Zle(a,-l—kui) dx;. Now we write

S, 7T A)=1 P te
9gs.7(A) t PP +
77t
then m;(x) = 2s . AO WZ 5 and m;(x) € 2. In fact, one sees that
—ZW'L,_; ; 0
the element ’

N A—is N - A+is -
o) = (745 o) (745550 -5)

Atis . A—is- - =
= I —7)(I - 21
/lfisn i+isn+( ) %), 1)

and now we make the expansion of terms % and

A—is _
yEn around A = oco. Sub-

stituting this in (21) we have

Hence we obtain that m(x) = 2is(z — ), i.e., mi(x) is as we had claimed.
Now multiply (20) by g, 7 on the right side and equate the constant term of
equation which results of that operation, to obtain

W = lai, v —my] = [a;, 0 — p,(m)],

where p, is the projection from 2 onto 2N .o7*. Therefore & = v — p,(m) is a
solution of O(m—j+1,j+1)/0(mn— j,j) x O(1,1)-system. More specifically,
0 _ 0 é

and v = -
—1,1E' 0) —5L:&,; 0

is a solution of O(n—j+1,j+1)/0(n — j,j) x O(1,1)-system (3).
For item (b) and (c), since gsz€ O(n—j+ 1,7+ 1;C), (18) becomes in

writingv:< LE=E-25(WZ'L ),
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- IL_;; O 1
E#x,i:Ex,/l(n“ )—
(x, 4) (x.4) 0 5Liy))%+s2
M FETIRE 2L, ; ,WW' 0
0 [—20,22!

0 —I_' WZI In—' j 0
+ 254 JN " ( - > 22
(IlvleI 0 ) 0 Il,l ( )

We note that E* is a frame of & and that E#(x,.) is not in G,. The reality
condition (13) implies that both E(x,0) and E#(x,0) are in O(n — j, j) x O(1,1).
So, now we write:

20 = (757 g ) E#(X’O’:(A#O(X) E#O<x>)‘

Finally, from (18) we have E#(x,0) = E(x, O)gm(x)(O)*l, this means

(A# o) (A 0)<n,, 0) -2, ; ;WW' 0
0 é# 0 B 0 Il,l 0 1—211’1ZAZAI
Iij; 0
X( 0 11.1)

(AU - 2WW', ;) 0
0 B(I —2ZZ'I 1)

from which follows A% = A(I —2WW'I,_;;), B* = B(I —2ZZ'I, ).
(d) Follows directly taking the differential of (16). [ |

In the next statement we will use the notation g,,#¢, for denoting
the dressing action of g, , on & and g_#¢ for the dressing action of g_ on &

(see ([2]))-

COROLLARY 2.1. Suppose E is a frame of the solution & of the
On—j+1,j+1)/0n—j,j) x O, 1)-system (3) such that E(x,A) is hol-
omorphic for e C.

) If E( A) =1, then f obtained in Theorem 2.5, is g, #¢ and E is the
frame of & with E(0,}) =

(i) Let g+(4) = E(0, ) and & the new solution of (3) obtained in Theorem 2.5.
Then g, € G, and E=g_#& where §_ is obtained by factoring g5 .9+ = G, g_
with g, € G+.
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F - 2 -
Now writing & = ( G)’ &= (g), we rewrite the new solution & given by

(’;)z(ﬁ;) —25(WZ'I 1), (23)

So (F,G,B) and (F,G, B*) are solutions of the O(n — j+ 1, j+1)/0(n — j, j) x
O(1,1)-system II (4).

We note that if we write F = (fy)ys G = (r)pzjeas £ = (frrr G=
(Fj) (1—2)x2> then (23) for & is

Theorem 2.5 as

fy =ty —2swizjg, i,j=1,2 ”
Fj =1y — 2 gie, i=1,....n—2 j=172
where ¢ = —& = 1.

Now let E# frame of &, E! of (F, G, B) and E#*" of (F, G, B#). Then we get

—~ —~ L_.,. O I 0 L, O
E#ll :E# i n—j,Jj g n—Jj,J
(5, ) = Eh(x, )( . m)(o B#)( . m)’

now, using (22), we get that the frames E” and E# are related by

EA';"”(X, 1) = E"(x,2) l[ 2 (

SWW'L_;; —sAWZ'B'I
2 SWW,_; —siWZ Hﬂ‘ (25)
+s

~s\BZW'l,_;; J*BZZ'B'L
In the next we will use the notation
(EvE#) = gs,n-(éaE)a A# = gS,TE'Aa é# = gs,ﬂ~B;

(F,G,B* E#"Y =g, ..(F,G, BE"),

to understand the result obtained after the action of the element g, , over the
solutions given.

3. Associated Geometric Transformations

Here we describe the corresponding geometric transformations on surfaces
in the pseudo-riemannian space R"/~/ corresponding to the action of g; , given
in (15), on the space of local solution of the O(n—j+ 1,7+ 1)/0(n— j,j) x
O(1,1)-system II (4).

We start with the definition of Ribaucour transformation given by Dajczer-
Tojeiro in [6]. Let R™ be the standard flat pseudo-riemannian space form of
index s, 0 <s< p. For xeR!"” and ve (TR]"?)
denote the geodesic.

where let y, ,(7) = exp(tv)

X
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DEFINITION 3.1. Let M" and M" be riemannian submanifolds of the pseudo-
riemannian space R!*P, 0 <s < p. A sphere congruence is a vector bundle iso-
morphism P : V" (M) — ¥ (M) that covers a diffeomorphism 1: M — M with the
following conditions:

(1) If ¢ is a parallel normal vector field of M, then Po¢ol™' is a parallel
normal field of M.

(2) For any nonnull vector ¢ € Vx(M), the geodesics y, : and yy p() intersect
at a point that is equidistant from x and 1(x) (the distance depends on Xx).

DEFINITION 3.2. A sphere congruence P: 7 (M) — ¥ (M) that covers
l: M — M is called a Ribaucour transformation if it satisfies the following ad-
ditional properties:

(1) If e is an eigenvector of the shape operator Az of M, then I.(e) is an
eigenvector of the shape operator Ap) of M.

(2) The geodesics y, , and yy) 1) intersect at a point that is equidistant to x
and 1(x).

F
THEOREM 3.1. Let éz(G) solution of (3), E frame of &, E(x,0) =
A 0
(x) , (F,G,B) a solution corresponding to Om—j+1,j+1)/
0 B(x)
O(n—j,j) x O(1,1)-system II (4), and
(F,G,B* E*"y =g ..(F,G BE"), A*=yg, . A

Let e;, & denote the i-th column of A and A* resp. Then we have

()
Seorteo=(_ oy,

7 L X' ;; 0
aE‘; ~ 0 X
——(x,00E#*"(x,0) = ¢

EY) (x7 ) (x’ ) (—Iljlxtln—_/}./ 0 >

for some X and X.

(i) X = (X1, X2) and X = (X1, X>) are space-like 2-tuples in R" 77 of type
O(1,1) such that {e,} and {&,} are resp. parallel normal frames for X; and X; for
j=1,2, with indices oo =3,...,n—j and a=n—j+1,...,n corresponding to
space-like and time-like vectors resp.

(i) The solutions of On—j+1,j+1)/0(n—j,j)x O(1,1)-system II (4)
corresponding to X and X as given in Theorem 2.2 are (F,G,B) and (F, G,B#)
resp.
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(iv) The bundle morphism P(ey(x)) =éx(x), k=3,...,n is a Ribaucour
Transformation covering the map X;(x) — X;(x) for each 1 < j<?2.

(V) There exist smooth functions ¢; such that X;+ ¢ e; = X+ g e for
I<j<2and 1<i<n

For the proof we will need the following result whose proof is quite similar to
proof of Corollary (6.11) in [2].

ProPOSITION 3.1.  Let E(x,A) be a frame for the solution & of system (3), and
Y(x) :((W'j,—lj(x7 0)E~!(x,0). Then we have
(i)

0 X .
Y = —IHX’I”_‘/L, 0 for some X € Myx>.

(i) X = (X1,X3) is a space-like 2-tuple in R"™/ of type O(1,1).

(i) dX:A<_dx1 0 0 -0

t
B!, Thi Y satisfi .
0 dv 0 - 0) his means X satisfies (9)

ProOOF OF THEOREM 3.1. From (18), Theorem 2.1, proposition above, we get

0 XNv 05’2 ~a—1
) = 0)E# (x,0
<_1171Xt1n—j,j 0 ) oA (X ) (X )

) _ 2 0 WZ'L -
== E™! “E - T E
= (COE!(x,0) + < E(x, 0)<—ZW'1,,__,,, 0 ) (x,0)

_( 0 X)+2 0 AWZ'B'TL,
B *Il,lXtInfj,j 0 N —BZAWIAt[n,j"j 0 '

Hence
% 2 177t pt
X=X+-AWZ'B'I; ;.
5 :
Let now 5 = Zj”:l wje;, then the i-th column of X is given by

- 2 X

Xi=Xi + i ;(Zjsz)'?a (26)
where ¢ = —& = 1. Now from the relation A% = A(I—2WW’I,,,]-,]-) we get
é=e —2wmneg with g, =1, i=1,....n—jand g =—1,i=n—j+1,...,n So
using this last relation, we have
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X+ ¢ijei = X} + ¢yéi7 (27)

where

&i

2
o

j ~ . .
¢U:—A§ Zkbg, for j=12,i=1,...,n
Wil

This proves that P: 7" (X;) — 7" (X;) given by P(ex(x)) =
a Ribaucour transformation covering the map /: X; — Xj,
each 1 < j<2. |

er(x), k=3,...,n is
1(X;(x)) = X,(x) for

The next result shows that the transformation constructed in Theorem 3.1,
for space-like 2-tuples in R"/ of type O(1,1), is a Darboux transformation for
spacelike isothermic surfaces.

DEFINITION 3.3. Let M, M be two space-like surfaces in R" ™/ with flat and
non-degenerate normal bundle and P: v (M) — v (M) a Ribaucour transforma-
tion that covers the map 1: M — M. If | is a conformal diffeomorphism, then P is
called a Darboux transformation.

TuEOREM 3.2. Let (Y1, Y,) be a space-like isothermic pair in R"7/ corre-
a
sponding to the solution (u,G) of the system (10), and let & = <G) the corre-

0 uy
sponding solution of the system (3), where F = ( u(')‘ ) Let also s € R different

X2

of zero, m a projection on C( 'Z)’ gs.n the rational element defined in (15), and
i

W, Z as in Theorem 2.5, for the solution & of the system (3). Let

(cosh u sinh u
B =

sinh # cosh H)’ (E#Hv‘{#’é#) :gs,n-(EHaAvB)'

Write A= (e1,...,e,) and A" = (éy,...,&,). Set

{Y] = Y] +%(21 +22)€u Zzn:l W,‘é’,’, (28)

Yz = Y2 +%(21 — 22)(37” Zn vi/,-e,-.

i=1
Then
(i) (Y1,Y,) is also a space-like isothermic pair in R" /.
(ii) (i1, G) is the solution of system (10), corresponding to (Yi,Y,), where
it =20 —u, sinho = —2) and G = (F;) is defined by (24).
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(ili) The fundamental forms of pair (Yy,Y>) are respectively

I = e 2(dx? + dx3)

I = e S (—Fya1 dX3 + Py 0 g dX3)E,
b = e¥(dx} + dx3)

Ih = =& S0y (Fyn1 dX? + T2 dx3)é,.

(iv) The bundle morphism P(er(x)) =éx(x), k=3,...,n covering the map
Y; — Y; is a Darboux transformation for each i =1,2.

Proor. It follows from Proposition 2.1 and Theorem 2.3 that (F, G, B) is
a solution of O(n—j+1,j+1)/0O(n—j,j) x O(1,1)-system II (5), and X =
(X1, X2) = Y‘;YZ ,# is the corresponding space-like 2-tuple in R"/*/ of type
O(1,1). Now let X = (X;,X>) be as in Theorem 3.1 and let Y| = X; — X»,
Y, = X| + X». Then using (26) we get that Y, and Y, are given by (28). Since
22 — 22 =1, there exists a function «:R> — R such that 2, =cosha, 2 =

—sinh o. It follows from B* = B(I —2ZZ'I, ) that

B — —cosh(2¢ —u) —sinh(2« —u)\ ([ —coshu —sinhu
- \sinh(2e —u)  cosh(Qe—u) / \ sinh@z cosha )

Since dX; = cosh i dx,é, + sinh @ dx»é,, and dX, = sinh & dx,é, + cosh & dx,é,, it
follows that

df’] = d/?l — de = eiﬁ(a’xlél — d)Qéz), d?z = di] + d)?z = e’z(dxlél + dXQéz).

So we get the claim (i)—(iii).

For (iv) we observe that the map /:Y; — Y; is conformal because the
coordinates (xj,x;) are isothermic for Y; and Y;. Now we need to prove that
P:7(Y;) — 7 (Y;) given by er(x) — é(x), k=3,...,n is a Ribaucour trans-
formation. For that, we use the fact that there exist smooth functions ¢; such
that X; + ¢ e; = X; + ¢ é; for 1 <i<n and j=1,2, (Theorem 3.1 (v)), and so

Yi+ (b — dnei = Y1+ ¢y — dn)éin Yo+ (b + dp)ei = Yo+ (¢ + ¢)éi,

for each 1 <i <n. Hence the map P is a Darboux transformation. ]

ExampLE 3.1. Let n=3, j=1, then we have the O(3,2)/0(2,1) x O(1,1)-
system. Let (u,ri1,r12) = (0,0,0) be a trivial solution of (10), then F =0, G =0,
B=1. So a space-like 2-tuple X in R*" of type O(1,1) and the frame E(x, y,})
associated to trivial solution are:
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cos(4x) 0 0 —sin(Ax) 0
x 0 0 cosh(4y) 0 0 sinh(4y)
X=|1 0 y|, EMxyi= 0 0 1 0 0
0 0 sin(4x) 0 0 cos(4x) 0
0 sinh(4y) 0 0 cosh(4y)
Then from (16), we obtain that
wi wy cosh sx + z; sinh sx
Wo Wy COS 8y — z Sin sy
VT)3 = w3
Z1 wy sinh sx + z; cosh sx
Zs wy sin sy + z COS S5y

From (26), we get that the 2-tuple in R*' of type O(1,1) constructed by applying
the Ribaucour transformation to the trivial solution is:

. 2. S . 2. S
X=X JFEZI Zwieia X=X, _EZZZWieia
=1 =1

iLe.,
—X .
wy sinh sx + z; cosh sx
Xi= 0 |+- - 5 - 5
0 S (wy sinh sx + z; cosh sx)” — (w; sin sy + z; cos sy)

wy cosh sx + z; sinh sx
x| wycossy—z;sin sy
w3
0

- 2 Wy SIn 8y + z2 COS §
n=|y|-2 Y Y
0

- 2 - 2
S (w; sinh sx + z; cosh sx)” — (wy sin sy 4 z; cos sy)

wy cosh sx + z; sinh sx
x| wycossy—z;sin sy
w3

EXAMPLE 3.2. A space-like plane in R*' is an isothermic surface corre-
sponding to trivial solution (0,0,0) of (10). Then the space-like isothermic pair
associated to the trivial solution is:
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—X —X
Yl - =V | YZ - Y
0 0

So the isothermic pair obtained by applying the Darboux transformations to the
trivial solution, given by (28) is:

. 2 SN _ 2.
Y=Y, —|—§(Z] +22);W,'€,‘, Yo=Y, —|—;(Z] —zz);wiei,

ie.,
—X . .
7 2wy sinh sx + z; cosh sx + w, sin sy + z; coS sy
1=\ -y > . 2 . 2
0 S (wy sinh sx + z; cosh sx)” — (w; sin sy + z; cos sy)

wy cosh sx + z; sinh sx
X | wycossy—zpsin sy

w3
—X . .
7 n 2wy sinh sx + z; cosh sx — w; sin sy — z cos sy
2=1 VY - 3 3
0 s (wy sinh sx 4 z; cosh sx)? — (wy sin sy + z, cos sy)*

wy cosh sx 4+ z; sinh sx
x| wycossy—z;sin sy
w3
4. Appendix: Moving Frames

We review the method of moving frames for space-like surfaces in the
Lorentz space R"//: Set

L O
EA'EB:O'AB:I,Z,]"]': 0 I .
J

We also let ; := g;;. For the space-like immersion X set dX = wje; + wyer, with
e1, e space-like unit tangent vectors to the surface and the normal space is
spanned by eg, for 3 < f < n. Define

deB:ZwABeA. (29)
A

This gives wy p = 04¢,4 - deg and w, po4 + wp o = 0.
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From d(dX) =0 we get:
dw; = wy A 12, dwy = W] AWy, W] AWg + W2 AWpg =0,

for f as above.
In addition, by Cartan’s Lemma we have:

w1 = hlﬁlwl + hfza)z, Wyp = /’151601 + /’152(02,

this makes the first and second fundamental form:

I: a)12 —|—co§, I — Z Zwkawkaaea (30)
k=12 o
We also have: dwcy = — ) pwcp Awpg, which yield the Gauss and Codazzi

equations. The Gauss equation comes from examining dw),, while the Codazzi
equations are from dwig and dwyp.
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