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GORENSTEIN INJECTIVE MODULES AND EXT

By

Edgar E. ENocHs and Overtoun M. G. JENDA

Abstract. The aim of this paper is to characterize n-Gorenstein
rings in terms of Gorenstein injective modules and the Ext functor.
We will show that if R is a left and right noetherian ring and » is
a positive integer, then R is n-Gorenstein if and only if M being
Gorenstein injective means that Ext!(L,M) =0 for all countably
generated R-modules L of projective dimension at most n. In par-
ticular, if R is n-Gorenstein, then an R-module M is Gorenstein
injective if and only if it is U-Gorenstein injective whenever U is a
free R-module with a countable base.

1 Introduction

Throughout this paper, R will denote an associate ring with 1 and all
modules are unitary. By an R-module, we shall mean a left R-module.

An R-module M is said to be Gorenstein injective if there exists an exact
sequence

-—>E1—>E0——->EO—>E1—>---

of injective R-modules with M = Ker(E° — E!) such that Homg(E, —) leaves the
sequence exact whenever E is an injective R-module. These modules were first
introduced in [I]. Clearly, every injective R-module is Gorenstein injective and a
Gorenstein injective R-module has finite injective dimension if and only if it is
injective.

It is also easy to see that if M is Gorenstein injective, then Ext}e(L, M)=0
for all R-modules L of finite projective dimension. Furthermore, the converse
holds if R is n-Gorenstein (or Iwanaga-Gorenstein), that is, if R is left and right
noetherian and has injective dimension at most »n on either side (see [2, Prop-
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osition 1.11]). In this paper, we will show that in fact for a positive integer n,
a ring R is n-Gorenstein if and only if Extp(L, M) =0 for all R-modules L of
projective dimension at most »n implies M is Gorenstein injective, and that the
same holds true if we replace the modules L by countably generated R-modules
of projective dimension at most n (Theorem 2.5).

Now let U be an R-module. Then we will say that an R-module M is
U-Gorenstein injective if Hom(U, M) — Hom(K, M) — 0 is exact for all sub-
modules K = U such that pd U/K < co. We will argue that an R-module M is
U-Gorenstein injective for all R-modules U if and only if Ext}‘Q(L, M) =0 for all
R-modules L of finite projective dimension (Proposition 3.2). So in particular,
over Iwanaga-Gorenstein rings, an R-module M is Gorenstein injective if and
only if M is U-Gorenstein injective for all R-modules U and if and only if M is
U-Gorenstein injective whenever U =R®R@ R® --- (that is, U is free with a
countable base) (Theorem 3.3).

As usual, we will let pd denote the projective dimension.

2 Main Result

We start with the following two well known results and we include proofs
here for completeness.

LemMa 2.1. If P is a projective R-module, then P @ F is free for some free
R-module F.

PrOOF. Since P is a projective R-module, Q @ P is free for some R-module
Q. Soif welet F=Q®PO®Q®P@---, then F is a free module and the
module P@® F is also free. This is called the Eilenberg trick. O

REMARK 2.2. We note that Kaplansky [4, Theorem 180] proved this result
for projective modules with a finite free resolution.

LEMMA 2.3. Let n be a positive integer. If pd L =n, then L has a free
resolution 0 - F, - F,_y---—> F, — Fy — L — 0.

Proor. Since pd L=n, n>1, L has a projective resolution 0 — P, —
F, - - — F, - Fy —» L — 0 with each F; free and P, projective. But then there
is a free R-module Q such that P,® Q is free by the lemma above. Thus
0P, ®Q—F_1®Q---— F, — Fp— L— 0 is a free resolution of L. []
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We now prove the following result that is analogous to Proposition 7.4.5 of

13}

PROPOSITION 2.4. Let n be a positive integer. If pd L = n, then every count-
ably generated submodule S = L is contained in a countably generated submodule
L' of L with pd L' < n.

ProoF. By Lemma 2.3 above, L has a resolution 0 — F, o — Fy &,
L — 0 of L with each of F,,..., Fy free. Let X; be a base of F; for each i. Our
aim is to choose countable subsets Y; = X; such that 0 — (Y,,> — - — (¥Yp) is
an exact subcomplex of 0 — F, — --- — Fy. This will give the desired L'.

We start by choosing a countably subset Zy = Xy such that 0y({Zy)) > S.
Then we choose a countable subset Z; = X; so that 9,(<Z;)) > Ker(dy|<Zp)).
We then choose a countable subset Z; = X, so that d,({Z,)) o Ker(0,|<{Z)).
We repeat this procedure until we have a countable subset Z, — X, with

0n({Zyy) = Ker(0,-1|<Z,-1)). We now enlarge Z,_; to a countable subset Z,

in such a way that 0,({Z,>) = (Z)_,>. Then we enlarge Z, , to a countable
Z) , so that 0,_1(KZ,_>) =<{Z] 2) Continuing in this manner, we construct
countable sets Z,, Z,’, 1s- -+, 2y satisfying the obvious conditions. Now we start
over and enlarge Z] to a countable Z| so that 0,(<Z{')) o Ker(do|<{Z;>). We
then enlarge Z) to ZJ and so on. We then continue with this zig-zag procedure
and eventually let Y; = X; be the union of all the countable subsets of X; we
chose at each stage of the procedure.

Then the sequence 0 — (Y,> — --- — (Yp) is exact and each Y; is
countable. So we let L' = 9y(<Yp)). O

We are now in a position to prove the following.

THEOREM 2.5. The following are equivalent for a left and right noetherian ring
R and positive integer n.

1) R is n-Gorenstein.

2) An R-module M is Gorenstein injective if and only if Ext' (L, M) = 0 for all
R-modules L with pd L < n.

3) An R-module M is Gorenstein injective if and only if Ext'(L, M) = 0 for all
countably generated R-modules L with pd L < n.

ProOF. 1 = 2 follows from Enochs-Jenda [2, Proposition 1.11] noting that if
R is n-Gorenstein then pd L < oo if and only if pd L < n.
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2=1. Let N be an R-module and 0 - N - E° - E! - ... 5 Er1
C" -0 be an exact sequence with each E' injective. Then Ext!(L,C")
Ext""!(L, N) for any R-module L. Hence Ext!(L,C”) =0 for all R-modules L
with pd L < n. But then C” is Gorenstein injective by assumption. So every nth
cosyzygy is Gorenstein injective and thus R is n-Gorenstein by [2, Theorem 3.2].

2 = 3. Again by definition, if M is Gorenstein injective, then Ext!(L, M) = 0
for all countably generated R-modules L with pd L < n.

For the converse, let L be an R-module of finite projective dimension and let
0—-S—P—L— 0 be exact with P projective. Set Sy = S. Then there is a
countably generated submodule S;/Sy of P/Sy such that pd S;/Sy < oo by the
proposition above.

But then pd P/S; < oo since P/S; = (P/S)/(S1/Sy) and P/Sy= L and
S1/So have finite projective dimension. Then there is a countably generated
submodule S,/S; of P/S; with pd S,/S] < co. We repeat the process to construct
a continuous chain of submodules

[}
So=8ScSicSHec---cS=SicSp1 =

i=0
of P such that S,.,/S, is countably generated and has finite projective dimension.
We note that S,.1/Sy; = (Set1/50)/(Se/So) and so S,:1/So is countably
generated since S,;;/S, and S,/So are. We also note that to construct S,,; we
need pd P/S, < co which we establish by transfinite induction. For P/S, =~
(P/S0)/(Sx/So) and S,/Sp is a direct limit of submodules of finite projective
dimension and so pd S,/So < oo since R is Iwanaga-Gorenstein by 2 = 1. So
indeed pd P/S, < 0.

Thus given any linear map f:S — M and the continuous chain Sy =
ScSicSac---c8, Syt - < P constructed above, we see that f can
be extended to S; — M since Ext!(S;/So, M) = 0 by assumption. Then S; — M
can be extended to S, — M and so on to get that f can be extended to P — M.
Hence Ext!(L, M) = 0 for all R-modules L of finite projective dimension. So M is
Gorenstein injective by (2) again noting that over n-Gorenstein rings, pd L < oo if
and only if pd L <n.

3 = 2 is trivial. O

3 U-Gorenstein Injective Modules

We start with the following easy observation.

LemmA 3.1. Suppose A is an R-submodule of B with pd B/A < oo. If an
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R-module M is B-Gorenstein injective, then M is also A and B/A-Gorenstein
injective.

ProoF. Let K<A4 be such that pd A/K < . Then pdB/K < o
and so Hom(B,M)— Hom(K,M)— 0 is exact. But then Hom(4, M) —
Hom(K, M) — 0 is exact and so M is A-Gorenstein injective.

Now let L' = B/A be such that pd(B/A4)/L’ < oo. Then L' =~ L/A for some
submodule L = B and so we have the following commutative diagram with exact
rows and columns.

0 0
L
0 A L — > L/4A —— 0
L]
0 A B —— B/Ad—— 0

But B/A has finite projective dimension. So we have the following com-
mutative diagram with exact rows.

0 —— Hom(B/4,M) —— Hom(B,M) —— Hom(4, M) — 0
0 —— Hom(L/A,M) —— Hom(L,M) —— Hom(4, M)
But B/L also has finite projective dimension. So the middle vertical map

is surjective. Thus Hom(B/4, M) — Hom(L/A, M) — 0 is exact and so we are
done. O

PROPOSITION 3.2. The following are equivalent for an R-module M.

1) M is U-Gorenstein injective for all R-modules U.
2) M is P-Gorenstein injective for all projective R-modules P.
3) M is F-Gorenstein injective for all free R-modules F.
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4) M is U-Gorenstein injective for all R-modules U with pd U < co.
5) Ext!(L, M) =0 for all R-modules L with pd L < c0.

PrOOF. 1= 2= 3 is trivial.

3 4. 3= 4 easily follows from the lemma above, and the converse is
trivial.

3=5 Let0— L — F— L— 0 be exact with pd L < oo and F free. Then
Hom(F, M) — Hom(L', M) — 0 is exact by assumption. So Ext!(L, M) = 0.

5= 1. Let K = U be such that pd U/K < co. Then Ext!(U/K, M) =0 and
so we are done. O

We note that the proposition above still holds if we replace “for all”’ by “for
all countably generated”. We are now in a position to state the following.

THEOREM 3.3. Let R be n-Gorenstein. Then the following are equivalent for an
R-module M.

1) M is Gorenstein injective.

2) M is U-Gorenstein injective for all R-modules U.

3) M is U-Gorenstein injective for all R-modules U of projective dimension at
most n.

4) M is U-Gorenstein injective whenever U =R® R® R® --- (that is, U is
free with a countable base).

PrROOF. 1 & 2 < 3 follows from Proposition 3.2 and Theorem 2.5 above.

3 =4 is trivial.

4 = 1. This follows from the remark above and we state the argument here
for completeness. Let L be a countably generated R-module of finite projective
dimension. Then L has an exact sequence 0 — L' — F — L — 0 where F is a free
R-module with a countable base. So Hom(F, M) — Hom(L', M) — 0 is exact
by assumption. Thus Ext!(L, M) = 0. That is, Ext!(L, M) = 0 for all countably
generated R-modules L of finite projective dimension. Hence M is Gorenstein
injective by Theorem 2.5. Cl
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