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1 Introduction

Komori [1] introduced the notion of semi-discrete ordered Abelian group
with divisible infinitesimals. Roughly speakiﬁg, such groups are products of a
Z-like group and a Q-like group. In [1], he showed that such groups are
axiomatized by his set SC of axioms. In fact he showed that SC is complete
and admits quantifier elimination (QE) in some language expanding Lo, =
{0,+,—, <}. In this paper, we shall evolve his study and prove QE for products
of ordered Abelian groups H and K, where H admits QE and K is divisible.
However, like him, we need to expand the language slightly. First let us explain
Komori’s axiom. SC is the following set of sentences:

1. the axioms for ordered Abelian groups;
2. the axioms for a semi-discrete ordering

0<1, Vx(2x<1vl<2x);
3. the axioms for infinitesimals
Vx2x <1 —-nx<1) (n=2,3,...);

4. the axioms for D,’s

Vx(Dy(x) & Iz(—1 <2z < lax=ny+z) (n=2,3,...)

Vx(Dp(x) v Dp(x+1)v .- VDy(x+n-1)) (n=2,3,...);
5. the axioms for divisible infinitesimals

Vx(—1<2x<1—-3y(x=ny) (n=2,3,...);

6. the axiom for existence of infinitesimals

Ix(0 < x < 1);
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Notice that SC is not formulated in the pure ordered group language. Its
language is L = Log U{D, :n=2,3,...} U{1}. A canonical model of SC is the
direct product group Z x Q, where

1. the constants 0 and 1 are interpreted to the elements (0,0) and (1,0),
respectively
2. the predicate symbol < is interpreted as the lexicographic order of Z and

0,
3. the predicate symbols D,(x) (n =2,3,...) means that x is divisible by n.

Notice that Z admits QE in L and that Q admits QE in L. So, in a sense,
Komori’s result can be considered a quantifier elimination result for the product
group H x K where both H and K have QE. The above L-structure Z x Q seems
to have two important properties that are essential in Komori’s proof. One is that
the infinitesimal set I = {0} x @ is definable (by the quantifier free formula
—1 < 2x < 1). The other is that Q is divisible. In this paper, very roughly, we
show that if the two properties are satisfied, then we can show QE for the
product group H x K in some expanded language. (See section 3).

For stating our main result more precisely, we need some definition. Let L,
and L. respectively be sets of predicate and constant symbols. Let L be the
language Lo, UL, UL.. Let H be an L-structure such that H|L,g is an ordered
Abelian group. Let K be an Lyg-structure such that K is an ordered Abelian
group. We will consider G:= H x K as an LU {I}-structure by the following
interpretation:

1. 0¢ .= (07 ,0K).
c%:=(c%0%) (ceL,).
+,— are defined coordinatewise.
< is the lexicographic order of H and K.
Each n-ary predicate symbol R of L, is defined by
RC:={(g) e G": he R"}
where § = (g1,...,9) With g; = (hi,k;) (i=1,...,n) and h = (hy,... hy).

“wbkh e

MAIN RESLUT. Let L be the language Log U L U L, where Log is the language
{0,+,—,<}, L, and L. are sets of predicate symbols and constant symbols re-
spectively. Let H be an L-structure such that H|L., is an ordered Abelian group.
Let K be a divisible ordered Abelian group. (We consider K as an Lg-structure.)
Let G:= H x K be an L-structure given by the interpretation above. Let I =
{0} x K be defined by some quantifier free L-formula in G. If H admits QE in L,
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then G admits QE in L. Moreover in the result above, if H is recursively axi-
omatizable, then so is G.

2 Preliminaries

In this paper we require some basic knowledge of model theory. Termi-
nologies we use are rather standard. However, let us explain some of them. L
denotes a language and T denotes a consistent set of L-sentences. M denotes an

L-structure. Finite tuples of variables are denoted by X, 7,.... Finite tuples of
elements in M are denoted by a,b,... Subsets of M are denoted by 4,B,... If
a=a,...,a,, we simply write @ € M instead of writing a; € M,...,a,€ M. An

L(A)-formula means an L-formula with parameters from A4. Similarly an L(A)-
term means an L-term with parameters form A.

We say that T is an L-theory if there exists a model M of T. Thy(M)
denotes the theory of M, i.e. the set of all L-sentences which hold in M. If L is
clear from the context, L will be omitted, and we will simply write Th(M) instead
of writing Thy(M). We say that a theory T is complete if for any L-sentence ¢,
T proves ¢ or —g.

We say that 7" admits quantifier elimination in the language L if for any L-
formula ¢(x), there exists a quantifier free L-formula (%) such that T proves
Vx(¢(x) — ¥(x)). We say that M admits quantifier elimination in L if Thy (M)
admits quantifier elimination in L.

Let 4 = M. We say that a set p(%) of L(A4)-formulas (with free variables )
is a type if any finite subset of p(X) has a solution in M. We define the type of
ae M over A to be the set of L(A4)-formulas (%) such that @ is a solution of
Y(x). The type of ae€ M over A is denoted by tp(a/A4). If A = &, we simply
write tp(a) instead of tp(d/A4). We define the quantifier free type of @ over 4 to
be the set of quantifier free L(4)-formula y(x)’s such that a is a solution of y(x).
The quantifier free type of a over A4 is denoted by qftp(d/4). Similarly if 4 = (¥,
we write qftp(@) instead of qftp(a/A).

We say that a model M of T is x-saturated if whenever A is a subset of M
with |4| < x then any type over A has a solution in M.

In this paper we use the following well-known fact:

Fact 1. Let L be a language. Let T be an L-theory such that T is complete
Jor quantifier free sentences. Then the following are equivalent;

1. T is complete and admits quantifier elimination in L.
2. Let M and N be Wo-saturated models of T. Suppose ae€ M and b e N have
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the same quantifier free type, ie. qftp(a) = qftp(b). Then for any ae M
there exists be N such that qftp(a,a) = qftp(b, b).

3 Product of Ordered Abelian Groups

In this section we introduce the notion of the product interpretation. Let G
be a group. We say that a subset 4 of G is free if whenever ) _,_, m;a; =0 for
some finite subsets {a;}, .y of 4 and {m;}, .y of Z, then m; =0 (i e N).

DEerFINITION 2. Let G be a group. For any 4 < G,
H(A) :={he G:mhe{4) for some me Z\{0}},

where {A4) is the subgroup of G generated by A.

LeMMA 3. Let G(# {0}) be a torsion free Abelian group. Then for any free
subset S of G, there exists some free subset A of G with the following conditions;

1. Sc 4,

2. G=H(A),

3. If mg=>_ma; and ng = > nia; for some element g of G, some finite
subset {a;};.n of A, some m,n of Z\{0} and some m;,n; € Z (i€ N), then
nm; =mn; (ie N).

ProoF. Since G is torsion free, by the Zorn’s lemma, there exists a maximal
free subset 4 of G containing S. Then A satisfies the condition of the lemma.
[ |

Let L,, be the language {0,+,—, <} of ordered groups. Let L, and L. be
sets of predicate and constant symbols, respectively. Let L be the language
LogUL:UL.. Let H be an L-structure such that H|L,; is an ordered Abelian
group. Let K be an L.g-structure such that K is an ordered Abelian group. Let /
be a new unary predicate symbol. In what follows, we will consider G := H x K
as an LU {I}-structure by the following interpretation:

09 := (07,0K).

c%:= (cf,0K%) (ceL,).

+,— are defined coordinatewise.

< is the lexicographic order of H and K.

Each n-ary predicate symbol R of L; is defined by

Nk LN -
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RC:={GgeG":he R}

where § = (g1,...,9x) with g; = (h,k;) (i=1,...,n) and h = (hy,..., h,).
6. 1¢:= {07} x K.

We call this interpretation the product interpretation of H and K.

Let L=L,,UL UL Let H be an L-structure such that H |Log is an ordered
Abelian group. Let K be an Lgg-structure such that K is an ordered Abelian
group. Let G:= H x K be an LU {I}-structure given by the product interpre-
tation of H and K.

Let G* = Th(G). Let I*:={ge G*: g | I(x)}. An equivalent relation ~ on
G* is defined by a~ b if a—beI*. Let [g] be the equivalent class of g. Let
H*:={[g] : g€ G*} and K* := I*. We will consider H* as an L-structure by the
following interpretation:

1. 0,¢ (ce L), + and — are defined naturally.
2. Let g1 and g; € G*. [g1] < [g2] is defined by g; < g and g; — g» ¢ I*.
3. Each n-ary predicate R of L, is defined by

R :={[gle (H*)": e R}
where § = (g1,...,9,) and [g] = ([g1],- .., [gn])

and consider K* as an L,g-substructure of G*.
REMARK 4. H*=H and K* = K.

This can be shown as follows: It is trivial that K* = K. So we show that
H*=H. Let g; and g, € G*. Let § be an tuple of elements of G*. By the
definition of H*, the followings are hold.

1. [g1] = [g2] holds in H* < g — g, € I* holds in G*.
2. [g91] < [g2] holds in H* < both g; < g, and g —g> ¢ I* hold in G*.
3. R([g]) holds in H* < R(g) holds in G* (Re L,).

So for any L-sentence ¢ there exists an LU {I}-sentence  such that ¢ holds
in H* iff Y holds in G*. Since G* = G, we have H* = H.

Let H* x K* be the LU {/}-structure given by the product interpretation of
H* and K*.

LEMMA 5. Let K be divisible. Then there exists some LU {I}-isomorphism o
from G* to H* x K*.
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PrOOF. Suppose that H = {0}. Then H* = {0} and G* = K*. In this case,
it is trivial. So we can assume that H # {0}. Then H* is nontrivial torsion
free group. Let S be a maximal free subset of {c*:ce L.} where ¢* is the
interpretation of ¢ in G*. We claim that [S]:= {[c¢*]: ¢* € S} is free. Suppose
that ) m;[c/] = 0 for some finite subsets {c/};,.y of S and {m;},.y of Z. Then
Y mic; €eI*. By the definition of the product interpretation and G* = G,
Y-mic; =0. Since S is free, m; =0 (i e N).

So by lemma 3, there exists some subset Hy of H* with the following
conditions;

1. [S] = H,.

2. H* = H(H,).

3. If m[g] = 3" m;lg;] and n[g] = " n;{g;] for some element [g] of H*, some
finite subset {[g]};cy of Ho, some m,n of Z\{0} and some m;,n; e Z
(ie N), then nm; = mn; (i€ N).

We fix a subset Gy of G* with the following conditions;

1. S < Gy.
2. Ho = {[g] g€ G()}
3. If g1 # g2 € Gy, then [91] #* [gz].

Let o be the map from G* to K* defined by

o(g) == l/m(mg - Zmigi>

where mlg] =) m[g;] for some subset {g;},.y of Go, me Z\{0} and m; e Z
(i € N). Note that ¢ is well-defined by the divisibility of K and the conditions of
Hy and Gy. Let ¢*: G* - H* x K* be the map defined by

a*(9) = (l9, o(9))-

CLAIM. " is an LU {I}-isomorphism.

First we claim that ¢* is {+,—,0}U L.-isomorphic. In the case of +,
we show that o(g1) + a(g2) = (g1 + g2) for any g;,g, € G*. Note that mg, =
>_mig; +ma(g1) and ng; =3 mig; +no(g2) for some finite subset {g;},.y of
Go, some m and ne Z\{0} and some m; and n;€ Z (i e N). So mn(g, + g>) =
> (nm; + mn;)g; + mn(o(g1) + o(g92)). Then a(g; + g2) = a(g1) + o(g2). In the
case of L., we show that o(c¢*) =0. Since S is a maximal free subset of
{c¢*:ce L.}, for any c e L. there exist some m e Z\{0}, finite subsets {c}},.n
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of § and {m;},.y of Z such that mc* =) mc. So m[c*| =3 mlc/] and
{¢/}ien = Go. By the definition of o, o(c*) = 1/m(mc* — > mic}) =0. In the
case of 0 and —, it is similar.

Second we claim that ¢* is injective and surjective. (injective) Suppose that
c*(g) = (0,0). Then [g] =0 and 1/m(mg — 3 m;g;) =0 for some subset {g;};cn
of Gy, me Z\{0} and m; € Z (i e N). Then 0 = m[g] = >_ m;[g;]. Since Hy is free,
m; =0 (ie N). So we have g = 0. (surjective) For any ([g],k) e H* x K*, we
pick a finite subset {g;},.y of Go, me Z\{0} and m; e Z (ie N) such that
mlg] = > _m;[g;]. We put go :=g — 1/m(mg — >_m;g;) + k. Then we have [go] =
9] and a(go) = 1/m(mgo — 3 _mig:) = k.

Next we claim that ¢* is {<}-isomorphic. Suppose that g; < gp. If
g1 — g2 ¢ 1, by the definition of <, it is trivial. If g1 — gy € I, m[g)] = m[g,] =
> mijg;] for some finite subset {g;},.y of Gy, me Z\{0} and m;e Z (ie N). So
a(g1) = 1/m(mg, — 3_mig;) < 1/m(mgy — 3_mig;) = a(g2).

Last by the definition, we have that ¢* is LU {/}-isomorphic. [ |

4 Main Theorem

In this section, L = Loy UL, U L., where L, is the language {0, +, —, <}, and
L; and L. respectively are a set of predicate symbols and a set of constant
symbols. I is a fixed unary predicate symbol not contained in L.

THEOREM 6. Let H be an L-structure such that H|L.g is an ordered Abelian
group. Let K be a divisible ordered Abelian group. We consider K as an Lg-
structure. Let G:= H x K be an LU {I}-structure given by the product inter-
pretation of H and K. Then if H admits QF in L,G admits QE in LU{I}.
Moreover H is recursively axiomatizable, so is G.

ProOF. It is clear that Th;y;y(G) is complete for quantifier free sentences.
By fact 1, it is sufficient to show that:

CLamM. Let Gy, Gy be Ro-saturated models of Thyy 1y (G). Suppose gl e Gy
and §* € Gy such that qftp(g') = qftp(g2). Then for any g' € Gy there exists
g € Gy such that qftp(g',g') = qftp(g?, g?).

Before proving the claim above, we need some preparation. By lemma 35, for
J=1,2 we can assume that G; = H; x K; where H; is an L-structure, K; is an
Log-structure and G is the LU {I}-structure given by the product interpretation
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of H; and K. Let §/ be an tuple (g/,...,g)) of G; with g/ = (h/,k/). Let h/ be

the tuple (h7,...,hJ) of H;. Let k/ be the tuple (k... kJ) of K.
1 J 1 n

Y n

REMARK 7. Since the language of G; contains I, if §! and §* have the same
quantifier free type, then ' and 42 have the same quantifier free type. (k! and k2
may not have the same quantifier free type.) Moreover since H admits QE, A!
and A% have the same type.

Similarly as in remark 4, for any quantifier free L-formula ¢(y), there exists a
quantifier free LU {I}-formula y/(x) such that for j = 1,2, §/ is a solution of
¥(x) if and only if A/ is a solution of ¢(y). Thus 4! and A% have the same
quantifier free type.

We begin our proof of the claim. We fix g! € G; and choose ¢,(x,g!),...,
0,(x,g') € qftp(g'/g!). Let ®(x,3') be the set {p,(x,3'),...,0,(x,3')}. We need
to show that ®(x,3?) (the set obtained from ®(x,§') replacing g' by §%.)
is satisfied in G,. Let ®(x,x) be the set of formulas obtained from ®(x,g')
replacing §' by the tuples X of variables without x. Note that the formula in the
form t # s or 1t < s) is equivalent a disjunction of formulas in the form ¢ = s or
t <s. So we can assume that the set ®(x,x) has the following form:

{t,‘()—C) < n,-x} U {n,-x = ti(')—c)}ielz U {n,-x < ti()—c)}ieh U(D()()C, X’)

iel
where #;(X) are terms without x and n; e N and ®y(x,x) is a finite set of
LU {I}-formulas in the form I(#(x, X)), R(s(x,X)) or these negations with terms
t(x,x) and s(x,x). For any m € N\{0}, formulas ¢ < s and ¢ = s are equivalent to
mt < ms and mt = ms, respectively. Then we can assume that ®(x,Xx) is the
following set:

{5i(%) < Nx}iep, U{Nx = 5i(0) }icp, U{NX < 5i(X)}ief, U Do, X)

where s;(X) are new terms without x and N e V.

There are two cases to be considered in the following:

Case 1. First we assume that I # . We fix a term s(X) of {s:(X)}
remark that for j =1 and 2, finding x € G; satisfying that

ier, YU{Nx = Si(gj)}ielz U{Nx < si(gj)}ielg

is equivalent to finding x € G; satisfying that

We

{si(g’) < Nx}

{Nx = s(g’)}-
Then the condition above is equivalent to finding A/ e H; satisfying that
Ny = s(h’) and finding k/ € K; satisfying that Nz = s(k/). By the definition of
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R (ReL;) and I, for j=1,2, finding g’/ e G; satisfying that ®y(x,g') is
equivalent to finding A’/ € H; satisfying that W(y,#/) where W(y,A/) is the set
of L-formulas obtained from ®(x,g’) replacing I(¢(x,3’)) and R(s(x,3’)) by
t(y,h’) = 0 and R(s(y,h’)), respectively. So for j = 1,2 finding x € G; satisfying
that ®(x,g’) is equivalent to finding y € H; satisfying that

{Ny = s(h))} U (y, )

and z € K; satisfying that
{Nz = s(k’)}.

By remark 7, h' and A? have the same type. By the assumption, there exists
some solution A! € H; of {Ny = s(h')} U¥(y,h!). So there exists some solution
h* € Hy of {Ny = s(h*)} UW¥(y,h?). By the divisibility of K>, there exists k2 € K,
such that Nk? =s(k?). Then (h?,k?)e G, is a solution of {Nx = u(g?)}U
®y(x,g%). Thus (h?,k?) is a solution of ®(x,g3?).

Case 2. Second we assume that I, = (. We can assume that I} and Iz # &J
since other cases can be treated similarly. Since §' and g2 have the same quantifier
free type, there exists 1€ ; such that s;(g') and s;(g?) are the maximums of
{5i(")}ics, and {5:(g?)},c;, respectively, and there exists u € Iz such that s,(7!)
and s,(§°) are the minimums of {s;(g")};.,, and {si(§%)};.,, respectively. Sim-
ilarly as in the case 1, for j =1 and 2, finding x € G/ satisfying that

{s:(g’) < Nx}iep U{Nx < Si(gj)}ielg
is equivalent to finding x € G/ satisfying that
{s1(8") < Nx < 5.(g")}-

By the definition of <, for j=1,2, finding x e G; satisfying ®(x,g/) is
equivalent to either (a), (b), (c) or (d) in the following:

(a) finding y € H; satisfying {s;(h/) < Ny < s,(h/)} U¥(p, h')

(b) finding ye H; satistying {s;(h/) = Ny < s,(h/)}U¥(y,#’) and zeK;
satisfying {s;(k/) < Nz}

(c) finding ye H; satisfying {s;(h/) < Ny =s5,(h/)} U¥(y,h’) and zeK;
satisfying {Nz < s,(k’)}

(d) finding y e H; satisfying {s;(h/) = Ny = s5,(h/)}U¥(y,//) and zeKk;
satisfying {s;(k/) < Nz < s,(k?)}.

In the case (a). Since 4! and 42 have the same type, there exists some solution
h* € H, of {s;(h?) < Ny < s5,(h*)} U¥(y,h?). Thus for any k? € K;, (h%,k?) € G,
is a solution of ®(x,g?).
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In the case (b). For a similar reason as in the case (a), there exists some
solution h2 € Hy of {s;(h%) = Ny < s,(h*)} U¥(y,h?). Since there exists k' € K|
such that s (k') < Nk', K; # {0}. Since K; = K,, K, # {0}. So there exists
k? € K, such that s;(k%) < Nk2. Then (h?,k?) € G, is a solution of ®(x,7?).

In the case (c). Similarly above, ®(x,4%) has a solution of G,.

In the case (d). Similarly there exists some solution h%e H, of {s;(h?) =
Ny = s5,(h*)} U¥(y, h?). By the definition of the product interpretation, for j = 1
and 2, both s;(h’) = s,(h’/) and s;(k’) < 5,(k’) hold in H; and K; respectively if
and only if both 5(§”) < s,(§/) and s;(§’) — 5.(§’) € I hold in G;. Since §' and >
have the same quantifier free type, s;(k?) < s,(k?) holds in K,. By the divisibility
of K, there exists k2 € K, such that s;(k?) < Nk? < s5,(k?). Then (h?,k?) € G, is
a solution of ®(x,3?).

Let g(x) := {p(x,3%) : 9(x,3") € qftp(g'/g"')}. We have shown that each finite
subset of g(x) has a solution in G,. By the Ny-saturation of G, there exists a
solution g2 of g(x). Thus we have gftp(g',g') = aftp(g>, g%).

Last we show that in the theorem, if H is recursively axiomatizable, then so
is G. In proof of the theorem, we only use the four sets T7,..., T4 of axioms as
follows;

T, says that I is a divisible ordered abelian group.
T, says that for any model G* of T,, H* is well defined as an L-structure.
T; says that for any model G* of T3, H* is equivalent to H.

el S

T, says that any model G* of Ty is equivalent to G for quantifier free
sentences.

The sets 77, T» and T3 need to satisfy that H* = H, K* =K, G* = H* x K.
The set 7, needs to satisfy the assumption of fact 1 used in the proof of the
theorem. It is easy that T} and T, are recursively axiomatizable. So we will show
in the case of T3 and Tj.

In the case of T3, as in remark 4, for any L-sentence ¢, there exists some
LU {I}-sentence Y, such that H = ¢ < G ¥, Then T3 = {y,|H E ¢}. Since
H is recursively axiomatizable, so is T3.

In the case of Ty, T4 = {¢|¢ is quantifier free LU {I}-sentence such that
G k= ¢}. By the interpretation of constant symbols, for any closed term ¢, any
formula I(¢) is equivalent to the formula =0 in G. Then any quantifier free
LU {I}-sentence is defined by some quantifier free L-sentence in G. By the
definition of the product interpretation, G is equivalent to H for quantifier free L-
sentences. Since H is recursively axiomatizable, so is 7j. |

By the previous theorem, the following is trivial.
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COROLLARY 8. In previous theorem, we suppose that I = {0} x K is defined
by some quantifier free L-formula in G. If H admits QF in L, then G admits QFE in
L. Moreover H is recursively axiomatizable, so is G.
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