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ANALYTIC SMOOTHING EFFECTS FOR A CLASS OF
DISPERSIVE EQUATIONS

By

Hideki TAKUwA

Abstract. We study the analytic smoothing effect for a class of
dispersive equations. In this paper we consider the microlocal an-
alytic smoothness for the solutions of a class of dispersive equations
including not only the Schrodinger equation but also the linearized
KdV equation. We make use of the Sjostrand theory of the FBI
transform as in Robbiano-Zuily’s works in the case of Schrédinger
equations.

1. Introduction and the Main Results

In this paper we consider the analytic smoothing properties for a class of
dispersive operators. The typical example of these operators is the Schrédinger
operator, and another example is the linearized KdV operator.

Let us describe our problem. Let m be an integer greater than or equal to 2.
Let P(y,D,) be a linear differential operator of order m in R”,

11y P(y,D)) = > cu(y)D;.

|| <m

We assume that P(y,D,) has analytic coefficients in R"” and a real principal
symbol. We also assume that P(y, D,) is of real principal type (in a strong sense).
For some integer j with 1 < j<n we have 0, pm(y,n) # 0, where pn(y,n) =
Y l=m €2(¥)n* is the principal symbol of P(y,D,).

We consider the initial value problem

(1.2) {Dtu + P(y,D,)u =0,

ulz=0 = up(y).
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In this paper we restrict our problem to a simple case, where the dimension # is
equal to one. In this simple case it suffices to treat the operator,

(1.3) P(y,Dy)u= Y a(y)D.,

0<i<m

where c,(y) =1 and ¢/(y) are analytic in R, that is, the coefficient of the
principal part is constant. We consider only the backward initial value problem
(1.2) in order to simplify notation in the proofs.

We make the following assumptions:

One can find positive constants Cy >0, Ry > 0, Ky > 0 and gy € (0,1) such
that for y e R with |y| > Ry and k e NU {0},

CoKkk!
(1.4) > IDka(y) < ry%;’—k
1

0<li<m-—

Let p=(y,n) e T*R\0, and let (Y(s;y,7),0(s; y,n)) be the solution to the
equation

L y(5) = a;;’—,;"(Y(s),@(s)), Y(0) = y,

(1.5) p 3
20(s) = —aL}')"(Y(s),Q(S))» 0(0) = 1.

In our case pn,(y,7) = pm(n) = n™. Therefore

Y(s) = y+ msy™ !,
(1.6) {em ~0(0) =1

We remark that for n # 0

(1.7) lim | Y (s; y,7)| = +o0.

Let u(t,-) € C(R, L*(R)) be the solution of the initial value problem [1.2). Let
us introduce the space of the initial data

(1.8) X = {ve L2(R); 35 > 0,2 u(y) e LT},
where
(1.9) Tjp = {¥(5 yo,7m0) € R, 2 0).

Our main result about the microlocal smoothing effect is the following;
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THEOREM 1.1. Let P(y,D,) be defined in (1.3) satisfying (1.4) and p, =
(¥0,1m0) € T*R\O. Let ug € L*(R) be in X, Then for all t <0, p, does not belong
to the analytic wave front set WFE[u(t,-)] of the solution u(t,-) for (1.2).

If one consider the Gevrey s wave front set, it suffices to change the weight
of the decay of the initial data from el to %" From the theorem

above we can easily get [Corollary 1.1.

COROLLARY 1.1. If the initial data uy € L*(R) satisfies
sy M=) 2
(1.10) J 2%l lug(¥)|” dy < o0,
-0

for some positive constant oy, then the solution to the initial value problem (1.2)
becomes analytic with respect to the space variable y for t # 0.

The result of in the case m = 2 was obtained by L. Robbiano
and C. Zuily in [I5] In fact, they have studied Schrédinger operators with
variable coefficients near the flat Laplacian. It was remarked in that their
method can be applied to the second order operators of real principal type. The
purpose of the present paper is to show that their method is applicable to
operators of a higher order. The difficulty in the higher order case comes from
estimating the phase function globally (see the details in below).

We remark that under different conditions on the initial data the properties
of the analytic smobthing effects for the Schrédinger operators are obtained in
[13], [16]. Smoothing effects in the dispersive operators, especially Schrédinger
operators, have been studied by many authors (see [3]). Though there are many
results even for Schrodinger equations with variable coefficients or nonlinear
Schrédinger equations, there are few results in higher order cases in comparison
with the second order case. For general order operators S. Doi studied the
microlocal smoothing effects by using the commutator method in [5] and [6]. This
method is completely different from ours. Recently T. Okaji has studied the
smoothing properties by using the Wigner transformation in [14]. His method
does not cover the linearized KdV operator which is treated in this paper. K.
Kajitani and S. Wakabayashi studied the well-posedness and the smoothing
effects for Schrédinger operators with analytic and Gevrey coefficients in [10] and
(cf. S. Tarama [17]). Their method uses an integral transformation. However
their method is quite different from ours.

For nonlinear Schrédinger equations, the relationship between the properties
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of the initial data and the smoothness of solution has been studied, for example,
in [7], [8] and [12]. Their results are based on the commutator method in terms
of the linear theory. Recently in and H. Chihara has studied the case
the nonlinear term includes the derivatives of the solution. We remark that S.
Tarama in studied the analytic smoothing properties for the KdV equation
by means of the inverse scattering method instead of the commutator method,
where the condition similar to was given.

Our plan of this paper is as follows: In Section 2 we recall the relationship
between the analytic wave front set and the FBI transform. In Section 3 we
construct the phase function and the amplitude function in the FBI transform
in order to transform the original operator P(y, D) into the first order operator.
To complete this transformation we solve the eikonal equation and the transport
equations globally. In Section 4 we prove by using the results in
Section 3.

The author would like to express his sincere gratitude to Professors Yujiro
Ohya and Shigeo Tarama for their valuable advices and conversations. The
author also thanks Professors Y. Morimoto, T. Okaji and H. Chihara for giving
information about their results and their precious advices. And the auther would
like to thank the referee for the careful readings of the manuscript, corrections
and useful comments.

2. The Analytic Wave Front Set and the FBI Transform

In this section we define the FBI transform and the analytic wave front set,

which are referred to and [19]. 7
Let py = (y0,79) € T*R\0O. Let ¢(x,y) be a holomorphic function in a

neighborhood U x ¥V, of (0, yp) in C x C which satisfies

‘ 0
(21) ‘5)2;(0, }’0) = —"No»
0%
o
(2.3) 5;5; (0, yo) # 0.

For the phase function ¢(x, y) above we can define

(2.4) ®(x) = max (~Im ¢(x, ),

YE€Vyoir
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for x e Up. Let f(x, y,A) = > 50 filx, )47 be an analytic symbol of order zero,
elliptic in a neighborhood of (0, yo). Let y € C° be a cutoff function with support
in a neighborhood of yp, 0 <y <1, and y =1 near y;.

The FBI transform of a distribution u € 2'(R) is defined by

(2.5) Tu(x, A) = (r(u, e (x,-,4)), > 1.

According to we can characterize the analytic wave front set of u € 2'(R)
by using the FBI transform. We have the following equivalence:

(2.6) po & WE4[u].
(2.7) 3C > 0,34 > 0,34 =1 such that
e ™| Tu(x, 1)] < Ce™* for Vx e U, VA = Jy.

Assume that u(z,-) is a family of distributions on R depending on a real
parameter . Let # € R. We shall say that a point p, € T*R\0 does not belong
to the locally uniform analytic wave front set VVFA [u(to,-)] if there exist an FBI
transform T, positive constants C, u, A9, & and a neighborhood U, of 0 such that

(2.8) e ™) | Ty(x, )| < Ce™#

for Vx e Uy, YA = Ao, Vi€ (tg.— &, 1y + &).

3. Construction of the Phase Function and the Amplitude Function

Let R > 0 be a sufficiently large positive constant with R > Ry, where R, is
given in [1.4). Let py = (yo,79) € T*R\O be a point such that |y,| > 2R and
yong~! > 0. We define the holomorphic function @o(y): C — C,

(3.1) 9o(y) = —noy+%(y~ )2

We shall solve the eikonal equation by the geometrical way in order to get
the global properties.

THEOREM 3.1. There exist constants €1,¢&, with 0 < &, < & and a holomorphic
SJunction ¢(x,z) in the set
(3.2) E={(x,z) e C x C;Re x > —¢,|Im x| < ¢,
|z = Y (x; yo,m0)| < &2(1 + |x])},

such that
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Op _ _Op .

(3.3) E;(x,z) = Pm (z, = (x,z)) in E,

0
(34) 5%(07 J’O) = —Ny,

62¢

(3.5) Im 6—2-2-(0, o) > 0,

62
(3.6) =2 (0, y0) #0.

PrOOF OF THEOREM 3.1. From the definition of ¢,(y) we have
09 .
%y )= Mo+ iy = yo).

We introduce the submanifold of C* whose dimension is equal to 1,
B7) Ao=4(0,yPm y—a—(pq(y) %(y) eChly—yl <&
b} I ) ay ) ay b )

where &3 > 0 will be determined later. For the 2-form ¢ =déAdx +dnady we
have

a'/\o - 0
We introduce the symbol
q(X, Y, éa ") = é - th(ya ’7),

where ‘p(y,1) = pm(y,—n) = (—n)™ is the principal symbol of the transposed
operator ‘P(y,D) for P(y,D).
Let (X(s), F(s),E(s), G(s)) be the solution to the equations,

(d
X6 =1, X(0) =0,
d 0'Pm
(3.8) $ d o0,
ZE(s) =0, E(0) = pm (y,—gyﬂ(y))
d _ o m _ _ai
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We have

X =5 26 =20 = (5 L2 0),
and (F(s), G(s)) is the solution of

4 pooy - %m

470 = 22 (R (9. ~6(9) = m(-G)™,

d . OPm —
Gl = o (F(s),~G(s)) =0,

FO) =y 60 =2() =
That is,
F(s)=Y(s; y,n) =y + msy™ ",
G(s) = —O(s; y, 1) = —n(= %";"m).

By using these solutions we define

(3.9) A= U e*Hip,

se C,Re s>—¢|, |Im s|<g

={(X(s), F(5),E(s5), G(s)) € C*; (5, ») € O}

— . 99y 99,
= { (x, Y(x, 7%, (y)),pm (y, 2 » )
—0(x5,-2 () et (x y)e@}
) ) ay ) b b
where we set x = s, and

O={(x,y)eCx C;Rex> —¢,|Imx| <e,|y— yo| < &s}.

Here ¢, & and &; are small positive constants which satisfy 0 < &; < & < &;. Since
H, is transverse to Ao, the submanifold A of C* is Lagrangian.

LeMMA 3.1.  There exists a holomorphic function ¢(x,z) in E such that

(3.10) Az{(x,z,gg(x,z),—g—g(x,z)> e C%(x,z) eE}.
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If Lemma 3.1 will be proved, the properties stated in will follow
from [Lemma 3.1. The fact that

%q(X(s), F(s),E(s), G(s)) = 0,

implies that for Vse R
q(X(s), F(s),E(s), G(s)) = 9(X(0), F(0),E(0), G(0)),
that is,
E(s) = "pm(F(s), G(s)) = E(0) — "pm(F(0), G(0))
= Pm (y, - %’ (y)) = Pm(¥,7)
=0.

Since F(s) =z, E(s) = (0p/0x)(x,z) and G(s) = G(x) = (0p/0z)(x,z), we have
(3.

the property (3.3)

0 0
%(x,z) = Dm (z,—gg(x,z)).
It follows from the proof of

0
(3.11) z=F(s) = Y(x;y,——@(y)),
0y
which shows the existence of a holomorphic function x satisfying

(3.12) y=x(x,z), yo=k(0, yo).

The other three properties of follow from the same argument as in
the proof of Theorem 3.3 in [15].

Proor oOF LEMMA 3.1. Let z be the projection on the base space, n(4) =

(x, Y(x; ¥, —(090/0y)(y))) for A eA.
First we show that the map n: A — E is bijective. When m > 3,
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Y (x; y,1m) = Y(x; yo, 1)
= (y+mxn™ ") — (yo+ mxng™")
= (¥ = yo) +mx(n™" — 5y~

= (y = yo) + mx[{ng — i(y — yo)} " — 5]

oy e S (=N it i
— (= o) + 213( . )no (=) (3 = »0)

m.‘l —_ . . .
+mx Y (m j 1 )ﬂé"_’_l(—i)’(y — yo)’.

It suffices to show that for a fixed x € C with Re x > —¢;, Im x| < ¢ and ze C
with |z — Y(x; ¥, —(0¢y/0y)(»))| < &2(1 + |x|) there exists a unique y e C with
|y — yo| < &3 such that

d
(3.13) Y(X; y,—alyo(y)) = Y(x; yo,m9) = z — Y (x; yo,1p)-

We define

1
1 —im(m — 1)pir—2x

_ EP < VAR D U
X4z Y(xayOa”O) m'xz ] Mo ( l) (y yO) .

Jj=2

(3.14) H() =+

If & = e1(m,|ny|) > 0 is small enough, we have
1 —im(m — Dpy2x| = c,'(1+|x|), in 0.
For ye C with |y — yo| < &3,

Cm

1 + Ix| (lZ - Y(X; yOa”O)! + lxlcme?%)

|H(y) - yo| <

2

< Cméy + €3 T+ ]

<&, O<g<eg<eaxl).
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Hence H(y) is a map from the ball B(yg,é¢3) into itself. On the other hand

|H(y1) — H(»2)|

mx|

U= im(m — 1)y

m—1 _ . . . .
S (" ) = 0 = 02 = )

=2

Cm|x|
< &3 V1 —
1 ‘ | 3| 1 J/2|

Sklyl—y2|, O<k<l.

Then H(y) is also a contraction map in B(yy,&3).

It means that (3.14) has a unique solution, in other words, the mapn: A — E
is surjective. When m = 2, the projection map of n: A — E is linear, so we can
also define H(y) and get the same conclusion.

We shall prove that the differential map dn(4) : T)A — T, E is surjective.
Let us consider the map F : 0 — A, (x,y) — (x, Y(-),0(-), —0O(-)). It suffices to
prove that the map mo F: O — E is surjective (zo F(x,y) = (x, Y(x; y,7))). In
fact, we have

(3.15) ]‘Z—f > C+1x), (1) €0,

because
Y (x5 p,m()) = y +mx{ng — i(y — yo)}" "

Now we obtain the desired function ¢(x,z) as in the proof of Corollary 3.6 in

[15]. .

As stated after [Lemma 3.1, we have completed the proof of [Theorem 3.1.

We remark on the choices of the constants &1, & and ¢3. When we consider the
contraction map H(y) in the proof of Lemma 3.1, we can choose & = & (m, |7|)
and &3 = ¢3(m) independently. The choice of ¢; depends on &3 as 2¢,,e2 < €3. So
we can choose & which satisfies ce_% <é& < (1/2¢,)e3. These choices are im-
portant when we consider the global properties of the phase function ¢ = ¢(x, z).

Here we present the global properties of the phase function ¢ in order to
construct the amplitude function f along the set E globally.
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In the proof of Lemma 3.1, the projection map r is a diffeomorphism from
n 1 (E)(= A) to E. For the map z = Y(x; y, —(0¢,/y)(»)) there exists the inverse
map k : E — (O such that y = k(x,z). The function x is holomorphic in E and
x(0, y0) = yo. We have seen

(3.16) lk(x,2) — yo| < &3, (x,z)€E.
By the identification of (3.9) with we have

0

(3.17) 32 (5,2) = =0(x; 3,1) = =g + (7 = o)l

From (3.14)

(3.18)  k(x,z) — yo

I
X
3
o
=
——
N
=
=
<
e
=
N

m—1 _ . ] Rl
-y (" et - m’}.

We have

oK k 1 mlrm—1
3.19 X (x,2) = 1
(3.19) 5z %?) 1—im(m—1)n5"—2x{ mx;( j )

7y (=) o 2) — y0) T O, z)}.

1
1—im(m—1)

Fwa)|s .{1+m» |Z( ol }

Since &3 is small enough, the second term can be absorbed in the left hand side.
We get ‘

C
<
x| S T

Since we have

oK
52? (X, Z)

0K C
— < —— E.
| S Teppy e
In the same way we have
0’k C
< , (x,z)eE.
0z2| = (1 +|x))® 2
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It follows from these estimates that

2 C

<C, T
(1+ |x])

(3.20) ‘%(x, )| < Y (x, z)\ <

5‘27 (X,Z)EE.

Now we shall state the key lemma of the main theorem. It should be noted
that the inequality is valid only in the region where z is a real variable,
which is different from Lemma 3.7 in [I5].

LEMMA 3.2. Let us define

E={(x,z)eC><R;Rex> —e1, |Im x| < g,

|z — Y (x; yo,m9)| < —;—82(1 + !x|)}

Then we have

) C -
3.21 Im —(x,2) > ———, (x,z)ekE.
(3:21) 8= s ()

Proor oF LEMMA 3.2. Since y = k(x,z) is the inverse function of
99y
=¥ (x0,-5
z (x ¥ (y)>

=y +mx{n, — i(y — »)}"",
we have
2 = x(x, 2) + mx{g — i((x,2) — yo)}" .
By setting
X(%,2) =1 = i(y = ¥0)yauzyy  (%:2) € E(= € x C),
this function X(x,z) is the simple root for the equation
(3.22) mx{X(x,2)}" " +iX(x,2) + yo—ing—z=0, (x,2)€E,
which satisfies |X(x,z) — 7| < &. By taking the differentiation with respect to z

in (3.22), we have

{m(m — D)x{X(x,2)}" % + i}aa—)z((x, z)—1=0.
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Since Re x > —¢;, |Im x| <& and |X(x,z) —#y| <& in E, we have
m(m — Dx{X(x,2)}" > +i#0,
for (x,z) € E. On the other hand we have from [3.17)

% N— oy %
az(xaz)'" ®(xvy7 ay(y))

y=rK(x,z)

_5%

y=k(x,2)
=—n+i(y— yO),y:x(x,z)
=—-X(x,2)

Using these properties we have

2
Y x.2) = —1m X
Im 522 (x,z) = —=Im . (x,2)

0

1
P onm— DX} 2 i

First we consider the case that |x| is large enough. Let us introduce the set
E; which satisfies E c E; as

E = U {(x,z) e C x R;

ri€R,roe C,|r|<ea, |rol<e2
Re x > —e, |Im x| < &1,z = Y(x; yo,70) + r1x +ro}.
We write
z = Y(x; yo,1) +r1x+ro
= Yo+ mxn{)"'l +rix+ro
= (mng"™' +r1)x+ yo+ro
= f(x).

Since f(x) is a holomorphic function and |z — Y(x;yo,7,)| < &2(1 + |x|) for
(ro,r1), we can define the holomorphic function X (x) = X (x, f(x)) for x € C with
Re x > —e¢;, |Im x| < ¢. From (3.22) X(x) is the simple root of the equation

(3.23) mxW" ™ 4 iW — (mng™ + r)x = (ro + ing) = 0,
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where |X(x) — 70| < &3. We change the variable e C with 7= 1/x. Instead of
we consider the equation

(3.24) P(t,ro,r, V) = V™! +étV

m-1 r 1 .
- +2) = =(ro +ing)t = 0.
(’70 m) m (rO "70)

This equation is well defined for te€ C, ro € C and r; € R. By Rouché’s theorem
there exists a positive constant g, independent of & such that the equation
has the simple root V() = V(t,ro,r1) near 5o for ¢t and (ro,r;) with |f] < uo,
ro < o and r; < yy. So V(¢) is given by the residue theorem as

VaVP(t7r01rl’ V)
P(t,ro,rl, V)

W0=J v,

Y
where 7 is a simple closed path enclosing the distinct root V(7). We note that we
can choose the same y for ¢ and (rq,r;) with |t| < yq, |ro] < yy and |r1| < . Since
P(t,rg,r, V) #0 on y and P(t,ro,r;, V) is an analytic function of ¢ it follows
from the expression of V() that V(¢) is also an analytic function of 7. We write

o0
V(t) =co+cit+ Cjtj, for |t <R,
j=2

where R = R(y,) >0 does not decrease when g, tends to zero. Defining the
constant

D = max sup
0<J=2Z ||<R,|rol <sto, Ir1| <tto

—dt—,-(t)

d’v \

we also have the estimate
|V (t) —co — c1t| < Dt?, for |t < R.

Therefore X (x) can be written as
_ 1 1
(3.25) X(x)=c0—|—61;+(0 2)

for x e C with Re x > —¢, [Im x| < ¢ and |x| > M, where M =1/R>0is a
large enough constant and ¢y = co(ro,r1), ¢1 = c1(ro,r1) are constants. We note
that the remainder term in ¢(1/x?) is estimated uniformly with respect to (ro, 1)

as above. By using |(3.25),
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_ 1
{X(x)}" ! = 06"_1{1 + (m - 1);“+(9<—)},
and [3.23), we get

1
mxcd! 1+(m—1)ﬁl+(9 LR R co+c—+0 L
co X x2 x x2
— (my = 4 1) x — (ro + iny) = 0.

From this expansion we obtain

l_m”{)}'l—l__rlzo’

m—
mcg
m(m — 1)cf'2c1 + ico — ing — ro = 0.

Since r; € R and |r1| < &, ¢ is the real root of the first equation near #o- Other-
wise the other choices of ¢y contradict the fact |X(x, f(x)) — #,| < &3. Clearly

| " 1/(m-1) " 1/(m-1)

mng

_i(co—n9) — 1o
m(m — 1)cir=2

The choice of ¢y and the fact ro e C and |ry| < &, imply that ¢; € C satisfies
le1] < Cey. If (x,z) is restricted to the set E;, we have

m(m — DxX(x,z)" > +i

= m(m — 1)xc6"-2{1+(m—2)-2—‘1+(9(i>}+i,

We note that

-1 B

I —
M T B 421 B

for A,BeR.

In our case

A(x) =m(m — 1) Re x + m(m — 1)(m — 2)cf"? Re c; + Re (9(%),

B(x)=1+4+m(m— l)cg"_2 Im x + m(m — 1)(m — 2)c> Im ¢; + Im (9(%)
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The smallness of |Im x| and |Im ¢;| implies B(x) > 1/2. Therefore we have

et} C

for x e C with Re x > M, |Im x| < ¢, where M = M(u,) > 0 is independent of
€1 and &.

Next we consider the case |x| < M. We note that we can choose the constant
¢, independently of &,,¢3 and M. For (x,z) € E we have |X(x,z) — 5| < &3. This
shows |{X(x,z)}"? — 82| < Ces. If we choose ¢ and e small enough, we
have

[Im(m(m — 1)x{X (x, Z)}m_2)| <

)

N —

for (x,z) € E with |x| < M, Re x > —¢ and |Im x| < ¢;. We have
(3.27) Im —

for (x,z) € E with |x| < M.

From and we have

0% C
3.28 Im —(x,z) 2 ———,
20 a2 9 = e
for (x,z) € E. This completes the proof of Lemma 3.2. ]

Let xeC be such that Rex> —¢, |Imx|<¢g, and let zeR,
|z — Y(Re x; yo,70)| < (1/2)e2(1 + |x|). We set

o(x,2) = Im % (x,2).
Since

0
g(Re x, Y(Re x; 3o, 75)) = Im =2 (Re x, Y (Re x; yo,10) = Im(=1o) =0,

it follows from that there exists a function z(x) : C — R such that

9(x,2() = Im 2 (x,2(x)) = 0,

z(Re x) = Y(Re x; yo, 1)
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Let us check the position of z(x), when x varies in the region mentioned above.
In fact the repeated use of the implicit function theorem shows the existence of a
unique real point z(x) if we check

(329 203) — Y(Re x; yo,m0)| < gea(l + 1)

for x belonging to the region specified above. The point z = z(x) is characterized
by

1m %2 (x,2()) = Im {1 + i{(x,2(x)) — 0)}
= Re(k(x,2(x)) ~ o) = 0.

Since |k(x,z) — yo| < €3, we can put x(x,z(x)) — yo = id, 6 € R with || < e3. By
(3.18)

[{1 +m(m — )™ 2 Im x}* + m*(m — 1)2773('"_2) (Re x)?]
x (k(x,z(x)) — o)

= [{1 + m(m — )™ 2 Im x} + im(m — 1)n2 Re x]

x |2(x) = (yo + mny~" (Re x)) — iy~ (Im x)

— m(Re x + i Im )mi(m_l) rIN (i) (io f]
x j Mo 0)7(id)’ |.

—

~

Since Re{x(x,z(x)) — yo} =0, we have

z(x) — Y(Re x; yo, 7o) = d16° Re x + {d3(Im x)(Re x)},

1 +d, Im x

where d; (1 < j < 3) are real constants depending on 7, and m. We have [3.24),
because |Im x| < & < (1/8)e; and d16° < dye} < (1/4)e;.
For x e C with Re x > —¢, |Im x| < & let us set
(3.30) ®(x) = —Im ¢(x, z(x)).
As proved in (see Lemma 3.8 in [I5]) we have

0

3.31
( ) o Re x

®(x) =0.
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In this paper we don’t repeat the proof of this property. We have obtained the
same global properties of the phase function ¢ as those in except for [3.21),
in fact is valid in the case z is restricted in R. This restriction is harmless
because will not be used in constructing the amplitude function, but only in
Section 4.

Let u(t,z) be the solution of the initial value problem

D, + P(z,D,)|u(t,z) = 0,
(332) {[ t+ (Z') )]U( Z)
ul,_o = o(2).
Let ye C{(R) with 0 <y <1 and
L < e,
x(r) = {O, r| = Le.

We set

(3.33) Su(t,x, )

. — Y(Re x;
- jR el)#(X,Z)f(x, z, l)x (Z (1 _*C— ~‘)::|y01770))u(t’ Z) dz,

where f = f(x,z,4) = > 1o fk(x, z)A7* is the analytic symbol of order 0, elliptic
near the support of the cutoff function. We have

0 m_t O 1
(3.34) (61 +4 6x) Su(t,x,A) = iA™ (iD Su — i SPu)
We set
l l
-| ( — P D.) ) (€ f)utr 2)
where

m m—1
‘P(z,D:)w = Y _(—D.) (a1(z)w(z)) = (—=D:)"w+ Y _ bi(2)D}.
1=0

=0
The coefficients also satisfy the condition (1.4). We define

(3.36) F(x,2,4) = pr ;m 'P(z, Dz))(ew 1.
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We have

e ME(x,z,A)

=/11( +,12¢) —Aim’P( ,Dﬁi%—f)f
+bm_1(z)(Dz+ﬂ.g—Z)m 1f+2b,(z (D +z‘;“’> f}
-
- mzol (-2 -n ( (- Z—f)?) b () (?)'“f}
() P DI
R O e L
—'(—1>'"§m(m—1>(%)m_z(g>f 1) ()" f}

By we have
6¢ Op
ox P m( ;3;) -
We define the change of variables ¥ : @0 — E by
0
2= 2(x0) = ¥ (50 - 2.

We have
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2 (f o) = L (fx2(x, )

_ (a_axf _ (_1)'"m(%§)m'1§; ) oW,

This calculus, properties of ¢, (3.20) and imply

-9 _—IA —
(3.37) ile”"YFo¥ = (g +d(x, y))g - 1§=1: le(x, ¥, Dy)g,
where g(x, y,4) = fo¥ =3 ;. l_kgk(x, y) and

C
A6 ) < T

1+1

(3.38) 1215, D) =3 _4;(x y)D},
j=0

Ci;
(x,y)] € ———L—.
quj( y)l (1+|x|)1+go

From this expression, we construct a nice amplitude function.

LemMA 3.3.  There exists an analytic symbol [ of order zero defined in E such
that

(3.39) |F(x,2,2)] < Cer®@A(1 4 |x)) ™,
where py > 0 and Ny is an integer.

ProoF OF LEMMA 3.3. From we shall construct {gx} inductively

990

ax ng 07 g0|x=0 ]
Ik
—— — _ = O >
I + dgx 1521 Qigk-1,  Gkly—0 =0, (k=1),
where

k, (k<m-1),
M_{m—l, (k = m).
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We set

1
A ) = 8 () = x| d(ex,») dr
0

From the fact that A(x, y) is holomorphic with respect to y and (3.33), we get
|0,4(x, y)| < C log(e + |x]),
(x,y) €0y c= O,VleN,

where

1 1 1
0, :{(x,y) e C x C;Re x > —581,|Im x| <§al,ly— Yol <§83}.

We set
hk = eA(x,y)gk.
Then the analytic symbol A4 should be constructed by the equations

ohy

E - 0’ h0|x=0 - 13

(3.41) N
—_— = _ = k>1
E Z_I: Wihe—i, hi|l,_o=0, (k=>1),

where

1+1

Wi=elQe = Z wi(x,y)Dj,
j=0

G

W;O— log(e + |X|)

w!(x, y)| <

The solutions of the equations above are given by

hO(xv y) = la

3.42) | M
( hk(xay) :xJO ZW[hk_](tx,Y) dt, (kZ 1)
=1

The existence and boundedness of the solution in ¢; are not so difficult. However
it is not clear that we have the estimates
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(3.43) |9k (x, )] < CoCFk™.

To prove these estimates we make use of the technique, “nested open set”, as
described in and [19]. For j e (OUN) we define the sequences {s;}, {R;}, {r}
by

s;=2/, R= 2/(+(1/230) > 1

(344) ri =rj-1 - I(Sj—Sj_l), ]2 1,

The monotone decreasing sequence {r;};2, converges to ro, > 0. We define the
open set

(345) Q@ ={(x,y) e Cx C;|y—yol + Mj(x) <r; - ,Re x 2 5},

where ¢ € (0,r;] and

Mj(x) = %|Re x — 5| + [Im x].
]

We note that (s;,y) € Q/ implies (s;, ) € Q/™' for j>1. Let p be a positive
number. We denote by 4, ; the space of formal analytic symbols /1 = Y k>0 A% hy
such that

(3.46) sup || < fi , (WK 1™, 0 <1<,
0/

where fi ;(h) is the best constant and the series S0 fx.j(h)p* is convergent.
Then |4, ; = St o Jr,j(h)p* is a norm on A, ;.

The solution of given by gives rise to the formal symbol # which
is a solution of the Cauchy problem

m—1
a—h - Zl—lWlh =0, Rexzx>y,
(3.47) 0x 13

Hlecy = h(s;, ).

We denote by 4/ the value of the solution in QJ. h/ satisfies
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-—— Wik =0
Ox ;i Wi ’
hj‘x:é‘j = hjil |x=sj’
where we define h~!|,_, =1. We set f/ =h/—h/7'|,_ . The system can be
written
Id — B)B’ = B(h/!|,_,),
(3.48) ( . ) sy
ﬁj|x=sj = O’
where
m—1 m—1
(3.49) B=o'> 1awi=a0' Y aHw,
I=1 I=1

and 0;'v = f; v(7) dr.
We shall show that B is a contraction map in 4, ; for small p > 0.

LeMMA 3.4. There exists a positive constant C such that for j>1 and
feA,; we have

log(1 +s;) R;
3.50 <Cc=_1J N
(3.50) 1881, = €12 L olBl,

PrOOF OF LEMMA 3.4. First we shall prove

- C R;
(3.51) 120 Y, < = =2, 50
Pt

a0
for 7= 346y, € dy .
k=1

Indeed

1
0 s (x5, ) = (x—5,) L e (s + o(x — 5), 7) do.

If (x,y)eQ/, then
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|y = yol + Mj(s; + o(x — 5))
= |y = yo| + o M;(x)
<rj—(t+ (1 — o)M;(x)),
that is, (s; +a(x —s;),») e Q). where T =1+ (1 —0)M;(x). We note that T <
t+ Mj(x) <r; for (x,y)eQ/, and
|x — 5;| < |[Re x — ;| + |Im x|

R
<27 M;(x),
rj
because M;(x) = (rj/R;)|Re x| + [Im x| and R;/r; > 1. From the definition of
Jk,j(h) we have

fk,j(h)=$ sup {fk sup .|hk(x,J’)|}'

0<t<r | (x,y)eQ/

For (x,y) € Q/ and 0 <7 <r;, we have

105 Vi1 (%, 2)

1
<|x—s L st (5 -+ 0(x — 57), )| do

1

<|x-— S,-IJ sup |7k+1(2, ¥)| do
0 (z,y)eQs

1
< I = 1 forr () (k + D! ]0 76+ dg

1
= |x = gl firr, (D + D L {t+ (1 —o)M;(x)y “V do

o=1

= gl )+ 0 [ e (= )b )

a=0

1 -
< |x = sl i1, i (7) (K + Dk ij(x)t "

£2—Jfk+1,j()’)(——kl——f “.
Fj

We obtain
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”la;ly”p,j = —ka;l))k—i-l
p.J
= pF 1
Zk_ sup { sup |05 Prqr (%, J’)|}
k=1 0<t<r; (x,y) e/
0 k+1
p* K AR k+D)™
e . _— . ___—t
kg k 0<tsrj{t 2 ¥y fk+l,](y) k
“. . R 1\ 1
=) 2 ; —) (1+5)pF
k§=:1 " fk+u(7’)(1 + k) ( +k>P
p ka+1,j(7’)l’k+1
Y %=
C R;
< Wl

This completes the estimate [(3.51).
Next we shall prove

< Cp||y|ip7j, for ye 4, ;.

(3.52) l'l —?—y
pJj

A Oy

If (x,y) eQ/ and |z— y| =t~ 1, then
|z = yol + Mj(x) < |z = y| + [y — yol + M;(x)
<(@-n)+@Fm—-t)=r—n,
that is, (x,z) € Q/. For (x,y) e/ it follows from Cauchy’s formula
0
3y = Vr-1(%, J’)’

LJ Ye-1(X,2) dz‘
|z=y|=|t-t1]

2mi (y — 2)2
1
<l sup |7t (x, 7)| J dz]
2n |t - tllz (x,z)eQ,/; lz—yl=lt—n]
1

< —— sup [y (%, )]
I t1| (x,2) eQJ

25
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For

where dx = 0,y,_;, we have

I6ll,.; = > fiesO)p"
k=1

> Pk k
= "2 sup { ¥ sup |6k(x, )]

(x,y)eQ/

< L
< E k sug TN (XSUP ko1 (x,2)]

+ipk su ——tk— —1—(k 1)!
k P |t — 1| k!

k=2 O<t <r;

1 k-1
X ————1 sup  |ye-1(x,2)| ¢-
(k - l)k ! (x,:)eQ,jl

For k =1 we choose #; as t; = (1/3)z. It follows from #; < (1/3)¢t <r; that

3n
p sup { ——— sup |yo(x,2)|
O<t<r; |3tl - tll (x,:)eﬂljl

3 3
< 5P sup { sup ,IVO(X,Z)|} =§Pf0,j(7)~

O<t<r; | (x,2) eQ}

For k > 2 we choose ¢, as

then we have
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tk
lt— 0] k=

k—1
k — (k=1 =k*

k1t
l(k_l) —__]i__'(k_l)k;ltk 1

We have

3 x. pk 1
1811, < 5250, + YTkt sup { ——— ™ sup [y (x,2)
‘ j (k - 1) (x,z)eQ,’1

3 = p! k-1
< 5pfo.j(Y)+p ) ——— sup sup  |y_1(x, 2)|
2 k=2 (k - 1) 0<ti<r; (x,z)eQ,’l

<CpY_ fur,;(7)p*!
k=1

< Cpllyll,,;-

This implies (3.52).
In the same way we have

1
(3.53) “zy = Cpliyll, ;» for ye A, ;.
In our case
1
p— _1— ]
B =0, 7 I_S_: 7
where
I+1

=Y wi(x,y)D;
a=0

C .
wa(x, »)| < W log(1+s5), for (x,y)eQ.
j

It follows from (3.52), [(3.53) and the expressions above that we have

mZ_IL wip log(1 + ;)
— A,H—l N (1 +Sj)1+ao

The estimates and ((3.54) give the required result of |

(3.54) <C

pzllﬁ”p,j'
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The same calculation shows

1BBll,,0 < CopllBll,o-

For j>1 we set

Clog(l +5) R
(1+S)1+00 rj

If we choose a small enough p, we have

K<2<1

o
K; < C2-(1/3)a0f
for j > 1 and Koy = Cop < 1. From we have
18715 < KillB 1l + Kill (B~ eyl o

SO

; K; . .
(3.55) 18711, < 1—JKj (B~ eyl for j=0.

Since (s;, y) € Q/ implies (s;, y) € /™', we have

BN s, )l < sup (BTN p)] < frjoa (BT DEREE,
(x,y) e/

for 0 <t <rj(<ri1), and

109 eyl = Z sup {rk sup ,|h£“<sj,y>|}

0<t$rj (x,y)enll
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Since f/ = h/ — h/~!|___ . we obtain
x=s

il

pj- 1 — pj-1

and hence

J
(3.56) 1A71],,; < <H )Ilholl 0 < ClIA%ll,0
Since h~!|,_, =1, it follows from (3.55), and the definition of the norm

that

sup|h | < Cp~*k*r*, 0<t<r,.
QJ

Since /] is the restriction of the solution / to Q/ we have

—k
e (x, )| < sup |hk|gc,,—kkk(g-o) ,

2
le /2)rec

So the system [(3.41) has a solution 4 = Zkzol‘khk such that for £ > 0 we have
|hk(x’ y)l = Ckkka

in the set 0> = {(x, »);|y — yo| + |Im x| < (1/2)r,Re x > 0}.
It follows from the definition A(x, y), A and the estimates above that the
system has a solution g = Zkzoi_kgk with

(3.57) 9(x, )| < CRE L+ IXD™, (x, ) € 0,

where N; is a fixed integer.

CONTINUATION OF THE PROOF OF LEMMA 3.3. Let us take g = Zf:o grx Where
gr have been found in [(3.40), and K € N is chosen later. Then by [3.37),
and Cauchy’s formula we have

i 1
(3.58) lile™™F o | < s

< (LY asp

CXKX(1 + |x|)N1
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We take ko and 4y with 0 < ky < 1/2C and 4y > 2/ky respectively. Defining the
integer K = K(A) with kodo — 1 < K = [koA] < koA for A > 4y, we have

log (C—f) = log (% [kM]) < log <§k0/1)

< log(%) =—u <0.

We get
(3.59) lide™™F o P| < %eKbg(C"/*)(l + |x) ™
L —lko) %
< Ie AT + |x|)
< _}'e—,ul(koi—l)(l + |x|)N|
e kol N

The proof of is completed by setting a positive number uy, = u, ko.
|

4. Proof of the Main Theorem

We shall prove the main theorem. Thanks to [Proposition 4.1 and [1.7) it
suffices to prove for a special point p, = (yo,7,) € T*R\O.

PROPOSITION 4.1 (Theorem 6.1. in [15]). Let py = (yo,70) € T*R\O and y, be
the bicharacteristic of p,, passing through p,. Let to € R and u e C(R; L*(R)) be
the solution of (1.2).

(4.1) If po¢ WEqlu(to,")), then WF4[u(to,")]Ny,, = O

This theorem is a local one. The difference between the orders of the operators
does not appear as long as we consider the problems locally. Indeed we can solve
the eikonal equation (d¢/0x)(x,z) = pm(z, —(0p/0z)(x,z)) and the transport equa-
tions locally. So the proof of Theorem 6.1. in [15] works well even in our cases
m > 3.

It is enough to show in the case that p, is the outgoing point,
that is, p, = (30,70) € T*R\0 with yo > 2Ry, and yoni*~! = 0. We shall show
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po & WE4[u(to, )] for any #, < 0 under the hypotheses of Theorem 1.1. We define
the set

4.2) Ey = {(x,z) e C x R;Re x = —¢&, |Im x| < &,

|z = Y(Re x; yo, 10)| < &o(1 +[x[)},

for &y > 0. Let us take g such that g « (1/2)e; < (1/4)ey, & < (1/2)r,, and the
initial data uy € X,/. If & is small enough, then we have Eg c E < E. Let y e
C(R) with 0 <y <1 and

L, |r< %80,

r) =
x(r) {o, I > .
Let u(t,-) be the solution of [I1.2). Let us apply the transformation S intro-
duced in (3.33), where the phase function ¢(x,y) and the amplitude function
f= Z;f:o A7 f, are given in and 3.3, respectively. Then we have

<§t+lm_l i>S”(t,x, A) =iA"I(t,x,2), <0,

(4.3) Ox
Su(0,x, ) = Sup(x, ).
We obtain
(4.4) Su(t,x, ) = Su(0,x — A" 11, 2)
+ i J(: I(t,x+ A"z — 1), 4) dr.
We have

Su(0,x — 2™ 1, 2)

= Sup(x — A" 1, 2)

— J ei&w(x—lm_'t,z)f(x _ }.m_lt, z, /1)
R

-1,
z— Y(Re X — /lm _lt, Yo, 77()) e_(50/4)lz|l/(m—l)e((;o/4)|z|l/(m4)u0(z) dz.
1+ |x ="

If & and |t — to| are small enough, we get |z| > (1/4)|5,|™ " |to]A™ ! on the support
of y. Then we have
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(4.5) |Sug(x — A" 12, 2)]|
< Cel®@~(1/16)ln] 0]/ V52 J (- - )e@o/ "0 (2] dz
R
< Ce*®®)-(1/16)lmg]Iro]/ ‘”"”‘"’*lle‘%"'mm-”uolly(rpt,)-
On the other hand we write

I(t,x,A) = LI(t,x,A) + L(t,x, ),

where

(4.6) L(t,x,3) = L Telx, 2, u(t,2) dz,  (k=1,2),
and

(@7) n(w2,2) ={ (30~ 35 P2 )€1 |,
3) nix22) = [ (305 = 3P D2 ) ] (€72,

where [P, Q] = PQ — QP. To estimate I; we use [Lemma 3.3,
(49)  |L(t,x,A)]

z — Y(Re x; yo,7,)
1+ |x|

< Cerm i1+ ) [ Jlute 2 .

< Ce*®W#oA (] 4 |x|) Mo+ (/2 x)“LZ(rp;).

The term I, can be estimated by [Lemma 3.2. For x € C and z € R we have the
Taylor’s expansion with respect to z,

(4.10) Re(ip(x, z))

= —Im g(x,2()) ~ Im 92 (x,2())(z — 2(x))

1 1 2

-5 (z — z(x))? L (1 —6) Im % (x,z(x) + 0(z — z(x))) d6,
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where 0/0z is the real differentiation and z(x) is the real valued function given in
Section 3. On the support of y implies

. C
(4.11) Re(ip(x,z)) < ®(x) — NPT (z — z(x))%
Since we have
(4.12) |z —z(x)| = zliﬁo(l + |x|),

on the support of a derivative of y, there exist 6 > 0 and x; > 0 such that for
|t — to]| <O we have

(4.13)

t
sz (e, x+ A" (x — 1), 2) de
0

< Ce*®X)—mt gqup ||u(t")HL2(1"/,+)'
|t—to]<d 0

It follows from [4.4), and (4.13) that there exist C > 0 and g, > 0 such that

(4.14) |Su(t, x, A)| < Ce*®X) =4,
Let us set
(4.15) Tu(t,x,A) = J e £(x, 2, A)y(z — yo)u(t, z) de.
R

In view of Proposition 5.3 in [I5], it follows from that

THEOREM 4.1. Let 1ty < 0. Assume ug eX*(;, then there exist C >0, ¢ > 0,
0>0 and u >0 such that for |x| < e and |t — ty| < I, we have

(4.16) |Tu(t, x, )| < Ce*®E@)—#,

Now the proof of is completed because of [(4.15) and the
definition of the uniform analytic wave front set.
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