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BLOW-UP AND LARGE TIME BEHAVIOR OF
SOLUTIONS OF A WEAKLY COUPLED SYSTEM OF
REACTION-DIFFUSION EQUATIONS

By

Noriaki UMEDA

1 Introduction

We consider nonnegative solutions of the initial value problem for a weakly
coupled system

() {u,-,:Au,-—Fuﬁl, xeRY t>0,ie N*,
ui(x,0) = up(x), xeR? ieN*

where N > 1, N* = {1,2,... N}, uni; = ui, Un+io = Uio, Pn+i = pi (i€ N*), u=

(ur,uz,...,un), uo = (410,20, .. .,uno), p=(p1,P2,---,0n), d=1, pi=1 (ieN*)

and [[Y, pi > 1, o (i € N*) are nonnegative bounded and continuous functions.

Problem (1) has a unique, nonnegative and bounded solution at least locally
in time. For given initial values ug, let T* = T*(up) be the maximal existence
time of the solution. If 7* = oo the solutions are gloval. On the other hand, if
T* < oo there exists i e N* such that
(2) lim sup ||u;(2)]|.,, = 0.

t—T*
When (2) holds we say that the solutions blows up in finite times.

The blow-up and the global existence of solutions are studied by Escobedo-
Herrero in case N =2, and the following results are proved there

(I) If 2max{p; +1,p, + 1} > d(p1p2 — 1), then T* < oo for every nontrivial
solution u(z) of (1);

(II) If 2max{p; +1,p2 + 1} < d(p1p» — 1), then there exist both nonglobal
solutions and non-trivial global solutions of (1).

In this article we shall first treat blow-up solutions. We can use it to sim-
plify the proof of (1) and 3.6). Moreover, requiring the polynomial
decay of initial values uo, say, ug; ~ A*(1 + |x|)™ (i€ N*) where 4, y; and g;
(ie N*) are all positive, we obtain another cutoff of a = (a;,az,...,ay) which
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divides the ©blow-up case and the global existence case when

2 maxien-{X N (142 pisk) + 1} < N([T, pi — 1) (Theorem 3.3). The new

cutoff will be the vector

2 (Moo pis) +2

(3) o ieN*
H[ll pr—1
which solves
1 —p1 0 O 0 0 0 o 2
0 1 -p2 0 0 0 0 o) 2
0 0 O 0 -+ 0 1 —py oUN—1 2
_pN 0 0 0 0 0 1 aN 2

Note that with the use of o, the first cutoff
2 maxieN‘{Zji]l(Hf;lo Ditk) + 1} = N(]‘[}V=1 pi — 1) is expressed as follows:

2 ?g%’f{“i} =N

In the second half of the article we consider the large time behavior of
global solutions. Not only the precise decay estimate (Theorem 4.1) but also
the asymptotic profile (Theorem 6.1) are obtained for a class of vector a =
(ay,ay,...,ay) in the domain {a;a; > o;, i € N*}. For these purposes a scaling
argument for solutions u(x,?) will play an important role.

When N = 2, these problems have been studied by K. Mochizuki [3]. In this
paper, we extended this to the case N > 3.

2 Preliminaries

We first recall the local solvability of the Cauchy problem (1). We use
the notation S(¢)¢ to represent the solution of the heat equation with initial
value &(x):

@) SWe) = @n) 2 | e Ie(y) ay
Rd
For arbitrary 7 > 0, let
(5) Er={u:[0,T] = (L*)";|ull g, < o}
where

N
lullg, = sup {Z”ui(t)”oo}
i=1

tef0,T]
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THEOREM 2.1. Assume that uq is a vector of nonnegative bounded continuous
Sfunctions. Then there exists 0 < T < oo and a unique vector u(t) € Pt = {u € Er;
{u; > 0,ie N*}} which solves (1) in R? x [0, T).

ProoF. It is obvious (see [2], [3]). O

We consider in E; the related integral system

t

(6) M0=ﬂmm+LﬂFﬂWm@WHwMﬂﬂ

where i € N*. Note that in the closed subset Pr of Er, (1) is reduced to (6).
Next, we obtain a necessary condition for the global existence of solutions.
Let p,(x) = (s/n)d/ze‘glxlz, ¢ > 0. For a solution u(t) € Ex of (1) we put

Y Full) = | ux0p (0 ds (€ N")

Since —Ap, < 2dep,(x), the pair {2Neg,p,(x)} is regarded as an approximate
principal eigensolution of —A in R. With this fact and Jensen’s inequality we
easily have

(8) F, > —2deF;,(t) + Fip1,.(t)7" (ieN™)
Let us consider the system of ordinary differential equations

{ is = —2defi(t) + fin, ()" (i€ N¥)
fie(0) = Fie(0), (ieN7)

By the scaling with (3)

9)

(1) = ~a/2e (L) e N
) = @y fi(57) GeN)
we obtain the simpler system of equations

(10) () ==fit) + fin()”, (ieN7)

LEMMA 2.2. Let f(t) = (fi(2), f2(2),..., fn(2)) be the solution to (10) with
initial data

fi(0) = fo>1, fi(0)=0 (jeN"\{1})

If fo is sufficiently large, then f(t) blows up in finite time. Moreover, the life span
To of f(t) is estimated from above like
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(11) To<to+ JH” P ){cl (p)e P+ _ Ny ae
where
aw =112 (ﬁ (e N*))
1 = DY) i
i1 ﬂ,ﬁ" E}il o
2
C2(p) = ’
Zi]il &;

and 0 < tg < Ty is chosen to satisfy {Hfilﬁ(to)}CZ(p) > N.
ProOF. Multiplying e’ on the both sides of and integrating it, we obtain
‘ t
In(e) = e"J e” f1(s1)PY ds;
0

t 81 PN
Sy-1(2) = e"J el1=p2) { Jo e’ f(s)"" dsz} dsy,

0
(12) :
t 51 SN-3
fiolt) = e—tJ e(1=p2)n1 [J =PIz L (J e1=PN-1)sn-2
0 0 0
SN-2 PN-1 PN-2 P2
X {J esN"fl(SN_l)pN dSN—l } dSN_z) s d82:| dsl,
\ 0

SN

t 51
(13) fl(t) = etﬁ) + e—tJ e(l—m)n [J e(l«pz)sz TR, (J

SN—-1 DPN-1 PN-2 D2
X {J eSNfl (SN)PN dsN} dSN_l) s ds2] dS].

-2
e(l —PN-1)SN-1

0
Let fo > 1 be choosen large enough to satisfy

o

(14) inf {e"’fo + 2p1p2...pNe—toI e(l—Pl)Sl l:jsl e(l—Pz)sz X eee X <JSN_3 e(l—PN—z)SN—z
16>0 0 0 0

SN-2 DPN-2 PN-3 D2
X {J eV (1 — eV dsN} dsN_2> . --dsz] dsl}
0

> QPPN _ §

where 6 > 0 is small constant satisfying 6 < 271/P2"PN — 2,
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We shall first show that under this condition f(#) > 2 for any 0 < ¢t < 7.
Assume contrary that there exist 0 < #; < Ty such that f(f) >2in 0 <t < ¢ty and
fi(t1) = 2. Then it follows from (13) and (14) that

2= fi(t)

t

2 et e
0

SN—3 SN-2 PN-2 PN-3 P2
% (J el1=pn-2)sv—2 {J eV (1 _ e—SN—l) dsN} dSN_2> .. ,dSZ] dsl}
0 0

2 2P1P2"'PN — 6 > 2

1 51
R { J 1P o
0

and a contradiction occurs. Next, we shall show that lim,_7, f(f) = 0 (Tp < ).
Assume contrary that there exist a sequence {#;} such that

lim, ., f1(t;) = M for some 2 < M < co.

We choose ¢ > 0 and ¢, > 0 to satisfy M < (M — &)P"P*"P¥ and f(t) > M —¢ in
t, <t<T. It then follows from (13) that

SN-3 -
e(l —PN-2)SN-2

t
filty) =e" fo +2p"’2""’”e_’fj ell=P1si HSI el17P2)s2 5 L x (J
0

0 0

SN—2 DN-2 PN-3 p2
X {J eV (1 — e™N1) dsN} dsN_2> ---dsz] dsl}

0

+ (M - 8)P1P2"'PNe——t1 th (1P [JSI e17P2)s2 s .. % (JSNA} e{1—PN-2)sn-2

L, Ly le

SN-2 DPN-2 PN-3 D2
X {J eV (1 — e V1) dsN} dsN_z) o -dsz] dsl}
Ly

— (M — S)Plpz"'pzv > M (tj N OO)
Noting (12), we now conclude
(15) lim £i(1) = lim fo() =+ = lim fy() =0 (To < )

To complete the assertion we put A(z) = f1(2) f2(¢) - - - fn(2). Then by and
Young’s inequality,

(16) 1 (1) = —Nh(1) + Ci (p)h() =P
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Integrating this, we obtain
h(t) -1
t—ty < J {cl(p)5C2<P>+‘ —Né} dé
h(1o)

Since pyp;---pn > 1, this and show that A(¢) blows up in a finite time and
the life span T, is estimated by [1I}. O

Let us consider the solution f;(¢) = (f1e(?), f2:(2), ..., fw:(?)) of (9). As is
shown in this above lemma, there exist 4, > 0 (i € N*) such that if

(17) Fi(0) > 4,(2de)** (ie N*),

then f; blows up in finite time. Moreover, its life span is estimated from above by
(2de) ' T

THEOREM 2.3. Let F.(t) = (F1.(t), Fa(t),...,Fn:(t)) satisfy differential
inequalities (8). If (17) is satisfied for some ¢ > 0, then F,(t) blow up in finite time.
Moreover, its life span is estimated from above by (2de)”'Ty. Then, we obtain

(18) T*(uo) < (2de) ™' T.

3 Blow-up Conditions

In this section we summarize several blow-up condition which follow from
MTheorem 2.3. By BC, we denote the space of all bounded continuous functions in
R? and define for a > 0,

I1° = {£ e BC;&(x) = 0 and lim sup |x|?¢(x) < o0}

|x|—o0

I ={£ € BC;4(x) 2 0 and lim inf |x|°¢(x) > 0}

Let LY be the Banach space of L*-function such that

[1€lle0,a = sUP <x>°I¢] < 0

xeR?

where (x> = (1+ |x|2)l/ 2. Obviously ¢ = LY. The letter C denotes a positive
generic constant which may vary from line to line.

LEMMA 3.1. Let (uyo,u20,---,uno) # (0,0,...,0) and u be solutions of (1).
Then there exist T = t(up) = 0 and constants C >0, v> 0 such that

u(t) = Ce W’ (ieN™)
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Proor. It is obvious (see [1; Lemma 2.4}). O

THEOREM 3.2. Assume max;cy-{a;} > d. Then T* < co for every nontrivial
solution u(t) of (1).

THEOREM 3.3. Assume max;cy-{a;} < d. Moreover suppose also one of the
following two conditions.

(i) There exists some i€ N* such that u;g € I, with a; < a;.

.. . . — 2

(i) There exists some i€ N* such that u;o = Ce ™" for some vy >0 and
some C > 0 large enough.

Then T* < oo holds for every solution u(t) of (1).

ProOOF OF THEOREM 3.2 AND 3.3. These Theorem can be shown by the same

argument the case N =2 (See [2], [3], [7). O

In the rest of this section we consider the critical case max;cn-{o;} =d. We
suppose o] = d. Let u(t) € Er be a nontrivial solution of (1). By we

may assume
Uy = Ce_mxl2

for some C >0 and x> 0. Then by a semigroup property of S(f) we have
(19) uy = S(H)uo(x) = C(4t + 1/p) 42~ 1@r+1/u)

LemMmaA 3.4. For v >0,

S(t)e™ > C(2vt + 1)~ 2e~ /21

LEMMA 3.5. We assume oy = d. Then we have
ui(x,t) > Ct4/2e~ "/t log(t/(2a)) (a<t<T)

where a > 0 is a small constant.
ProorF. We shall consider the following inequalities.

un(x,t) > J(: S(t — s)ui(x,s)P" ds

> Jt (4s+ 1/p) " PM/28(t — s)e"’”""z/(“”l/”) ds.
0
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Since

_ 2pNt —d/2 2
S(e-Prix*/@st1/w) 5 o) _“PNE | —x|*/2t
(t)e A Py + e

by [Lemma 3.4, we obtain

/2

un(x,1) 2 C J (4s+ 1 /ﬂ)—dPN/Ze—lxlz/z(r—s) ds
4

t/
> Ct(t + 1) P21,

Substitute this into uy_;(x,?) > f(; S(t — s)uy(x,s)’¥', then

t

—~d/2
sPN-1 (S + 1)_dPNAlPN/2{2pN—1(t — S) + 1} e—|x|2/(t—s) ds

uy_1(x,t) = CJ .

0

t/2

> Ce—|x|2/1J / §—IPNPN[24PN-1 g
t/4

> C=9n-1p8/24pn-1+1 o= Ix /1 g

by again. By repeating this work,

Uy > Ct=9paps=PN/2P2p3PN-1++p2p3+pr-+] o1t g

using [Lemma 3.4 again, we obtain

t
ul(x, t) > CJ sP S—dplpz"'PN/2+P1P2"'PN—1+"-+P1P2+P1

0

—d)2
y {MjL 1} o/ (=9) g

t/2
> C(t+ 1)—‘1/26—IX|2/IJ s~ 4(pr1p2pN—1)/24p1p2-pro1t PP HPL (g

2(p1p2- - PN-1+ -+ pip2+p1+ 1)
pip2--py — 1
—d(pip2---pn—1)/2+ p1p2---pn-1+ -+ p1p2+ p1 = —1, we have

for small a>0. Since o = =d,

ur(x,2) = Cr-42e~ /1 log(t/2a). O

THEOREM 3.6 (critical blow-up). Assume max;cn+{a;} =d. Then T* < oo for
every nontrivial solution u(t) of (1).
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ProoF (See [2], [3]). For each nontrivial solution u(¢) € Er of (1), it follows
from that

(20) S(H)u1(0,1) = Ctr~/* log(t/2a) J d o SIxI24 g
R

> Ct~%/? log(t/2a)

in a<t<T* Contrary to the conclusion assume that u is global. Then by

Fio(f) = (e/n)"/2J (e, e dx < 109
R

holds for any 7 >0 and & > 0. Thus, choosing ¢ = (4t)_1, we obtain
Fi1ai(t) = St (0,1) < A1 (40) /2 = 4, (40)™"
This and contradict to each other if 7* = 0.
The proof of Theorem 3.5 is thus complete. O
4 Global Existence and Decay Estimates

In this and next section we require max;e,-{o;} < d, and treat the existence
and large time behavior of global solutions of (1). Note that our condition imply
that there exists i € N* such that p; > 1 +2/d. Similar results are also obtained
when py > 1+2/d.

THEOREM 4.1. Assume max;cy-{o;} < d and that there exists i € N* such that
pi>1+4+2/d. Let
(21) up eI with a; > o;
If \uiolloo,q s small enough, then T* = co and we have
(22) ui(x,1) < CS(1)<xd™%
in RY x (0, 0), where a; < a; (i€ N*) are chosen to satisfy
(23) Didiy1,d — d; > 2.
First note that condition can be replaced by uj € I% (ie N*) since

we have 1% < I% (ie N*). Then, to establish Theorem 4.1, we have only to
consider the special case a¢; = a; (i € N*). As is easily seen, in this case condition

is equivalent to
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(24) piGiy1,d—ai>2 (ieN7¥)
We set for y >0

(25) 7y (x,8) = S(£)<x>77

LeEmMMA 4.2. The following in equality holds

7,(x, 1) = C min{<x>77, (1 + £)77*}

Proor. See [2], [3] O
LemMmA 4.3. Let y >0, 0 <6 <y, =min{d,y}. Then we have

C(1+ )77t (y #d),

77, (5 o5 < {C(l n t)—d+5 log2+1) (y=4d).

Proor. See [2], 3] O

LemmA 4.4. We have in R? x (0, )

C(1 + 1)@ nabdl2y  (x, 1) a1 #d

26 L DP < —dpy A
26) Ma (0) {C(l+t)("'_d”‘)/z[log(2+t)]p'n,,‘_(x,t) a1 =d

PrOOF. We shall consider only the case i = 1 because similar argument also
can be applied to other cases. We have by Lemma 4.2

’7a2 (x’ t)pl = ”az (x’ t)pl ”al (x’ t)_]”al (x’ t)
< C max{<x>®, (1 + 8)*}n, (x, )", (x, 1)

Since a; < p1ayq from [24), we can use to obtain [26). O

We define the Banach spaces E, and X as

N

E, = {u; lulls, = D (llwi/mal) < 00},

i=1
and

X = {v;|llo/nlllo < 0},

where
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wlle, = sup — |w(x, 2)].
(x,7) eRY%(0,00)
(6) is reduced to

27) un(t) = V(t)(uo, un),

where

V(T)(uo,v) = S(t)uno + J(: S(t—s1) <S(s1)u10 + J:l S(s1 — $2)

52
X {S(sz)uzo + Jo S(sy —83) X -+ X [S(SN_l)uN_l,o

SN-1 PN-2 D1 DN
+J S(sy—1 — sn)vP'(sn) dsN] X oo X dS3} dsz) dsy
0

Moreover, using that (a+ b)? < 2P~1(a? +bP) for a>0, b>0, p > 1,
V(T)(uo,v) < T(£)(uo) + I'(£)(v)

where

T(£)(uo) = S(t)uno + 27! J(: S(t — 51)(S(s1)u10)?" ds

t 51 DN
+ 2<PN-1><P1—1>J S(t - s1) (J S(s1 — 52){S(s2)uz}” dr) ds
0 0

41

t 51 52
44 2(pN—1)(pn—1)---(pN-z—l)J S(t - Sl)(J S(sy — SZ){J S(sy — 53)

0 0 0

SN-2
X +ee X (J S(sn—2 — sn-1)[S(sn-1)un—1,0]"" dSN—l)
0

y41 DN
X oo X dS3} dsz) dsy,

and

L(7)(v) = 2@v=Dp=1)(pv-2=1) J; S(t - Sl)(J‘sl S(s1 — sz){ J: S(s2 — 53) % - -+

0

SN-=2 SN—1 DPN-2
X l:,[o S(sy—-2 —SN_.l){j S(sy—1 — sn)vP"'(sn) dsn } dSN_.l]
0

pi PN
X e X dS3} dsz> dsi

PN-3
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LemMmaA 4.5.
(i) Let ug satisfy [21). Then T(-)(uo) € X and

ITC)(0)llloo < Netwolleo,ay + €27~ lur0ll g, + C2PH DD g |1 225,

00,4 ©,a

44 C2(PN—1)(P1—1)"'(PN—2—1)”uN_l,OHé’oAiZ;:fN-z

(i) I’ maps X into itself and

I (0) /a1 < €202 D o 2707

Proor. (i) By and [26), we obtain where T(f)(uo) =5 + L+ -+ Iy

I < ||unoll o, apyMay ()
t

< 2P~-1j S(t — ) ol o )P ds
0

< C2P" o ||BY . 114, (1)

00, a)

and

L < C2en-1)(p1-1) ll20 ”mpzv May (9)

00,a)

Iy < Cz(pzv—l)(p]—1)...(p;v_z—1)”uN_l’o”O,,O,\,f,llN..—,}l,N_2

by the same reason.

(ii) By [25) and [26)

- — —De(py_r—1
'(v) < C2(pv=1)(pr1=1)(p2—1)-(pN-2 )|||U/’7aN|”€ép2 PN

X J(: S(t—s1) J: S(s; — Sz){ J: S(sy —83) X -+ % [J:N_Z S(sy—2 — Sn-1)

SN—IS(SN—I—SN)'IaN (SN)P| dsy DN DPN-3 Di DN
X J ds,_, X« X ds3 ds, dsy
0

t
< CoP D ores Do 1277 [ (57 s
< C2Pv=DP=D(P=)-(ow-2=D)|jp /|| 122 PY

as
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ProoF oF THEOREM 4.1.
Let

lunolles,ay + Cc2rv! ||1,¢10||£’01‘fa1 + C2(1’N—1)(171—1)Iluzongozsi}‘?ll2

4ot C2(PN~1)(P1—1)"'(PN—2—1)||uN_1,0“(1:01\:1;;:117N—2 <m,
il oy <m (i€ N*), Bp={veX:|[v/n,ll, <2m} and P={ueX;u>0}
Then we shall show that ¥ (ug,v) is a strict contraction of B,, N P into provided m
is small enough.
It is trivial that ¥ maps P into P. We shall show that V maps B,, — By. If
m is small enough, then

V(£)(uo, 0) /70, < m+ C2P¥"1(2m)PP2" PV < 2m

This contradicts B,, — By,.
Using |a? — b?| < p(a+b)?ja—b| for a>0, b>0 and p > 1, with v=
max{v;, 02}, we can estimate as following

|V (£)(uo, v1) — V(£) (10, v2)|

< CL; S(t—s1) <2S(Sl)u10 +2 J: S(s1 — Sz){S(sz)uzo + JO S(s2 — 53)

SN-2

X oee X {S(SN—z)uN—l,o + J S(sn—2 —SN-1)
0

SN-1

DN-2 PN-2
X l:S(SN_luNo -+ J S(SN_1 — SN)UPN‘l (SN) dSle dSN_l}

0

P1 pnv—1
X +ee X dS3} dsz)

1
X oo X L S(sy—2 — SN—1){25'(SN—1)uN—1,0

SN—1 PN—Z_1
+2J S(SN_1 —SN)DPN"(SN) dSN}
0

SN-1
« J Ssn—1 — s3)|o™ (sw) — 0" (s)| dsy - -~ dsads
0

t S1
-——CJ S(t—Sl)Xflxj S(SI—SZ)XJZ
0 0

SN-2
X X J S(SN_Z — SN_1) X JN—I X JNdsN_1 X oo X dSzdSl.
0
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Noting (a + b)? = 2max{r=1.0b(g? 1 p?) for a >0, b >0 and p >0, we find

_2—1 _2—1
In-1 < C{IIuN—l,OIIOPo",ai,_IﬂaN_](SN_l)”” ?

r pr-2-1
+ (L S(sy-1— s~)|v/rraNl””"n£,'j" (sw) dSN) }

< C{(mPN—Z—l + C(2m)(PN~2_1)PN—l)’7aN—l(SN__I)PN—Z—I}
< Cn,lPN-z—lmw_1 (SN_I)pN—z—l_

Similarly we have
J1 < Cmpzv—°1,7aplzv—1 (s1)

Jy < CmP gk~ (sy)

J3 < Cm"z"ﬂfz’;‘l(g)

_4—1 _a—1
In_2 < CmPN=4""phr2"" (s _5)

In < CmP"(|oy — 03 /Mgy My,
Thus, we obtain
|V (£)(uo, v1) — V(£) (1o, v2)| < CmPHP2H 2NNy — gy

Since p; > 1, V(¢) is a stract contraction of Bm N P into itself provided m is
small enough. Hence, there exist a unique fixed point u3 € X which solves [27).
We substitute u3 into (6). Then the vector u solve (6). Moreover, since u3 € By,
we find

uy < CS(£){x>™™

By the same reason in the proof of [Lemma 4.5, we have

lun—1(8)] < gy, (%, ) {llun—1,0llc0,ay_, + Clllun /Mgy Ml 0o }

|u2(2)] < 710, (%, ){l|420| 5,0, + Clll3 /714,10 }

| (D] < 714, (x, D{llt10llco,a, + Clllez/a, 0 }
Then u; € B,, (ie N*) and the proof of is completed. O
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5 Asymptotic Behavior of Global Solution

In this section we shall prove the following theorem for the global solution
u(t) of (1) constructed in the previous section.

TaeOREM 5.1. (i) If we can choose a;=a; <d (i€ N*) in (23) and if

(28) |llim |x|“uip(x) = 4; >0
then
(29) %12 u(x, ) — A\ S|x|™%| = 0 (¢t — o0)

as t — oo uniformly in R?.
(ii) If we can choose G; >d (je N*) in [23), then

(30) 12y (x, ) — M(4nt)~ e /%) S0 (1 - o0)

uniformly on the set {x € R%|x| < Rt'/?} (R > 0), where

t
(31) M; = JRd ujo dx + Jo JRd Un(j+1)(8)” (5) dxds < oo.

Proor. This theorem can be shown by same way the case N = 2. (See [2],

or [5]) O
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