S^4 -FORMULA AND S^2 -FORMULA FOR QUASI-TRIANGULAR BIFROBENIUS ALGEBRAS

By

Norifumi YAMATANI

Abstract. We introduce the notion of a quasi-triangular biFrobenius algeba and prove the S^2 -formula and S^4 -formula.

Introduction

The notion of a quasi-triangular Hopf algebra was introduced by Drinfel'd [Dr1] in 1986, playing a basic role in quantum group theory. He has further proved in [Dr2] that the square of the antipode S of a quasi-triangular Hopf algebra H is inner by the so-called Drinfel'd element u and that S^4 is inner by $g = u(Su)^{-1}$ which is group-like. He has also expressed g in terms of the modular element and the modular function when H is finite-dimensional, by using Radford's S^4 -fomula [R1]. This expression was also proved by Radford [R2] independently. See also [Mo], Chapter 10.

Doi and Takeuchi [DT] have recently introduced the notion of a biFrobenius algebra as natural generalization of a finite-dimensional Hopf algebra. Among other things, they have proved an analogue of Radford's S^4 -formula [DT], Theorem 3.6. It seems quite interesting and meaning to extend the notion of a quasi-triangular Hopf algebra to this new notion. In this paper, we formulate and study quasi-triangular biFrobenius algebra and proved analogues of the S^2 - and S^4 -formulas.

Throughout this paper we work over a field k. For any algebra A, the twist map: $H \otimes H \to H \otimes H \ (h \otimes g \mapsto g \otimes h)$ is denoted by τ . And the dual space $A^* = \operatorname{Hom}(A, k)$ is a A-bimodule via

$$\langle x \rightharpoonup f, y \rangle = \langle f, yx \rangle, \langle f \leftharpoonup x, y \rangle = \langle f, xy \rangle$$
 for $x, y \in A, f \in A^*$

For any coalgebra C, we denote the comultiplication $\Delta: C \to C \otimes C$ by $c \mapsto \sum c_1 \otimes c_2$. The dual space C^* becomes an algebra under the convolution product

Received March 12, 2001. Revised June 18, 2001.

$$\langle f * g, c \rangle = \sum \langle f, c_1 \rangle \langle g, c_2 \rangle$$
 for $c \in C, f, g \in C^*$.

C is a C^* -bimodule via

$$f
ightharpoonup c = \sum c_1 \langle f, c_2 \rangle, c - f = \sum c_2 \langle f, c_1 \rangle$$
 for $c \in C, f \in C^*$.

1. BiFrobenius Algebras

We recall some properties of biFrobenius algebras [DT] which are neccessary for our purposes.

Let A be a finite dimensional algebra and $\phi \in A^*$. The pair (A, ϕ) is called a Frobenius algebra if $A^* = \phi - A$. The element ϕ is called a Frobenius basis. Since the bilinear form $A \times A \to k$, $(x, y) \mapsto \langle \phi, xy \rangle$ is non-degenerate, there exists a unique element $\sum a_i \otimes b_i$ of $A \otimes A$ which is called the dual basis for ϕ such that $x = \sum a_i \langle \phi, b_i y \rangle$ for $\forall x \in A$. For a Frobenius algebra (A, ϕ) , the Nakayama automorphism N is defined by

$$\langle \phi, xy \rangle = \langle \phi, yN(x) \rangle$$
 for $\forall x, y \in A$.

Given an augumentation $\varepsilon: A \to k$ for a Frobenius algebra (A, ϕ) , we put

$$I_r(A) = \{ t \in A \mid tx = t\varepsilon(x), \forall x \in A \},$$

which is called the space of right integrals in A. Taking $t \in A$ such that $\phi \leftarrow t = \varepsilon$, we have $I_r(A) = kt$. Since xt is also a right integral for all $x \in A$, there exists $\alpha \in Alg(A, k)$ such that $xt = \alpha(x)t$. We call α the right modular function for A.

We dualize this idea. Let C be a finite dimensional coalgebra and $t \in C$. The pair (C, t) is called a Frobenius coalgebra if $C = t \leftarrow C^*$. For a Frobenius coalgebra (C, t), there exists a unique coalgebra automorphism cN such that

$$\sum t_1 \otimes t_2 = \sum {}^{c} N(t_2) \otimes t_1.$$

This automorphism is called the coNakayama automorphism. We consider a Frobenius coalgebra (C, t) with group-like element 1_C . Then the dual algebra C^* has an augumentation $C^* \to k$, $f \mapsto \langle f, 1_C \rangle$. We have

$$I_r(C^*) = \{ \phi \in C^* \mid \sum \langle \phi, c_1 \rangle c_2 = \langle \phi, c \rangle 1_C, \forall c \in C \}.$$

Taking $\phi \in C^*$ such that $t \leftarrow \phi = 1_C$, we have $Ir(C^*) = k\phi$. There exists a group-like element a such that

$$\sum x_1 \langle \phi, x_2 \rangle = \langle \phi, x \rangle a$$
 for $\forall x \in C$ and $\forall f \in C^*$.

We call a the (right) modular element for C.

Let H be a finite dimensional algebra and coalgebra, $t \in H$ and $\phi \in H^*$. Suppose we have:

- (BF1) The unit 1_H is a group-like element,
- (BF2) The counit ε_H is an algebra map,
- (BF3) (H, ϕ) is a Frobenius algebra,
- (BF4) (H, t) is a Frobenius coalgebra.

Define a map $S: H \to H$ by the formula:

(1.1)
$$S(h) = \sum \langle \phi, t_1 h \rangle t_2 \quad \text{for } \forall h \in H.$$

DEFINITION 1.1. Let H be a finite dimensional algebra and coalgebra. Let $t \in H$ and $\phi \in H^*$. Define $S: H \to H$ as above. The 4-tuple (H, ϕ, t, S) is called a biFrobenius algebra (or bF-algebra) if we have (BF1-4) and,

- (BF5) S is an anti-algebra map,
- (BF6) S is an anti-coalgebara map.

S is called the antipode of the bF-algebra H. The map S is bijective, and we denote its composit inverse by \bar{S} . Since $\varepsilon \circ S = \varepsilon$ and S(1) = 1, it follows that $\phi \leftarrow t = \varepsilon$ and $t \leftarrow \phi = 1$. Hence t and ϕ are right integrals. The dual basis for ϕ is given by $\sum \bar{S}(t_2) \otimes t_1$, and we have

(1.2)
$$h = \sum \bar{S}(t_2) \langle \phi, t_1 h \rangle, \quad \forall h \in H, \quad ([DT], 3.1 \text{ Proposition})$$

(1.3)
$$\sum \langle \phi, x_1 y \rangle x_2 = \sum \langle \phi, x y_1 \rangle S(y_2), \quad \forall x, y \in H. \quad ([DT], 3.2 \text{ Proposition})$$

The Nakayama automorphism N has the following expression:

(1.4)
$$N(h) = \sum \langle \phi, h_1 t \rangle \overline{S}^2(h_2) = \overline{S}^2(h - \alpha), \quad \forall h \in H.$$
 (ibid.)

The modular function α is *-invertible with $\alpha^{-1} = \alpha \circ \overline{S} = \alpha \circ S$ and $\alpha^{-1} : H \to H$ is an algebra map. The map $H \to H$, $h \mapsto h \leftarrow \alpha$ is an algebra automorphism ([DT], 3.3 Proposition). Dually, we have that the modular element a is invertible with $a^{-1} = S(a) = \overline{S}(a)$ (ibid.).

By [DT], 3.4 Proposition, we have

$$(1.5) N(h) = a^{-1}S^2(\alpha - h)a \text{for } \forall h \in H,$$

(1.6)
$${}^{c}N(h) = \overline{S}^{2}(ah) = \overline{S}^{2}(ah) \text{ for } {}^{\forall}h \in H,$$

(1.7)
$$\sum \bar{S}(t_2) \otimes t_1 = \sum S(t_1)a \otimes t_2.$$

Hence

We have

(1.9)
$$S^{4}(h) = a(\alpha^{-1} \rightarrow h \leftarrow \alpha)a^{-1} \quad \text{for } \forall h \in H. \tag{[DT], 3.6 Theorem)}$$

LEMMA 1.2. We have

(1.10)
$$\sum t_1 x \otimes t_2 = \sum t_1 \otimes t_2 S(x) \quad \text{for all } x \in H.$$

PROOF. Applying $p \in H^*$ to both sides of (1.3), we have

$$\sum \langle \phi, x_1 y \rangle \langle p, x_2 \rangle = \sum \langle \phi, x y_1 \rangle \langle p, S(y_2) \rangle,$$

$$\sum \langle \phi_1, x_1 \rangle \langle \phi_2, y \rangle \langle p, x_2 \rangle = \sum \langle \phi_1, x \rangle \langle \phi_2, y_1 \rangle \langle p, S(y_2) \rangle,$$

$$\sum \langle \phi_1 * p, x \rangle \langle \phi_2, y \rangle = \sum \langle \phi_1, x \rangle \langle \phi_2 * S^*(p), y \rangle,$$

$$\sum \langle \phi_1 * p \otimes \phi_2, x \otimes y \rangle = \sum \langle \phi_1 \otimes \phi_2 * S^*(p), x \otimes y \rangle,$$

Since above formula holds for arbitrary x and y of H,

$$\sum \phi_1 * p \otimes \phi_2 = \sum \phi_1 \otimes \phi_2 * S^*(p), \quad \forall p \in H^*$$

Dualizing this, we have

$$\sum t_1 x \otimes t_2 = \sum t_1 \otimes t_2 S(x), \quad \forall x \in H.$$

2. Quasi-Triangular BiFrobenius Algebra

Let (H, ϕ, t, S) be a biFrobenius algebra. Let $R \in H \otimes H$ be an invertible element.

DEFINITION 2.1. The pair (H,R) is called a quasi-triangular biFrobenius algebra if

(QTB 0)
$$R^{-1} = (S \otimes id)(R) = (id \otimes \overline{S})(R)$$
,

(QTB 1)
$$(\Delta \otimes id)(R) = R^{13}R^{23}$$
,

(QTB 2)
$$(id \otimes \Delta)(R) = R^{13}R^{12}$$
,

(QTB 3)
$$\Delta^{OP}(x)R = R\Delta(x)$$
 for all $x \in H$,

where
$$R^{13} = \sum R^{(1)} \otimes 1 \otimes R^{(2)}$$
, $R^{12} = \sum R^{(1)} \otimes R^{(2)} \otimes 1$, $R^{23} = \sum 1 \otimes R^{(1)} \otimes R^{(2)}$ with $R = \sum R^{(1)} \otimes R^{(2)}$ and $\Delta^{OP} = \tau \circ \Delta$.

From definitions it follows that

$$(\varepsilon \otimes id)(R) = (id \otimes \varepsilon)(R) = 1$$
 and $(S \otimes S)(R) = R$.

Indeed

$$R = (\varepsilon \otimes id \otimes id)(\Delta \otimes id)(R)$$

$$= (\varepsilon \otimes id \otimes id)R^{13}R^{23} \qquad \text{(by (QTB1))}$$

$$= \sum \varepsilon(R^{(1)})r^{(1)} \otimes R^{(2)}r^{(2)} \qquad \text{(where } R = r)$$

$$= (1 \otimes \varepsilon(R^{(1)})R^{(2)})R.$$

Hence

$$(\varepsilon \otimes id)(R) = 1$$

Similarly

$$(id \otimes \varepsilon)(R) = 1.$$

We have

$$(S \otimes S)(R) = (id \otimes S)(S \otimes id)(R) = (id \otimes S)(R^{-1})$$
$$= (id \otimes S)(id \otimes \overline{S})(R) = R$$

There are shown in the same way as usual quasi-triangular Hopf algebras. The next lemma is an analogue of [R2], Proposition 3.

LEMMA 2.2. Let (H,R) be a quasitriangular biFrobenius algebra with $R = \sum R^{(1)} \otimes R^{(2)}$. For any $\eta \in H^*$, set $g_{\eta} = \sum R^{(1)} \eta(R^{(2)})$. Then

- (a) If $\eta \in G(H^*) = Alg(H, k)$, g_{η} is a group-like element.
- (b) The linear map: $H^* \to H$, $\eta \mapsto g_{\eta}$ is an anti-algebra map.
- (c) $(x \leftarrow \eta)g_{\eta} = g_{\eta}(\eta \rightarrow x)$ for all $x \in H$, $\eta \in G(H^*)$.

Proof. (a)

$$\begin{split} \Delta(g_{\eta}) &= \Delta(\sum R^{(1)} \eta(R^{(2)})) \\ &= \sum (R^{(1)})_{1} \otimes (R^{(1)})_{2} \eta(R^{(2)}) \\ &= \sum R^{(1)} \otimes r^{(1)} \eta(R^{(2)} r^{(1)}) \qquad \text{(where } R = r) \\ &= \sum R^{(1)} \eta(R^{(2)}) \otimes r^{(1)} \eta(r^{(2)}) \\ &= g_{\eta} \otimes g_{\eta}. \\ \varepsilon(g_{\eta}) &= \varepsilon(\sum R^{(1)} \eta(R^{(2)})) \\ &= \eta(\sum \varepsilon(R^{(1)}) R^{(2)}) = 1. \end{split}$$

- (b) Follows from (QTB2).
- (c) Applying $id \otimes \eta$ to both sides of (QTB3), we have

$$\sum x_2 R^{(1)} \langle \eta, x_1 R^{(2)} \rangle = \sum R^{(1)} x_1 \langle \eta, R^{(2)} x_2 \rangle$$
$$(x \leftarrow \eta) g_{\eta} = g_{\eta} (\eta \rightarrow x).$$

Denote the right modular function by $\alpha \in Alg(H, k)$ and the modular element by a,

$$xt = \alpha(x)t, \sum x_1 \langle \phi, x_2 \rangle = \sum \langle \phi, x \rangle a$$
 for $\forall x \in H$.

LEMMA 2.3. (a) $S(g_{\alpha}) = g_{\alpha^{-1}} = (g_{\alpha})^{-1}$.

(b)
$$(\alpha^{-1} \rightarrow x \leftarrow \alpha) = g_{\alpha} x g_{\alpha}^{-1}$$
 for $\forall x \in H$.

(c)
$$S^4(x) = (ag_\alpha)x(ag_\alpha)^{-1}$$
 for $\forall x \in H$.

Proof. (a)

$$S(g_{\alpha}) = \sum S(R^{(1)})\alpha(R^{(2)})$$

 $= \sum R^{(1)}\alpha \circ \bar{S}(R^{(2)})$ (by (QTB0))
 $= \sum R^{(1)}\alpha^{-1}(R^{(2)})$
 $= g_{\alpha^{-1}}.$

By Lemma 2.2 (b), we have

$$g_{\alpha}g_{\alpha^{-1}}=g_{\alpha^{-1}\alpha}=1,$$

hence

$$g_{\alpha^{-1}}=(g_{\alpha})^{-1}.$$

(b) By lemma 2.2 (c), we have

$$(x \leftarrow \alpha)g_{\alpha} = g_{\alpha}(\alpha \rightarrow x)$$

Applying the algebra automorphism $\alpha^{-1} \rightarrow$, we have

$$(\alpha^{-1} \to x \leftarrow \alpha)(\alpha^{-1} \to g_{\alpha}) = (\alpha^{-1} \to g_{\alpha})x$$
$$(\alpha^{-1} \to x \leftarrow \alpha)g_{\alpha}\alpha^{-1}(g_{\alpha}) = \alpha^{-1}(g_{\alpha})g_{\alpha}x$$

Since g_{α} is invertible, $\alpha^{-1}(g_{\alpha}) \neq 0$. Hence by (a),

$$(\alpha^{-1} \rightarrow x \leftarrow \alpha) = g_{\alpha} x g_{\alpha}^{-1}$$

$$(c) S^{4}(x) = a(\alpha^{-1} \rightarrow x \leftarrow \alpha) a^{-1} (by (1.9))$$

$$= ag_{\alpha} x g_{\alpha} a^{-1}$$

$$= (ag_{\alpha}) x (ag_{\alpha})^{-1} \Box$$

Set

$$u = \sum S(R^{(2)})R^{(1)}$$
.

This element is called the Drinfel'd element. In quasi-triangular Hopf algebras u plays important roles. We show that u also plays the same role in quasi-triangular biFrobenius algebras.

At first we show fundamental properties of u.

PROPOSITION 2.4. Let (H, R) be a quasitriangular biFrobenius algebra with $R = \sum R^{(1)} \otimes R^{(2)}$. Set $u = \sum S(R^{(2)})R^{(1)}$.

- (a) $S^2(x)u = ux$ for $\forall x \in H$.
- (b) u is invertible, with inverse given by $u^{-1} = \sum R^{(2)} S^2(R^{(1)})$.

Proof. (a)

$$S^{2}(x)u = \sum \langle \phi, S^{2}(x)S(R^{(2)})\overline{S}(t_{2})\rangle t_{1}R^{(1)}$$
 (by (1.2))
$$= \sum \langle \phi, S^{2}(x)S(R^{(2)})S(t_{1})a\rangle t_{2}R^{(1)}$$
 (by (1.7))
$$= \sum \langle \phi, S(t_{1}R^{(2)}S(x))a\rangle t_{2}R^{(1)}$$

$$= \sum \langle \phi, S(R^{(2)}t_{2}S(x))a\rangle R^{(1)}t_{1}$$
 (by (QTB3))
$$= \sum \langle \phi, S(R^{(2)}t_{2})a\rangle R^{(1)}t_{1}x$$
 (by (1.10))
$$= \sum \langle \phi, S(t_{1}R^{(2)})a\rangle t_{2}R^{(1)}x$$
 (by (QTB3))
$$= \sum \langle \phi, S(R^{(2)})S(t_{1})a\rangle t_{2}R^{(1)}x$$
 (by (QTB3))
$$= \sum \langle \phi, S(R^{(2)})S(t_{1})a\rangle t_{2}R^{(1)}x$$
 (by (1.7))
$$= ux$$
 (by (1.2))

(b) Put
$$u' = \sum R^{(2)} S(R^{(1)})$$

$$uu' = \sum uR^{(2)}S^{2}(R^{(1)})$$

$$= \sum S^{2}(R^{(2)})uS^{2}(R^{(1)}) \qquad \text{(by (a))}$$

$$= \sum S^{2}(R^{(2)})S(r^{(2)})r^{(1)}S^{2}(R^{(1)}) \qquad \text{(where } R = r)$$

$$= \sum S(r^{(2)}S(R^{(2)}))r^{(1)}S^{2}(R^{(1)})$$

$$= \sum S(r^{(2)}R^{(2)})r^{(1)}S(R^{(1)}) \qquad \text{(since } (S \otimes S)(R) = R))$$

$$= S(1)1 = 1 \qquad \text{(by (QTB0)}$$

Similaly

$$u'u=1.$$

Lemma 2.5. (a)
$$S(u) = \sum a^{-1}S^2(\alpha \rightarrow R^{(2)})S(R^{(1)})$$

(b) $aS(u) = \sum R^{(2)}\overline{S}(R^{(1)} \leftarrow \alpha)$

PROOF. (a) We have

$$\sum \langle \phi, t_1 R^{(2)} \rangle t_2 R^{(1)} = \sum \langle \phi, t_1 \rangle t_2 S(R^{(2)}) R^{(1)}$$

$$= (t - \phi) u$$

$$= u. \qquad \text{(since } t - \phi = 1\text{)}$$

Applying S to the above result,

$$S(u) = \sum \langle \phi, t_1 R^{(2)} \rangle S(t_2 R^{(1)})$$

$$= \sum \langle \phi, R^{(2)} t_2 \rangle S(R^{(1)} t_1) \qquad \text{(by (QTB3))}$$

$$= \sum \langle \phi, R^{(2)} t_2 \rangle S(t_1) S(R^{(1)})$$

$$= \sum \langle \phi, R^{(2)} t_2 \rangle S(t_1) a a^{-1} S(R^{(1)})$$

$$= \sum \langle \phi, R^{(2)} t_1 \rangle \overline{S}(t_2) a^{-1} S(R^{(1)}) \qquad \text{(by (1.7))}$$

$$= \sum \overline{S}^2 (\langle \phi, R^{(2)} t_1 \rangle S(t_2)) a^{-1} S(R^{(1)})$$

$$= \sum \langle \phi, (R^{(2)})_1 t \rangle \overline{S}^2 ((R^{(2)})_2) a^{-1} S(R^{(1)})$$

$$= \sum \overline{S}^2 (R^{(2)} \leftarrow \alpha) a^{-1} S(R^{(1)}), \qquad \text{(by (1.3))}$$

hence by (1.4) and (1.5)

$$S(u) = \sum a^{-1}S^{2}(R^{(2)} \rightarrow \alpha)S(R^{(1)}).$$

(b) We have

$$\sum \langle \phi, t_2 R^{(1)} \rangle t_1 R^{(2)} = \sum \langle \phi, t_2 S(\bar{S}(R^{(1)})) \rangle t_1 R^{(2)}$$

$$= \sum \langle \phi, t_2 \rangle t_1 \bar{S}(R^{(1)}) R^{(2)} \qquad \text{(by (1.10))}$$

$$= (\phi \to t) \bar{S}(S(R^{(2)}) R^{(1)})$$

$$= a\bar{S}(u) = aS(u),$$

since $a = \phi \rightarrow t$ and $S^2(u) = u$.

Therefore

$$aS(u) = \sum \langle \phi, t_2 R^{(1)} \rangle t_1 R^{(2)}$$

$$= \sum \langle \phi, R^{(1)} t_1 \rangle R^{(2)} t_2 \qquad \text{(by (QTB3))}$$

$$= \sum R^{(2)} \overline{S}(\langle \phi, R^{(1)} t_1 \rangle S(t_2))$$

$$= \sum R^{(2)} \overline{S}(\langle \phi, (R^{(1)})_1 t \rangle (R^{(1)})_2)$$

$$= \sum R^{(2)} \overline{S}(\alpha((R^{(1)})_1)(R^{(1)})_2) \qquad \text{(by (1.3))}$$

$$= \sum R^{(2)} \overline{S}(R^{(1)} \leftarrow \alpha).$$

The following theorem gives a biFrobenius anologue of Drinfeld's S^4 -fomula [Dr2] (see also [R2], Theorem 2 and [Mo], 10.1.13 Theorem.)

Theorem 2.6. Let (H,R) be a quasi-triangular biFrobenius algebra. Set $u = S(R^{(2)})R^{(1)}$ where $R = \sum R^{(1)} \otimes R^{(2)}$. Set $g_{\alpha} = \sum R^{(1)} \alpha(R^{(2)})$. Then

(a) $ag_{\alpha}=uS(u)^{-1}$,

(b)
$$S^4(x) = uS(u)^{-1}xu^{-1}S(u)$$
 for any $x \in H$.

Proof. (a) By Lemma 2.5 (a),

$$aS(u) = \sum S^{2}((R^{(1)})_{1}\alpha((R^{(2)})_{2}))S(R^{(1)})$$

$$= \sum S^{2}(r^{(2)}\alpha(R^{(2)}))S(R^{(1)}r^{(1)}) \qquad (by (QTB2))$$

$$= \sum S^{2}(r^{(2)}))S(r^{(1)})S(R^{(1)}\alpha(R^{(2)})) \qquad (since (S \otimes S)(R) = R))$$

$$= \sum_{\alpha} S(r^{(2)}) r^{(1)} S(R^{(1)} \alpha(R^{(2)}))$$
 (where $R = r$)
$$= u S(g_{\alpha})$$

$$= u g_{\alpha}^{-1}.$$

Since a and g_{α} are S^4 -stable, they commute with u and S(u).

Hence we have

$$ag_{\alpha}=uS(u)^{-1}.$$

(b) Follos from (a) and Lemma 2.3 (c).

REMARK 2.7 (cf. [R3], Proposition 3). Let (H, R) be a biFrobenius algebra. Define a map $\Phi_R: H^* \to H$ by $p \mapsto (p \otimes id)R^{21}R$.

Let ε be a counit and α the right modular function.

Then

$$\Phi_R(\varepsilon) = \Phi_R(\alpha) = 1.$$

Indeed

$$\Phi_{R}(\varepsilon) = \sum \langle \varepsilon, R^{(2)} r^{(1)} \rangle R^{(1)} r^{(2)} \qquad \text{(where } R = r)$$

$$= \sum \varepsilon(R^{(2)}) R^{(1)} \varepsilon(r^{(1)}) r^{(2)}$$

$$= 1.$$

The equality $\Phi_R(\alpha) = 1$ is shown as follows:

$$\Phi_{R}(\alpha) = \sum \langle \alpha, R^{(2)} r^{(1)} \rangle R^{(1)} r^{(2)}
= \sum \alpha(R^{(2)}) R^{(1)} \alpha(r^{(1)}) r^{(2)}
= g_{\alpha} \tilde{g}_{\alpha}$$

where $\tilde{g}_{\alpha} = \sum \alpha(r^{(1)})r^{(2)}$.

By Lemma 2.5 (b),

$$aS(u) = \sum R^{(2)} \overline{S}(\alpha((R^{(1)})_1)(R^{(1)})_2)$$

$$= \sum \alpha(R^{(1)})R^{(2)}r^{(2)}\overline{S}(r^{(2)}) \qquad \text{(by (QTB1))}$$

$$= \tilde{g}_{\alpha}u$$

On the other hand, we have proved that $aS(u) = ug_{\alpha}^{-1} = g_{\alpha}^{-1}u$ in Theorem 2.6 (a).

Hence we have $\tilde{g}_{\alpha}u = g_{\alpha}^{-1}u$. Since u is invertible, this implies $\tilde{g}_{\alpha} = g_{\alpha}^{-1}$. Therefore $\Phi_{R}(\alpha) = g_{\alpha}\tilde{g}_{\alpha} = 1$.

We call (H,R) factorizable if Φ_R is an isomorphism. It follows that factorizable quaitriangular biFrobenius algebras are unimodular.

References

- [Dr1] V. G. Drinfel'd, Quantum groups, in "Proceedings of the ICM, Berkeley, CA 1986", pp. 798-820.
- [Dr2] V. G. Drinfeld, On almost cocommutative Hopf algebras, Leningrad Math. J. 1 (1990), 321-342.
- [DT] Y. Doi and M. Takeuchi, BiFrobenius algebras, in "New Trends in Hopf Algebra Theory" Comtemp. Math. 267, pp 67-97, Amer. Math. Soc., 2000.
- [K] C. Kassel, Quantum groups, GTM 155, Springer-Verlag, 1995.
- [Ma] S. Majid, Foundationsof quantum group theory, Cambridge Univ. Press, 1995.
- [Mo] S. Montgomery, Hopf algebras and their actions on rings, CBMS 82, Amer. Math. Soc. 1993.
- [R1] D. E. Radford, The order of the antipode of a finite-dimensional Hopf algebra is finite, Amer.
 J. Math. 98 (1976), 333-355.
- [R2] D. E. Radford, On the Antipode of a Quasitriangular Hopf algebra, Journal of Algebra 151 (1992), 1-11.
- [R3] D. E. Radford, On Kauffman's knot invariants arising from finite-dimensional Hopf algebras, in "Advances in Hopf algebras", L. N. in Pure and App. Math. 158, pp. 205-266, Marcel Dekker Inc., 1994.

Institude of Mathematics University of Tsukuba Tsukuba 305-8571 Japan