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S4FORMULA AND S2-FORMULA FOR
QUASI-TRIANGULAR BIFROBENIUS ALGEBRAS

By

Norifumi YAMATANI

Abstract. We introduce the notion of a quasi-triangular biFrobenius
algeba and prove the S2-formula and S*-formula.

Introduction

The notion of a quasi-triangular Hopf algebra was introduced by Drinfel’d
in 1986, playing a basic role in quantum group theory. He has further
proved in that the square of the antipode S of a quasi-triangular Hopf
algebra H is inner by the so-called Drinfel’d element u and that S* is inner by
g = u(Su)~! which is group-like. He has also expressed g in terms of the mod-
ular element and the modular function when H is finite-dimensional, by using
Radford’s S*-fomula [R1]. This expression was also proved by Radford
independently. See also [Mo], Chapter 10.

Doi and Takeuchi have recently introduced the notion of a biFrobenius
algebra as natural generalization of a finite-dimensional Hopf algebra. Among
other things, they have proved an analogue of Radford’s S*-formula [DT],
Theorem 3.6. It seems quite interesting and meaning to extend the notion of a
quasi-triangular Hopf algebra to this new notion. In this paper, we formulate
and study quasi-triangular biFrobenius algebra and proved analogues of the
S2- and S*-formulas.

Throughout this paper we work over a field k. For any algebra A, the twist
map: HQH - HQ®H (h®g+— g®h) is denoted by 7. And the dual space
A* = Hom(A4,k) is a A-bimodule via

x=f,0=LfLyx0,{f —x,y>={f,xy) for x,yed, feA"

For any coalgebra C, we denote the comultiplication A: C —- C® C by c+—
> c1 ® c2. The dual space C* becomes an algebra under the convolution product
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(frgc)y=SXf,a1){g,c2) for ceC,f,geC".

C is a C*-bimodule via

f—=c=Ycalf,e),c—f=3calf,a) for ceC, feC"

1. BiFrobenius Algebras

We recall some properties of biFrobenius algebras which are neccessary
for our purposes.

Let A be a finite dimensional algebra and ¢ € 4*. The pair (4, ¢) is called
a Frobenius algebra if A* =¢ — A. The element ¢ is called a Frobenius basis.
Since the bilinear form A4 x 4 — k, (x,y) — {#,xy)> is non-degenerate, there
exists a unique element ) a; ® b; of 4 ® A which is called the dual basis for
¢ such that x =3 a;{#,b;y) for "xe A. For a Frobenius algebra (4,4), the
Nakayama automorphism N is defined by

{$,xy> = <$, yN(x)> for "x,ye 4.
Given an augumentation ¢: A — k for a Frobenius algebra (4, ¢), we put
L(A) = {te A|tx = te(x),"x € A},

which is called the space of right integrals in A. Taking t € A such that ¢ — ¢ =g,
we have I,(4) = kt. Since xt is also a right integral for all x € 4, there exists
o € Alg(4,k) such that xt = a(x)z. We call a the right modular function for A.
We dualize this idea. Let C be a finite dimensional coalgebra and ¢ € C. The
pair (C,t) is called a Frobenius coalgebra if C =t— C*. For a Frobenius
coalgebra (C,t), there exists a unique coalgebra automorphism ‘N such that

Ztl ®t2=z ‘N(h)®¢t.

This automorphism is called the coNakayama automorphism. We consider a
Frobenius coalgebra (C,t) with group-like element 1¢. Then the dual algebra
C* has an augumentation C* — k, f — {(f,1¢)>. We have

L(C*) ={ge C*| {pc1>e2 = {$,c)lc,"ce C}.

Taking ¢ € C* such that 1t — ¢ = 1, we have Ir(C*) = k¢. There exists a group-
like element a such that

3 x1{¢,x2)> = {¢,xda for Yxe C and "f € C*.

We call a the (right) modular element for C.
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Let H be a finite dimensional algebra and coalgebra, te H and ¢ € H*.
Suppose we have:

(BF1) The unit 1y is a group-like element,

(BF2) The counit ¢y is an algebra map,

(BF3) (H,¢) is a Frobenius algebra,

(BF4) (H,t) is a Frobenius coalgebra.
Define a map S: H — H by the formula:

(1.1) S(h) = S{#,t1hD>t; for "he H.

DerFINITION 1.1. Let H be a finite dimensional algebra and coalgebra. Let
te H and ¢ € H*. Define S: H — H as above. The 4-tuple (H, ¢,t,S) is called
a biFrobenius algebra (or bF-algebra) if we have (BF1-4) and,

(BFS) S is an anti-algebra map,

(BF6) S is an anti-coalgebara map.

S is called the antipode of the bF-algebra H. The map S is bijective, and we
denote its composit inverse by S. Since oS =¢ and S(1) =1, it follows that
¢—t=cand t— ¢ = 1. Hence ¢t and ¢ are right integrals. The dual basis for ¢
is given by 5 S(£) ® t;, and we have

(1.2) h=3 8(t)<¢,t1h>, "heH, ([DT],3.1 Proposition)
(1.3) S, x1ydx2 = S K, xy1>8(y2), 'x,ye H. ([DT],3.2 Proposition)

The Nakayama automorphism N has the following expression:
(1.4) N(h) = 5S¢, hit)S*(hy) = S2(h — a), “heH. (ibid.)

The modular function « is *-invertible with «™! = a0 S=aoSand a! : H — H
is an algebra map. The map H — H, h+— h — o is an algebra.automorphism
(DT], 3.3 Proposition). Dually, we have that the modular element a is inver-
tible with a~! = S(a) = S(a) (ibid.).

By [DT], 3.4 Proposition, we have

(1.5) N(h) =a"'S*(a — h)a for "he H,
(1.6) °N(h) = S*(ah) = S%(ah) for "he H,
(1.7) Y S(tL)®Hh=3St)a®t,.
Hence

(1.8) Et1®t2=za§2(t2)®t1.
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We have

(1.9) S*h) =a(a™! = h—a)a! for "he H. ([DT], 3.6 Theorem)
LEMMA 1.2. We have

(1.10) ux®@t=>, 1 @1S(x) for all xe H.

PrOOF. Applying p e H* to both sides of (1.3), we have

2K, x19)Xp, x2) = 3 K, xy1)<p, S(¥2)),
22481, x1 )43, ¥2XP, x2D = 3Ly, X2, ¥17{P, S(¥2),
2 K@y %P, XDy, ¥> = 3Ky, X)Xy x S (D), ¥,
YAPxp @ Py, x®y) =3 {1 @y *xS*(p), x®y),
Since above formula holds for arbitrary x and y of H,

S xp@b =3 ¢ ®$*xS*(p), "peH"

Dualizing this, we have

Zt1x®t2 =Et1 ® 1nS(x), Yxe H.

2. Quasi-Triangular BiFrobenius Algebra

Let (H,¢,t,S) be a biFrobenius algebra. Let Re H® H be an invertible
element.

DeFINITION 2.1. The pair (H,R) is called a quasi-triangular biFrobenius
algebra if

(QTB 0) R! = (S® id)(R) = (id ® S)(R),

(QTB 1) (A®id)(R) = R“R?,

(QTB 2) (id ® A)(R) = RR",

(QTB 3) A°P(x)R = RA(x) for all xe H,
where RBE=SROV®1Q®RA®, RZ=ROV@RP®1, RB =3 1® RV ® R?
with R=Y RO ® R® and A°F = 7oA.

From definitions it follows that

(e®id)(R)=(id®¢e)(R)=1 and (S® S)(R) =R
Indeed
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R=(e®id®id)(A® id)(R)
= (e®id @ id)R"’R? (by (QTBI))
=Y ¢(RM)AY @ RPr2 (where R =r)

= (1 ® e(RV)RA)R.

Hence

(e®id)(R) =1
Similarly

(id®ée)(R) =1.
We have

(S® S)(R) = (id ® S)(S ® id)(R) = (id ® S)(R™")
= (id ® S)(id ® S)(R) =R

There are shown in the same way as usual quasi-triangular Hopf algebras. The
next lemma is an analogue of [R2], Proposition 3.

LEMMA 2.2. Let (H,R) be a quasitriangular biFrobenius algebra with R =
>RV @ R®. For any ne H*, set g, =, RVy(R®). Then
(@) If ne G(H*) = Alg(H k), g, is a group-like element.
(b) The linear map: H* — H, n — g, is an anti-algebra map.
(€) (x —mn)gy, =gy,(n — x) for all xe H, ne G(H*).
Proor. (a)
Agn) = A RVn(RP))
= 2(RD); ® (RM),n(R?)
=3 RV @ ry(RE D) (where R=r)
=% R(l)n(R(Z)) ® ,.(1),7(,-(2))
= gy ® gy
£(g4) = (X RVn(RD))

= 1( e(RV)RP) = 1.
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(b) Follows from (QTB2).
(c) Applying id ® n to both sides of (QTB3), we have

) X2R(l)<7],le(2)> =3 RWx, (r],R(z)x2>
(x — Mgy = gy(n — x). O

Denote the right modular function by « € Alg(H,k) and the modular element
by a,

xt=a(x)t, x1{$,x2> =D {¢,x>a for xeH.

Lemma 2.3. (a) S(ga) = ga = (92) ™.
(b) (a7! — x — a) = g,xg;! for 'xe H.
() S*(x) = (aga)x(ags)™" for "x e H.
PROOF. (a)
5(9) = T S(RD)a(RP)
=3 RWyo S(R?) (by (QTBO))
— 3 RWa(R®)
= gy-1-
By Lemma 2.2 (b), we have
9edat = Jouta = 1,
hence
Gort = (9:) "
(b) By lemma 2.2 (c), we have
(X — a)ga = ga(x — X)
Applying the algebra automorphism a~! —, we have
(@' —=x—a)(a = gs) = (! = gu)x
(@' = x — 2)go " (ga) = @' (ga)gux

Since g, is invertible, «~!(g,) # 0. Hence by (a),
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(oc~l —Xx—a)= gmxg;1

(©) S*(x) = a(a™! — x — a)a”! (by (1.9))
= ag,xg,a”’
= (aga)x(aga)_l O
Set

u=Y3 S(RMRW,

This element is called the Drinfel’d element. In quasi-triangular Hopf algebras u

plays important roles. We show that u also plays the same role in quasi-triangular
biFrobenius algebras.

At first we show fundamental properties of u.

PrOPOSITION 2.4. Let (H,R) be a quasitriangular biFrobenius algebra with
R=SRYD @R, Set u=3S(R®RW,

(@) S?(x)u = ux for "xe H. '

(b) u is invertible, with inverse given by u~! =3 R SZ(RD),

PrOOF. (a)

S2(x)u = (b, S*(x)S(R?)S(12) >0, RO (by (12))
= 3<4, S*(x)S(RP)S(n)aynRY  (by [1.7))
= 34$, S(ti RP S(x))a)t, RV
= 3{$, S(RP1S(x))a>R M1y (by (QTB3))
= 3¢, S(RP1)adRWV 1, x (by (1.10))
= 3{$,S(t RP)ayt,RVx (by (QTB3))
= 35¢¢, S(R®)S(t;)ayt,RVx
= 3¢, S(R?)S(12)>61 RVx (by [T.7))
= ux (by (1.2))

(b) Put u’' =Y RAS(RM)
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ui' =5 uRPS?(RY)
=3 S3(R@)us?(RWM)
=3 SRSy s2(RM)
=3 S S(RP))rV s2(RM))
=3 S(r(z)R(z))r(l)S(R(”)
=S(H1 =1
Similaly

uu=1.

Lemma 2.5. (a) S(u) = ¥ a~'S%(x — R?)S(R(

(b) aSu) =Y, RAS(RM — «)

Proor. (a) We have

S, i RP 56 RY) =37 (4, 1 >6S(R@)RW

= (t — $)u

=u.
Applying S to the above result,

S(u) = Y{¢, i RD»S(,RM))
= 3¢, RP1,>S(RM 1)
= 5¢8, RP1,>S(t;)S(RM)

= 3¢, RP1,>S(t1)aa"' S(RW)

(by (a))

(where R=r)

(since (S ® S)(R) = R))
(by (QTBO)

l))

(by (1.10))

(since t — ¢ =1)

(by (QTB3))

= 5(¢, RD1,>S(t,)a ' S(RM) (by (I7))
=3 52(<¢, RD1,>S(t2))a ' S(RM)
= 3<¢, (R?), 1S ((RP),)a ' S(RM) (by (1.3))

=3 53RP — a)a~'S(RW),
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hence by (1.4) and
Su) =3 a 'S2(R® — a)S(RW).
(b) We have
>-<¢, 2RV RD = 54, ,S(S(RM)) >0 R?)
= Y ¢, 2>t S(RD)RAD (by (1.10))
= (¢ — )S(S(RP)RDY)
= aS(u) = aS(u),

since a=¢ — ¢t and S%(u) =u.
Therefore

aS(u) = Y_<¢, LRV >t; R®
=3¢, RV11 )R, (by (QTB3))
= 3" RO5({¢, RVt >S(12))
=3 RD5(<g, (RM) 5 (RM),)
= 3= RO S(a((RM),)(RM),) (by (1.3))
=Y R(2)§(R(1) — ). =

The following theorem gives a biFrobenius anologue of Drinfeld’s S*-fomula
[Dr2] (see also [R2], Theorem 2 and [Mo], 10.1.13 Theorem.)

THEOREM 2.6. Let (H,R) be a quasi-triangular biFrobenius algebra. Set
u=S(RMRM where R=3 RO Q@ R®. Set g, =3 RVa(RD). Then

(@) ags =uS(u)~,

(b) S*(x) = uS(u) ' xu"'S(u) for any xe H.

Proor. (a) By (a),
aS(u) = ¥ S*((RM),a((R),))S(RD)
=Y S*(ra(R®))S(RVAD) (by (QTB2))

=Y S2(r®))s(r)S(RVa(R?)) (since (S ® S)(R) = R))
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= 3 S(r®)rDS(RV(RD)) (where R = r)
= uS(ga)
= ug;l.

Since a and g, are S*-stable, they commute with u and S(u).
Hence we have

age = uS(u)”".
(b) Follos from (a) and {c). O

REMARK 2.7 (cf. [R3], Proposition 3). Let (H,R) be a biFrobenius algebra.
Define a map ®g: H* — H by p— (p ® id)R*'R.

Let ¢ be a counit and « the right modular function.

Then

Dr(e) = Dr(ax) = 1.
Indeed
Dr(e) = > (e RPNy R 2) (where R =)
=% s(R(Z))R(l)s(,(l))r(Z)
= 1.
The equality ®g(a) =1 is shown as follows:
®r(@) = <o, ROFDYRD D)
=% t(RP)RWa(rN)r?
= Gago

where g, = 3 a(rD)r@,
By (b),

aS(u) = ¥ RPS(«((RM),)(RM),)
=3 «(RD)RP I 5(D) (by (QTBI1))
=gy

On the other hand, we have proved that aS(x) = ug;! = g;'u in (a).
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Hence we have §,u = g;'u. Since u is invertible, this implies g, = g;!. Therefore

(DR(OC) = gaga = 1.
We call (H,R) factorizable if ®g is an isomorphism. It follows that fac-
torizable qusitriangular biFrobenius algebras are unimodular.
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