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Daigo HiroHAsHI, Takahiro KANNO and Hiroyuki TASAKI

Introduction

Let B denote a submanifold of the unit sphere in R” and Cp the cone over B,
which is the union of rays starting from the origin and passing through B.

A cone is called area-minimizing if the truncated cone C} inside the unit ball
is area-minimizing among all surfaces with boundary B. The surfaces we will use
are integral currents. A tangent cone to surface S at a point p € S can be thought
of as the union of rays starting from p and tangent to S at p. This is the gener-
alization of the notion of tangent plane. If the tangent cone at p is not a plane,
then p is a singular point of S. If S is area-minimizing, then each tangent cone to
S is area-minimizing. Thus in order to study area-minimizing surface with singul-
arities, we need to know which cones are area-minimizing.

G. R. Lawlor proposed a criterion for area-minimization in [5]. His principal
idea is to construct an area-nonincreasing retraction IT: R” — C. If S is another
surface which has the same boundary as Cj}, it will follow that

vol(S) = vol(TI(S)) = vol(Cp)

since I1(S) must cover all of CL. Using this method, he gave a complete classifi-
cation of area-minimizing cones C over products of spheres and the first example
of minimizing cone over a nonorientable manifold. In order to construct the
retraction he solved a differential equation with numerical analysis.

In this paper, we consider the canonical imbeddings of symmetric R-spaces
which are linear isotropy orbits of symmetric pairs. Using root systems, we con-
struct area-nonincreasing retractions concretely.

In section 1 we prepare some notation and terminology, and prove an
essential theorem ([Theorem 1.6) for construction of the retractions. In section
2 we describe the canonical imbeddings of symmetric R-spaces, and construct
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retractions onto the cones over them. In section 3 we apply the result of section 2
to symmetric R-spaces associated with symmetric pairs of type B;.

Concerning the cones over symmetric R-spaces, B. N. Cheng proved the
cone over U(n)/O(n) and U(n) are area-minimizing in R"*" for n > 7 and R*",
respectively, by calibration. G. R. Lawlor proved the cone over SO(n) are
area-minimizing in R". Using the criterion of Lawlor in [5], M. Kerckhove [4]
proved the cone over an isolated orbit of the action of SU(n) on the unit sphere
in the vector space of traceless n-by-n Hermitian symmetric matrices is area-
minimizing for » > 2 and the cone over an isolated orbit of the adjoint action of
SO(n) is area-minimizing for n > 3.

The authors would like to thank the referee for reading carefully the manu-
script and for pointing out some mistakes in it.

1. Preliminaries

Let G be a compact connected Lie group and 6 an involutive automorphism
of G. We denote by Gy the closed subgroup of all fixed points of § in G. For a
closed subgroup K of G which lies between Gy and the identity component of
Gy, (G,K) is a Riemannian symmetric pair. Let g and f be the Lie algebras of G
and K respectively. The involutive automorphism 6 of G induces an involutive
automorphism of g, which is also denoted by 6. Since K lies between Gy and the
identity component of Gy, we have

t={Xeg|OX)=X)

An inner product {,) on g which is invariant under the actions of Ad(G) and
0 induces a bi-invariant Riemannian metric on G and G-invariant Riemannian
metric on the homogeneous space M = G/K, which are also denoted by the same
symbol {,>. Then M is a compact Riemannian symmetric space with respect to
{,>. Conversely any compact symmetric space is constructed in this way. Put

m={Xeg|0X)=—-X}.

Since @ is involutive, we have an orthogonal direct sum decomposition of g:
g=Ff+m

This decomposition is called a canonical decomposition of the orthogonal sym-
metric Lie algebra (g,8).

Take and fix a maximal Abelian subspace a in m and a maximal Abelian
subalgebra t in g including a. Let ¢ be the center of g and g’ = [g,g]. We have an
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orthogonal direct sum decomposition:
g=c+g’

We set
a'=aNg’, ¢m=cNm

We have an orthogonal direct sum decomposition:
a=Cnq + a’.
Put
b=tNL
Since t is f-invariant we get an orthogonal direct sum decomposition of t:
t=b+a.
For « et we put
5, = {X € o€ | [H,X] = V=1<o, HYX(H e 1)}
and define the root system R(g) of g by
R(g) = {xet—{0}]§, # {0}}.
We also denote R instead of R(g). For a e a we put
o, = {X € g | [H,X] = V-1a, H)X (H € a)}
and define the root system R(g,f) of (g,f) by
R(g,t) = {xea—{0}[g, # {0}}.
We also denote R instead of R(g,f). Put
Ro(g) = R(g)Nb
and denote the orthogonal projection from t to a by H — H. Then we have
R(g,t) = {alx € R(g) — Ro(9)}-

We extend a basis of a to that of t and define the lexicographic orderings >
on a and t with respect to these bases. Then for H € t, H > 0 implies H > 0. We
denote by F(g) the fundamental system of R(g) with respect to the ordering >.
We also denote F instead of F(g). Put

Fo(g) = F(g) N Ro(g).
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Then the fundamental system F(g,f) of R(g,f) with respect to the ordering > is
given by

F(g,1) = {alo € F(g) — Fo(g)}-
We define positive root systems by
R, (g) = {o € R(g)|« > 0}
R, (g,f) = {x € R(g,T)|x > 0}.
We also denote R, and R, instead of R.(g) and R,(g,f). Then
Ri(9,F) = {&le € Ry(g) — Ro(a)}
holds. We set
h={Xet|[X,H|=0(H €a)}
and
L=1N(g, +9,)
m, = mN(g, +9,)

for a € R, (g,f). We have the following lemma ([2]).

LeMMmA 1.1. (1) We have orthogonal direct sum decompositions:.

f=f+ > L, m=a+ > m,

%eR; %eR;
(2) For each o € R, — Ry there exist S, €t and T, e m such that
{Sylee Ry, =41}, {T.ee Ry ,a=4}
are respectively orthonormal bases of ), m, and that for H € a
[H,Sy] = o, H)T,, [H,To] = —<a, H)S..

We denote m; = dimm; = dimf; and call it the multiplicity of A.
We define a subset D of a by

D= LEJR{Hea|<a,H>=0}.

Each connected component of a — D is called a Weyl chamber. We define the
fundamental Weyl chamber by
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C={Hea|lo,H) >0 (0€ F(g,1))}.
Its closure is given by |
C={Hea|la,HY>>0 (xeF(g,¥))}
For each subset A = F = F(g,f) we define a subset C* of C by
C*={HeC|{,H)>0 (acA),{f,HY=0 (e F—A)}.

We easily get the following lemma.

Lemma 1.2. (1) For Ay c F

ch= () cA
AcA,

is a disjoint union. In particular C =\),_,C* is a disjoint union.
(2) For A\,Ay c F, Ay = A, if and only if CA < Ch,

For B e F we take Hp e a’ satisfying the following condition.

1 (x=p)
HeS =
< Hy) {0 (« % B).
We have
C=cpy X {ZtaHa tazO}
aeF
and for Ac F

ta>0}.

Z" = {ge G|Ad(9)H = H},

CA =c¢, x {Z t,H,
aeA

For H e m we put

ZH = {ke K|Ad(k)H = H}.

ZH = ZHNK holds. Z is a closed subgroup of G and Z¥ is a closed subgroup
of K. We can prove the following lemma by the standard argument of compact
Lie groups, so we omit its proof.
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LeMMA 1.3. ZH is connected.

For A c F we put
N® ={ge G|Ad(g)C* = C*}
Z% = {ge G|Ad(g)lcs = 1}
NE ={keK|Ad(k)C* = C*}
Z8 = {ke K|Ad(k)|cs = 1}.

By the above definitions we have N} = NANK and Z{ = ZANK. Z% is a closed
subgroup of G and Z2 is a closed subgroup of K. If H € CA, then

zAczH, zi <z}

We put
R*=RN(F-A),
RY=RANR;
gt =fh+a+ Y (f+m)
xeR2
and

Pr=g*Ni=Hh+ > L

A
a€ R}

md=g*Nm=a+ Z M.

xeR2
We have an orthogonal direct sum decomposition:
g® =4+ ml.
LeMMA 1.4. For Ac F and H € C2, we obtain the following equations.
(1) R = {axe Ry [{a,H)> =0}

(2) R = {ae R|{x,H) =0}
(3) 8% ={X eg|[H, X] =0}

PROOF. Any o € R, can be written as follows:

ae Znyy (nyeZ,n, >0).
yeF
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So we obtain

(,Hy = iy, Hy =) my, H).

yeF yeA
From this {a, H) = 0 if and only if a e Rﬁ. Therefore we obtain
RY = {ae R, |<a,H)y=0}.
This implies
R2 = {aeR|{a,H) =0}.
Any X € g can be written as follows:

X =S8+ aS+To+ ZbaTa,

ae R, aeRy

where Sy ety and Ty € a. It follows from and (1) that
[H, X] = > au, HYT, — Y by, H)S,.

a¢R£ a¢R$
From this [H,X] =0 if and only if X € g4. Therefore we obtain

¢ ={X eg|[H,X]=0}.

LeMMmA 1.5. (1) Take A;,Ay = F, H e C%, Hy e C* and g € G. If Ad(g9)H,
= H,, then Ad(g)g® = g.
(2) If A< F, then N® = N(g2). For any H e C%, all of ZH, Z%, N2 and

N(g?) are compact subgroups of G and all of their Lie subalgebras coincide with

g”.

Proor. (1) By g2 is the centralizer of H;. Ad(g)g® is the
centralizer of Ad(g)H; = H,, so is equal to g*2.

(2) (1) with A; = A; = A implies N = N(g?). Z¥ and N(g*) are compact
subgroups in G.

Since g is the centralizer of H by the Lie algebra #(ZH) of Z¥
is equal to g2.

We show that the Lie algebras £(Z2), £(N2) and £(N(g?)) of Z2, N2
and N(g?) are all equal to g*. By their definitions Z2 = N2 = N(g2). Z4, N(g?)
is a closed subgroup of G, so we have #(Z%) = #(N(g?)). Any element X of g2
can be written as follows:
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X=S0+ Y aSu+To+ Y b.Tu (Sock,Toea).

xeRD ae RS
From this we get X € #(Z%), hence g® = #(Z*). Therefore
g = £(Z%) = Z(N(g")).
Conversely we assume an element

X=S+ Y aSi+To+ )Y bTu (Soek,Toea)

aeR, x€eR,

in g is contained in #(N(g?)). Since
[H, X} =Y awla, HYTy — Y bo{a, H)S,

xe R ae R,

we obtain X e g2. Therefore we get
g = L (2% = L(N(g")).

N2 satisfies Z2 <« N8 = N(g?) and £(Z?) = Z(N(g?)). So N2 is also a
compact subgroup of G and £(N?) = g2 holds.

THEOREM 1.6. For any Ac F and H e C%

7ZA=7zH =N*, zk=2zF =N}

ProoF. By the definition we have Z2 < Z# and by the above lemma their
Lie algebras coincides. Moreover Z is connected by Lemma 1.3, so we obtain
zr =274,

Z2 and N2 are compact and have the same Lie algebra g2. Since Z2 is the
kernel of the homomorphism

Ad : N* — The permutation group of C2,

Z% is a normal subgroup of N2 and N2/Z2 is a finite group. For any g € N2,
the action of Ad(g) on C2 has a finite order, that is, there is an integer N
satisfying Ad(g)N|CA = 1. Take Hpe C2 and put

1 _
Hy = 5 (Ho+ Ad(g)Ho + - - + Ad(g)" ™" Hy).

Each Ad(g)'Hy is contained in C2 and C2 is convex, so we get H; e CA.
Ad(g)H; = H; holds and geZ" =Z2 Hence N2 <cZ? and we obtain
ZA = NA

The second equation follows from the first one.
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2. Construction of Retractions

The notation of the preceding section will be preserved. Let B be a compact
submanifold of the unit sphere in R". We call Cp = {tx|x € B,t > 0} the cone
over B. Cp is said to be area-minimizing if C} = {tx|x e B,0 <t <1} has the
least area among all surfaces with boundary B.

For an unit vector H € C, the orbit Ad(K)H is a submanifold of the unit
sphere in m. Then the mapping

f:kZE — Ad(k)H,

is a diffeomorphism of the homogeneous space K/Z¥F to Ad(K)H.
PROPOSITION 2.1. The orbit Ad(K)H is connected.

PrOOF. Since m=/J,_ x,Ad(k) - a, where Ko be the identity component of K,
for any Ad(k)H e Ad(K)H there exists an element k) € Ky such that Ad(kik)H ea.
From [Proposition 2.2 (p. 285) of [2], there exists a member of Weyl group whose
action on a is represented by Ad(k,) for some k; € Ky such that Ad(kik)H =
Ad(ky)H. If we put ky = kl_lkz € Ko, then Ad(k)H = Ad(ko)H holds. Thus we
get Ad(K)H = Ad(Kp)H and it is connected.

From now on we assume that (G,K) is irreducible.

Let F(g,f) = {o,...,a/} be the fundamental root system and a=
nyay + -+ - + moy be the highest root of R(g, ). Select a; € F(g, ) such that n; =1,
we put o9 = o; and 4p = H,,/|H,,|. It is known that f is an isometry of K/Z;g"
with the normal homogeneous Riemannian metric multiplied some constant
onto Ad(K)A4, and that K/Z7° is a symmetric space. We call this space a
symmetric R-space, and f its canonical imbedding. Because Ad(K)A, is an isolated
orbit, Ad(K)A, is a minimal submanifold of the unit sphere in m by a result of
Hsiang [3]. Hence the cone Cagq(k)4, is also a minimal submanifold of m ([6] p. 97,
Prop. 6.1.1). The purpose of this article is to prove Caq(k)4, i an area-minimizing
cone.

PROPOSITION 2.2. Let V and W be two vector spaces with inner products.
Suppose n =dim W < dim V. For a linear mapping F of V to W we put

JF = sup{|F(u1) A - -+ AF(un)l|},

where uy, ..., u, runs over all orthonormal vectors of V. If F is not surjective, then
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JF = 0. If F is surjective, then JF coincides with
[F(v1) A -+ AF(va)],

for an orthonormal base vy,...,v, of (ker F )l.

Let B be a compact submanifold of the unit sphere in m. We call a dif-
ferentiable retraction ® : m — Cp a area-nonincreasing if

J(d®,) < 1. (1)

for x e m.

PROPOSITION 2.3. The cone Cp over a compact submanifold B of the unit
sphere in m is area-minimizing if there exists an area-nonincreasing retraction
®:m— Cp.

PrOOF. Let S be a surface in m with boundary B. Since C} < ®(S), we
have vol(C}) < vol(®(S)). Let ey,...,e, be an orthonormal frame of S, then

vol(®(S)) J |dD(ey A --- Aep)|dug

< | (a0 dus

J dus

= vol(S).
Consequently,

vol(Cl) < vol(®(S)) < vol(S).

This proves the proposition.
We shall now consider a way to construct area-nonincreasing retractions.

LEMMA 2.4. Suppose ¢ is a mapping of C into itself such that $(C2) = CA
for each A = F(g,%). Then ¢ extends to a mapping ® of m as

®(X) = Ad(k)¢(H),

for each X = Ad(k)Hem (ke K,H € C).
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PrOOF. Suppose ki,k; € K and Hy,H, € C satisfy Ad(k))H, = Ad(ky)H,.
Then Ad(k; 'k1)H, = Hy € a and we have H; = H,, because each orbit of the
Weyl group on a intersects C in exactly one point ([3], p. 293, Th. 2.22). Let

A= {oeF|<a H) > 0}.
We have H, € C? and ¢(H;) € C? by the assumption of ¢. Thus
implies
kilky e Zg = Zg,

therefore Ad(k;'k))g(H;) = ¢(H,).
From [Lemma 2.4, we have the following.

PROPOSITION 2.5. Let ¢ : C — {tAy|t > 0} be a differentiable mapping. Denote
é(x) = f(x)Ao. If f satisfies f(tAy) =t (t =0) and f|{a0}i = 0, then ¢ extends to
a differentiable retraction ® : m — Cag(k)d,-

In this case ® is area-nonincreasing if and only if (1) holds for each x € C.

We will compute J(d®,) of ® in [Proposition 2.5 for x e C.

PROPOSITION 2.6. We denote R, (Ayp) = {A€ R:|{A,Ay) > 0}.

{4, 40> e
J(dD,) = d . 2
(d®,) = |grad(/) AEHAO)( G2 ) @

Proor. If f(x) =0, then the both sides of the equation are 0. So we
consider the case f(x) # 0. By the definition of ®, d®,(a) = RAy. By using the
equation

4 Ad(exptS,)x = —{a,x)T,,
dt|,_

for e R (g), & # 0, we have

d(T,) = S22 7,

oty X7

From this we get

o (Bm) e L

}.GR+ ER+(A())
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SO we can write

J(d®x) = Ji(x) - Jo(x),
Ji(x) = J(d®x]a),
B(x) = J(dDls,,,)-
Take a unit vector v in a.

d®,(v) = d¢,(v)
=df.(v)4o
= (grad(f), v)Ao.

Therefore

J1(x) = max{|dD,(v)||veE a,|v] =1}
= |grad (/).

Secondly for J,(x), we see the kernel of dd)x'Zm;‘ By the above expression
of do,(T,) we get

ker(d®ils,, ) = > ma

AeR,
(4, A0>=0

We can take {T,|ae R,(g),{a, 40> >0} as an orthonormal base of
1
ker(dd>x|zml) . It follows that

(A, Ao
Ja(x) = do(T,)| = ( e )) ,
’ <a§>§>+ . Ael:[(Ao) 4, x5

where m; is the multiplicity of A. So we have

_ Godod o\
savo =igadinl T o)

3. Construction of Area-nonincreasing Retractions

THEOREM 3.1. The cones over

SO(21 + 1) SO(I) x SO(I + n)
SO(2) x SOQ2I—1)" S'(0I-1)x O +n-1))
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corresponding to symmetric pairs
(SO(21 + 1)2, 8021 + 1)), (SOQ2I+ n),SO(l) x SO(I +n)) (n=2)
respectively are area-minimizing, where

S'(0(—1) x O(l +n— 1))

4 3)
£
J A e=*1,4e0( -1),
= e SO(l) x SO(I + n)
€ BeO(l+n—-1)
\ B /
ProOF. We consider symmetric pairs of type B;. Let ¢,...,g be an

orthonormal basis of the maximal Abelian subspace a such that all roots are
tete (1<i<j<l), & (1<ixgl).
Then for a suitable ordering
F(g,t) = {o1,00,..., 001,04},
o =& —¢&4 (1<i<l), a=¢g,
Hy,=¢e+ - +¢& (1 <i<l),
a=o+200+ - +20 =6 +&

and we put

= Hal =
|Hy, |

AO €1.
We have

ZSkSI}

/ k—1

R, (Ay) = {Za,} U {Z o
i=1 i=1
k

) {& — ZCX,‘

i=2

2sksl—1}u{&}

Because the multiplicities of roots of same length coincide with each other,
we can denote by m; the multiplicity of the Zle o; and by my the multiplicity of
the rest. For x = Y, x;H,, € C we define
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f(X) = \/<al’x><&ax> = \/xl (X] +2x +--+ 2x1)
then it satisfies [Proposition 2.5 Using (2), we calculate J(d®,). Since

ﬂ_xl—i—---—i-xl

0xy S/ ’
of _x .

we get

Lo O+ <G, x)?
=1 [
i=1 7 , ,

We also obtain

f ool f? 2
J =] .
2% << L ai,x>) <11 (< K e<a— 5, a,-,x>)

Therefore

J(d(D ) — <(X],X>2 + <&’ X>2 {ay, xH<a, x> "
TN e, x}<a %) \ (S @ x)

y ﬁ( a1, X348, x) )’"2‘

k ~ k
ez \< 2oy %, X D<A — D i %y X

For any k,

(S ()35

k k k
= (al,x><&,x> + <Zaiax><&v x> - <Zai7~x> <Z ai7x>
i=2 i=1 i=2

k k
= <a1,x><&ax> + <Z ai,x> (<&,x> it <Z ai,x>>
i=2 i=1

= <(X] ’ X><&,X>,
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hence
Catr, )<, %)
CE o, X — K s xy T

On the other hand

l 2
<zai,x>—<a1,x><a,x>
i=1

< 1 > <a1,x><2a,+za,, >
() en{
:<,- a,.,x>zo.

UCECE
<Zz lalax> =

We consider the case m; > 2 and let

— 2
A = Jl(x)(\/ <CX11,X><OC, x>> )
<Ei=l (xiax>

M- 'IM~ WM
3

I|
Y

Therefore

If A <1 then J(d®,) <1

<o¢1,x>2 + <&a x>2 <a1,x>2<&,x>2
2<a1,x><&,x> <Zi1=l a,-,x>4

_ 8(Kar, x>°<d, x) + <o, x)<&, x° )
(<& x + <o, x)*

Here subtracting the numerator from the denominator we have
(<, x> + Can, x29)* = 8(Cotr, x)CE, XD + o1, X)<E, X))

= (<&ax> - <a15~x>)4 >0
Therefore if m; > 2, we get J(d®,) < 1.

A* =
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There are two kind of symmetric pairs: (i) m; =n (n>2), my =1 and (ii)
m); = mp = 2.

(i) (G,K) = (SO(2] + n),SO(I) x SO(I + n)). It is defined by the involution:

L 0
0(g) = I 1sngliion (g€ SOQI+1)), Ijn= ( ! )
0 Il+n
Then

g =902 +n) = {X € My ,(R)|X +'X =0},

x 0

t=s0(/) xso(l+n) =
0 y
0 x

m-=
-'x 0

Since m is isomorphic to M; ;4,(R), we identify them. The action of K on m
through this identification is

Ad(k 0 ) -x =kx'k’.

xeso(l),ye so(l—i—n)},

X € M1,1+,,(R)} = M1,1+,,(R).

0 K
We define an Ad(K)-invariant inner product on m by

(X,Y>=Trace(XY) (X,Y em).

0 t R
a= = . , li €
j -t 0 : 0

\ i

Let

4 tl

;11: 0
]

Then a is a maximal Abelian subspace in m. Next, we consider a root space

decomposition of m with respect to a. Let E,; be a matrix whose (p, g)-entry is 1
and all other entries are 0. Then
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& = Epp,
I+n

m,, = E RE,,,
g=I+1

M, s, = R(Epq + Egp),
Mg, s, = R(Epg — Egp).
Since Ap = ¢; = E11, we have
ZH =S8'"(0(-1)x O(I +n—1)).
Hence the corresponding symmetric R-space is

SO(l) x SO(I + n)
SOI-1x0(l+n-1)

(ii) (G,K) = (SO(2I+1)%,S0(2l +1)). 1t is defined by the involution such
that

0(g1,92) = (92,91) ((91,92) € SO(2 + 1)).
Then

g =s0(2/+1) x so(2/ + 1),
E={(x,x)|xeso(2/+ 1)},
m = {(x,—x)|xeso(2/ + 1)} =@ s0(2/+1).

Since m is isomorphic to so(2/ + 1), we identify them. The action of K on m
through this identification is

Ad(k) - x =kx'k (ke SOQI+1),xes0(2]+1)).
We define an Ad(K)-invariant inner product on m by
(X, Y)= %Trace(’XY) (X,Y em).
Let
1

. 0 t;
a=<{t= . ’z{=(_t. O),tieR cmx~so(2/+1).
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Then a is a maximal Abelian subspace in m. Next, we consider a root space
decomposition of m with respect to a. Let G,;, = E,; — Ez,. Then

& = Gap1,2p,
me, = RGyp1 2141 + RGp 2141,
M s, = R(Gap—1,2g-1 — Gap,2g) + R(G2p-1,29 + G2p,24-1),
Mg 15, = R(Gap_1,2g-1 + Gop 2g) + R(G2p-1,2g — G2p,2g-1)-
Since Ay = &1 = G2, we have
ZZ° = SO(2) x SO(2I — 1).
Hence the corresponding symmetric R-space is

SO(21 + 1)
SO2) x SO(2I = 1)°
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