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1. Introduction

In the last years, several authors have studied spacelike hypersurfaces with
constant mean curvature in Lorentzian spaces of constant curvature, see for
instance [2], [10], [11]. When the codimension of the spacelike submanifold is
greater that one, the natural generalization, that is, the case of parallel mean
curvature vector in the normal bundle, has been dealt in [1], [3], [5]. From a
technical point of view, the closest case to that of spacelike hypersurfaces is
when the codimension is equal to the index of the ambient space, so that, when
the normal bundle is negative definite [1], [5], [9]. Under this assumption, it has
been mainly used as a tool classical Simons’ formula for the Laplacian of the
length of the second fundamental form. However, this technique does not seen
to be useful when the normal bundle is not definite. In [3], a different method
has been introduced to study compact spacelike submanifolds with parallel
mean curvature vector in de Sitter spaces, with non-definite normal bundle. As
any index for the normal bundle was allowed, an assumption on the Ricci
curvature (automatically satisfied in the definite case) was shown to be nec-
essary. In this paper we will study compact spacelike submanifolds with (non-

zero) parallel mean curvature vector in a pseudo-Riemannian space form with
Lorentzian normal bundle (of signature (1, $p)$ ). We use the same approach as in
[3]; however no assumption on the curvature of the submaifold is now made,
and the family of ambient spaces is extended in order to consider flat and
negatively curved pseudo-Riemannian space forms. Our study was first moti-
vated by the following easy fact: consider a totally umbilical and non-totally
geodesic hypersurface $M^{n}$ of a Riemannian space form of sectional curvature
$c\in R,$ $N^{n+1}(c)$ . Embedding $N^{n+1}(c)$ as a totally geodesic submanifold in an
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$(n+p+1)$ -dimensional pseudo-Riemannian space form $N_{p}^{n+p+1}(c)$ , of index
$p\geq 1$ , we can see $M^{n}$ as a pseudo-umbilical spacelike submanifold with non-
zero parallel mean curvature in $N_{p}^{n+p+1}(c)$ . So, it is natural to ask the converse:

When can the codimension of a spacelike submanifold with non-zero parallel
mean curvature be reduced to conclude that it must be lying as a totally
umbilical hypersurface in the corresponding Riemannian space form $ N^{n+1}(c)\subset$

$N_{p^{n+p+1}}(c)$?
Note that necessary conditions are that the submanifold be assumed to be

pseudo-umbilical and that the mean curvature vector be spacelike. In fact, we
will obtain, Theorem 3.1, that the codimension can be reduced in the quoted
sense, assuming compactness for $M^{n}$ , if and only if the submanifold is pseudo-
umbilical and the (parallel) mean curvature vector is spacelike. The assumption
on the signature of the normal bundle is essential in Theorem 3.1, not only by
technical reasons but also by the examples shown in Remark 3.2, which prevent
that an analogous to this result can be stated under more general assumption
that Lorentzian normal bundle. In the case of 2-dimensional submanifolds, as in
[8], a topological assumption permits us to give as a consequence of Theorem
3.1 the following result (Corollary 3.4)

The only topological 2-spheres which are spacelike surfaces in $N_{p}^{3+p}(c)$ with
non-zero spacelike parallel mean curvature vector are the totally umbilical ones in
$N^{3}(c)\subset N_{p}^{3+p}(c)$ .

The remainder of this paper is mainly devoted to analyze, in the same
previous line, the case in which the mean curvature vector has another causal
character, and to study the particular case in which the ambient space is flat.
First we give a non-existence result, Proposition 4.1, which asserts that a
compact pseudo-umbilical spacelike submanifold in $R_{q}^{n+p+1}$ with non-zero mean
curvature vector has necessarily spacelike mean curvature. Next, Theorem 3.1 is
sharped when the ambient space is flat obtaining, Theorem 4.3.

The only complete pseudo-umbilical spacelike submanifolds in $R_{p}^{n+p+1}$ with
non-zero spacelike parallel mean curvature vector are the round n-spheres in
$R^{n+1}\subset R_{p}^{n+p+1}$ .

Now, it is assumed that the mean curvature to be lightlike. In this case,
we only have to consider as ambient space a pseudo-Euclidean sphere $S_{p}^{n+p+1}$ ,
Proposition 4.1 and 4.7. Several examples of totally umbilical isometric (not
totally geodesic) embeddings from $S^{n}(1)$ in $S_{1}^{n+2}(1)$ , Example 4.8, are shown to
be unique in the lightlike case of $H$ , Proposition 4.9. Finally, it is noted that in
the timelike case, no result in this direction can be given, as it is shown in
Example 4.10.
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2. Preliminaries

Let $R_{l}^{m}$ be the m-dimensional pseudo-Euclidean space with metric tensor
$\langle, \rangle$ of index $t$ given by

$\langle v, w\rangle=\sum_{i=1}^{m-l}v_{i}w_{j}-\sum_{j=m-t+1}^{m}v_{j}w_{j}$ ,

where $v=(v_{1}, \ldots v_{m}),$ $w=(w_{1}, \ldots w_{m})$ , and let us denote by $N_{q}^{n+p+1}(c)$ the
standard model of $(n+p+1)$ -dimensional space of index $q\geq 1$ and constant
sectional curvature $c$, which can be assumed, without loss of generality, to be
$c=0,1,$ $-1$ . That is, $N_{q}^{n+p+1}(c)$ is the pseudo-Euclidean spaoe $R_{q}^{n+p+1}$ when $c=0$ ,
the pseudo-Euclidean sphere $S_{q}^{n+p+1}\subset R_{q}^{n+p+2}$ when $c=1$ and the pseudo-
Euclidean hyperbolic space $H_{q}^{n+p+1}\subset R_{q+1}^{n+p+2}$ when $c=-1$ . Generically, let us
represent by $R_{q+s}^{n+p+k}$ the corresponding pseudo-Euclidean space where $N_{q}^{n+p+1}(c)$

is lying, and by $N^{n+1}(c)$ a complete totally geodesic spacelike submanifold
contained in $N_{q}^{n+p+1}(c)$ , so that $N^{n+1}(c)$ equals to $R^{n+1},$ $S^{n+1}$ , or $H^{n+1}$ when
$c=0,1$ , or $-1$ , respectively.

Let us consider $x:M^{n}\rightarrow N_{q}^{n+p+1}(c)\subset R_{q+s}^{n+p+k}$ a spacelike submanifold in
$N_{q}^{n+p+1}(c)$ . Throughout this paper we will denote by $\nabla^{0},\overline{\nabla}$ and V the Levi-Civita
connections of $R_{q+s}^{n+p+k},$ $N_{q}^{n+p+1}(c)$ and $M^{n}$ , respectively, and $\nabla^{\perp}$ will be the
normal connection of $M^{n}$ in $N_{q}^{n+p+1}(c)$ . Then, from the Gauss and Weingarten
formulas of $M^{n}$ in $N_{q}^{n+p+1}(c)$ we have

(2.1) $\nabla_{X}^{0}Y=\overline{\nabla}_{X}Y-c\langle X, Y\rangle\chi=\nabla_{X}Y+\sigma(X, Y)-c\langle X, Y\rangle x$

and

(2.2) $\nabla_{X}^{0}\xi=\overline{\nabla}_{X}\xi=-A_{\xi}X+\nabla_{X}^{\perp}\xi$ ,

for all tangent vector fields $X,$ $Y\in\chi(M)$ and normal vector field $\xi\in\chi^{\perp}(M)$ ,
where $\sigma$ stands for the second fundamental form of $M^{n}$ in $N_{q}^{n+p+1}(c)$ and $A_{\xi}$ is
the Weingarten endomorphism associated to $\xi$ .

Let $a\in R_{q+s}^{n+p+k}$ be a fixed arbitrary vector and put

(2.3) $a=a^{T}+a^{N}+c\langle a, x\rangle x$ ,

where $a^{T}\in\chi(M)$ is tangent to $M^{n}$ ( $a^{T}$ is the gradient of $\langle a,$ $ x\rangle$ on $M^{n}$ ) and
$a^{N}\in\chi^{\perp}(M)$ is normal to $M^{n}$ in $N_{q}^{n+p+1}(c)$ . By taking covariant derivative in (2.3)

and using (2.1) and (2.2), it is not difficult to get from $\nabla^{0}a=0$ that

(2.4) $\nabla_{X}a^{T}=A_{a^{N}}X-c\langle a, x\rangle X$
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and

(2.5) $\nabla_{X}^{\perp}a^{N}=-\sigma(a^{T}, X)$ ,

for all $X\in\chi(M)$ . Now, directly from (2.4) we get

(2.6) $div(a^{T})=tr(A_{a^{N}})-nc\langle a,x\rangle=n\langle a,H\rangle-nc\langle a, x\rangle$ ,

$wheredivdenotesthedivergenceonMandHstandsforthemeancunaturevectorofMinN_{q}^{n+p+1}(c),thatis,H.--\frac{n1}{n}tr(\sigma)..UsingnowtheCodazziequ^{r}ationandtheGau^{n}ssequation,aswe11as(24)and(25),astraightforwardcomputation$

leads to

(2.7) $div(A_{a^{N}}a^{T})=n\langle\nabla_{a}^{\perp_{T}}H, a^{N}\rangle+tr(A_{a^{N}}^{2})-c\langle a, x\rangle tr(A_{a^{N}})$

$-\sum_{i=1}^{n}\langle\sigma(a^{T}, e_{i}), \sigma(a^{T}, e_{i})\rangle$ ,

where $\{e_{1}, e_{2}, \ldots, e_{n}\}$ is a local orthonormal frame on $M^{n}$ .
From (2.6) we obtain

(2.8) $div[(\frac{1}{n}$ tr $ A_{a^{N}})a^{T}]=\frac{1}{n}a^{T}(trA_{a^{N}})+\frac{1}{n}tr^{2}(A_{a^{N}})-ctr(A_{a^{N}})\langle a, x\rangle$ .

On the other hand, the Ricci tensor of $M^{n}$ , Ricc, satisfies

(2.9) Ricc(X, $Y$) $=c(n-1)\langle X, Y\rangle+n\langle\sigma(X, Y),H\rangle$

$-\sum_{i=1}^{n}\langle\sigma(X, e_{i}), \sigma(Y, e_{i})\rangle$ ,

for all $X,$ $Y\in\chi(M)$ .
Next, from equations (2.7), (2.8) and (2.9) and integrating on $M^{n}$ , which is

now assumed to be compact, we obtain the following integral formula,

(2.10) $\int_{M}\{(n-1)\langle\nabla_{a}^{\perp_{T}}H,a\rangle+T(a^{T}, a^{T})+tr(A_{a^{N}}^{2})-\frac{1}{n}tr^{2}(A_{a^{N}})\}dV=0$ ,

where we are putting

(2.11) $ T(X, X)=Ricc(X, X)-c(n-1)|X|^{2}-(n-1)\langle\sigma(X, X),H\rangle$ ,

for all $X\in\chi(M)$ .
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3. Main Results

In this section we will use formula (2.10) to study compact spacelike
submanifolds with non-zero spacelike parallel mean curvature vector H. Recall
that a submanifold is said to be pseudo-umbilical if $H$ is umbilical, and in this
case we have $A_{H}=\langle H, H\rangle I$ , where $I$ is the identity transformation.

For the case of normal bundle of signature $(1,p)$ we can state the following
result.

THEOREM 3.1. Let $M^{n}$ be a compact spacelike submanifold in $N_{p}^{n+p+1}(c)$ .
Then, $M^{n}$ is pseudo-umbilical with non-zero spacelike parallel mean curvature
vector if and only $lfM^{n}$ is a totally umbilical and non totally geodesic
hypersurface in $N^{n+1}(c)\subset N_{p^{n+p+1}}(c)$ .

PROOF. Under our assumptions, the integral formula (2.10) can be written
as

(3.1) $\int_{M}\{T(a^{T}, a^{T})+u_{a}\}dV=0$ ,

where $u_{a}=tr(A_{a^{N}}^{2})-\frac{1}{n}tr^{2}(A_{a^{N}})$ . Note that from the Schwartz inequality, the
function $u_{a}$ is non-negative everywhere and $u_{a}\equiv 0$ if and only if $a^{N}$ is an
umbilical direction.

Since $H\neq 0$ is a spacelike normal vector field to $M^{n}$ , we can choose a local
orthonormal frame $\{\xi_{1}, \ldots, \xi_{p+1}\}$ in $\chi^{\perp}(M)$ such that $\xi_{1}$ is collinear to H.
Taking into account that $M^{n}$ is pseudo-umbilical we obtain

(3.2) $\langle\sigma(a^{T}, a^{T}),H\rangle=|A_{\xi_{1}}a^{T}|^{2}$ .

Then, from (2.11) and (3.2) we deduce

(3.3) $T(a^{T}, a^{T})=\langle\sigma(a^{T},a^{T}),H\rangle-|A_{\xi_{1}}a^{T}|^{2}+\sum_{j=2}^{p+1}|A_{\xi_{j}}a^{T}|^{2}$

$=\sum_{j=2}^{p+1}|A_{\xi_{J}}a^{T}|^{2}\geq 0$ .

Therefore, from the integral formula (3.1) we have that $u_{a}\equiv 0$ and $T(a^{T}, a^{T})\equiv 0$ ,
for all vector $a\in R_{p+s}^{n+p+k}$ . This means that every normal direction is umbilical and
thus $M^{n}$ is totally umbilical in $N_{p^{n+p+1}}(c)$ . Moreover, from $T(a^{T}, a^{T})\equiv 0$ and
(3.3), we obtain $A_{\xi_{j}}\equiv 0$ for every $j=2,$ $\ldots$ , $p+1$ . This implies that the first
normal space $N_{1}=\{\xi\in\chi^{\perp}(M) : A_{\xi}=0\}^{\perp}$ is parallel and (non-degenerate) one-
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dimensional. Reasoning now as in [6], Theorem 1.1. or [7], Proposition 4.1, the
codimension can be reduced, obtaining that $M^{n}$ is a totally umbilical (and non-
totally geodesic) hypersurface in $N^{n+1}(c)$ .

Conversely, let $\Psi$ : $M^{n}\rightarrow N^{n+1}(c)$ be a totally umbilical hypersurface in
$N^{n+1}(c)$ which is not totally geodesic, and let $j:N^{n+1}(c)\rightarrow N_{p}^{n+p+1}(c)$ be the
natural inclusion. Taking into account that $N^{n+1}(c)$ is totally geodesic in
$N_{p}^{n+p+1}(c)$ , it is easy to see that $ x=j\circ\Psi$ : $M^{n}\rightarrow N_{p^{n+p+1}}(c)$ is a pseudo-
umbilical submanifold with parallel mean curvature vector $H$ such that
$\langle H,H\rangle>0$ . $\blacksquare$

REMARK 3.2. It should be noticed that when the signature of the normal
bundle is not $(1,p)$ , an analogous to Theorem 3.1 cannot be stated. In fact,
let $\psi_{1}$ : $M^{2}\rightarrow S_{1}^{4}(k)$ be a non-totally geodesic compact maximal surface in a
4-dimensional pseudo-Euclidean sphere of curvature $k,$ $0<k<1$ , and let $\psi_{2}$

be the standard embedding of $S_{1}^{4}(k)$ in $S_{1}^{5}(1)$ as a totally umbilical and
non-totally geodesic hypersurface. It follows that the isometric immersion
$\psi=\psi_{2}\circ\psi_{1}$ : $M^{2}\rightarrow S_{1}^{5}(1)$ is pseudo-umbilical with non-zero spacelike parallel
mean curvature vector, but it is not totally umbilical.

We will see now that Theorem 3.1 can be improved when $n=2$ , using the
following fact.

LEMMA 3.3. Let $M^{2}$ be a spacelike surface with non-zero parallel mean
curvature vector in $N_{p}^{3+p}(c)$ , such that $M^{2}$ is a topological sphere. Then, it is
pseudo-umbilical.

PROOF. Let $\omega$ be the quadratic differential on $M^{2}$ locally given by

$\omega=\langle\sigma(\partial_{z}, \partial_{z}),H\rangle dz^{2}$ ,

where $z=x+iy$ and $(x,y)$ are local isothermal parameters on $M^{2}$ . Then, $\omega$ is
well defined and $\omega\equiv 0$ if and only if $M^{2}$ is pseudo-umbilical (see, for example,
Section 2 in [8]). Now, from the Codazzi equation it follows that

$\partial_{\overline{z}}\langle\sigma(\partial_{z}, \partial_{z}),H\rangle=\frac{\lambda}{4}\partial_{z}\langle H, H\rangle+\langle\sigma(\partial_{z}, \partial_{z}), \nabla_{\partial}^{\perp_{\overline{z}}}H\rangle$ ,

where $\lambda=\langle\partial_{x}, \partial_{X}\rangle=\langle\partial_{y}, \partial_{y}\rangle$ , and then, if $\nabla^{\perp}H\equiv 0$ , we deduce that $\omega$ is
holomorphic, but $M^{2}$ being a topological sphere it implies $\omega\equiv 0$ and $M^{2}$ is
pseudo-umbilical. $\blacksquare$

The announced improvement of Theorem 3.1 is the following
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COROLLARY 3.4. The only topological 2-spheres which are spacelike surfaces
in $N_{p}^{3+p}(c)$ with non-zero spacelike parallel mean curvature vector are the totally
umbilical ones in $N^{3}(c)\subset N_{p}^{3+p}(c)$ .

4. Non-spacelike mean curvature and several remarks

Now we will consider that the mean curvature vector has another causal
character. First we give the following non-existence result.

PROPOSITION 4.1. Let $M^{n}$ be a compact pseudo-umbilical spacelike sub-
mamfold in $R_{q}^{n+p+1}$ with non-zero parallel mean curvature vector H. Then, $H$ is
spacelike.

PROOF. If $\langle H, H\rangle=0,$ $H\neq 0$ , then $A_{H}=0$ and (2.2) allows us to say that
$\nabla^{0}H=0$ , i.e. $H$ is a fixed vector in $R_{q}^{n+p+1}$ . On the other hand, compactness and
(2.6) give $\langle a,H\rangle=0$ for all $a\in R_{q}^{n+p+1}$ , which contradict $H\neq 0$ .

Assume next $\langle H, H\rangle<0$ and put $b=x+(1/\langle H, H\rangle)H$ . From (2.2) we
easily get $\nabla^{0}b=0$ , that is, $b$ is a fixed vector in $R_{q}^{n+p+1}$ . If we set $\mathscr{S}=x-b$ ,

then, from (2.6), it follows that $\Delta_{\mathscr{S}}=-\langle H, H\rangle n_{\mathscr{S}}$ . But last equality is
incompatible with the compactness of the submanifold. $\blacksquare$

REMARK 4.2. It is worth pointing out that no compact (connected)

spacelike submanifold $M^{n}$ with mean curvature vector $H$ , non-zero everywhere,
satisfies $\langle H,H\rangle\leq 0$ , in Lorentz-Minkowski space $L^{m}$ . This easily follows from
(2.6) which gives

$\int_{M}\langle a,H\rangle dV=0$ ,

for all vector $a\in L^{m}$ . Choose now a timelike vector $a\in L^{m}$ . At any point $p\in M^{n}$ ,

we have that $H_{p}$ is either lightlike or timelike, and in both cases $\langle a, H_{p}\rangle\neq 0$ .
Therefore either $\langle a,H\rangle<0$ everywhere or $\langle a,H\rangle>0$ everywhere too, which is
not possible from this integral formula. In particular, if a compact spacelike
submanifold of $L^{m}$ has non-zero parallel mean curvature vector, then it always
has spacelike mean curvature vector.

Although we have assumed compacteness on the submanifold in the
previous section to prove Theorem 3.1, we are able to change this assumption
by completeness whenever the ambient space be flat as shows the following
result.
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THEOREM 4.3. The only complete pseudo-umbilical spacelike submanifolds in
$R_{p}^{n+p+1}$ with non-zero spacelike parallel mean curvature vector are the round n-
spheres in $R^{n+1}\subset R_{p}^{n+p+1}$ .

PROOF. We put $d=x+(1/\langle H,H\rangle)H$ , where $x$ is the immersion of the
corresponding submanifold $M^{n}$ in $R_{p}^{n+p+1}$ . From (2.2) easily follows $\nabla^{0}d=0$ , i.e.
$d$ is a fixed vector in $R_{p}^{n+p+1}$ . Thus we have $\langle x-d,x-d\rangle=1/\langle H,H\rangle>0$ ,
which means that $M^{n}$ lies as a maximal submanifold in an $(n+p)$ -dimensional
pseudo-Euclidean sphere with index $p$ and curvature $\langle H, H\rangle$ . Using now
Theorem 1.1 in [9] we obtain that $x(M^{n})$ is an n-dimensional sphere of radius
$1/(\langle H, H\rangle)^{\iota/2}$ in $R^{n+1}$ . $\blacksquare$

REMARK 4.4. If we assume that the submanifold is compact in the previous
Theorem, then Proposition 4.1 can be claimed, and the assumption on the
causal character of $H$ can be omited. On the other hand, in [3], Theorem 3.1, it
has been proved that a complete maximal submanifold in $S_{q}^{n+p}(1),$ $1\leq q\leq p$ ,
such that its Ricci curvature is greather or equal to $n-1$ , is totally geodesic.
Thus, using this result, an analogous argument as in Theorem 4.3, permits us to
state:

The only complete pseudo-umbilical spacelike submanifolds in $R_{q}^{n+p+1}$ ,
$1\leq q\leq p$ , with non-zero spacelike parallel mean curvature vector and Ricci
curvature greather or equal to $\langle H,H\rangle(n-1)$ are the round n-spheres in
$R^{n+1}\subset R_{q}^{n+p+1}$ .

Recall that there is no compact maximal submanifold in $R_{s}^{m}$ . So, from
Lemma 3.3, Proposition 4.1 and Theorem 4.3, we get

COROLLARY 4.5. The only topological 2-spheres which are spacelike surfaces
in $R_{p}^{3+p}$ with parallel mean curvature vector are the round spheres in $R^{3}\subset R_{p}^{3+p}$ .

REMARK 4.6. As an application of Theorem 4.3 we have that the only 1-
type complete spacelike n-submanifolds in $R_{p}^{n+p+1}$ with non-zero spacelike mean
curvature vector, are the round n-spheres in $R^{n+1}$ . This easily follows taking into
account that every l-type submanifold in $R_{p}^{n+p+1}$ is pseudo-umbilical with
parallel mean curvature vector [4]. Taking into account Proposition 4.1 we
can also assert: the round n-spheres in $R^{n+1}$ are the on $ly$ l-type compact spacelike
n-submanifolds in $R_{p}^{n+p+1}$ .

Next we will examine the lightlike case of H. Proposition 4.1 says, in
particular, that, under this assumption, the ambient space must be non-flat.
Even more, we have the following result.
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PROPOSITION 4.7. There exists no compact spacelike submamfold which is
pseudo-umbilical and with lightlike parallel mean curvature vector in any pseudo-
Euclidean hyperbolic space $H_{s}^{m}$ .

PROOF. If $\langle H,H\rangle=0,$ $H\neq 0$ , then $A_{H}=0$ and therefore, it follows
$\nabla^{0}H=0$ , by using (2.2), i.e., $H$ is a fixed vector in $R_{s+1}^{m+1}$ . If $x$ represents the
corresponding immersion, we put $y=x+H$ . From (2.6) we have now $\Delta_{\mathscr{S}}=n_{\mathscr{S}}$ ,
where $n$ is the dimension of the submanifold, which contradicts the compactness
assumption. $\blacksquare$

Taking into account last results, in order to study the lightlike case of $H$ ,

we only have to consider as ambient space a pseudo-Euclidean sphere $S_{p}^{n+p+1}$ .
In the following example we construct an isometric immersion of $S^{n}$ in

$S_{1}^{n+2},$ $n\geq 2$ , with lightlike parallel mean curvature vector, which is pseudo-
umbilical and totally umbilical.

EXAMPLE 4.8. Let us consider the isometric immersion $x_{a}$ : $ S^{n}(1)\rightarrow$

$S_{1}^{n+2}(1)$ , $n\geq 2$ , defined by $x_{a}(u)=(a, u, a)$ , with $a\neq 0$ . Clearly $\xi_{1}=$

$(a^{2}+1)^{-1/2}$ ( $1,$ -au, 0) and $\xi_{2}=(a^{2}+1)^{-1/2}$ ( $a^{2}$ , au, $a^{2}+1$ ) are an orthonormal
frame of vector fields normal to $S^{n}(1)$ in $S_{1}^{n+2}(1)$ , with $A_{\xi_{1}}=-A_{\xi_{2}}=$

$a(a^{2}+1)^{-1/2}I_{n},$ $I_{n}$ being the identity transformation. Thus, its mean curvature
vector $H=a(a^{2}+1)^{-1/2}(\xi_{1}+\xi_{2})$ is lightlike, parallel and umbilical, and, of
course, $x_{a}$ is totally umbilical.

The following proposition can be viewed as a uniqueness result conceming
previous examples.

PROPOSITION 4.9. Let $x:M^{n}\rightarrow S_{p}^{n+p+1}$ be a compact spacelike submamfold
in a pseudo-Euclidean sphere $S_{p}^{n+p+1}$ . If $M^{n}$ is pseudo-umbilical with lightlike
parallel mean curvature vector then it is totally umbilical and $x$ coincides, up to a
rigid motion, with $jox_{a}$ , for some $a\neq 0$ , where $j$ is a totally geodesic embedding

of $S_{1}^{n+2}$ in $S_{p}^{n+p+1}$ .

PROOF. Using again (2.10) we deduce that

$\int_{M}\{T(a^{T}, a^{T})+u_{a}\}dV=0$ .

Since $H$ is lightlike, we can choose a local frame of normal vector fields
$\{\eta_{1}, \eta_{2}, \xi_{1}, \ldots, \xi_{p-1}\}$ such that $\langle\eta_{1}, \eta_{1}\rangle=\langle\eta_{2}, \eta_{2}\rangle=0,$ $\langle\eta_{1}, \eta_{2}\rangle=1,$ $\langle\xi_{j}, \xi_{k}\rangle=\delta_{jk}$ ,
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$\langle\eta_{i}, \xi_{j}\rangle=0,$ $i=1,2;1\leq j,$ $k\leq p-1$ , and $\eta_{1}=H$ . Using now that $\eta_{1}$ is an
umbilical lightlike direction, we obtain from (2.11) that

$ T(a^{T}, a^{T})=-\sum_{i=1}^{n}\langle\sigma(a^{T}, e_{i}), \sigma(a^{T}, e_{i})\rangle$

$=-\sum_{i=1}^{n}2\langle A_{\eta_{1}}a^{T}, e_{i}\rangle\langle A_{\eta_{2}}a^{T}, e_{i}\rangle+\sum_{k=1}^{p-1}|A_{\xi_{k}}a^{T}|^{2}$

$=\sum_{k=1}^{p-1}|\Lambda_{\xi_{k}}a^{T}|^{2}\geq 0$ ,

and reasoning as in Theorem 3.1 we deduce that $M^{n}$ is totally umbilical in
$S_{p}^{n+p+1}$ . Moreover, being $\langle H, H\rangle=0,$ $H\neq 0$ , we have $\nabla^{0}H=0$ . Thus, $H$ is a
vector in $R_{p}^{n+p+2}$ and $\langle x,H\rangle$ is constant on $M^{n}$ , which says that $x(M^{n})$ is
contained in a degenerate hyperplane $\pi$ of $R_{p}^{n+p+2}$ . Now take a rigid motion $\Phi$ of
$S_{p}^{n+p+1}$ such that $\Phi$ (contemplated as a rigid motion of $R_{p}^{n+p+2}$ ) carries $H$ to
$(1,0, \ldots, 0,1)\in R_{p}^{n+p+2}$ , and hence $\pi$ onto the hyperplane $x_{1}=x_{n+p+2}$ (in the
natural coordinates of $R_{p}^{n+p+2}$ ). It follows that $\Phi ox$ is also a totally umbilical
immersion with mean curvature $\Phi(H)$ . Now, if $p:R_{p}^{n+p+2}\rightarrow R_{p-1}^{n+p}$ is the pro-
jection onto the coordinates $(x_{2}, \ldots,x_{n+p+1})$ then $y=p\circ\Phi ox$ is an isometric
immersion of $M^{n}$ in $S_{p-1}^{n+p-1}$ , which is easily showed to be totally geodesic, and
this concludes the proof. $\blacksquare$

The following example shows us that when the mean curvature vector is
timelike, the submanifold is not necessarily totally umbilical and the codi-
mension cannot be reduced.

EXAMPLE 4.10. Let $M^{2}$ be any non-totally geodesic compact minimal
surface in a sphere $S^{3}(k)$ , of curvature $k,$ $0<k<1$ , and let us consider $S^{3}(k)$ as
a totally umbilical hypersurface in $S_{1}^{4}(1)$ . It is easy to see that $M^{2}$ is pseudo-
umbilical with timelike parallel mean curvature vector, but, clearly, it is not
totally umbilical.
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