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\S 1. Introduction

The concept of ideal boundary of Hadamard manifolds was first introduced by
Eberlein and O’Neill [3], and then their Tits metrics were defined by Gromov [2]

in the following manner.
Let $M$ be a Hadamard manifold, that is, a simply connected complete

Riemannian manifold of nonpositive curvature. In what follows, geodesics are
always assumed to be parametrized by arc length. Two geodesic rays
$\gamma_{1},$

$\gamma_{2}:[0, \infty$ ) $\rightarrow M$ are said to be asymptotic if the distance function
$t\rightarrow d_{M}(\gamma_{1}(t), \gamma_{2}(t))$ is bounded from above for all $t\geq 0$ . Then the ideal boundary
$M(\infty)$ of $M$ is defined to be the set of all asymptotic classes of geodesic rays in
$M$ . For $z_{1},$ $z_{2}\in M(\infty)$ and $p\in M$ , let $\gamma_{1},$ $\gamma_{2}$ be rays from $p$ to $z_{1},$ $z_{2}$ . The function
$t\rightarrow d(\gamma_{1}(t), \gamma_{2}(t))/t$ is then monotone non-decreasing and is bounded from above
by 2. Thus we can define a metric 1 on $M(\infty)$ by

$l(z_{I}, z_{2}):=\lim_{t\rightarrow\infty}\frac{d(\gamma_{1}(t),\gamma_{2}(t))}{t}$ .

It is easy to see that the definition of 1 is independent of the choice of $p$ and that $l$

is indeed a metric on $M(\infty)$ . The Tits metric $Td(\cdot,\cdot)$ is then the interior metric $l_{j}$

induced from this metric.
Subsequently, the concept of ideal boundary was also defined for other classes

of Riemannian manifolds in a similar fashion. Among them, Kasue [5] defined it
on asymptotically nonnegatively curved manifolds, and Shioya [8], [9] on
complete open surfaces admitting total curvature.

On the other hand, we know the concepts of rough isometry and Hausdorff
approximation between two metric spaces, which preserve certain asymptotic
properties, in the following way (cf. Kanai [4]).
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Let $X$ and $Y$ be metric spaces. A map $\phi:X\rightarrow Y$ (not necessarily continuous)

is said to be an $(\alpha,\Delta)$ -rough isometry for some constants $\alpha\geqq 1$ and $\Delta\geqq 0$ if $\phi$

satisfies the following two conditions:

(1) $B_{\triangle}(\phi(X)):=\{y\in Y|d(y,\phi(X))\leqq\Delta\}=Y$ ,

(2) $\frac{1}{\alpha}d_{X}(x_{1},x_{2})-\Delta\leqq d_{Y}(\phi(x_{I}),\phi(x_{2}))\leqq\alpha\cdot d_{\chi}(x_{1},x_{2})+\Delta$ ,

for all $x_{1},x_{2}\in X$ . If $\alpha=1$ in particular, we call $\phi$ a $\Delta$ -Hausdorff approximation.
It is then an interesting problem to study relationships between Hausdorff

approximations and ideal boundaries. Recently, in this direction, Kubo [6] and the
author [7] prove the following result.

Let $M,$ $N$ be either Hadamard manifolds, asymptotically nonnegatively curved
manifolds or complete open surfaces admitting total curvature. Assume that their
ideal boundaries are compact with respect to the Tits-topology. If there exists a
Hausdorff approximation between $M$ and $N$ , then their ideal boundaries are
isometric with respect to the Tits metric.

In this paper, we shall be concerned with the same problem in the case where
given ideal boundaries are noncompact. Our first object is to prove the following
theorem, which gives an extension of Theorem A in [7].

THEOREM 1. If there exists a Hausdorff approximation between two

Hadamard manifolds, then their ideal boundaries are isometric with respect to the
Tits metric.

It should be remarked that recently another definition of ideal boundaries of
complete metric spaces is given by Adachi [1], which coincides with $M(\infty)$ when
$M$ is a Hadamard manifold. Then he proves the same result as Theorem 1 with
respect to a metric $d_{\infty}$ equivalent to 1: $1/2\leqq d_{\infty}\leqq l$ .

It will be also remarkable that it is difficult to construct a map between ideal
boundaries from a rough isometry which is not a Hausdorff approximation.

In general the converse is not true; for two Hadamard manifolds whose ideal
boundaries are isometric, they need not be roughly isometric. Our second object is
to consider the converse problem more precisely. Namely we shall investigate the
converse problem under some additional condition (E), which is concerned with
the expanding growth rate and defined precisely in Section 3. In fact, we prove
the following

THEOREM 2. Let $M,$ $N$ be Hadamard manifolds satisfying the condition $(E)$ .
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If ( $M(\infty)$ , Td) is isometric to ( $N(\infty)$ , Td), then for any $\epsilon>0$ , there exists a
$(1+\epsilon, T_{\epsilon})$ -rough isometry between $M$ and $N$ , where $T_{\epsilon}$ is a constant depending on
$\mathcal{E}$ .

We here note that there is an example of a pair of two Hadamard manifolds
satisfying the condition (E) but no Hausdorff approximation exists between them
(see [7]).

The author would like to express her thanks to Prof. K. Hatsuse and Dr. T.
Adachi for their suggestions.

\S 2. Proof of Theorem 1

In this section, we shall prove Theorem 1. First the following lemma
conceming triangles in a Euclidean plane is proved.

LEMMA 1. For a triangle $\Delta(p,q, r)$ in $R^{2}$ , let $\alpha,\beta$ and $\gamma$ be the lengths of
the opposite sides of $p,$ $q$ and $r$ , respectively. If there is a constant $c\geqq 0$

satisfying $\alpha+\beta-\gamma\leqq c$ , then the following inequalities hold:

(1) $\cos$ $lrpq\geqq 1-\frac{c}{\beta}$ ,

(2) $h\leqq\sqrt{2\beta c}$ ,

where $h$ denotes the distance between $r$ and the foot of a perpendicular from $r$ to

the opposite side.

PROOF. Let $\theta_{\rho}=\angle rpq$ and $\theta_{q}=\angle pqr$ . From the assumption, we have

$\alpha+\beta\leqq\gamma+c$

$=\beta\cos\theta_{\rho}+\alpha\cos\theta_{q}+c$

$\leqq\beta\cos\theta_{\rho}+\alpha+c$ ,

which gives the first inequality.
Since $h=\beta\sin\theta,,$ $=\beta\sqrt{1-cos\prime\theta}$ , the first inequality implies the second one

in the case that $\beta\geqq c$ . If not, it is clear. $\blacksquare$

Now we are going to prove Theorem 1.

PROOF $0F$ THEOREM 1. Assume that a $\Delta$ -Hausdorff approximation $f$ is given.

First we define a map Of: $M(\infty)\rightarrow N(\infty)$ induced from $f$.



428 Fumiko $0HTSUKA$

Let $p$ be an arbitrarily fixed point in $M$ . For any $z\in M(\infty)$ , there is a unique
ray $\gamma$ emanating from $p$ to $z$ . Denote by $\tilde{\gamma}(t)$ the curve $f(\gamma(t))$ and let $\tilde{\gamma}_{l}$ be a
geodesic segment from $\tilde{\gamma}(0)=f(p)$ to $\tilde{\gamma}(r)$ . Then $\tilde{\gamma}$ , converges to a ray $\tilde{\gamma}_{\infty}$ as $t$

tends to $\infty$ .
In fact, look at the geodesic triangle $\Delta(\tilde{\gamma}(0),\tilde{\gamma}(s),\tilde{\gamma}(\iota))$ for $s>t>0$ . Then,

conceming the lengths of the sides, we have

$|d(\tilde{\gamma}(0),\tilde{\gamma}(t))+d(\tilde{\gamma}(r),\tilde{\gamma}(s))-d(\tilde{\gamma}(O),\tilde{\gamma}(s))|$

$\leqq|d(\tilde{\gamma}(0),\tilde{\gamma}(t))-r|+|d(\tilde{\gamma}(t),\tilde{\gamma}(s))-(s-t)|+|d(\tilde{\gamma}(0),\tilde{\gamma}(s))-s|$

$\leqq 3\Delta$ .

Hence, applying the lemma above and Toponogov’s comparison Theorem, it holds
that for $ t>\Delta$

$\cos\angle(\tilde{\gamma}_{t}^{\prime}(0),\tilde{\gamma};(0))\geqq 1-\frac{3\Delta}{d(\tilde{\gamma}(0),\tilde{\gamma}(t))}\geqq 1-\frac{3\Delta}{t-\Delta}$ .

Therefore we have $\lim_{t\rightarrow\infty}\angle(\tilde{\gamma}_{t}^{\prime}(0),\tilde{\gamma}_{l}^{\prime}(0))=0$ , proving the assertion.
Now define a map Of: $M(\infty)\rightarrow N(\infty)$ by

$ff(z)=\tilde{\gamma}_{\infty}(\infty)$ .

Note that this definition is independent of the choice of the reference point $p$ .
We will prove that ff is surjective and is an isometry. First we prove the

surjectivity. For any $w\in N(\infty)$ , let $\sigma$ be a ray emanating from $q:=f(p)$ to $w$ .
Then for any $t\geqq 0$ there is a point $x,$

$\in M$ with $ d(f(x_{f}),\sigma(r))\leqq\Delta$ . Then it is
easily checked that for $s>t>0$

$|d(p,x, )+d(x,,x_{t})-d(p,x_{\iota})|\leqq 7\Delta$ ,

which implies, similarly to the argument above, that the geodesic segment from $p$

to $x_{t}$ converges to a ray $\gamma$ as $ t\rightarrow\infty$ . It suffices to show that the image of the
asymptotic class of $\gamma$ is $w=\sigma(\infty)$ .

For any $x_{l}$ there exists $t^{\prime}\geqq 0$ satisfying $d(x, , \gamma(t^{\prime}))=d(x,,\gamma)$ . Then, applying
Lemma 1 and Toponogov’s comparison Theorem for a geodesic triangle
$\Delta(p,x_{t},x, )(s>t)$ , we have that the distance between $x_{t}$ and the ray emanating
from $p$ through $x_{\iota}$ is not greater than $\sqrt{14\Delta l_{l}}$ , where $l_{l};=d(p,x_{l})$ . Since these
rays converge to the ray $\gamma$ , it follows

$d(x,,\gamma(t^{\prime}))\leqq\sqrt{14\Delta l}$ .

Note that $ t^{\prime}\leqq l,\leqq t+2\Delta$ . Hence

$ d(\sigma(t),f(\gamma(t^{\prime})))\leqq d(\sigma(t),f(x,))+d(f(x, ),f(\gamma(t^{\prime})))\leqq\sqrt{14\Delta(t+2\Delta)}+2\Delta$ .
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Let $\hat{\sigma}$ be a ray emanating from $q$ determined by $f(\gamma)$ , namely $\hat{\sigma}(\infty)=ff(\gamma(\infty))$ .
Then it also holds that

$d(f(\gamma(t^{\prime})),\hat{\sigma})\leqq\sqrt{6\Delta m_{t}}$ ,

where $ m_{f}:=d(q,f(\gamma(t^{\prime})))\leqq t^{\prime}+\Delta\leqq t+3\Delta$ . Therefore we have

$d(\sigma(t),\hat{\sigma})\leqq d(\sigma(t),f(\gamma(t^{\prime})))+d(f(\gamma(t^{\prime})),\hat{\sigma})$

$\leqq\sqrt{14\Delta(t+2\Delta)}+\sqrt{6\Delta(t+3\Delta)}+2\Delta$ .

Hence

$\lim_{t\rightarrow\infty}\frac{d(\sigma(t),\hat{\sigma})}{t}=0$ ,

which means that $\sigma\equiv\hat{\sigma}$ , that is, $w=\hat{\sigma}(\infty)$ .
It remains to show that Of is an isometry. Let $z_{1},z_{2}\in M(\infty)$ be arbitrarily

fixed points. Denote by $\gamma_{j}$ a ray emanating from $p$ to $z_{j}$ and by $\sigma_{j}$ that from $q$ to
$ff(z_{j})(i=1,2)$ , respectively. Then, for any $s\geqq 0$ ,

$|d_{N}(\sigma_{1}(s),\sigma_{2}(s))-d_{M}(\gamma_{1}(s),\gamma_{2}(s))|$

$\leqq|d_{N}(\sigma_{1}(s),\sigma_{2}(s))-d_{N}(f(\gamma_{1}(s),f(\gamma_{2}(s)))|$

$+|d_{N}(f(\gamma_{1}(s)),f(\gamma_{2}(s)))-d_{M}(\gamma_{1}(s),\gamma_{2}(s))|$

$\leqq d_{N}(\sigma_{1}(s), f(\gamma_{1}(s)))+d_{N}(\sigma_{2}(s),f(\gamma_{2}(s)))+\Delta$

$\leqq\sum_{i--1}^{2}\{d_{N}(\sigma_{j}(s),\sigma_{j}(s_{i}^{\prime}))+d_{N}(\sigma_{i}(s_{i}^{\prime}),f(\gamma_{j}(s)))\}+\Delta$

$\leqq 3\Delta+4\sqrt{6\Delta(s+\Delta)}$ ,

where $\sigma_{j}(s_{i}^{\prime})$ is the foot of a perpendicular from $f(\gamma_{j}(s))$ to a ray $\sigma_{i}$ . Note that
$ s-\Delta-\sqrt{6\Delta(s+\Delta)}\leqq s_{i}^{\prime}\leqq s+\Delta$ . Hence

$\lim_{\backslash \rightarrow\infty}|\frac{d_{N}(\sigma_{1}(s),\sigma_{2}(s))}{s}-\frac{d_{M}(\gamma_{1}(s),\gamma_{2}(s))}{s}|=0$ ,

which means that $l(\sigma_{1}(\infty),\sigma_{2}(\infty))=l(\gamma_{1}(\infty),\gamma_{2}(\infty))$ , hence $Td(\sigma_{1}(\infty),\sigma_{2}(\infty))=Td$

$(\gamma_{1}(\infty),\gamma_{2}(\infty))$ . $\blacksquare$

\S 3. Proof of Theorem 2

In this section, we shall introduce the condition (E) and prove Theorem 2.
Let $M$ be a Hadamard manifold and $p\in M$ be an arbitrarily fixed point. From

now on, we denote a ray emanating from $p\in M$ to $z\in M(\infty)$ by $\gamma\backslash ’$ . For
$z_{1},z_{2}\in M(\infty),z_{1}\neq z_{2}$ and $t>0$ , we define two continuous maps $a_{t}(z_{1},z_{2})$ and $a_{l}$

respectively by
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$a,(z_{1}, z_{2}):=\frac{d(\gamma-.(t),,\gamma_{-}\underline,(t))\backslash 1\backslash }{rl(z_{1}z_{2})}$ ,

$a_{l}:=$ $\inf_{-,\backslash 1\backslash \underline{1}\in M(\infty)}a_{l}(z_{1}, z_{2})-\neq$ .

Since $M$ is a Hadamard manifold, it holds that $0<a_{l}(z_{1},z_{2})\leqq 1$ . Furthermore,
$a_{l}(z_{1},z_{2})$ is monotone non-decreasing with respect to variable $t$ and converges to 1
as $ t\rightarrow\infty$ . It then follows that $0\leqq a_{l}\leqq 1$ and $a_{l}$ is monotone non-decreasing.
Hence there is a constant $a:=\lim_{t\rightarrow\infty}a_{t}$ with $0\leqq a\leqq 1$ . Note that this constant $a$

is independent of the choice of $p$ , namely, $a$ is a scalar expressing some global
property of $M$ and we call $a$ the E-constant.

DEFINITION. If the E-constant $a$ is equal to 1, we say that $M$ satisfies the
condition $(E)$ .

The condition (E) implies that the expanding growth rate of any radial
direction is similar each other to some degree. For example, if $M$ is a Euclidean
space then $a=1$ , and if $M$ is a Hyperbolic space then $a=0$ . In the case that
$M=R\times H^{n}$ , it also follows that $a=0$ , but with respect to the points at infinity
$S,N\in R(\infty)$ we have $a_{t}(S,z)=a,(N,z)=1$ for any $t>0$ and $z\in M(\infty)$ . The next
proposition is useful to check the property conceming E-constant, which implies
that if the sphere topology of an ideal boundary does not coincide with the Tits-
topology, then the E-constant is equal to $0$ .

PROPOSITION. Let $M$ be a Hadamard manifold with a positive E-constant.
Then the ideal boundary ( $M(\infty)$ , Td) of $M$ is compact.

PROOF. For a fixed point $p\in M$ , let $S$, be a geodesic sphere around $p$ of
radius $t$ . We define the natural bijection $\varphi,$ $:(S_{l},d_{M}/r)\rightarrow(M(\infty),l)$ by $\varphi_{l}(\gamma(t)$

$):=\gamma(\infty)$ , where $\gamma$ is a ray emanating from $p$ . Let $a$ be the positive E-constant of
$M$ . Then there is a large number $T$ such that for any $t>T$ and for any two
distinct points $z_{1},$ $z_{2}\in M(\infty)$

$1\geqq\frac{d_{M}(\gamma_{-}(t),\gamma_{-}\underline,(t))\backslash 1_{\backslash }}{t\cdot l(z_{1},z_{\underline{?}})}\geqq\frac{a}{2}$ .

That is, for any points $x,y\in S,$ , it holds that $l(\varphi,(x),\varphi_{l}(y))\geqq d_{M}(x,y)/t\geqq(a/2)l$

$(\varphi, (x),\varphi_{1}(y))$ . This means that $\varphi$, is a bi-Lipschitz homeomorphism. Hence the
compactness of $S_{l}$ implies that so are $(M(\infty),l)$ and ( $M(\infty)$ , Td). $\blacksquare$

Now we shall prepare some notations and a lemma, and prove Theorem 2.
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For any distinct points $z_{1},$ $z_{2}\in M(\infty)$ and $s,t\geqq 0$ , we define

$\theta_{7^{\neg},\backslash 1\backslash 2}$

$;=2\arcsin\frac{l(z_{1},z_{2})}{2}$ ,

$\theta_{-,\backslash \backslash -}(s,t):=\arccos(\frac{s^{2}+t^{2}-d(\gamma_{-}(s),\gamma_{2}(t))^{2}\backslash 1}{2st})$ ,

with a condition that $ 0\leqq\theta\leqq\pi$ . It is clear that $\lim_{t,l\rightarrow\infty}\theta_{-,\backslash \backslash -}(s,t)=\theta_{-,\backslash \neg}$ and, by

Toponogov’s comparison theorem, that $\theta_{-,\backslash 1\backslash -}\underline{\gamma}(s_{1},t_{1})\leqq\theta_{-,\backslash 1\backslash -}\underline{\urcorner}(s_{2},t_{2})$ provided $s_{1}\leqq s_{2}$

and $t_{1}\leqq t_{2}$ .

LEMMA 2. Let $M$ be a Hadamard manifold satisfying the condition $(E)$ .
Then for any small $\epsilon>0$ there exists a large number $T_{\epsilon}$ such that for $s,t>T_{\epsilon}$ and
for two distinct points $z_{1},$ $z_{2}\in M(\infty)$

$\frac{d(\gamma_{z_{1}}(s),\gamma_{z_{2}}(t))}{d_{\infty}((s,z_{1}),(t,z_{2}))}>1-\epsilon$ ,

where $d_{\infty}((s,z_{1}),(t,z_{2})):=\sqrt{s^{2}+t^{2}-}2st\cos\theta_{-,\backslash 1\backslash -}\underline{7}$

PROOF. Since $M$ satisfies the condition (E), for any $\epsilon>0$ there is a large
number $T_{\epsilon}$ such that for any $t>T_{\epsilon}$ and for two distinct points $z_{1},$ $z_{2}\in M(\infty)$

$\frac{d(\gamma_{\sim 1}(t),\gamma_{2}(t))\sim}{t\prime\cdot l(z_{1},z_{2})}>1-\epsilon$ .

Furthermore, since $M$ is a Hadamard manifold, for $s\geqq t>T_{\epsilon}$ and $z_{1}\neq z_{2}\in M(\infty)$

we have

$\underline{1-\cos\theta_{z_{1}z_{2}}(s,t)}_{\geqq}\underline{1-\cos\theta_{z_{1}z_{2}}(t,t)}$

l-cos $\theta_{z_{1^{7}}\backslash 2}$ l-cos $\theta_{\check{c}1\wedge 2}$

$=(\frac{d(\gamma_{z_{1}}.(t),\gamma_{z_{2}}(t))}{tl(z_{1},z_{2})}I^{2}$

$>(1-\epsilon)^{2}$

Hence it follows that $\cos\theta_{\backslash ^{7}1}z_{2}(s,t)-(1-\epsilon)^{2}\cos\theta_{z_{1^{7}}\backslash 2}<1-(1-\epsilon)^{2}$ Therefore we
have

$d^{2}(\gamma_{-}(s),\gamma_{z_{2}}(t))-(1-\epsilon)^{2}d_{\infty}^{2}((s,z_{1}),(t,z_{2}))\backslash |$

$=(1-(1-\epsilon)^{2})(s^{2}+t^{2})-2st\{\cos\theta_{\tau,\backslash 1\overline{<}2}(s,t)-(1-\epsilon)^{2}\cos\theta_{\sim 1\backslash 2}-,\}$

$>(1-(1-\epsilon)^{2})(s-t)^{2}\geqq 0$ ,
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which completes the proof. $\blacksquare$

Now we are in a position to prove Theorem 2.

PROOF $0F$ THEOREM 2. Let $\psi$ be an isometry from $M(\infty)$ to $N(\infty)$ . Then we
define a map $f:M\rightarrow N$ as follows.

Fix two points $p\in M$ and $q\in N$ arbitrarily. For $x\in M(x\neq p)$ , let $t=d(p,x)$

and let $z\in M(\infty)$ be the asymptotic class of a ray emanating from $p$ through $x$ .
Then we define

$f(x):=\gamma_{\psi(\approx)}(t)$ ,

where $\gamma_{\psi()}\sim 7$ denotes a ray emanating from $q$ to $\psi(z)$ , and $f(p):=q$ .
Now we shall see that $f$ is a desired rough isometry. More precisely, for any

sufficient small $\epsilon>0$ there are constants $T_{\epsilon}^{M}>0$ such that $(1-\epsilon)<a_{l}^{M}(z_{1}, z_{2})\leqq 1$

for any $t>T_{\epsilon}^{M}$ and $z_{1}\neq z_{2}\in M(\infty)$ , and $T_{\epsilon}^{N}>0$ satisfying the same condition for
$N$ . Let $T_{\epsilon}:=\max\{T_{\epsilon}^{M}, T_{\epsilon}^{N}\}$ . Then $f$ is a $((1-\epsilon)^{-1}4T_{\epsilon})$ -rough isometry.

In fact, since $f$ is surjective, it suffices to check the following inequality:

$(*)$ $(1-\epsilon)d(x,y)-4T_{\epsilon}\leqq d(f(x),f(y))\leqq\frac{1}{(1-\epsilon)}d(x,y)+4T_{\epsilon}$ ,

for all $x,y\in M$ .
We express $x,y\in M$ as $x=\gamma_{I}(s),y=\gamma_{n}(t)\in M(v, w\in S_{\rho},s,t\geqq 0)$ , where $S_{\rho}$

denotes a unit tangent sphere at $p$ . If $v=w$ then $d(x,y)=d(f(x),f(y))=|s-t|$ ,
namely the inequality $(*)$ holds. So we suppose $v\neq w$ . In the case $\max(s,t)\leqq T_{\epsilon}$ ,

it holds that

$d(x,y)-2T_{\epsilon}\leqq 0\leqq d(f(x),f(y))\leqq 2T_{\epsilon}$ .

Next we consider the case $\min(s,t)\leqq T_{\epsilon}<\max(s,t)$ . We may suppose $t\leqq T_{\epsilon}<s$ .
Let $x^{\prime}:=\gamma_{t}(t)$ . It is then verified that

$d(f(x),f(y))\leqq d(f(x),f(x^{\prime}))+d(f(x^{\prime}),f(y))\leqq d(x,y)+2T_{\epsilon}$ ,

and conversely

$d(f(x),f(y))\geqq d(f(x),f(x^{\prime}))-d(f(x^{\prime}),f(y))\geqq d(x,y)-4T_{\epsilon}$ .

In the case $T_{\epsilon}<\min(s,t)$ , let $z_{1}=\gamma|(\infty)$ and $z_{2}=\gamma_{b}(\infty)$ . By Lemma 2 it holds

$\frac{d(f(x),f(y))}{d(x,y)}=\frac{d(\gamma_{\psi t\sim|}-)(s),\gamma_{\psi t_{\sim 2}^{-)}}(t))}{d(\gamma_{-}(s),\gamma_{-}(t)),\backslash 1\backslash 2}$

$\leqq\frac{d_{\infty}((s,\psi(z_{1})),(r,\psi(z_{2})))}{d(\gamma_{-}(s),\gamma_{-}\underline{\urcorner}(t))\backslash 1\backslash }$
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$=\frac{d_{\infty}((s,z_{1}),(t,z_{2}))}{d(\gamma(s),\gamma_{-}\underline{0}(t))\backslash 1\backslash }<\frac{1}{1-\epsilon}$ ,

and

$\frac{d(f(x),f(y))}{d(x,y)}\geqq\frac{d(\gamma_{\psi(-)}(s),\gamma_{\psi(-)}(t))\backslash 1\backslash 2}{d_{\infty}((s,z_{1}),(t,z_{2}))}$

$=\frac{d(\gamma_{\psi()}-(s),\gamma_{\psi t_{\backslash 2}^{-})}(r))\backslash 1}{d_{\infty}((s,\psi(z_{1})),(t,\psi(z_{2})))}>1-\epsilon$ ,

which completes the proof. $\blacksquare$
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