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REGULAR RETRACTIONS ONTO FINITE
DIMENSIONAL CONVEX SETS AND

THE AR-PROPERTY FOR
ROBERTS SPACES

By

Nguyen To NHU, Nguyen NHUY and Tran Van AN

Abstract. It is proved that if $X$ is an n-dimensional closed convex
subset in a linear metric space $E$ , then there is a retraction $r:E\rightarrow X$

such that $\Vert x-r(x)\Vert\leq 2(n+1)\Vert x-X\Vert$ for every $x\in E$ . This fact is

applied to study the AR-property in linear metric spaces. We

identify a class of Roberts spaces with the AR-property. We also

give a direct proof that for every $p\in[0,1$ ), $L_{\rho}$ is a needle point
space.

1. Introduction.

Following Roberts [R1] [R2], let us say that a non-zero point a of a linear

metric space $X$ is a needle point iff for every $\epsilon>0$ , there exists a finite set
$A(a,\epsilon)=\{a_{1},\cdots,a_{m}\}$ , satisfying the following conditions:

(1) 1 $ a_{i}\Vert<\epsilon$ for every $i=1,\cdots,m$ ;

(2) for every $b\in A^{+}(a,\epsilon)$ , there is an $\alpha\in[0,1]$ such that $\Vert b-cw\Vert<\epsilon$ where
$A^{+}=conv(Au\{\theta\})$ ;

(3) $a=\frac{1}{m}(a_{1}+\cdots+a_{m})$ .

We say that $X$ is a needle point space iff $X$ is complete separable linear

metric space in which every non-zero point is a needle point. Roberts [R2] has

shown that for every $p\in[0,1$ ) the space $L_{\rho}$ is a needle point space. We recall

that the spaces $L_{p},$ $0\leq p<1$ , are defined by

$L_{p}=\{f$ : $[0,1]\rightarrow R;\int_{0}^{1}|f(t)|^{p}dt<\infty\}$ for $0<p<1$ ,

and
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$L_{0}=\{f$ : $[0,1]\rightarrow R;\int_{0}^{1}\frac{|f(r)|}{|+|f(t)|}dr<\infty\}$ .

Other examples of needle point spaces were given in [R1] [KP] [KPR].

Roberts [R2], see also [KPR], showed that if $X$ is a needle point space then
for any summable sequence $s=\{s_{n}\}$ of positive numbers there is a compact
convex set $C(s)$ without any extreme points. Therefore, the classical theorem of
Krein and Milman [KM] fails to be true for non-locally convex linear metric
spaces. We shall describe Roberts’ method of constructing $C(s)$ .

Let $s=\{s_{n}\}$ be a summable sequence of positive numbers. Let $a_{0}$ be a non-
zero point of $X$ . Using the needle point space property of $X$ , we choose by
induction, a sequence $\{A_{n}(s)\}$ of finite subsets of $X$ , where $A_{\{}(s)=\{a_{0}\}$ , with the
following properties:

(4) $\Vert a\Vert<\epsilon_{n}$ for every $a\in A_{n}(s)$ ; where
(5) $\epsilon_{n}=[m(n-1)]^{-1}s_{n}$ , and $m(n)=cardA_{n}(s)$ ;
(6) If $A_{n}(s)=\{a_{1}^{n},\cdots,a_{m(n)}^{n}\}$ then $A_{n+/}(s)$ is defined by the formula

$A_{n+l}(s)=\bigcup_{i=1}^{m(n)}A(a_{i}^{n},\epsilon_{n+1})$ ,

where $A(a_{i}^{n},\epsilon_{n+1}),$ $i=1,\cdots,m(n)$ , are determined by the needle point property of
$a_{i}^{n}$ , see (1)$-(3)$ .

We define

(7) $C(s)=\overline{\bigcup_{l=1}^{\infty}\hat{A}_{l}}(s)\subset X$ ; where $\hat{A}=conv(A^{+}\cup(-A^{+}))$ , see (2).

Roberts showed in [R2] that $C(s)$ is a compact convex set with no extreme
points. We call $C(s)$ a Roberts space.

In [NT1], see also [N1], it was shown that every needle point space contains
a compact convex AR-set without any extreme points. However, the results of
[NT1] and [N1] do not indicate which of Roberts spaces are AR. So far, it is
shown that all Roberts spaces have the fixed point property, see [NT2].
Nevertheless, the AR-property for Roberts spaces is still being questioned.
Several readers of the papers [NT1] and [N1] have asked the authors to classify
Roberts spaces with the AR-property: This would be very important for further
study of the AR-property for Roberts spaces. In this note, we identify a class of
Roberts spaces with the AR-property. Namely, we shall show that, instead of
$\epsilon_{n}=(m(n-1))^{-1}s_{l}$ , see (5), we take $\epsilon_{n}=(m(n-1))^{-2}s_{n}$ , then the resulting Roberts
space $C^{*}(s)$ , defined by (7), is an AR.

NOTATION AND CONVENTIONS. By a linear metric space we mean a
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topological linear space $X$ which is metrizable. We equip $X$ with an F-norm $\Vert\cdot\Vert$

such that, see [Re],

$\Vert\lambda x\Vert\leq\Vert x\Vert$ for every $x\in X$ and $\lambda\in R$ with $|\lambda|\leq 1$ .

Let $A$ be a subset of a linear metric space $X$ . For $x\in X$ we write
$\Vert x-A\Vert=\inf\{\Vert x-y\Vert:y\in A\}$ ;

and for a$,b\in X$ , we write:

$[a,b]=\{(w+(1-\alpha)b:\alpha\in[0,1]\}$ .

2. Regular Retractions onto Finite Dimensional Convex Sets

In this section we establish the following fact which is an extension of [NT2,

Lemma 1].

$PROPOSlT10N1$ . Let $Xb^{e}$ an n-dimensional closed convex set in a linear
metric space E. Then there is a continuous retraction $r:E\rightarrow X$ such that

(8) $\Vert x-r(x)\Vert\leq 2(n+1)\Vert x-X\Vert$ for every $x\in E$ .

PROOF. Let $\{U_{s},a_{s}\}_{s\in S}$ denote a Dugundji system for $E\backslash X$ , that is a family
$\{U_{s},a_{s}\}_{s\in S}$ with the following properties, see [BP, P. 58],:

(i) $U_{s}\subset E\backslash X$ and $a_{t}\in X$ for every $s\in S$ ;
(ii) $\{U_{s}\}_{s\in S}$ is a locally finite open cover of $E\backslash X$ ;
(iii) 1 $ x-a_{s}\Vert\leq 2\Vert x-X\Vert$ for every $x\in U,$ .
Let $\{\lambda_{s}\}_{s\in S}$ be a locally finite partition of unity inscribed into $\{U_{s}\}_{\$\in S}$ . We

define $r;E\rightarrow X$ by Dugundji formula:

$r(x)=\left\{\begin{array}{l}X ifx\in X.\\\sum_{s\in S}\lambda_{t}(x)a_{s} ifx\in E\backslash X.\end{array}\right.$

Observe that the continuity of $r$ follows from (8). Let us verify (8). Denote
$A=\{a_{s} : s\in S\}$ . Then we have $ r(x)\in$ conv $A$ for every $x\in E\backslash X$ . Let $A(x)$

denote a subset of $A$ of smallest cardinality so that $ r(x)\in$ conv $A(x)$ . It is easy to
see that

(9) card $A(x)\leq k+1$ , where $ k=\dim$ span $A(x)$ .
In fact assume that card $A(x)\geq k+2$ . Since $\dim$ span $A(x)=k$ there exist

$a_{0},\cdots,a_{k}\in A(x)$ such that Int $ A_{k}\neq\emptyset$ , where $A_{k}=$ conv $A_{k}^{0},A_{k}^{0}=\{a_{0},\cdots,a_{k}\}$ and
Int $A$ denotes the interior of $A$ relative to the space $E(x)=spanA(x)$ .

Let $B_{k}^{0}=A(x)\backslash A_{k}^{0}$ and $B_{k}=convB_{k}^{0}$ . Since card $A_{k}^{0}=k+1<$ card $A(x)$ , we



284 Nguyen To NHU, Nguyen NHUY and Tran Van AN

have $r(x)\not\in A_{k}$ . Therefore there exist $a\in A_{A},$ $b\in B_{A}$ so that $r(x)\in[a,b]$ .
Since Int $ A_{k}\neq\emptyset$ and $r(x)\not\in A_{k}$ , there exists a face $S$ of the simplex $A_{k}$ such

that $[a,b]\cap S\neq\emptyset$ . Let $S=$ conv $S^{0}$ ,where $S^{0}\subset A_{k}^{0}$ and card $S^{0}<k+$ ]. Since
$r(x)\not\in A_{k}$ we have $r(x)\in conv(SuB_{\Lambda})=conv(S^{0}\cup B_{k}^{0})$ . Observe that

$S^{0}\cup B_{k}^{0}\subset A(x)$ and card $(S^{0}uB_{k}^{0})<card(A_{k}^{0}uB_{k}^{0})=cardA(x)$ .

This contradiction proves (9).

Let $A(x)=\{a_{0},\cdots,a_{k}\}$ . Then we have $r(x)=\sum_{i=0}^{k}\lambda_{j}a_{j}$ , where $a_{j}\in A(x),$ $i=0$ ,
1 and $\sum_{i=0}^{k}\lambda_{j}=1$ .
Then from (iii) we have

$\Vert r(x)-x\Vert\leq\Vert\sum_{i-- 0}^{k}\lambda_{j}a_{i}-x\Vert$

$\leq\sum_{i=0}^{k}\Vert\lambda_{j}(a_{j}-x)\Vert$

$\leq\sum_{i=0}^{k}\Vert a_{i}-x\Vert$

$\leq 2(k+1)\Vert x-X\Vert\leq 2(n+1)\Vert x-X\Vert$ .
The proposition is proved.
Now we are going to apply Proposition 1 to obtain several results on the AR-

property in linear metric spaces.
Following [N2], a convex set $X$ has the locally convex approximation

property, the LCAP, iff there exist a sequence of convex subsets $\{X_{n}\}$ of $X$ such
that each $X_{n}$ can be affinely embedded into a locally convex space and a sequence
of continuous maps $f_{n}$ : $X\rightarrow X_{n}$ such that for some summable sequence $\{s_{n}\}$ of
positive numbers we have

(LC) $\lim_{n\rightarrow\infty}\inf(s_{n})^{-1}\Vert x-f_{n}(x)\Vert=0$ for every $x\in X$ .

It was proved in [N2] that any convex set with LCAP is an AR.
In [N1] it was said that a convex set $X$ has the finite dimensional

approximation property, the FDAP, iff there exists a sequence of continuous maps
$\{f_{n}\}$ from $X$ into finite dimensional subsets $X_{n}$ of $X$ such that for some summable
sequence $\{s_{n}\}$ of positive numbers we have

(FD) $\lim_{n\rightarrow\infty}\inf(s_{n})^{-1}(1+\dim X_{n})\Vert x-f_{n}(x)\Vert=0$ for every $x\in X$ .

It was proved in [N1] that if a convex set $X$ has the FDAP then any convex
subset of $X$ is an AR.

From Proposition 1, we get the following result:
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COROLLARY 1. Let $X$ be a convex set in a linear metric space. Assume that
there exists a sequence of finite dimensional convex subsets {X.} of $X$ such that

for some summable sequence $\{s_{t}\}$ ofpositive numbers we have

(10) $\lim_{n\rightarrow\infty}\inf(s_{n})^{-1}(1+\dim X_{n})^{k}\Vert x-X_{n}\Vert=0$ for every $x\in X$ .

Then
(i) if $k=1$ then $X$ is an $AR$ ;
(ii) if $k=2$ then every convex subset of $X$ is an $AR$ .

PROOF. Since $X_{n},n\in N$ , are finite dimensional convex sets, we have $\dim$

$X_{n}=\dim\overline{X_{n}}$ , where $\overline{Y}$ denotes the closure of YinX. Therefore we may assume
that $X_{n}$ is closed in $X$ for every $n\in N$ . From Proposition 1, it follows that
condition (10) for $k=1$ implies that $X$ has the LCAP and for $k=2$ implies that $X$

has the FDAP.

QUESTION 1. Does condition (10) for $k=1$ imply that every convex subset
of $X$ is an AR?

3. The AR-Property for Roberts Spaces

Now we define $C^{*}(s)$ in the same way as $C(s)$ , see (7). The only difference
is that, instead of $\epsilon_{n}=(m(n-1))^{-1}s_{n}$ , see (5), we take $\epsilon_{n}=(m(n-1))^{-2}s_{n}$ . We
shall prove that the resulting Roberts space $C^{*}(s)$ , defined by (7), is an AR. First
we show:

CLAIM 1. $\Vert x-\hat{A}_{n}(s)\Vert<2\sum_{i=n}^{\infty}(m(i))^{-1}s_{j+1}$ for every $x\in C^{*}(s)$ and $n\in N$ .

PROOF. Let $A_{n}(s)=\{a_{1}^{n},\cdots,a_{m(n)}^{n}\}$ . Observe that for every $x\in A_{n+1}^{+}(s)$ there
exist $b_{j}\in A^{+}(a_{1}^{n},\epsilon_{n+1})$ and $\lambda_{l}\geq 0,i=1,\cdots,m(n)$ , with $\sum_{i=1}^{m(n)}\lambda_{j}\leq 1$ such that
$x=\Sigma_{i=1}^{m(n)}\lambda_{j}b_{j}$ , see (6).

By (2) for every $i=1,$ $\cdots,$ $m(n)$ there is an $\alpha_{i}\in[0,1]$ such that

$\Vert b_{j}-\alpha_{j}a_{i}^{n}\Vert<\epsilon_{n+1}=(m(n))^{-2}s_{n+1}$ .

Let $y=\sum_{j1}^{m_{=}(n)}\alpha_{j}\lambda_{j}a_{i}^{n}\in A_{n}^{+}(s)$ . Then we get

$\Vert x-y\Vert\leq\sum_{i=1}^{m(n)}\Vert b_{i}-\alpha_{j}a_{i}^{n}\Vert\leq m(n)\epsilon_{n+1}$

$=m(n)(m(n))^{-2}s_{n+1}=(m(n))^{-1}s_{n+1}$ .

Therefore
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$\Vert x-\mathcal{A}_{n^{+}}(s)\Vert\leq(m(n))^{-1}s_{n+1}$ for every $x\in A_{l+1}^{+}(s)$ .

It follows that

$\Vert x\in\hat{A}_{n}(s)\Vert\leq 2(m(n))^{-1}s_{n+1}$ for every $x\in\hat{A}_{n=1}(s)$ .

By induction we have

$\Vert x-\hat{A}_{n}(s)\Vert\leq 2\sum_{i=n}^{n+k}(m(i))^{-1}s_{i+1}$ for every $x\in\hat{A}_{n+k}(s)$ and $k\in N$

Consequently, the claim follows from the above inequality.

THEOREM 1. $C^{*}(s)$ is an $AR$ .

PROOF. We aim to verify condition (i) of Corollary 1. Observe that $\{m(n)\}$

is an increasing sequence. Therefore from Claim 1 we get
(11) $\Vert x-A_{n}(s)\Vert<2(m(n))^{-I}s_{n+1}$ for every $x\in C^{*}(s)$ and $n\in N$ ;

where $S_{n}=\sum_{i=n}^{\infty}s_{j}$ .
Since $\{s_{j}\}$ is summable, $S_{n}\rightarrow 0$ as $ n\rightarrow\infty$ . It follows that there exists a

sequence $\{n_{k}\}\subset N$ such that $S_{n}k^{-1}2^{-k}k$ for every $k\in N$ . Therefore from (11) we
get, for $x\in C^{*}(s)$ and $k\in N$

$\Vert x-\hat{A}_{n}k(s)\Vert<2(m(n_{k}))^{-1}S_{{}^{t}k}<2(m(n_{k}))^{-1}k^{-}2^{-k}$ .

It follows that

$(1+m(n_{k}))2^{k}\Vert x-\hat{A}_{n}k(s)\Vert<3k^{-1}$ for every $k\in N$ .

Since $\dim\hat{A}_{n}k(s)\leq m(n_{k})$ and $\{2^{-k}\}$ is a summable sequence we infer that the
sequence $\{\hat{A}_{n}k(s)\}$ satisfies condition (i) of Corollary 1. Consequently, Theorem 1
is proved.

4. The Needle Point Space Property for $L_{p},p\in[0,1$ )

As we have seen, if we have a needle point space at hands, it is not hard to
construct a compact convex set with no extreme points. However, it is quite
difficult to give an example of a needle point space. Roberts [R2] showed that for
every $p\in[0,1$ ), the space $L_{p}$ is a needle point space. However, the proof of
Roberts [R2] as well as other proofs given in [KP] [KPR] (see also [Re]) do not
provide a direct proof that the spaces $L_{\rho},$ $0\leq p<1$ , are needle point spaces. (In
[R2] it was proved that $L_{\rho}(Q)$ , where $Q=[0,1]^{\infty}$ is the Hilbert cube, is a needle
point space and since $Q$ is isomorphic (in measure) to $[0,1]$ , it follows that $L_{\rho}$ is a
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needle point space). It would be nicer if we could have a clear picture of a
Roberts space directly in $L_{p}$ . In this section, we give such a direct proof.

First we show:

CLAIM 2. For every $n\in N$ , there exists a sequence $\{S_{k}^{n}, k=1,2,\cdots\}$ of
measurable sets in $[0,1]$ with the following properties:

(12) $\mu(S_{k}^{n})=n^{-1}$ for every $k\in N$ ;
(13) $\mu(S_{k}^{n}\cap S_{j}^{n})=n^{-2}$ for every $k\neq 1$ .
( $\mu$ denotes the Lebesgue measure on [0,1]).

PROOF. For $n\in N$ and $I=[a,b]$ , we define

$S^{n}(I)=[a,a+n^{-1}(b-a))$ .

For every $k\in N$ , let $\pi_{k}$ denote the partition of $[0,1]$ into $n^{k- 1}$ equal
subintervals of length $n^{-k+1}$ . We define $S_{k}^{n}$ by the formula:

$S_{k}^{n}=l\in\pi_{k}\cup S^{n}(I)$ , see Figure 1.

It is easy to see that the sequence $\{S_{k}^{n}, k=1,2,\cdots\}$ satisfies the required
conditions. The claim is proved.

$s_{1}^{n}$

Figure 1

Denote $a_{k}^{n}=n\chi_{s_{k}^{n}}$ for every $k\in N$ , where $\chi_{A}$ is the characteristic function of

$A$ .
We have the following simple observation:

CLAIM 3. $\int_{0}^{1}(a_{k}^{n}-1)(a^{n}-1)dt=0$ for every $k\neq j$ .

PROOF. From (12) (13) we get
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$\int_{()}^{1}$ $(a_{k}^{\prime}‘ -1)(a_{j^{lt}}-1)dt=\int_{1^{1})}(a_{A}^{ll}a\int-a_{k}^{ll}-a_{j^{ll}}+1)dt$

$=\int_{0}^{1}(n^{2}x_{S_{k}^{n}\cap S_{j}^{n}}-nx_{s_{k}^{ll}}-n\chi_{s_{j}^{n}}+1)dt$

$=n^{2}\mu(S_{k}^{n}\cap S_{j}^{n})-n\mu(S_{A}^{n})-n\mu(S_{j}^{n})+1$

$=1-1-1+1=0$ .

The claim is proved.
From Claim 3 and from Jensen’s inequality we get

(14) $\Vert\sum_{i=1}^{k}\alpha_{j}(a_{i^{l}}^{\prime}-1)\Vert\leq(\int_{0}^{1}(\sum_{i=1}^{k}(\alpha_{i}(a_{i}^{n}-1)))^{2})^{\rho/2}$

$=(\int_{0}^{1}(i=\sum_{1}^{k}(\alpha_{j}(a_{i}^{n}-1)))^{2})^{\rho/2}$

for any finite sequence $\alpha_{j}\geq 0,i=1,\cdots,k$ with $\sum_{i=1}^{k}\alpha_{j}\leq 1$ .
From (14) we obtain the following fact, which implies the needle point space

property for the spaces $L_{\rho},$ $0\leq p<1$ , see [R2] [KP].

$PROPOSIT10N2$ . For any $\epsilon>0$ and $a>0$ there exist an $n\in N$ and $b$ ,
$0<b<a$ , such that for any finitely non-zero sequence $\{\alpha_{j}\}$ with $\alpha_{j}\geq 0$ and
$\sum\alpha_{j}\leq 1$ we have $\Vert\Sigma_{\alpha_{l}\geq a}\alpha_{j}a_{j}^{n}\Vert<\epsilon$ and $\Vert\Sigma_{x_{c}\leq b}\alpha_{j}(a_{i}^{n}-1)\Vert<\epsilon$ .

REMARK. Observe that the AR-property for the first-known example of a
compact convex set with no extreme points, constructed by Roberts [R1], has
been established in [NST]. However, the AR-problem for Roberts spaces has not
yet been answered even for the spaces $L_{\rho}$ , $0\leq p<1$ .

References
[BP] C. Bessaga and A. Pelczynski, Selected topics in infinite dimensional topology, Warsawa

1975.
[KM] M. G. Krein and D. P. Milman, On extreme points of regular convex sets, Studia Math. 9

(1940), 133-138.
[KP] N. J. Kalton and N. T. Peck, A re-examination of Roberts’ example of compact convex sets

with no extreme points. Math. Ann. 253 (1980), 89-101.
[KPR] N. J. Kalton, N. T. Peck and J. W. Roberts, An F-space sampler, London Math. Soc. Lecture

Note Series 89 (1984).
[K1] V. Klee, Shrinkable neighbourhoods in Hausdorff linear spaces, Math. Ann. 141 (1960),

281-285.
[K2] V. Klee, Laray-Schauder theory without local convexity, Math. Ann. 141 (1960), 286-296.
[N1] Nguyen To Nhu, The finite dimensional approximation property and the AR-property in

needle point spaces, J. London Math. Soc. (To appear).



Regular retractions onto finite dimensional convex sets 289

[N2] Nguyen To Nhu, Admissibility, the locally convex approximation property an the AR-
property in linear metric spaces, Proc. Amer. Math. Soc. 123(1995), 3233–3241.

[NST] Nguyen To Nhu, Jose M. R. Sanjurjo and Tran Van An, The AR-property for Roberts’ sample
of a compact convex set with no extreme points, Proc. Amer. Math. Soc. (To appear).

[NT1] Nguyen To Nhu and Le Hoang Tri, Every needle point space contains a compact convex AR-
set with no extreme points, Proc. Amer. Math. Soc. 120 (1994), 1261-1265.

[NT2] Nguyen To Nhu and Le Hoang Tri, No Roberts space is a counter-example to Schauder’s
conjecture, Topology 33 (1994), 371-378.

[R1] J. W. Roberts, A compact convex set with no extreme points, Studia Math. 60 (1977), 255-
266.

[R2] J. W. Roberts, Pathological compact convex sets in the spaces $L_{p}$ . The altgeld Book,
University of Illinois, 1976.

[Re] S. Rolewicz, Metric linear spaces, Warszawa 1972; Second publication, Warszawa 1982.

Nguyen To Nhu
Institute of Mathematics
P.O. Box 631, Bo Ho, Hanoi

Vietnam
Current address:
Department of Mathematical Sciences

New Mexico State University
Box 30001, Dept. $3MB$

Las Cruces, NM 88003–8001
USA
Nguyen Nhuy and Tran Van An
Department of Mathematics
University of Vinh, Nghetinh
Vietnam


	REGULAR RETRACTIONS ONTO ...
	1. Introduction.
	2. Regular Retractions ...
	3. The AR-Property for ...
	4. The Needle Point Space ...
	References


