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\S 0. Introduction.

The field of uncountable trees contains so many unusual parts that has
provided various examples and counter-examples in the fields around set theory
and general topology (see Todorcevic [5]). A Souslin tree and a special
Aronszajn tree are famous examples among them. The former is characterized
mainly by the property that it has no uncountable antichain, and the latter by the
one that it is a countable union of antichains. As seen here, the antichain
properties often play a main role in describing tree characters. Anti-Souslin tree
with which we shall concem is also in such a case. It is defined as a tree in which
every uncountable set contains an uncountable antichain (Baumgartner [1], See
Remark 1). In the above, countability and uncountability are the only scales for
the size of infinite antichains. More refined scales of meaningful sense appears in
Devlin and Shelah [3] and Shelah [4], where they introduce the notions of
”stationary” and “club” for the subsets of a tree, and prove that e.g. for an $\omega_{1}-$

tree:
$(^{*})$ it is collectionwise hausdorff under interval topology, if it has no

stationary antichain,
$(^{**})$ the existence of stationary antichains does not imply the existence of club

antichains.
Thus it is expected that there would be some significant differences between those
notions that are obtained from the definition of anti-Souslin property by replacing
one or both occurrences of the word “uncountable” by “stationary” or “club”. The
present paper investigates the implicational relationships between these new
notions. Consequently they are reduced to four different notions. We also try to
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clarify their relationship to Q-embeddability and R-embeddability which are
closely related with anti-Souslin property. In the end, one question remains open.

\S 1. Basic notions and summary of the results.

By an $\omega_{1}$ -tree we mean a well-founded tree $T=(T,<)$ such that

(i) $T$ has a unique minimal element,
(ii) for every ordinal $\alpha<\omega_{1}$ , the set $T_{\alpha}=\{x|ht(x)=\alpha\}$ is countable and non-

empty, where $ht(x)$ means the height of $x$ (in $\Gamma$),

$(iii)T$ has no element of height $\omega_{1}$ ,

(iv)For every distinct two nodes $s,$ $t$ on a limit level, the sets $\{x\in T|x<s\}$

and $\{x\in T|x<r\}$ are distinct.
If $A$ is a set of ordinals, the set $\{x\in T|ht(x)\in A\}$ is denoted by $T|A$ . For
$s,t\in T$ , $(s,t$ ] denotes the interval $\{x\in T|s<x\leq t\}$ . We define also $(s,t),[s,t),[s,t]$

in parallel. A set of incomparable elements of $T$ is called an anti-chain. A subset
$S$ of an $\omega_{1}$ -tree is called stationary (resp. club) if $ht^{\prime\prime}S$ is stationary (resp. club)

in $\omega_{1}$ . An $\omega_{1}$ -tree $T$ is called $Q-$ ( $resp.$ R-) embeddable if there exists a function
$e:T\rightarrow Q(resp. R)$ such that whenever $x<y$ in $T$ then $e(x)<e(y)$ in $Q(resp. R)$ .

Now we introduce nine notions on $\omega_{1}$ -trees. Let each of the letters $X$ and $Y$

stand for one of the letters $C,$ $S$ and $U$ , which stand for “club”, “stationary” and
“uncountable” respectively. Then an XY-tree is defined to be an $\omega_{1}$ -tree in which
every $X$ set contains a $Y$ antichain. Hence, in particular, a UU-tree is an $\omega_{1}$ -tree
in which every uncountable set contains an uncountable antichain; this is none
other than an anti-Souslin tree (see Introduction). We write $XY$ for the class of
all $X$ Y-trees and QE (resp. RE) for the class of all Q- (R-) embeddable trees.
We often write $A\rightarrow B$ instead of $A\subseteq B$ and $A+B$ instead of $A$ $gB$ for classes
$A$ and $B$ . Trivial are:

(i) SC $=UC=US=\emptyset$ ,

(ii) $CC\rightarrow CS\rightarrow CU$ ,

(iii) $SS\rightarrow CS$ , and $SS\rightarrow SU$ ,

(iv) $UU\rightarrow SU\rightarrow CU$ .
As mentioned above, the notion UU is known under the name anti-Souslin,

and the following are famous:

THEOREM 1. (Baumgartner [1]) (i) $QE\rightarrow RE\rightarrow UU$ ,

(ii) (O)QE+RE+UU.

We also use Jensen’s principle $0$ or 0* to determine those facts that are
independent of the standard set-theoretical axioms. The principles are explained
in Sections 3 and 4.
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We note preliminarily the following facts, whose proofs are in the next

section:

THEOREM 2. (i) $QE\rightarrow SS,$ ,

(ii) CU $=SU=UU$ ,

(iii) CC $=\emptyset$ .
It is known that

THEOREM 3. (Shelah [4]) If 0*, there is an R-embeddable $\omega_{1}$ -tree that has no
$sta$tionary antichain.

Hence:

THEOREM 4. $(O^{*})RE+CS$ .
The facts described so far are summarized as follows:

$QE_{\overline{\overline{/}}\}}RESS-CS^{/^{\nearrow}}-UU$

CC $=\emptyset$

CU $=SU=UU$

In Sections 3 and 4, toward the completion of this diagram, we show the
following (see Remark 2):

THEOREM 5. (i) (0) $CS+RE$ ,

(ii) $(0^{*})RE\wedge CS+SS$ .

But the next question yet remains open:

$QUEST10N$ . Does SS imply RE (or more strongly QE)?

Thus we have finally:

$QE!_{1}^{-cs}\downarrow^{\wedge}\uparrow^{RE^{-}}\downarrow--RE$

$SSi^{-}-CS\frac{\rightarrow}{-}\overline{:}$ UU

\S 2. On CC and CU.
In this section, we prove Theorem 2. Every statement of the theorem can be

proved within ZFC alone,

2.1. $QE\rightarrow SS$ .
To show that a QE-tree $T$ is in SS, suppose $S$ is a stationary subset of $T$ . The
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property QE obviously implies that $S$ is a countable union of anti-chains. Besides
$S$ is stationary, so, at least one of the anti-chains is stationary. q.e. $d$ .

2.2. CU $=SU=UU$ .
It suffices to show that $CU\rightarrow UU$ . Suppose that $T$ is in CU and $U$ is an

uncountable subset of $T$ . For each ordinal $\alpha\in\omega_{1}$ , take such a node $t_{\alpha}$ of $T_{\alpha}$ that
has an extension in $U$ . The set $\{t_{\alpha}|\alpha<\omega_{1}\}$ is club, so by the assumption, it
contains an uncountable antichain, say $A$ . For each member of $A$ , pick out one of
its extensions from $U$ . Then the set of thus selected nodes in $U$ is obviously an
uncountable antichain. q.e. $d$ .

2.3. CC $=\emptyset$ .
We show that every $\omega_{1}$ -tree $T$ has a club subset that contains no club

antichain. Fix a stationary set $E\subseteq\omega_{1}$ such that $\omega_{1}\backslash E$ is also stationary, and take
a partition $\{F_{\xi}|\xi<\omega_{1}\}$ of $\omega_{1}\backslash E$ such that each $F_{\xi},$ $\xi<\omega_{1}$ , is stationary. Let
$\langle\alpha_{\xi}|\xi<\omega_{1}\rangle$ enumerate $E$ increasingly. First, for every $\alpha\in E$ , take a node
$r(\alpha)\in T$ arbitrarily. Next, for each $\beta\in\omega_{1}\backslash E$ , taking a unique $\xi$ such that
$\beta\in E_{\xi}$ , take such a node $t(\beta)\in T_{\beta}$ that is comparable with $t(\alpha_{\xi})$ . Then the set
$S=\{r(\beta)|\beta<\omega_{1}\}$ is trivially club. But it contains no club anti-chain. For, if $C$ is a
club subset of $S$ , then since the set $E$ is stationary, $r(\alpha_{\xi})\in C$ for more $\xi$ , and
similarly for some $\beta$ in $F_{\xi},$ $t(\beta)\in C$ , besides the two nodes are comparable, thus
$C$ is not an anti-chain, q.e. $d$ .

\S 3. CS dose not imply R-embeddability.

The aim is to construct a CS tree $T$ which is not R-embeddable. Our
construction requires the hypothesis $0$ that asserts the existence of a sequence

$\langle S_{\alpha}|\alpha<\omega_{1}\cap Lim\rangle$

such that for every subset $X$ of $\omega_{1}$ , there are stationarily many $\alpha\in\omega_{1}$ satisfying
$X\cap\alpha=S_{\alpha}$ . Such a sequence has the property that for any partition $\langle P_{\xi}|\xi<\omega_{1}\rangle$

of $\omega_{1}$ and for any subset $X$ of $\omega_{1}$ satisfying $\forall\xi$ ( $X\cap P_{\xi}$ is countable), there are
stationarily many $\alpha$ such that $X\cap\cup\{P_{\xi}|\xi<\alpha\}=X\cap\alpha=S_{\alpha}$ . Hence from $0$ we
obtain a sequence

$\langle 0_{\lambda}|\lambda\in\omega_{1}\rangle$

such that:
(1) $O_{\lambda}$ is a countable subset of $\cup\{\alpha\omega\times R|\alpha<\lambda\}$ , and
(2)whenever a subset $X$ of $u\{^{\alpha}\omega\times R|\alpha<\omega_{1}\}$ satisfies that $(^{\alpha}\omega\times R)\cap X$ is

countable for all $\alpha<\omega_{1}$ , then there are stationarily many $\lambda<\omega_{1}$ satisfying
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$\cup t^{\alpha}\omega\times R|\alpha<\lambda\}\cap X=0_{\lambda}$ . Fix it. We construct a tree $T$ and a function
$e:T\rightarrow Q^{+}\cup\{0\}$ such that

(Tl)for $\alpha<\omega_{1},$ $ T_{\alpha}\subset\alpha\omega$ ,

(T2) $f<_{T}g$ iff $f\subset g$ (function extension), for $f,g\in T$ ,
(T3)for every $s\in T$ and every positive $q\in Q$ , there exist $t\in T$ such that $s<t$

and $e(t)<e(s)+q$ and $e$ is strictly increasing on the interval $[s,t]$ ,

(T4) $\forall s,t\in T(s<t\wedge e^{||}(s,t$ ] $\subseteq Q^{+}\rightarrow e(s)<e(t))$ ,

(T5) $\forall s\in T\forall\beta>ht(s)\forall q\in Q^{+}\exists t\in T_{\beta}(s<t\wedge e^{1\prime}(s,t$ ] $\subseteq Q^{+}\wedge e(t)\leq e(s)+q)$ ,

(T6) $\forall t\in T(e(t)>0\rightarrow\exists s<t(e^{1\prime}(s,t$ ] $\subseteq Q^{+}$ )) ,

(T7) $e(\emptyset)=0$ (note that $\emptyset\in T_{0}$ ).

Fix a surjection $q$ from $\omega$ to $Q^{+}$ . The construction is by induction on the levels.
(i) $T_{0}=\{\emptyset\},e(\emptyset)=0$ ,

(ii) $T_{\alpha+1}=\{X^{-}\langle n\rangle|x\in T_{\alpha},n\in\omega\},e(X^{-}\langle n\rangle)=e(x)+q(n)$ .
(iii)Now let $\lambda$ be a limit. To define $T_{\lambda}$ , we first fix an increasing sequence

$\langle\lambda_{n}|n<\omega\rangle$ unbounded in $\lambda$ and associate $ t_{x,q}\in\lambda\omega$ with every pair of $ x\in T|\lambda$

and $q\in Q^{+}$ as follows: first taking a sequence $\{x_{n}|n\in\omega\}$ increasing in $ T|\lambda$ such
that $x_{0}=x$ and $x_{k+1}$ satisfies that (1) $x_{k}<x_{k+1},$ (2) $ht(x_{k+1})>\lambda_{k},$ (3)$e(x_{k+1})<e(x)+q$ ,

and (4) $e^{\prime\prime}(x_{k},x_{k+1}$ ] $\subseteq Q^{+},then$ put $t_{x,g}=\cup\{x_{k}|k\in\omega\}$ . The definition of $T_{\lambda}$ is
devided into two cases.

CASE 1. $0_{\lambda}$ is an embedding: $(T|\lambda)\rightarrow R$ (namely, $0_{\lambda}(x)<0_{\lambda}(y)$ for every
$x,y$ in $ T|\lambda$ with $x<y$ ). Define a sequence $\langle y_{n}|n\in\omega\rangle$ increasing in $ T|\lambda$ so
that $ y_{0}=\emptyset$ and for every $k\in\omega,$ (1) $y_{k}<y_{k}+1,$ (2) $\lambda_{k}<ht(y_{k}+1)$ , and (3) $\exists y>y_{k}$

$(0_{\lambda}(y)\geq q(k))\rightarrow 0_{\lambda}(y_{k}+1)\geq q(k)$ . Put $s=\cup\{y_{k}|k\in\omega\}$ . Put:

$T_{\lambda}=\{s\}\cup\{t_{x,q}|x\in(T|\lambda),q\in Q^{+}\}$ ,

and $e(s)=0,e(t_{x,q})=e(x)+q$ .

CASE 2. 0therwise. Define:

$T_{\lambda}=\{t_{x,q}|x\in(T|\lambda),q\in Q^{+}\}$ and $e(t_{x,q})=e(x)+q$ .

$T$ is thus defined.

CLAIM 1. $T$ is not in RE.

For, suppose that $d:T\rightarrow R$ were an embedding. Then, since the set

$C=$ { $\lambda\in\omega|\forall x\in(T|\lambda)\forall q\in Q^{+}(\exists y\in T$( $ x<y\wedge d(y)\geq q\rightarrow\exists$ such $ y\in T|\lambda$ )}

is club, there is a limit $\lambda\in C$ such that

$d\cap(T|\lambda)\times R=0_{\lambda}$ .
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Let $s$ be such as in the definition of $T_{\lambda}$ . Arbitrarily take $t\in T_{\lambda+1}$ and $ k\in\omega$ so that
$s<t$ and $d(s)<q(k)<d(t)$ . Recall $y(k)$ in the definition of $s$ . Since $\lambda\in C$ , there
is $ y\in T|\lambda$ such that $y>y(k)$ and $q(k)\leq d(y)(=0_{\lambda}(y))$ , hence $q(k)\leq d(y(k+1))$ ,

so $d(y(k+1))\not\leq d(s)$ despite $y(k+1)<s$ , which contradicts embedding property of
$d$ .

CLAIM 2. $T\in CS$

PROOF. Recall the definition of $T_{\lambda}$ for limit $\lambda$ . We observe:
$(^{*})$ For stationarily many $\lambda,\forall x\in T_{\lambda}(e(x)>0)$ .

from the properties (T1) and (T2), we have:
$(^{**})$ whenever $e(x)>0$ , there is $y<x$ such that $e(y)=0\wedge e^{\prime\prime}(y, x$ ] $\subseteq Q^{+}$

To show $T\in CS$ , let $X$ be any club subset of $T$ . By the fact $(^{*})$ we have a
stationary set $Y\subset X$ such that $\forall y\in Y(e(y)>0)$ , and by $(^{**})$ , with each $y\in Y$ , we
can associate $n(y)\in T$ such that

$n(y)<y\wedge e(n(y))=0\wedge e^{\prime\prime}(n(y),y]\subseteq Q^{+}$ .

Since the function $n()$ is regressive, by the pressing down lemma (and using the
countability of each level $T_{\lambda}$ ), we have a stationary subset $Y_{0}\subseteq Y$ such that
$n^{1\prime}Y_{0}=\{z\}$ for some $z\in T$ . Then there is a $q\in Q$ such that $Y_{1}=Y_{0}\cap e^{-1}\{q\}$ is a
stationary subset of $T$ . Since $e$ is increasing on $[z,w]$ for every $w\in Y_{1},$ $Y_{1}$ is an
antichain. q.e. $d$ .

\S 4. CS does not imply SS.

The purpose is to prove Theorem 5. In fact, assuming 0*, we show that for
arbitrarily given stationary set $E\subseteq\omega_{1}$ , there is an $\omega_{1}$ -tree $T$ with an R-
embedding $e:T\rightarrow R$ such that (1) $e^{\prime\prime}(T|E)\subseteq Q$ and (2) $T|(\omega_{1}\backslash E)$ contains no
stationary antichain.

So, if $\omega_{1}\backslash E$ is also stationary, this tree is in $CS\backslash SS$ , since the condition (1)

obviously implies CS, and the condition (2) implies $\urcorner$ SS. Basic techniques and
ideas come from Devlin and Shelah [3] and Sh\’elah [4]. To simplify our
argument, we use the hypothesis 0*in the following form:

LEMMA 1. $(0^{*})$ There is a sequence $\langle 0_{\lambda}^{*}|\lambda\in\omega_{1}\rangle$ such that
(1) $0_{\lambda}^{*}$ is a countable family of countable subsets $of\cup\{\alpha\omega|\alpha<\lambda\}$ ,
(2)$for$ all $X\subset\cup\{\alpha\omega|\alpha<\omega_{1}\}$ , if $\forall\alpha<\omega_{1}|X\cap^{\alpha}\omega|\leq\aleph_{0}$ , then there are club-

many $\lambda<\omega_{1}$ such that the set $ X\cap\cup t^{\alpha}\omega|\alpha<\lambda$ } belongs to $0_{\lambda}^{*}$ .

Fix such a sequence. By induction on the levels, we construct a desired tree $T$

and R-embedding $e$ so that $ T_{\alpha}\subset^{\alpha}\omega$ , where $f<_{T}g$ is defined by $f\subset g$ .
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$T_{0}=\{\emptyset\}$ and $e(\emptyset)=0$ .

$T_{\beta+1}=\{X^{-}\langle n\rangle|x\in T_{\beta},n\in\omega\}$ and $e(X^{-}\langle n\rangle)=e(x)+1/n$ .

Toward defining $T_{\lambda}$ for a limit ordinal $\lambda$ , fix a sequence $\langle\lambda_{n}|n<\omega\rangle$

increasing unbounded in $\lambda$ . We are assuming inductively the following:
$(*)\forall x\in(T|\lambda)\forall q\in Q^{+}\forall\alpha\in[ht(x),\lambda)\exists_{\mathcal{Y}}\in T_{\alpha}e(y)\leq e(x)+q$ .

The definition is divided into two cases.

CASE 1. $\lambda\in E$ , where $E$ is a given stationary set. Associate $ t_{x,q}\in^{\lambda}\omega$ with
each pair of $ x\in T|\lambda$ and $q\in Q^{+}$ satisfying $q>e(x)$ in the following manner:
First take a sequence $\langle x_{n}|n\in\omega\rangle\subseteq T|\lambda$ so that $x_{0}=x$ and for each
$n>0,ht(x_{n})\geq\lambda_{n}\wedge x_{n-1}<x_{n}\wedge e(x_{n})<q$ , and then put $t_{x,q}=\cup\{x_{n}|n\in\omega\}$ .

Now put $T_{\lambda}=\{t_{x,q}|x\in(T|\lambda),q\in Q,q>e(x)\}$ and $e(t_{x,q})=q$ .

CASE 2. 0therwise. Let $\{D. |n\in\omega\}$ enumerate $0_{\lambda}^{*}$ . For every pair of
$ x\in T|\lambda$ and $q\in Q$ with $q>e(x)$ , define $ y_{n}\in T|\lambda$ and $q_{n}\in Q$ by induction on
$ n\in\omega$ so that (1) $y_{0}=x,q_{0}=q,$ (2) for $n>0,y_{n}>y_{n-1},ht(y_{n})\geq\lambda_{n},e(y_{n})<q_{n-1}$ ,

$\exists z\in T|\lambda(z>y_{n-1}\wedge e(z)<q_{n-1}\wedge z\in D_{n- 1}^{*}\cap(T|\lambda))\rightarrow\exists z\leq y_{n}(z\in D_{n-1}^{*}\cap T|\lambda)$ ,

$q_{n}=(e(y_{n})+q_{n-1})/2$ ,

and put $s_{x,q}=\cup\{y_{n}|n\in\omega\}\in\lambda_{\omega}$ . Then put $T=\{s_{x.q}|x\in(T|\lambda),q\in Q^{+},q>e(x)\}$ ,

and $e(s_{x,q})=\sup\{e(y_{n})|n<\omega\}$ .
$T_{\lambda}$ is thus defined. It remains to show that $T$ is as desired. But the check is

simple. We only show that $T|(\omega_{1}\backslash E)$ has no stationary antichain. Let
$X\subseteq T(|\omega_{1}\backslash E)$ be an antichain. Put $C=\{\lambda\in\omega_{1}|\forall x\in(T|\lambda)\forall q\in Q\exists_{\mathcal{Y}}>x(e(y)<q$

$\wedge y\in X)\rightarrow\exists y\in(T|\lambda)(e(y)<q\wedge y\in X)\}$ . Then $C$ is club, so there are club-many
$\lambda\in C$ such that $X\cap(T|\lambda)\in 0_{\lambda}^{*}$ . But for all such $\lambda$ , we have $ X\cap T_{\lambda}=\emptyset$ .
(Because, if $u\in X\cap T_{\lambda}$ , then since $\lambda\not\in E,$

$u=s_{x,q}$ for some $x\in(T|\lambda)$ and $q\in Q$

with $e(x)<q$ . Take $n$ so that $X\cap(T|\lambda)=D_{n}^{*}$ . Since $u>y_{n}\wedge e(u)<q_{n}\wedge u\in X$ , it
follows from $\lambda\in Cthat\exists e\in T|\lambda(z>y_{n}\wedge e(z)<q_{n}\wedge z\in D_{n}^{*}\cap T|\lambda)$ . Hence by the
definition of $y_{n+1}$ , there is $z\in X$ such that $z\leq y_{n+1}$ . But this, together with
$y_{n+1}<u\in X$ , contradicts antichain property of $X.$ ) q.e.d.

REMARKS. Remark 1. The notion anti-Souslin was originally called by the
name non-Souslin in Baumgartner [1]. The use of the present name is based on
the suggestion by Baumgartner [2].

Remark 2. The tree $T$ constructed in Lemma 3.9 of Shelah [4] has (among
others) the property $T\not\in CS\backslash RE$ , which asserts Theorem 5 (i). Its construction
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however is what uses a hypothesis stronger than $0$ .
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