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0. Introduction

Viewing a G-graded k-coalgebra over the field 2 as a right 2G-comodule
coalgebra it is possible to use a Hopf algebraic approach to the study of coalge-
bras graded by an arbitrary group that was started in [NT].

Let C=@,e¢ C, be a G-graded coalgebra. The graded C-comodules may
be viewed as comodules over the smash product C x2G, the general definition
of which was given in [M]. Coalgebras graded by an arbitrary group have
been considered in in order to mtroduce the notion of G-graded Hopf
algebras. On the other hand, M. Takeuchi introduced in the sets of pre-
equivalence data connecting categories of comodules over two coalgebras (we
call such a set a Morita-Takeuchi context). The main result of this note is a
coalgebra version of a result established by M. Cohen, S. Montgomery in [CM]
for group-graded rings: for a graded coalgebra C the coalgebras C, and C x %G
are connected by a Morita-Takeuchi context in which one of the structure maps
is injective. Most of the results in this note are consequences of the foregoing.
As a first application we find that a coalgebra C is strongly graded if and only
if the other structure map of the context is also injective. The final section
provides analogues of the Cohen-Montgomery duality theorems: if C is a co-
algebra graded by the flnite group G of order n, then G acts on the smash
coproduct as a group of automorphisms of coalgebras and (CxkG)xkG* is
coalgebra isomorphic to the comatrix coalgebra M¢(n, C). If G is a finite group
of order n, acting on the coalgebra D as a group of coalgebra automorphisms,
then the smash coproduct DxkG* is strongly graded by G and moreover:
(DXEkG*¥)xkG=Mn, D). The second duality theorem is again a direct con-
sequence of the Morita-Takeuchi context mentioned above.
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1. Graded Coalgebras and the Smash Coproduct

Throughout this paper k is a field. We use Sweedler’s “sigma” notation
[S] and further notation and conventions in [T], [D]. Let G be a group with
identity element 1. Recall that a k-coalgebra (C, A, ¢) is graded by G if C is
a direct sum of k-subspaces, C=P,c¢ C,, such that A(C,)C>.,-, C.QC,, for
all oG, and ¢(C,)=0 for o=+#1. A right C-comodule M with structure map
p: M—-MQRC is a graded C-comodule if M=@,c¢ M, as k-subspaces, such that
oM)C X, ,=s M.RC, for all ceG. For graded right C-comodules M and N a
graded comodule morphism is a C-comodule morphism f: M—N such that f(M,)
CN, for 6=G. The category of graded right C-comodules, denoted by gr€, is
a Grothendieck category, cf. [NT]. The main purpose of this section is to
develop a Hopf algebraic approach to the graded theory. First we recall, see

or [A], some deflnitions.

1.1. DEFINITION. Let H be a bialgebra over the field 2, A a k-algebra and
(C, A¢, e¢) a k-coalgebra. Then:
i. A is said to be a (right) H-module algebra if A is a right H-module
such that (ab)-h=32(a-h,)(b-h,) and 1,-h=¢e(h)l, for any he H, and
a, be A.
ii. C is a right H-comodule coalgebra if C is an H-comodule by ¢—2>] ¢,
Qcqu) such that we have:

210X )11y €2y = 2 €01 RC0)eQC11)
Seclcw)cay=ec(e)ly for all ceC

ifi. C is a (left) H-module coalgebra if C is a left H-module such that:
Ac(h-0)=3hy-¢,Q@hy 5, ec(h-c)=egx(h)ec(c) for ceC, heH.
In the sequel we shall not refer to “right” of “left” as in the above definitions,
the choice of “sides” shall remain fixed throughout.

For any group G the group algebra G has a bialgebra structure defined
by A(g)=g&®g and e(g)=1 for all g&G. The next result establishes the con-
nection between G-graded coalgebras and 2G-comodule coalgebras.

1.2. PROPOSITION. A coalgebra C graded by G many in a natural way be
viewed as a kG-comodule coalgebra; conversely every kG-comodule coalgebra is
a G-graded coalgebra.

PrROOF. For a G-graded C the map p: C—C®kLG, c—cQa for all oG,
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ceC,, defines a kG-comodule coalgebra structure on . Conversely, if C is a
kG-comodule coalgebra then any ¢ < C has a unique presentation p(c)=
2eec €, Rg. Put C,={c,, ceC}, geG; C, is a k-subspace of C. From
(IRe)p(c)=c®1 we derive that c=>,ce ¢, and C=X,c¢ C,. For ceC, geG
we have that ce(C, if and only if p(c)=c®g. If X,cec,=0 for some c,eC,
then by applying p we obtain 3 ¢,®g=0 or ¢,=0 for all g&G. Therefore
C=@sec C,. Consider c=C, and A(c)=3¢,Q¢; with homogeneous c¢,’s and
¢.’s. From 1.1 we retain that 3 ¢,&c,X0o equals 3 ¢;Xc,Rdeg ¢, -deg ¢,, or in
other words A(c) is the sum of all terms with ¢=deg c,-deg c,, establishing that
C is a G-graded coalgebra. O

We say that the group G acts on the coalgebra D whenever there is a
group morphism ¢: G—Aut (D), the latter denoting the set of all coalgebra
automorphisms of D with group structure defined as follows: if f, g&Aut (D),

f-g=f-g.

1.3. PROPOSITION. If G acts on the coalgebra D then D has the structure

of a kG-module coalgebra; conversely any kG-module coalgebra has a natural G-
action.

PROOF. Suppose that ¢: G—Aut (D) determines that G acts on D then
the map RGRXD—D, gRxd—¢(g)(d) defines a kG-module structure on D as
desired. Conversely, if D is a kG-module coalgebra then we may define a G-
action on D by ¢: G—Aut (D), ¢(g)d)=g-d for g=G, deD. O

1.4. REMARK. Let, for a finite group G, 2G* be the dual bialgebra for the
finite dimensional bialgebra #G. If the finite group G acts on the coalgebra D
then D is also a kG*-comodule coalgebra. If {p,, g=G} is the dual basis of
{g, g=G} then {p,, g=G} is a system of orthogonal idempotents of £G*. The
coalgebra structure of £G* is given in the usual way by: A(p,)=sy=; Q0
e(pg)=0,1. _

The right comodule structure of D is given by p: D—-DXkEG*, p(d)=
EgeG (g- d)@i’g'

In the sequel, the smash coproduct plays a central part. For a bialgebra
H and an H-module coalgebra C the smash-coproduct C x H is defined as the
k-space CQRQH with A: CxH—(CxH)X(C xH) given by A(c X h)=3)(c1 X ¢z1y - hs)
Q(czy X hy), and e: Cx H—k given by e(c X h)=c¢ec(c)ey(h).
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1.5. PROPOSITION. C X H with A and ¢ as above is a coalgebra.

ProOF. This is just the right hand version of Theorem 2.11 of [M], a
proof is given in Proposition 2.3 of [FM]. O

The smash coproduct is useful in general but has particular interest in some
special cases frequently considered:

i. Graded smash coproduct

If the coalgebra C is graded by G then the coalgebra structure of CxkG
is given by: A(cxg)=3](c; xdeg ¢, 2)R(c:RQg), for any homogeneous c=C and
g€G (where we assumed, as we will always do in the sequel, that we have
used the homogeneous decomposition >3 ¢,;&c,), whereas for all ceC, gl we
have that e(c X g)=¢¢(c).

ii. If the finite group G acts on the coalgebra D, i.e. D is a kG*-comodule
coalgebra, then the coalgebra structure of DxkG* is given by:

Adxp)= 2 (diXp)@W-ds X pu),

and
e(dXpg)=ep(d)dg, 1, for all deD, geG.

Note that the graded smash coproduct appears in a natural way when one
studies graded comodules. Recall that a k-Abelian category is k-equivalent to
a category of comodules H° over some coalgebra C if and only it it is of finite
type (Theorem 5.1 of [T]). The coalgebra giving the category as a category
of comodules may, in general, be a somewhat mystical object. However for a
G-graded coalgebra C the k-Abelian category of graded comodules, say grC, is
of finite type and it is therefore, equivalent to a category of comodules over
the coalgebra given in the following.

THEOREM 1.6. If C is a coalgebra graded by G then the categories gr® and

and MC**C are isomorphic.

PrROOF. Take Megr® with p: M—MKC, p(m)=3m@m,. We make M
into a right CxkG-comodule by defining p’': M — MR(C xKg), m—3 m®
(m; x(deg m)™') for homogeneous me M. A morphism f: M—N of G-graded C-
comodules is also a morphism of C xkG-comodules and we have defined a
functor T : gré— pC>*C,

Conversely, starting from an Me H°**¢ we obtain on M a right C-comodule
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structure and a right 2G-comodule structure because the linear maps a: Cx kG
—C, c¢Xg—c, and B: CXRG—kG, cXg—ec(c)g™ for c€C, gEG, are coalgebra
morphisms. As in the proof of Proposition 1.2 it follows that M=@,e¢ M, and
a straightforward verification learns that M becomes a graded C-comodule.
Now, for M, Ne #u **¢ and a morphism of C xkG-comodules f: M—N it fol-
lows that f is also a morphism of G-graded C-comodules when M and N are
viewed as such. This defines the functors S: HC**%—gr® and it is easily seen
that T and S are isomorphisms of categories and inverse to each other.

1.7. REMARKS. 1. If the coalgebra C is graded by a finite group G, then
the dual algebra C* is graded by G with C¥={fC*, f(C,)=0 for all x+g}.
Hence C* is a kG*-module algebra and we may construct the smash product
C*#kG* with multiplication given by : (c*#h*)(d*#g*) =3 (¢*(d*- h¥)#g*h%, for
all ¢*, d*<C- and h*, g*=kG*. It is easy to see that the algebra C*#kG* is
algebra-isomorphic to the dual algebra of Cx£kG.

2. If G acts on the coalgebra D via '(p: G—Aut (D), then the group mor-
phism @: G—Aut (D*) given by @(g)(d*)=d*p(g) for g€G, d*eD*, defines an
action of G on the algebra D*. Note that Aut (D*) is a group with respect to
o-t=t1.0 for o, r€Aut (D*¥). Thus D is a kG-module coalgebra and D* is a
kG-module algebra. If G is finite then D is a kG*-comodule coalgebra and the
dual algebra of the smash coproduct Dx kG* is isomorphic to the skew group
ring D*#kG.

2. The Morita-Takeuchi Context Associated to a Graded Coalgebra

The Morita-theorems for categories of comodules have been proved by M.
Takeuchi in [T]; we call a set of pre-equivalence data as in [T] a Morita-
Takeuchi context.

2.1. DEFINITION. A Morita-Takeuchi context (C, D, ¢Pp, p@¢, f, &) consists
of coalgebras C and D, bicomodules ¢Pp, pQ¢ and bicolinear maps f: C—P,Q,
g: D—QO¢P making the following diagrams commute:

P PO,D Q — > QOcC
lg lng El lIDf
CO¢P— POp,Q0cP DOp,Q — QUcPOpQ

Far gr

The context is called strict if f and g are injective, hence isomorphisms. In
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this case the categories #¢ and #? of comodules over C, resp. D, are equi-
valent categories.

The following remark extends a corresponding one for Morita contexts

given in [CRW].

2.2. PROPOSITION. Let (C, D, ¢Pp, pQc¢, f, g) be a Morita-Takeuchi context
such that f is injective. Then MC is equivalent to a quotient category of MP.

PrROOF. Theorem 2.5 of [T] yields that f is an isomorphism and the exact
functor S=—[1,Q : MP — HC, has a right adjoint T=—0cP: M° — MHP such
that the natural transformation f~!': ST — Id is an isomorphism. By a result
of P. Gabriel (cf. [G] or Proposition 15.18 of [F]) we have: ker S={X&.M",
XOpQ@=0} is a localizing subcategory of #” and S induces an equivalence
from the quotient category #/KerS to #°. O

2.3. COROLLARY. Let (C, D, ¢Pp, pQc, f, 8 be a Morita-Takeuchi context
such that f is injective then g is injective (i.e. the context is strict) if and only
if pQ 1s faithfully coflat. O

PROOF. By Proposition 2.2 the injectivity of g is equivalent to S being an
equivalence, again equivalent to Ker S={0} or »Q being faithfully coflat. O

Before establishing the main result of this section let us point out that there
is a natural way to associate a graded coalgebra to a given Morita-Takeuchi
context. Indeed, if we have a Morita-Takeuchi context (C, D, ¢Pp, p@¢, f, g)
let x—3x_1Qx,, resp. x— > x»@x ), be the left, resp. right, comodule struc-
ture of P, resp. Q. The image of uC (resp. D) under f (resp. g) in P1pQ
(resp. Q¢P) will be denoted by X f(u)Qf (). (resp. 22(u),&Qg(w)s).

_(C P\_/c P
Put F-(Q D —{<q d>’ ceC, deD, peP, qu}.
We make [’ into a coalgebra by defining A: I'-I"QI" as follows:

A =2 o) e 9+= T DEGw, o)
A(g d) (0 d)®(02 >+2(g(d)1 0)®(g g(d)(;)
ag D=s D8 D+ "D ek )

A 0==( %6, =G, o G o)
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for ceC, deD, peP, g=@, and extended linearly, e: /'—% given by s(; 2)

=¢c(c)+ep(d). Moreover ' is Z-graded by putting Fo:-(é: B), I’_IZ(% 8)
0 P
and n:(o O), =0 for k=—1,0, 1.

Let C=@,es C, be a coalgebra, graded by G. Recall from that C,
is a coalgebra with comultiplication A;: C,—C,XC, given by A(c0)=37(c,) R
()= ()R => ¢, Q@mn(c,) for all ceC,, where n: C—C, is the natural
projection. The co-unit of C, is just e, restricted to C,. Since m is a coalge-
bra map, C becomes a left C,-comodule via the structure map pi: C — C,QC,
c—21mw(c,)@c, (¢ homogeneous) and it becomes a right C,-comodule via p7: C—
CRC,, ¢—>3¢:Qn(c,) (c homogeneous). Now C is a graded right C-comodule,
so by Theorem 1.6 C is a right C X kG-comodule via the map

5:C—=CRCxELG), c— 3 c;RQ(c,x(deg )™

for ¢ homogeneous. For any homogeneous c=C, we have (IRp1)pic)=(piRI)
03(¢) = 2 ()R, R(cs ¥ (deg ¢)™"); thus C becomes a left C,, right CxEkG-
bicomodule. In a similar way C becomes a left C x &G, right C,-bicomodule
where the left C x 2G-comodule-structure of C is given by pi(c)=3 (¢, xdeg c,)
Xc., for any homogeneous c< C.

Define f: C,—COexreC, ¢—3¢,Q®cs=Ac(c). Observe that for any ceC,
we obtain:

2 0:(c)Xc=3] c;Rc.(deg co) " N(deg €)' Rcs
:2 Cl®62®deg C3®Ca
=2] Cl®.05(cz)

so the definition of f above is satisfactory. Moreover, f is a morphism of left
and right C;-comodules as is easily verified. Note also that f is injective be-
cause it is the restriction of the comultiplication of C to C,.

Next define g: CxkG—C¢,C, cXx—3) c1@m__i(c;) for x=G and homo-
geneous c<= C, where 7, denotes the projection from C to C,. In order to have
that g is well-defined it is necessary that: 2 (€)1 @7 ((€))Q7 _1(ca)= c:Q
(7w, 1((c2)))Q@7% ,_1((¢2)2). However the left hand side is obtained from 3¢, Rc,
&, by collecting the terms with degc,—1 and degc;=x"!; on the other hand
the right hand sum is an expression of the same thing. Moreover g is a mor-
phism of right (and left) C x kG-comodules ; this follows from: Ddegeg=z-1(C:&Q
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(€2))Q((€2)e X X)=Ddegcg=z-1(degey -1 ((€1)1(C1)2)R)(c: X x) because both members
are actually equal to: Edegczdeg%:x-1(c1®cz)®(c3xx). The other assertion (left)
follows in a similar way.

2.4. THEOREM. With notation as above: (C,, CXRG, ¢,Ccxre.cxxcCeys ) &)
is a Morita-Takeuchi context. The map [ is injective hence an isomorphism.

Proor. The only thing left to be proved is that f and g do satisfy the
compatibility conditions, i.e. the following diagrams are commutative:

7 0’
C —> COcxrcCxEG C —> CQO¢,C
=g | =y | ar
C.:0¢,C —> COexeeC0Oc,C (CxkG)OexureC —> COe,COexrcC -
oI gdI

Now for ceC, we have: (JOg)0(c)=IDOgNX 1 (ca X x™1))=3] ¢, Q@7 (c3)=
Dldeg =z C1&Q€2Qcs, and also (FOI)((e)=(fTINZ 7(c)Qca)=(f OI )N Zdege;=1 €1
®02):(fDI)(Zdeg Co=T Cl®c2):2deg Cg=T 01®Cz®cs-

That proves commutativity of the first diagram. For the second diagram
we just compute: (I8 (c)=UOfNZ :Q®@n(c2)) =IO f N Zdeg cp=1 :1Qc2)=UT f)
(Ddeg c;=z €1QC2)=Ddeg ;=2 1QC2Qc; and also (g0 (c)=(gTI )X (¢, xdeg c2)
VCs)=Ddeg cp=(deg cy -1 C1QC2ICs=deg cy deg co=1 €1 QCs=deg ¢,=z C1RC2Qcs. [

2.5. COROLLARY. Jf C=@P,c¢ C, s a graded coalgebra then MC: is equi-
valent to a quotient category of gr°.

PrOOF. A consequence of Theorem 1.6, Theorem 2.4 and Proposition 2.2. O

Recall that a G-graded coalgebra C=@,c¢ C, is said to be strongly graded
if the canonical k-linear map 74.0: Cu,v=>Cu@®Co, =2, (c))QT(c2), is injective
for all u, veG (see [NT]). The next result establishes that strongly graded
coalgebras may be characterized using the Morita-Takeuchi context from Theo-
rem 2.4 just like in the case of group-graded rings (see [CM]).

2.6. COROLLARY. Let C=P,eq¢ C, be a G-graded coalgebra, then the follow-
ing assertlions are equivalent:

1. C is strongly G-graded

2. The context given in Theorem 2.4. is strict

3. C is faithfully coflat as a left CxkG-comodule.
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PROOF. 2.=1. Take u,veG and ceC,, such that we have: 7, ,(¢c)=
N wu(€)R7(ce)=0. Then gleXv™) =3¢, QR7(cs) = 3 w(¢1)R7(c,) =0, hence
cXv~'=0 and c=0.

1.=2. Let a=2l¢;Xx;&€CxkG with ¢; homogeneous of degree g;. Sup-
pose that for i#; we have (gy, x;,)#(0; x;). If g(@)=0 then X p(ch®
n-x?l((c,-)z)zo, therefore >3; «p ”oiri((ci)1)®”x;1(<ci)2)zo- On the other hand:
nt”i((c,)l)(gmﬁl(c,-)z)eC,,izt@C”l. Since CRC=P,,e¢ C.®C, we obtain for
fixed 7, the relation: X, ndi,i«ci)l)@nﬁl((ci)z)zo. The latter yields Tqi,zi_,r{x(ct)
=0 and therefore ¢;=0 for every choice of 7, i.e. a=0 follows.

2.3. Follows from Corollary 2.3. O

As a further application we reobtain Theorem 5.3 of which is a co-
algebra version of a well-known result of E. Dade.

2.7. COROLLARY. The graded coalgebra C is strongly graded if and only if
the induced functor —[¢,C: MC1—gr® is an equivalence of categories.

2.8. REMARK. The functor (—),: gr¢—#°, M—M,, is naturally isomorphic
to the functor —OexreG since they are both left adjoints of the induced
functor —¢,C (see [NT] Proposition 4.1, [T] Remark 2.4). Therefore the
localizing category implicit in Corollary 2.5 is just Ker(—),=Ker(—Oe¢xzeC).

As a final application of these techniques let us include a short proof of

Corollary 6.4 in [NT].

2.9. COROLLARY. If C is a strongly graded coalgebra for the group G then
G is a finite group.

PrOOF. If G is infinite we could select a non-zero homogeneous c=C and
x€G such that x=deg(c,)™! for all ¢;,. Then g(cxx)=0, but that would con-
tradict injectivity of g. O

3. Duality.

For a quasi-finite right C-comodule M, the so-called coalgebra of “co-endo-
morphisms” of M has been defined in [T., 1.17] and it is denoted by e_c(M).
Unfortunately this coalgebra is not easy to use because of the rather complex
comultiplication, so it will be useful to give a nicer description of e_¢(M) in
some particular situation, e.g. in case M is a finitely cogenerated free-comodule
(that is, M=X®C, for some finite dimensional k-vectorspace X, with the obvious
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comodule structure).

Let C be a coalgebra, X an n-dimenslonal k-space with basis {x,, =, xa}.
Consider the nXn comatrix coalgebra M¢(n, k) which is a k-space with basis
{x:;, 1=i, j<n} and A, ¢ given as follows: A(x;;)=2p 2:pQRx pj, €(x4;)=04;.

The nXn comatrix coalgebras over C, denoted by M‘(n, C) is defined to
be the tensor product of coalgebra CQM¢(n, k). We endow CQX with a left
C-and a right M¢(n, C)-bicomodule structure as follows. The left C-comodule
structure is given by by the map: p!: CRX —» CQRCRX, cQx — 2 :Qc:Qx.
The right M¢(n, C)-comodule structure is given by the map: pj: CRQX—CRX
QM<(n, C), cQxi— 3y 1Qx ;R Q)% ps.-

In a similar way CRX is a left M°(n, C)-right C-bicomodule via the structure
maps :

07: CRX — CRXRC, cQx — 2 c:QxQc,

051 CRX — M(n, C)QCRX, cQx;— §61®x1p®62®x17
Define f: C — (CRX)Ouecn, or(CRX), ¢— . 0r (c:Qx:)Q(c2@x4), which is ob-
viously injective and C-bicolinear. Define g: M(n, C) —» (CQRQX)O(CKRX), c&®

x5 (€, Rx:)R(c.Qx;) which is also injective and M¢(n, C)-bicolinear. One
easily verifies the following relations:

IONPH(c®x:)=(01)piKcQRx:)= %‘, €1Qx:Q¢:Qx ,Rcs@x p
(FODPUcRx)=U12)p7(cRx,)= § €1 Q% p Q2R x QX x4

According to results of we immediately obtain:

3.1. PROPOSITION. (C, M¢n, C), CRX, CRX, f, g) is a strict Morita-
Takeuchi context. In particular we have coalgebra isomorphisms:

ec (CRX)=M(n, C)=e_c(CRX)

3.2. THEOREM. Let G be a finite group acting on the coalgebra D, then
DxkG* is a strongly graded coalgebra and there exist coalgebra isomorphisms:
(DxkG¥)XkG=ep (DXRG*)==M°*(n, D)

where n=|G|.

PrOOF. The map p: DRQLG*, d— 2, (g:-d)Qp,, makes D into a kG*-
comodule. The comultiplication of DxkG* is given by A(d X pz)=yv=z (d X p)
Rwd, ¥ p,). This establishes that DxkG* is a graded coalgebra of type G
with grading given by (DxkG*),=DXp,-1. The canonical morphism D x p, —
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(DX po-1)R(D X p,), dXNpi—2(di X p-11)RQ(071d, X p,), is clearly injective. Thus
DxkG* is a strongly graded coalgebra, and (DxkG*);=Dxp,=D. Applying
the Morita-Takeuchi context (constructed in Section 2) to DX kG*, we have a
strict context and so it provides us with coalgebra isomorphisms :

(DX EG*)XEG=epup)-(DXEG¥)=ep (DXRGH).

The left (Dx p,)-structure of DxkG* is given by d X p,—3(d; X p)Q(d: X p),
and this yields exactly the left D-comodule structure of DQX where X=FkG*
is a k-space of dimension n. Proposition 3.1 yields the second isomorphism. [

A similar result holds for graded coalgebras (or coactions).

3.3. THEOREM. Let C be a coalgebra graded by the finite gronp G. Then
G acts on the coalgebra CxkG and there are coalgebra isomorphisms:

(CxkG)XkG*=ec (CxkG)=Mn, C)

PROOF. An action of G on the coalgebra Cx kG is given by h-(cXg)=
cxgh™, g, heG and ceC. Thus CxkG becomes a kG*-comodule coalgebra
via the map:

cXg— 21y (c XGNP, =2 (c X gy )by -
The comultiplication of (CxkG)x kG* is given by
Allexx)x pg)= 3 ((c13deg co-2) X po)&(ca X xv™H) X pu)
for any x, g&G and homogeneous ccC. Now let {e, ,, x, yEG} be a basis
for M(n, k). Define a map F: (CXEG)XEG*— M(n,C), (cXx)Xp,— cQeq,p

where a=degc-x, B=xg"*! for x, gG and homogeneous cC. Let us check
that F is a coalgebra morphism. Indeed,

A(F((c X x)X pg))=A(cRea, p)
:,.% (c1Req, . )R(c:Re., p)
and also

(F®F )(A((e e x) X pg):uvgg (Cl®edeg cydeg cox deg 0231“1)®(C2®edeg cgrv—1, zv71, u—l)

= ; (cl®ea, deg czxv—l)®(62®edeg cpzv-l, ﬂ) .

Since {degc,xv™!, v&G}=G, both sums are equal. Now, consider (¢Xx)Xp,E
(CxkG)xkG* for x, geG and ¢ homogeneous. Write ¢ for the co-unit of
(CxEG)XkG* and ¢’ for the co-unit of M°n, C). Then we have:
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e((cXx)X pg)=¢c(c)0degc.104.1
'(c®eq, p)=¢c(C)0degc.10degcz. za-1
=¢0(C€)0deg e, 10z, zg-1=€c(C)0dege, 101, g-1
=g0(C)0dege.104.1 -

Therefore F is a coalgebra map as claimed. Now define H: M¢(n, C)—(C X kG)
4 kG* by putting H(c®cy, o) = (cx(deg ) 'u) X py-1¢deger-14, fOr u, vEG and
homogeneous c=C. Again H is a coalgebra morphism because:

A(H(c®eu, )

=t=v-1(deg or-1u (€1 X deg cx(deg €)7'u) X p)R((c. X (deg )~ ut™ (X p,)
(HRH Y(A(cQeu. )

=(HQH)(Z (c1Qeu, 1)Q(c:Qen. )

=3 ((c1 ¥ (deg €))7 U)X Pr-1(deg cpp-1)XN((€2 X (d€E €5)T M) X Py-1(deg egr-1n) -

For fixed ¢, and u we have that {A~(degc,)"'u), heG}=G and if we write
t=h"Y(deg ¢,)"*u, z=v~'(deg c,)"'h, then the above sums are clearly equal as
desired. The fact that H preserves the co-unit too is obvious. Finally it is
clear that F-H and H-F are the identities so that we do arrive at a coalgebra
isomorphism. The isomorphism involving e. (CxkG) is obvious because of
Proposition 3.1 (the left C-comodule structure of CxkG is given bp cxg—
> 12X g)). O

3.4. COROLLORY. There exists a strict Morita-Tekeuchi context connecting C
and (CXkG)X kG*.

PROOF. CXEG is a left C-comodule that is a quasi-finite injective co-
generator (in view of Proposition 3.1 and [T]). Moreover Cx kG is a right
(C ¥ kG)X kG*-comodule via ¢Xg—3,(c;xdeg c,gu)RX(ca X gu)X py-1, for geG
and homogeneous cC. Hence Cx kG is a C—(C X kG)x kG*-bicomodule. The
assertion now follows from [T, Theorem 3.5 iv]. O

3.5. REMARKS. The Morita-Takeuchi context of the above corollary may
be given in detail. This may have an independent interest because it provides
another proof of Theorem 3.3 and provides a hint for establishing a more
general duality result we do not dwell upon here. The second bicomodule is
also CxkG with right C-comodule structure given by the map: c¢xg+—
S1(cy 1deg ¢,2)Qc, (for homogeneous ¢) and left (C x kG)x kG*-comodule struc-
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ture given by : ¢ X g—>, (¢; xdeg ¢,g) X prQ(c. X gh) (for homogeneous ¢) we have
[ C—(CXEG)OwexrmyneeCXNEG), f(c)=4 (cyxdeg ¢.h)Q(c2 X hy) for homo-
geneous ¢c=C, g: (CHEG)XNERG*—(CHEG)O(CHEG), gl(cXg)Xpp) = (c1 N
deg c:2)X(c: X gh), for homogeneous c=C. It is also easily seen that f and g
are injective maps.

Acknowledgement. We thank Akira Masuoka for bringing paper to
our attention.
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