ON REAL HYPERSURFACES OF TYPE A IN A COMPLEX SPACE FORM (I)

By

Yong-Soo Pyo

§ 1. Introduction.

A complex *n*-dimensional Kähler manifold of constant holomorphic sectional curvature c is called a *complex space form*, which is denoted by $M_n(c)$. A complete and simply connected complex space form consists of a complex projective space P_nC , a complex Euclidean space C^n or a complex hyperbolic space H_nC , according as c>0, c=0 or c<0.

Now, let M be a real hypersurface of an n-dimensional complex space form $M_n(c)$. Then M has an almost contact metric structure (ϕ, ξ, η, g) induced from the Kähler metric and the almost complex structure of $M_n(c)$. Okumura [7] and Montiel and Romero [6] proved the following

THEOREM A. Let M be a real hypersurface of P_nC , $n \ge 2$. If it satisfies

$$(1.1) A\phi - \phi A = 0,$$

then M is locally a tube of radius r over one of the following Kähler submanifolds:

- (A_1) a hyperplane $P_{n-1}C$, where $0 < r < \pi/2$,
- (A_2) a totally geodesic P_kC $(1 \le k \le n-2)$, where $0 < r < \pi/2$, where A is the shape operator in the direction of the unit normal C on M.

THEOREM B. Let M be a real hypersurface of H_nC , $n \ge 2$. If it satisfies (1.1), then M is locally one of the following hypersurfaces:

- (A_0) a horosphere in H_nC , i.e., a Montiel tube,
- (A_1) a tube of a totally geodesic hyperplane $H_{n-1}C$,
- (A_2) a tube of a totally geodesic H_kC $(1 \le k \le n-2)$.

On the other hand, the following theorem is proved by Maeda and Udagawa [4] under that the structure vector ξ is principal and then recently by Kimura

This research was partially supported by KOSEF (1992-1993). Received February 1, 1993, revised March 15, 1993.

and Maeda [3] and Ki, Kim and Lee [1] without the above assumption.

THEOREM C. Let M be a real hypersurface of $M_n(c)$, $c \neq 0$, $n \geq 2$. If it satisfies

(1.2)
$$\nabla_{\xi} A = 0, \quad g(A\xi, \xi) \neq 0,$$

then M is locally of type A, where ∇ is the Riemannian connection on M.

The purpose of this article is to prove the following generalized property of Theorem C.

THEOREM. Let M be a real hypersurface of $M_n(c)$, $c \neq 0$, $n \geq 2$. If it satisfies

(1.3)
$$\nabla_{\xi} A = a(A\phi - \phi A), \qquad 2a \neq -g(A\xi, \xi)$$

for some non-zero constant a, then M is locally of type A.

The author would like to thank Professors U-H. Ki and H. Nakagawa for his valuble suggestions and encouragement during the preparation of this paper.

§ 2. Preliminaries.

First of all, we recall fundamental properties about real hypersurfaces of a complex space form. Let M be a real hypersurface of a complex n-dimensional complex space form $M_n(c)$ of constant holomorphic sectional curvature c, and let C be a unit normal vector field on a neighborhood in M. We denote by J the almost complex structure of $M_n(c)$. For a local vector field X on the neighborhood in M, the images of X and C under the linear transformation J can be represented as

$$JX = \phi X + \eta(X)C$$
, $JC = -\xi$,

where ϕ defines a skew-symmetric transformation on the tangent bundle TM of M, while η and ξ denote a 1-form and a vector field on the neighborhood in M, respectively. Then it is seen that $g(\xi, X) = \eta(X)$, where g denotes the Riemannian metric tensor on M induced from the metric tensor on $M_n(c)$. The set of tensors (ϕ, ξ, η, g) is called an almost contact metric structure on M. They satisfy the following properties:

$$\phi^2 = -I + \eta \otimes \xi$$
, $\phi \xi = 0$, $\eta(\xi) = 1$,

where I denotes the identity transformation. Furthermore, the covariant derivatives of the structure tensors are given by

(2.1)
$$\nabla_X \xi = \phi AX, \quad \nabla_X \phi(Y) = \eta(Y)AX - g(AX, Y) \xi$$

for any vector fields X and Y on M, where ∇ is the Riemannian connection on M and A denotes the shape operator of M in the direction of C.

Since the ambient space is of constant holomorphic sectional curvature c, the equations of Gauss and Codazzi are respectively obtained:

(2.2)
$$R(X, Y)Z = \frac{c}{4} \{g(Y, Z)X - g(X, Z)Y + g(\phi Y, Z)\phi X - g(\phi X, Z)\phi Y - 2g(\phi X, Y)\phi Z\} + g(AY, Z)AX - g(AX, Z)AY,$$
(2.3)
$$\nabla_X A(Y) - \nabla_Y A(X) = \frac{c}{4} \{\eta(X)\phi Y - \eta(Y)\phi X - 2g(\phi X, Y)\xi\},$$

where R denotes the Riemannian curvature tensor of M and $\nabla_X A$ denotes the covariant derivative of the shape operator A with respect to X.

Next, we suppose that the structure vector field ξ is principal with corresponding principal curvature α . Then it is seen in [2] and [5] that α is constant on M and it satisfies

(2.4)
$$A\phi A = \frac{c}{4}\phi + \frac{1}{2}\alpha(A\phi + \phi A).$$

§ 3. Proof of Theorem.

Let M be a real hypersurface of $M_n(c)$, $c \neq 0$, $n \geq 2$. In this section, we shall give a sufficient condition for the structure vector field ξ to be principal. First, we assume that ξ is principal, i.e., $A\xi = \alpha \xi$, where α is constant. Then, by (2.1) and (2.4), we get

(3.1)
$$\nabla_X A(\xi) = -\frac{c}{4} \phi X - \frac{1}{2} \alpha (A\phi - \phi A) X,$$

from which together with (2.3) it follows that

$$\nabla_{\xi} A = -\frac{1}{2} \alpha (A \phi - \phi A).$$

Taking account of this property and the assumption of Theorems A and B, we shall assert the following

PROPOSITION 3.1. Let M be a real hypersurface of $M_n(c)$, $c \neq 0$, $n \geq 2$. If it satisfies

$$\nabla_{\xi} A = a(A\phi - \phi A)$$

for some non-zero constant a, then ξ is principal.

By the assumption (3.2) and (2.3), it turns out to be

$$\nabla_Y A(\xi) = a(A\phi - \phi A)Y - \frac{c}{4}\phi Y$$
.

Differentiating this equation with respect to X covariantly and taking account of (2.1), we get

$$(3.3) \qquad \nabla_{X}\nabla_{Y}A(\xi) = -\nabla_{Y}A(\phi AX)$$

$$+ a \{\nabla_{X}A(\phi Y) + g(Y, \xi)A^{2}X - g(AX, Y)A\xi\}$$

$$-g(AY, \xi)AX + g(AX, AY)\xi - \phi\nabla_{X}A(Y)\}$$

$$-\frac{c}{4} \{g(Y, \xi)AX - g(AX, Y)\xi\}$$

for any vector fields X and Y. Since the Ricci formula for the shape operator A is given by

(3.4)
$$\nabla_X \nabla_Y A(Z) - \nabla_X \nabla_Y A(Z) = R(X, Y)(AZ) - A(R(X, Y)Z),$$
 we obtain by (2.2), (2.3) and (3.3)

$$\begin{aligned} & \nabla_{X}A(\phi AY) - \nabla_{Y}A(\phi AX) + a \left\{ \nabla_{X}A(\phi Y) - \nabla_{Y}A(\phi X) \right\} \\ & = - \left\{ ag(Y, \, \xi) + g(AY, \, \xi) \right\} A^{2}X + \left\{ ag(X, \, \xi) + g(AX, \, \xi) \right\} A^{2}Y \\ & + \left\{ ag(AY, \, \xi) + g(A^{2}Y, \, \xi) \right\} AX - \left\{ ag(AX, \, \xi) + g(A^{2}X, \, \xi) \right\} AY \\ & + \frac{c}{4} \left[\left\{ ag(Y, \, \xi) + g(AY, \, \xi) \right\} X - \left\{ ag(X, \, \xi) + g(AX, \, \xi) \right\} Y \right] \\ & + \frac{c}{4} \left\{ g(A\phi Y, \, \xi)\phi X - g(A\phi X, \, \xi)\phi Y \right\} - \frac{c}{2} g(\phi X, \, Y)\phi A\xi \end{aligned}$$

for any vector fields X and Y.

Now, in order to prove the proposition, we shall express (3.5) with the simpler form. The inner product of (3.5) and ξ , combining with (2.3) and (3.2), implies

$$(3.6) \qquad ag((A\phi A\phi - \phi A\phi A)X, Y) \\ + a^{2} \{g(X, \xi)g(AY, \xi) - g(Y, \xi)g(AX, \xi)\} \\ + a \{g(X, \xi)g(A^{2}Y, \xi) - g(Y, \xi)g(A^{2}X, \xi)\} \\ + 2\{g(AX, \xi)g(A^{2}Y, \xi) - g(AY, \xi)g(A^{2}X, \xi)\} \\ = 0$$

for any vector fields X and Y. Since Y is any vector fields, we get

(3.7)
$$a(A\phi A\phi - \phi A\phi A)X + \{ag(X, \xi) + 2g(AX, \xi)\} A^{2}\xi$$

$$+ \{a^{2}g(X, \xi) - 2g(A^{2}X, \xi)\} A\xi$$

$$- a\{ag(AX, \xi) + g(A^{2}X, \xi)\}\xi$$

$$= 0$$

for any vector field X. On the other hand, taking account of (2.1) and the skew-symmetry of the transformation ϕ , we have

$$g((A\phi A\phi - \phi A\phi A)X, \phi X) = g(X, \xi)g(A\phi AX, \xi).$$

Putting $Y = \phi X$ in (3.6) and applying the above property, we get

(3.8)
$$ag(X, \xi) \{ g(A\phi AX, \xi) + ag(A\phi X, \xi) + g(A^2\phi X, \xi) \}$$

$$+ 2 \{ g(AX, \xi)g(A^2\phi X, \xi) - g(A\phi X, \xi)g(A^2X, \xi) \}$$

$$= 0.$$

Let T_0 be a distribution defined by the subspace $T_0(x) = \{u \in T_x M : g(u, \xi(x)) = 0\}$ of the tangent space $T_x M$ of M at any point x, which is called the *holomorphic distribution*. For any vector field X belonging to T_0 , (3.8) is simplified as

$$g(AX, \xi)g(A^2\phi X, \xi) - g(A\phi X, \xi)g(A^2X, \xi) = 0$$
.

Furthermore, this equation holds for any vector field X. By polarization, we have

$$g(AX, \xi)g(A^2\phi Y, \xi) - g(A\phi X, \xi)g(A^2Y, \xi)$$

$$+ g(AY, \xi)g(A^2\phi X, \xi) - g(A\phi Y, \xi)g(A^2X, \xi)$$

$$= 0$$

for any vector fields X and Y. Hence we have

(3.9)
$$g(AX, \xi)\phi A^{2}\xi + g(A\phi X, \xi)A^{2}\xi$$
$$-g(A^{2}\phi X, \xi)A\xi - g(A^{2}X, \xi)\phi A\xi$$
$$=0.$$

Now, suppose that the structure vector field ξ is not principal. Then we can put $A\xi = \alpha \xi + \beta U$, where U is a unit vector field in the holomorphic distribution T_0 , and α and β are smooth functions on M. So we may consider that the function β does not vanish identically on M. Let M_0 be the non-empty open subset of M consisting of points x at which $\beta(x) \neq 0$. And we put AU = 0

 $\beta \xi + \gamma U + \delta V$, where U and V are orthonormal vector fields in the holomorphic distribution T_0 , and γ and δ are smooth functions on M_0 .

First, we shall assert the following

LEMMA 3.2.

$$(3.10) AU = \beta \xi + \gamma U on M_0.$$

PROOF. By the forms $A\xi = \alpha \xi + \beta U$ and $AU = \beta \xi + \gamma U + \delta V$, it turns out to be

$$A^2\xi = (\alpha^2 + \beta^2)\xi + \beta(\alpha + \gamma)U + \beta\delta V$$
.

Thus we can rewrite (3.9) as

$$\begin{aligned} \{\alpha g(A^2\phi X,\,\xi) - (\alpha^2 + \beta^2) g(A\phi X,\,\xi)\} \,\xi \\ + \beta \, \{g(A^2\phi X,\,\xi) - (\alpha - \gamma) g(A\phi X,\,\xi)\} \,U - \beta \delta g(A\phi X,\,\xi)V \\ + \beta \, \{g(A^2X,\,\xi) - (\alpha + \gamma) g(AX,\,\xi)\} \,\phi U - \beta \delta g(AX,\,\xi)\phi V \\ = 0 \end{aligned}$$

for any vector field X. The inner product of (3.11) and ϕU implies

$$g(A^2X, \xi) - (\alpha + \gamma)g(AX, \xi) - \delta g(A\phi X, \xi)g(V, \phi U) = 0$$
.

Putting X=V in this equation and calculating directly, we have

$$\delta \{1+g(V, \phi U)^2\} = 0$$
.

Accordingly it turns out to be $\delta=0$. This completes the proof. \Box

Furthermore, by the above proof, we also get

(3.12)
$$A^{2}\xi = (\alpha + \gamma)A\xi, \quad \beta^{2} = \alpha\gamma.$$

By polarization in (3.8), we have

$$\begin{split} ag(X,\,\xi) \{ g(A\phi AY,\,\xi) + ag(A\phi Y,\,\xi) + g(A^2\phi Y,\,\xi) \} \\ + ag(Y,\,\xi) \{ g(A\phi AX,\,\xi) + ag(A\phi X,\,\xi) + g(A^2\phi X,\,\xi) \} \\ + 2 \{ g(AX,\,\xi) g(A^2\phi Y,\,\xi) - g(A\phi X,\,\xi) g(A^2 Y,\,\xi) \} \\ + 2 \{ g(AY,\,\xi) g(A^2\phi X,\,\xi) - g(A\phi Y,\,\xi) g(A^2 X,\,\xi) \} \\ = 0 \; . \end{split}$$

Putting $Y = \xi$, we see

$$\begin{split} a & \{ g(A\phi AX, \, \xi) + a \, g(A\phi X, \, \xi) + g(A^2\phi X, \, \xi) \} \\ & + 2 \{ g(A\xi, \, \xi) g(A^2\phi X, \, \xi) - g(A\phi X, \, \xi) g(A^2\xi, \, \xi) \} \\ & = 0 \end{split}$$

for any vector fild X because $A\phi A\xi$ is orthogonal to ξ . Consequently

$$aA\phi A\xi + (a+2\alpha)\phi A^2\xi + (a^2-2\alpha^2-2\beta^2)\phi A\xi = 0$$
.

By (3.12), we get

$$(3.13) A\phi U + \lambda \phi U = 0, \lambda = a + \alpha + \gamma.$$

We remark here that the property $a \neq 0$ is essential to derive the above first equation.

Next, we give the following

LEMMA 3.3. Assume that $A^2\xi + kA\xi = 0$, where k is constant. Then it satisfies

$$(3.14) a\lambda^2 + \left(4a\gamma - 2k\gamma + \frac{c}{4}\right)\lambda - a^2\gamma - \frac{c}{4}(2k + 2\alpha + \gamma) = 0 on M_0.$$

PROOF. Differentiating our assumption $A^2\xi + kA\xi = 0$ with resect to X and taking account of (2.1), (2.3) and (3.2), we get

$$\nabla_X A(A\xi) + aA(A\phi - \phi A)X + ak(A\phi - \phi A)X$$

$$+ A^2\phi AX + kA\phi AX - \frac{c}{4}A\phi X - \frac{c}{4}k\phi X$$

$$= 0$$

for any vector field X. The inner product of this equation with any vector field Y implies

$$\begin{split} g(\nabla_X A(Y),\ A\xi) + ag(A(A\phi - \phi A)X,\ Y) + akg((A\phi - \phi A)X,\ Y) \\ + g(A^2\phi AX,\ Y) + kg(A\phi AX,\ Y) = \frac{c}{4}\,g(A\phi X,\ Y) - \frac{c}{4}\,kg(\phi X,\ Y) \\ = 0 \ . \end{split}$$

Exchanging X and Y in the above equation and substituting the second one from the first one, we have

$$\begin{split} g(\nabla_{X}A(Y) - \nabla_{Y}A(X), \ A\xi) + ag((A^{2}\phi - 2A\phi A + \phi A^{2})X, \ Y) \\ + g((A^{2}\phi A + A\phi A^{2})X, \ Y) + 2kg(A\phi AX, \ Y) \\ - \frac{c}{4}g((A\phi + \phi A)X, \ Y) - \frac{c}{2}kg(\phi X, \ Y) \\ = 0 \end{split}$$

for any vector fields X and Y. Putting X=U and $Y=\phi U$ in this equation and taking account of (3.10), (3.12) and (3.13), we can easily show the equation (3.14). \square

Now, we are in position to prove Proposition 3.1.

PROOF OF PROPOSITION 3.1. By the form $A\xi = \alpha \xi + \beta U$ and (2.1), we have $\nabla_{\xi} A(\xi) = d\alpha(\xi)\xi + \alpha\beta\phi U + d\beta(\xi)U - \beta A\phi U + \beta\nabla_{\xi}U.$

This, combining with the assumption (3.2), implies

$$d\alpha(\xi)\xi + d\beta(\xi)U + \beta(\alpha + \alpha)\phi U - \beta A\phi U + \beta \nabla_{\xi}U = 0$$
.

From the inner product of ξ and U respectively, we get $d\alpha(\xi)=0$ and $d\beta(\xi)=0$, where we have used that $g(\nabla_{\xi}U, \xi)=0$, $g(A\phi U, \xi)=0$ and $g(A\phi U, U)=0$. Hence

$$(3.15) (a+\alpha)\phi U - A\phi U + \nabla_{\varepsilon} U = 0.$$

By (3.13) and the above equation, we find

(3.16)
$$\begin{cases} \nabla_{\xi} U = -(2a + 2\alpha + \gamma)\phi U, \\ d\alpha(\xi) = 0, \quad d\beta(\xi) = 0. \end{cases}$$

On the other hand, by making use of (3.2) and (3.10), $\gamma = g(AU, U)$ gives us to

$$(3.17) d\gamma(\xi) = 0.$$

Furthermore, from (3.13) and (3.16), we get $d\lambda(\xi)=0$. Differentiating (3.13) with respect to ξ covariantly and taking account of (2.1) and the above property, we get

$$\nabla_{\xi} A(\phi U) - g(AU, \xi) A \xi + A \phi (\nabla_{\xi} U) + \lambda \{-g(AU, \xi) \xi + \phi \nabla_{\xi} U\} = 0.$$

By (3.2), (3.12), (3.13) and the first equation of (3.16), the above equation gives the following

$$(3.18) a+\alpha+\gamma=0 or a+2\alpha+2\gamma=0.$$

Since $a \neq 0$, $\alpha + \gamma \neq 0$ by the above equation.

Now, we consider the first case $a+\alpha+\gamma=0$ of (3.18). By (3.13) and (3,15), we get

$$(3.19) A\phi U = 0, \nabla_{\varepsilon} U = \gamma \phi U.$$

By (2.1), we have $\nabla_U \xi = \phi A U = \gamma \phi U$. This implies $[\xi, U] = 0$ by the second equation of (3.19). On the other hand, by (2.1), (3.10) and (3.17), we get

$$abla_U
abla_\xi \xi = d \beta(U) \phi U - \beta \gamma \xi + \beta \phi
abla_U U,$$

$$abla_\xi \nabla_U \xi = -\beta \gamma \xi - \gamma^2 U.$$

Accordingly, by the Riemannian curvature tensor $R(\xi, U)\xi$ and (2.2), we have

$$\left(\frac{c}{4}\!-\!\gamma^2\right)\!U\!-\!d\,eta(U)\phi U\!-\!eta\phi
abla_{\!\scriptscriptstyle U}U\!=\!0$$
 ,

where we have used (3.12). The inner product of the above equation and ϕU yields $d\beta(U)=0$. Thus

$$\left(\frac{c}{4}\!-\!\gamma^{\scriptscriptstyle 2}\right)\!U\!-\!eta\phi
abla_{\scriptscriptstyle U}U\!=\!0$$
 ,

from which we get

(3.20)
$$\beta \nabla_U U = \left(\gamma^2 - \frac{c}{4} \right) \phi U , \qquad d \beta(U) = 0 .$$

Differentiating $A\xi = \alpha\xi + \beta U$ with respect to any vector field X covariantly and taking account of (3.2), we get

$$a(A\phi-\phi A)X-\frac{c}{4}\phi X+A\phi AX-d\alpha(X)\xi-\alpha\phi AX-d\beta(X)U-\beta\nabla_XU=0.$$

By taking the inner product of this equation with ξ and U respectively, we get

$$(3.21) d\alpha(X) = a\beta g(\phi X, U),$$

(3.22)
$$d\beta(X) = \left(a\gamma - \frac{c}{4}\right)g(\phi X, U),$$

where we have used (3.10) and the first equation of (3.19). Because of $\beta^2 = \alpha \gamma$, it is easily seen that

$$2\beta d\beta(X) = \gamma d\alpha(X) + \alpha d\gamma(X)$$
,

from which together with (3.21) and (3.22) it turns out to be

$$2(a\gamma - \frac{c}{4})g(\phi X, U) = a(\gamma - \alpha)g(\phi X, U)$$

for any vector field X. This implies $2a^2+c=0$. Hence, by (3.14), we get $\gamma=0$, where we have used that $\lambda=a+\alpha+\gamma=0$ and k=a. Thus we have $\beta=0$ by (3.12), a contradiction.

Lastly, we suppose that $a+2\alpha+2\gamma=0$.

On the other hand, putting $X=\xi$ and Y=U in (3.5) and from the inner product of ξ and U respectively, we obtain

$$\left\{ \begin{array}{l} \beta g(\phi \nabla_{\!\scriptscriptstyle U} U,\, U) \!=\! (a+\gamma)(a+\alpha+\gamma) \!+\! \gamma(a+\alpha) \!+\! \frac{c}{4}\,, \\ \beta (a+\alpha+2\gamma)g(\phi \nabla_{\!\scriptscriptstyle U} U,\, U) \!=\! a(a+2\gamma)(a+\alpha+\gamma) \!+\! \gamma^2(a+\alpha) \!-\! \frac{c}{4}(a+\alpha)\,, \end{array} \right.$$

where we have used (3.2), (3.10), (3.12), (3.13), (3.16) and (3.17). Combining of the above two equations, we get

$$(a+\alpha+\gamma)\left(a\alpha+2a\gamma+2\alpha\gamma+2\gamma^2+\frac{c}{2}\right)=0$$
.

By our assumption, we have $a^2=c$. Therefore, by (3.14), we obtain $\alpha=0$, where we have used that $a+2\alpha+2\gamma=0$ and $k=\lambda=a/2$. Hence $\beta=0$, a contradition.

These mean that the subset M_0 is empty and hence the structure vector field ξ is principal. \square

REMARK. The equation (3.2) is equivalent to

$$\mathcal{L}_{\varepsilon}(h+ag)=0$$
,

where \mathcal{L}_{ξ} is the Lie derivative with respect to ξ and h(X, Y) = g(AX, Y) for any vector fields X and Y.

The main theorem is proved by Proposition 3.1, the remark stated first in this section and Theorems A and B.

References

- [1] U.-H. Ki, S.-J. Kim and S.-B. Lee, Some characterizations of a real hypersurfaces of type A, Kyungpook Math. J. 31 (1991), 73-82.
- [2] U.-H. Ki and Y. J. Suh, On real hypersurfaces of a complex space form, Math. J. Okayama 32 (1990), 207-221.
- [3] M. Kimura and S. Maeda, On real hypersurfaces of a complex projective space II, Tsukuba J. Math. 15 (1991), 547-561.
- [4] S. Maeda and S. Udagawa, Real hypersurfaces of a complex projective space in term of holomorphic distribution, Tsukuba J. Math. 14 (1990), 39-52.
- [5] Y. Maeda, On real hypersurfaces of a complex projective space, J. Math. Soc. Japan 28 (1976), 529-540.
- [6] S. Montiel and A. Romero, On some real hypersurfaces of a complex hyperbolic space, Geometriae Dedicata 20 (1986), 245-261.
- [7] M. Okumura, On some real hypersurfaces of a complex projective space, Trans. Amer. Math. Soc. 212 (1975), 355-364.

Institute of Mathematics University of Tsukuba 350 Ibaraki, Japan

Department of Applied Mathematics National Fisheries University of Pusan Pusan 608-737, Korea