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ON REAL HYPERSURFACES OF TYPE A IN A
COMPLEX SPACE FORM (I)

By

Yong-Soo Pyo

§1. Introduction.

A complex n-dimensional Kidhler manifold of constant holomorphic sectional
curvature ¢ is called a complex space form, which is denoted by M,(c). A com-
plete and simply connected complex space form consists of a complex projective
space P,C, a complex Euclidean space C" or a complex hyperbolic space H,C,
according as ¢>0, ¢=0 or ¢<0.

Now, let M be a real hypersurface of an n-dimensional complex space form
M,(c). Then M has an almost contact metric structure (¢, &, », g) induced
from the Kdhler metric and the almost complex structure of M,(¢c). Okumura
and Montiel and Romero [6] proved the following

THEOREM A. Let M be a real hypersurface of P,C, n=2. If it satisfies
(1.1) Ap—pA=0,

then M is locally a tube of radius r over one of the following Kdhler submani-
folds:

(A,) a hyperplane P,_,C, where 0<r<m/2,

(Az) a totally geodesic P,C (1=k<n—2), where 0<r<m/2,
where A is the shape operator in the direction of the unit normal C on M.

THEOREM B. Let M be a real hypersurface of H,C, n=2. If it satisfies
(1.1), then M is locally one of the following hypersurfaces:

(Ay) a horosphere in H,C, i.e., a Montiel tube,

(Ay) a tube of a totally geodesic hyperplane H,_,C,

(As) a tube of a totally geodesic H,C (1<k=<n—2).

On the other hand, the following theorem is proved by Maeda and Udagawa
[4] under that the structure vector & is principal and then recently by Kimura
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and Maeda and Ki, Kim and Lee without the above assumption.

THEOREM C. Let M be a real hypersurface of M,(c), ¢c+0, n=2. If it
satisfies

(1.2) VeA=0,  g(A§ §)+#0,

then M is locally of type A, where V is the Riemannian connection on M.

The purpose of this article is to prove the following generalized property
of C.

THEOREM. Let M be a real hypersurface of M,(c), c+0, n=2. If it satisfies

(1.3) VeA=a(Ap—0¢A),  2a+—g(A§ &)

for some non-zero constant a, then M is locally of type A.

The author would like to thank Professors U-H. Ki and H. Nakagawa for
his valuble suggestions and encouragement during the preparation of this paper.

§2. Preliminaries.

First of all, we recall fundamental properties about real hypersurfaces of a
complex space form. Let M be a real hypersurface of a complex n-dimensional
complex space form M,(c) of constant holomorphic sectional curvature ¢, and
let C be a unit normal vector field on a neighborhood in M. We denote by J
the almost complex structure of M,(c). For a local vector field X on the
neighborhood in M, the images of X and C under the linear transformation J
can be represented as

JX=¢pX+n(X)C, JC=-¢,

where ¢ defines a skew-symmetric transformation on the tangent bundle TM
of M, while 5 and & denote a 1-form and a vector field on the neighborhood in
M, respectively. Then it is seen that g(¢, X)=%(X), where g denotes the Rie-
mannian metric tensor on M induced from the metric tensor on M,(c). The
set of tensors (@, & 7, g) is called an almost contact metric structure on M.
They satisfy the following properties :

P*=—I+7¢,  ¢6=0, =1,

where [ denotes the identity transformation. Furthermore, the covariant deriva-
tives of the structure tensors are given by
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(2.1) Vyé=0pAX, VxdY)=9Y)AX—g(AX, Y)3

for any vector fields X and Y on M, where V is the Riemannian connection on
M and A denotes the shape operator of M in the direction of C.

Since the ambient space is of constant holomorphic sectional curvature c,
the equations of Gauss and Codazzi are respectively obtained :

(2.2) R(X, Y)Z:—Z— g, 2)X—g(X, 2)Y
+2@Y, Z)pX—g(@X, Z)PY —2g(¢X, Y)$Z}
+g(AY, 2)AX—g(AX, Z)AY ,

2.3) Vr AY)—VrAX)= - (n(X)BY —7(V)$X—2¢($X, Y&},

where R denotes the Riemannian curvature tensor of M and VyA denotes the
covariant derivative of the shape operator A with respect to X.

Next, we suppose that the structure vector field & is principal with corre-
sponding principal curvature a«. Then it is seen in [2] and that « is con-
stant on M and it satisfies

2.4) A¢A:£—¢+~21—a(A¢+¢A).

§3. Proof of Theorem.

Let M be a real hypersurface of M,(c), ¢#0, n=2. In this section, we
shall give a sufficient condition for the structure vector field £ to be principal.
First, we assume that & is principal, i.e., Aé=a&, where « is constant. Then,

by and [2.4), we get
(3.1) TxA@=—5¢X—~a(Ag—GAX,
from which together with it follows that

VoA =— —;—a(A¢—¢A).

Taking account of this property and the assumption of Theorems A and B, we
shall assert the following

PROPOSITION 3.1. Let M be a real hypersurface of M,(c), c+0, n=2. If
i1 satisfies

3.2) VeA=a(Ap—p A)
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for some non-zero constant a, then & is principal.

By the assumption [(3.2) and [2.3), it turns out to be

Ty A©=a(Ag—GAY — Y .

Differentiating this equation with respect to X covariantly and taking account

of [2.1), we get
3.3) VxVyA(§)=—VrA(pAX)

+a (Ve A@Y )+, OAX—g(AX, Y)A¢
—g(AY, HAX+g(AX, AV )e—gV AV}
— 1 8V, HAX—g(AX, V)¢

for any vector fields X and Y. Since the Ricci formula for the shape operator
A is given by

(3.4) VxVyA(Z)—V Ny A(Z)=R(X, YYAZ)—A(R(X, Y)Z),
we obtain by [2.2), [2.3) and [(3.3)
(3.5 VxA@AY)—Vy A(PQAX)+a {Vx A@Y )—Vy A(@X)}

=—{ag, §)+g(AY, §)} A2X+{ag(X, §)+g(AX, &)} AYY
+1{ag(AY, §)+g(A%Y, O} AX—{ag(AKX, §)+g(A:X, &)} AY

+%[{ag(Y, H+g(AY, O} X—{ag(X, H)+g(AX, §IY]

+ 7 (8(ABY, DPX—g(APX, DY | — 5 8@ X, V) A

for any vector fields X and Y.
Now, in order to prove the proposition, we shall express with the
simpler form. The inner product of [(3.5)and & combining with and ((3.2),

implies

(3.6) ag((ApAp—pAPpA)X, Y)
+a*{g(X, §)g(AY, §—g, §)g(AX, H)}
+a{g(X, §g(A%Y, §—g, §g(A’X, §)}

+2{g(AX, §)g(A*Y, §)—g(AY, £)g(A*X, &)}
=0



On real hypersurfaces of type A 487

for any vector fields X and Y. Since Y is any vector fields, we get
(3.7 a(ApAp—P A )X+ {ag(X, §)+2g(AX, §)} A%

+{a*g(X, §)—2g(AX, H)} A&

—alag(AX, §)+g(A’X, §)}&

=0
for any vector field X. On the other hand, taking account of and the
skew-symmetry of the transformation ¢, we have
8(ApAPp—9pAPAX, pX)=g(X, £)g(APAX, §).

Putting Y =¢X in (3.6) and applying the above property, we get

(3.8) ag(X, &) {g(AdAX, §)+ag(AdX, &)+g(A*PX, &)}
+2{g(AX, &) g(A’X, &) —g(AdX, §g(AX, &)}
=0.
Let T, be a distribution defined by the subspace T(x)={ucsT .M: g(u, & x))=0}
of the tangent space T.M of M at any point x, which is called the holomorphic
distribution. For any vector field X belonging to T, (3.8) is simplified as
g(AX, §)g(A’X, §)—g(AgX, §g(A’X, §=0.

Furthermore, this equation holds for any vector field X. By polarization, we

have
g(AX, §)g(A*@Y, §)—g(AdX, §)g(A%Y, §)

+g(AY, §)g(A’PX, §)—g(AgY, £)g(A’X, §)
=0
for any vector fields X and Y. Hence we have
3.9) g(AX, H)p A%+ g(AgX, §) A%
—g(A’X, §) AE—g(AX, E)pAE
=0.

Now, suppose that the structure vector field & is not principal. Then we
can put Af=aé+BU, where U is a unit vector field in the holomorphic distri-
bution T, and @« and B8 are smooth functions on M. So we may consider that
the function B does not vanish identically on M. Let M, be the non-empty
open subset of M consisting of points x at which f(x)#0. And we put AU=



488 Yong-Soo Pyo

Bé+yU+0V, where U and V are orthonormal vector fields in the holomorphic
distribution T, and 7y and & are smooth functions on M,.

First, we shall assert the following

LEMMA 3.2.
(3.10) AU=B&+7U on M, .

ProoF. By the forms Aé=aé+pU and AU=B&+yU+4V, it turns out to
be

A =(a*+ e+ Bla+7r) U+ BoV .
Thus we can rewrite as

(3.11) lag(A’@X, &) —(a*+pYg(A9X, §)}§
+B{g(A@X, §)—(a—1)g(APX, ) U—Big(AdX, )V
+B1{g(A%X, &)—(a+1g(AX, §)}pU—Bog(AX, E)PV
=0
for any vector field X. The inner product of and ¢U implies
g(A*X, §)—(a+7)g(AX, §)—0g(AdX, §)g(V, ¢U)=0.
Putting X=V in this equation and calculating directly, we have

§{1+g(V, gU) =0.

Accordingly it turns out to be d=0. This completes the proof. [

Furthermore, by the above proof, we also get

(3.12) A¥=(a+7)AE, B*=ar.
By polarization in [3.8), we have

ag(X, &) {g(ApAY, )+ag(AgY, §)+g(A*Y, &)}
+ag(Y, §){g(ApAX, §)+ag(ApX, &)+g(A%X, &)}
+2{g(AX, §g(A’@Y, £)—g(AgX, §)g(A*Y, &)}
+2{g(AY, §)g(A’PX, &) —g(AgY, §)g(A*X, &)}
=0.

Putting Y =§, we see
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aig(APAX, §)+ag(AgX, H)+g(A%X, &)}
+2{g(A¢§, HHg(A*X, §)—g(AgX, £)g(A%, &)}
=0
for any vector fild X because A¢ A& is orthogonal to & Consequently
a AP A+ (a+2a)p A%+ (a®—2a*—28%)p AE=0.
By [3.12), we get
(3.13) AU 26U =0, A=a+a-+7.

We remark here that the property a=0 is essential to derive the above first
equation.
Next, we give the following

LEMMA 3.3. Assume that A*6+kA&=0, where k is constant. Then it satisfies

c

(3.14) a22+(4a7'———2kr—|- i

)l—azr—%(2k+2a+7‘)=0 on M, .

Proor. Differentiating our assumption A26-+kAE=0 with resect to X and
taking account of [2.1), and [3.2), we get

Ty AAS)+a A(Ap—¢ A)X+ak(Ap—p A)X
+A’¢AX+RAGAX — %A¢X—-Z—k¢ X
=0

for any vector field X. The inner product of this equation with any vector
field Y implies

g(VxAY), AD)+ag(A(Ag—dAX, Y)+akg(Ap—gA)X, Y)
+g(APAX, Y)+kg(APAX, V)= T g(ApX, V)~ kg(@X, V)
=0.

Exchanging X and Y in the above equation and substituting the second one
from the first one, we have

gV x AY)=Vr AX), A§)+ag((A*¢—2A9A+$ANX, Y)
+g(A*A+APADX, Y)+2kg(ApAX, Y)

— T (AP+PAX, Y)— = kg@X, V)
—0
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for any vector fields X and }. Putting X=U and } =¢U in this equation and
taking account of (3.10), [3.12) and [3.13), we can easily show the equation
(3.14). O

Now, we are in position to prove [Proposition 3.1l

PROOF OF PROPOSITION 3.1. By the form Aé=aé+pU and [2.1), we have

VeA®)=da(®)é+aBpU+dBEU—BASU+ VU .
This, combining with the assumption [3.2), implies

da(©)&+dBEU+Bla+a)pU—BASU + BV U=0.

From the inner product of & and U respectively, we get da(§)=0 and dB(§)=0,
where we have used that g(V.U, §)=0, g(A¢U, §)=0 and g(A¢U, U)=0. Hence

(3.15) (a+a)pU—AgU+TU=0.

By and the above equation, we find
VeU=—Q2a+2a+7)9U,

{ da(§)=0, dB&=0.

On the other hand, by making use of and (3.10), y=g(AU, U) gives
us to

(3.17) dr€)=0.

Furthermore, from and [3.16), we get dA(§)=0. Differentiating
with respect to ¢ covariantly and taking account of and the above pro-
perty, we get

VeA@U)—g(AU, §)AE+A(NU)+2{—g(AU, §€)§+¢V:U} =0.

By [3.2), [(3.12), [(3.13) and the first equation of [(3.16), the above equation gives
the following

(3.16)

(3.18) a+a+r=0 or a+2a-+2r=0.

Since a+#0, a+7r+0 by the above equation.

Now, we consider the first case a+a+y=0 of (3.18). By and (3,15),
we get

(3.19) ApU=0, VU=7¢U .

By [2.1), we have Vyé=¢pAU=ypU. This implies [§, U]=0 by the second eque-
tion of [3.19). On the other hand, by [2.1), (3.10) and [3.17), we get
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VuVeb=dBU)¢U — pré+ oyl ,
VeVué=—B7r6—7U .

Accordingly, by the Riemannian curvature tensor R(§, U)¢ and [2.2), we have
(ZCI —1* )U—dBWI$U—BpVoU=0,

where we have used [3.12). The inner product of the above equation and ¢U
vields dp(U)=0. Thus

_C__ 2 — =

(4 7 U—BgVuU=0,
from which we get

(3.20) B U=(7*— —Z—)¢U . dBU)=0.

Differentiating Aé=a&+pBU with respect to any vector field X covariantly
and taking account of [3.2), we get

a(A¢~¢A)X——161—¢X+A¢AX——da(X)E——agbAX—d,B(X)U——,BVXUzo.
By taking the inner product of this equation with & and U respectively, we get
(3.21) da(X)=aBg(9X, U),
(3.22) dBX) =(ar—)g@X, U,

where we have used (3.10) and the first equation of (3'19). Because of B%=ay,
it is easily seen that

28dB(X)=rda(X)+ady(X),
from which together with [3.21) and [(3.22) it turns out to be

2(ar—7)e@X, U)=aG—a)eg@X, U)

for any vector field X. This implies 2a®+¢=0. Hence, by 3.14), we get 7=0,
where we have used that A=a+a+7=0 and k=a. Thus we have =0 by

(312), a contradiction.
Lastly, we suppose that a+2a42y=0.

On the other hand, putting X=¢& and Y=U in and from the inner
product of & and U respectively, we obtain
{ Bg@VuU, U)=(a+r)(a+a+r)+r(a+a)+—2—,
Bla+a+2ng@VuU, U)=a(a+2r a+a+7)+r¥a+a)—3(a+a),



492 Yong-Soo Pyo

where we have used [3.2), (3.10), [3.12), [3.13), [3.16) and [3.I7). Combining of

the above two equations, we get

(a+a+r)<aa+2ar+2ar+2r2+ %)zo .

By our assumption, we have a®*=c. Therefore, by [3.14), we obtain a=0,
where we have used that a+2a+2y=0 and 2#=4A=a/2. Hence B=0, a contra-
dition.

These mean that the subset M, is empty and hence the structure vector
field & is principal. O

REMARK. The equation [(3.2) is equivalent to

Leh+ag)=0,

where L. is the Lie derivative with respect to & and h(X, Y)=g(AX,Y) for
any vector fields X and Y.

The main theorem is proved by [Proposition 3.1, the remark stated first in
this section and Theorems A and B.
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