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0. Introduction

In this paper, we obtain some conditions for a complete Riemannian manifold
to be isometric to a sphere. This is to expand the following theorems for a
compact Riemannian manifold $M$ into the case where $M$ is complete and not
necessarily compact.

THEOREM A (Yano [6]). If $M$ is a compact orientable Riemannian manifold
of dimension $n>2$ with constant scalar curvature and admits a non-isometric con-
formal vector field $X:\mathcal{L}_{X}g=2\rho g$ such that

(0.1) $\int_{M}G(d\rho, d\rho)dV\geqq 0$ ,

then $M$ is isometric to a sphere.

As a corollary of this theorem, the condition (0.1) may be replaced by

$\mathcal{L}_{X}|R|^{2}=0$ or $\mathcal{L}_{X}|K|^{2}=0$ (see [3, 6, 8]).

1. Notations and Preliminaries

Throughout this paper, by a Riemannian manifold we always mean an n-
dimensional connected and oriented manifold covered by a system of local co-
ordinates $\{x^{i}\}$ ($i=1,2,$ $\cdots$ , n) and furnished with a Riemannian metric tensor
$g=g_{ji}dx^{j}\otimes dx^{i}$ . We use the Einstein summation convention with respect to

repeated indices. Furthermore, geometric objects and some functions appeared

in this paper are always assumed to be smooth, unless otherwise stated.
Let $M$ be an n-dimensional Riemannian manifold with a metric tensor $g$ .

We use the standard notation for the covariant derivative $\nabla$ , the exterior dif-
ferential $d$ , the codifferential $\delta$ , the Laplacian $\Delta$ and the volume element $dV$ of
$M$. We denote by $\langle, \rangle$ and $|$ $|$ the inner product and the norm induced in
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fibers of various tensor bundles by the metric $g$ of $M$ . In this paper, we
identify a l-form with its dual vector field with respect to $g$ and they are
represented by the same letter.

By $\mathcal{L}_{X}$ we mean the operators of Lie derivation with respect to a vector
field $X$ on $M$ . A vector field (or an infinitesimal transformation) $X$ on $M$ is
said to be conformal if it satisfies $\mathcal{L}_{X}g=2\rho g$ for some function $\rho$ on $M$. In
particular, $X$ is isometric if $\rho$ is identically zero.

We denote by $K_{kjih}$ and $R_{ji}$ local components of the curvature tensor $K$

and the Ricci tensor $R$ of $M$ respectively, and by $r$ the scalar curvature of $M$ .
We put

(1.1) $G_{ji}=R_{jt}-(r/n)g_{ji}$ ,

(1.2) $Z_{kjih}=K_{kjih}-\{r/n(n-1)\}(g_{kh}g_{ji}-g_{jh}g_{ki})$ .

Then the tensor $G$ measures the deviation of $M$ from an Einstein manifold and
the tensor $Z$ that from a manifold of constant curvature.

The following theorem proved by Obata [4] is well known.

THEOREM B. If a complete Riemannian manifold $M$ of dimension $n\geqq 2$

admits a nonconstant function $\rho$ such that $\nabla\nabla\rho+k^{2}\rho g=0$ , where $k$ is a positive
constant, then $M$ is isometric to an n-sphere of radius $1/k$ .

By using this theorem and the above geometric objects, Obata [4], Yano
[6, 7, 8], Hsiung [3] and others have obtained some conditions for a compact

Riemannain manifold admitting a conformal vector field to be isometric to a
sphere. One of these results is Theorem A in the introduction.

The following formulae are well known (see [8]). These were prepared

in order to prove Theorem A and others.

(1.3) $\langle G, g\rangle=G_{ji}g^{ji}=0$ ,

where $g^{ji}$ are the contravariant components of $g$ defined by $g^{ji}g_{ik}=\delta_{k}^{j}$ .
(1.4) $Z_{kjth}g^{kh}=G_{ji}$ ,

(1.5) $|G|^{2}=|R|^{2}-(1/n)r^{2}$ ,

(1.6) $|Z|^{2}=|K|^{2}-\{2/n(n-1)\}r^{2}$ ,

(1.7) $\delta G=-g^{kj}\nabla_{k}G_{jt}dx^{i}=-\{(n-2)/2n\}$ dr.

Let $X$ be a conformal vector field on $M$, that is, it satisfies

(1.8) $\mathcal{L}_{X}g_{ji}=\nabla_{j}X_{i}+\nabla_{i}X_{j}=2\rho g_{ji}$ ,
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where $\rho$ is a function, and then we have

(1.9) $\rho=-(1/n)\delta X=(1/n)\nabla_{i}X^{i}$ ,

(1.10) $\mathcal{L}_{X}r=2(n-1)\Delta\rho-2\rho r$ ,

(1.11) $\mathcal{L}_{X}|G|^{2}=-2(n-2)\langle\nabla\nabla\rho, G\rangle-4\rho|G|^{2}$ ,

(1.12) $\mathcal{L}_{X}|Z|^{2}=-S\langle\nabla\nabla\rho, G\rangle-4\rho|Z|^{2}$ .

Now, we assume that $M$ is complete. Let $f$ be the geodesic distance func-
tion from a fixed point on $M$ and $B(t)$ the geodesic ball of radius $t$ , i.e.,

(1.13) $B(t)=\{x\in M|f(x)\leqq t\}$

for $t>0$ . Then there exists a Lipschitz continuous function $w_{l}$ on $M$ satisfying
the following properties:

(1.14) $0\leqq w_{l}(x)\leqq 1$ , $x\in M$ ,

(1.15) $w_{l}(x)=1$ , $x\in B(t)$ ,

(1.16) $suppw_{l}\subset B(2t)$ ,

(1.17) $w_{t}-1(t\rightarrow\infty)$ ,

(1.18) $|dw_{l}|\leqq C/t$ almost everywhere on $M$ ,

where $C$ is a positive constant independent of $t$ (see [1, 2, 9]).

2. Main Results

THEOREM 1. Let $M$ be a complete Riemannian manifold of dimension $n\geqq 2$ ,

and admit a non-constant function $\rho$ such that $\Delta\rho=nk\rho$ for some non-zero constant
$k$ . If $\rho$ satisfies that

(2.1) $\lim_{t\rightarrow\infty}\inf\int_{M}\langle R-(n-1)kg, w_{t}^{2}d\rho\otimes d\rho\rangle dV\geqq 0$ ,

and has first derivatives in $L^{2}(M)$ , then $M$ is isometric to a sphere.

Especially, if $R(d\rho, d\rho)\geqq(n-1)k|d\rho|^{2}$ , then we get the condition (2.1) in
Theorem 1. Thus we obtain the following

COROLLARY. Let $M$ be a complete Riemannian manifold of dimension $n\geqq 2$ ,

$aud$ admit a non-constant function $\rho$ such that $\Delta\rho=nk\rho$ for some non-zero constant
$k$ . If the Ricci curvature of $M$ in the direction $ d\rho$ is not less than $(n-1)k$ and
$\rho$ has first derivatives in $L^{2}(M)$ , then $M$ is isometric to a sphere.
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REMARK 1. In Theorem 1, if $M$ is compact, then automatically the first
derivatives of $\rho$ are in $L^{2}(M)$ and $\lim_{t\rightarrow\infty}\inf\int_{M}\langle R-(n-1)kg, w_{t}^{2}d\rho\otimes d\rho\rangle dV=$

$\int_{M}\langle R-(n-1)kg, d\rho\otimes d\rho\rangle dV$ . From the proof of Theorem 1 it follows that

the assumption $\int_{M}|d\rho|^{2}dV<+\infty$ may be replaced by

(2.2) $\lim_{t\rightarrow\infty}(1/t^{2})\int_{B(2\iota)}|d\rho|^{2}dV=0$

as in the case of [5].

As a special case of Theorem 1, we assert the following

THEOREM 2. Let $M$ be a complete Riemannain manifold of dimension $n\geqq 2$

with non-zero constant scalar curvature, and admit a non-isometric comformal
vector field $X:\mathcal{L}_{X}g=2\rho g$ . If $\rho$ satisfies that

(2.3) $\lim_{t\rightarrow\infty}\inf\int_{M}\langle w_{t}^{2}G, d\rho\otimes d\rho\rangle dV\geqq 0$ ,

and has first derivatives in $L^{2}(M)$ , then $M$ is isometric to a sphere.

PROOF OF THEOREM 2. It follows from (1.10) that $\Delta\rho=nk\rho,$ $k$ being the
nonzero conatant $r/n(n-1)$ . Then we have completed the proof of Theorem 2
as an application of Theorem 1. $\square $

REMARK 2. From the comment in Remark 1 we can consider that Theorem
2 is a generalization of Theorem A.

THEOREM 3. Let $M$ be a complete Riemannain manifold of dimension $n>2$

with non-zero constant scalar curvature, and admit a non-isometric comformal
vector field $X:\mathcal{L}_{X}g=2\rho g$ . If $\mathcal{L}_{X}|R|^{2}=0$ (or $\mathcal{L}_{X}|K|^{2}=0$) and $\rho$ has first deri-
vative in $L^{2}(M)$ , then $M$ is isometric to a sphere.

REMARK 3. Here we remark the following fact concerning constant scalar
curvatures.

PROPOSITION. Let $M$ be a complete Riemannian manifold $M$ with constant
scalar curvature $r$ , and admit a non-isometric conformal vector field $X:\mathcal{L}_{X}g=$

$2\rho g$ . If $\rho$ has first derivatives in $L^{2}(M)$ , then $r$ is non-negative.

3. Proof of Theorems

In this section, we give the proofs of the theorems mentioned in \S 2. We
need the lemma below.
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LEMMA. Let $M$ be a complete Riemannian manifold, and admit a non-trivial
solution $\rho$ of the partial differential equation $\Delta\rho=k\rho$ for some constant $k$ . If $\rho$

has first derivatives in $L^{2}(M)$ , then $k$ is non-negative. (see also [10]).

PROOF. We can easily find that

(3.1) $\delta(w_{l}^{2}\rho d\rho)=-w_{l}^{2}|d\rho|^{2}+w_{l}^{2}\rho\Delta\rho-\langle w_{l}\rho d\rho, 2dw_{t}\rangle$ a.e. on $M$ .

We integrate the both sides of (3.1) over $B(2t)$ . Since Stokes’ theorem holds
for Lipschitz differential forms and $w_{t}=0$ on the boundary $\partial B(2t)$ of $B(2t)$ , the
left hand becomes zero:

$\int_{B(2t)}\delta(w_{t}^{2}\rho d\rho)dV=-\int_{\partial B(2t)}w_{t}^{2}\langle\rho d\rho, N\rangle dS=0$ ,

where $N$ and $dS$ are the unit normal to $\partial B(2t)$ and the volume element of
$\partial B(2t)$ respectively. Then we see

(3.2) $\int_{B(2l)}w_{t}^{2}|d\rho|^{2}dV-k\int_{B(2t)}w_{t}^{2}\rho^{2}dV+\int_{E(2l)}\langle w_{t}\rho d\rho, 2dw_{t}\rangle dV=0$ .

From Schwartz’s inequality and (1.18), we have

$|\int_{B(2t)}\langle w_{l}\rho d\rho, 2dw_{l}\rangle dV|$

$\leqq[\int_{B(2l)}(w_{t}\rho)^{2}dV]^{1/2}[\int_{B(2l)}\langle d\rho, 2dw_{t}\rangle^{2}dV]^{1/2}$

$\leqq[\int_{B(2t)}(w_{l}\rho)^{2}dV]^{1/2}[\int_{B(2l)}4|d\rho|^{2}|dw_{l}|^{2}dV]^{1/2}$

$\leqq[\int_{B(2t)}(w_{t}\rho)^{2}dV]^{1/2}\cdot\frac{2C}{t}[\int_{B(2t)}|d\rho|^{2}dV]^{1/2}$

Now we suppose that $k$ is negative. Using the fundamental inequality

$2ab=-(\wedge-ka-\frac{1}{\sqrt{-k}}b)^{2}-ka^{2}-\frac{1}{k}b^{2}\leqq-ka^{2}-\frac{1}{k}b^{2}$ ,

we get the following:

(3.3) $|\int_{B(2t)}\langle w_{l}\rho d\rho, 2dw_{t}\rangle dV|$

$\leqq\frac{1}{2}[-k\int_{B(2t)}(w_{t}\rho)^{2}dV-\frac{4C^{2}}{kt^{2}}\int_{B(2t)}|d\rho|^{2}dV]$ .

Then it follows from (3.2) combined with (3.3) that

$-\frac{2C^{2}}{kt^{2}}\int_{B(2t)}|d\rho|^{2}dV\geqq\int_{B(2l)}w_{t}^{2}|d\rho|^{2}dV-\frac{1}{2}k\int_{B(2t)}w_{l}^{2}\rho^{2}dV\geqq 0$
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Furthermore, from (1.16), we also have

(3.4) $-\frac{2C^{2}}{kt^{2}}\int_{M}|d\rho|^{2}dV\geqq\int_{M}w_{\ell}^{2}|d\rho|^{2}dV-\frac{1}{2}k\int_{M}w_{t}^{2}\rho^{2}dV\geqq 0$ .

Since $\int_{M}|d\rho|^{2}dV<\infty$ , letting $ t\rightarrow\infty$ in (3.4), we have

$0\geqq\lim_{t\rightarrow\infty}\inf\int_{M}w_{\iota}^{2}|d\rho|^{2}dV-\frac{1}{2}k\lim_{l\rightarrow\infty}\inf\int_{M}w_{t}^{2}\rho^{2}dV$

$\geqq\int_{M}|d\rho|^{2}dV-\frac{1}{2}k\int_{M}\rho^{2}dV\geqq 0$ .

Then we see that $\rho=0$ on $M$ . This contradicts the hypothesis. Therefore $k$

must be nonnegative. $\square $

The previous proposition is immediately proved by (1.10) and this lemma.
Let us prove Theorem 1.

PROOF OF THEOREM 1. Let $i_{\zeta}$ be the inner product operator with respect
to a vector field $\zeta$ on $M$, that is, operating it to a $(0,2)$-type tensor $T$ , then
we get the l-form $i_{\zeta}T=\zeta^{j}T_{ji}dx^{i}$ .

The second equality can be shown by direct computation:

(3.5) $\delta\{w_{t}^{2}i_{\zeta}(\mathcal{L}_{\zeta}g+\frac{2}{n}\delta\zeta\cdot g)\}$

$=\langle\Delta\zeta+\frac{n-2}{n}d\delta\zeta,$ $ w_{t}^{2}\zeta\rangle-\langle 2R, w_{t}^{2}\zeta\otimes\zeta\rangle$

$-\frac{1}{2}|w_{t}(\mathcal{L}_{\zeta}g+\frac{2}{n}\delta\zeta\cdot g)|^{2}-\{\mathcal{L}_{(}g+\frac{2}{n}\delta\zeta\cdot g,$ $2w_{t}dw_{l}\otimes\zeta\}$

a.e. on $M$ ,

for any vector field $\zeta$ on $M$ . Integrating the both sides of (3.5) over $B(2t)$ and
applying Stokes’ theorem, we have

(3.6) $0=\int_{B(2t)}\langle\Delta\zeta+\frac{n-2}{n}d\delta\zeta,$ $w_{t}^{2}\zeta\rangle dV-\int_{B(2t)}\langle 2R, w_{t}^{2}\zeta\otimes\zeta\rangle dV$

$-\frac{1}{2}\int_{B(2t)}|w_{t}(\mathcal{L}_{\zeta}g+\frac{2}{n}\delta\zeta\cdot g)|^{2}dV-\int_{B(2t)}\langle \mathcal{L}_{\zeta}g+\frac{2}{n}\delta\zeta\cdot g,$ $2w_{t}dw_{t}\otimes\zeta\}dV$ .

Putting $\zeta=d\rho$ in (3.6) and using $\Delta d\rho=d\Delta\rho=nkd\rho$ , it follows that

(3.7) $0=\int_{B(2t)}\langle R-(n-1)kg, w_{t}^{2}d\rho\otimes d\rho\rangle dV$

$+\int_{B(2t)}w_{t}^{2}|\nabla\nabla\rho+k\rho g|^{2}dV+\int_{B(2t)}\langle\nabla\nabla\rho+k\rho g, 2w_{t}dw_{t}\otimes d\rho\rangle dV$ .
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From Schwartz’s inequality and (1.18), we have

(3.8) $|\int_{B(2l)}\langle\nabla\nabla\rho+k\rho g, 2w_{t}dw_{l}\otimes d\rho\rangle dV|$

$\leqq\int_{B(2t)}|w_{t}(\nabla\nabla\rho+k\rho g)|\cdot 2|dw_{t}\otimes d\rho|dV$

$\leqq[\int_{B(2t)}|w_{t}(\nabla\nabla\rho+k\rho g)|^{2}dV]^{1/2}[4\int_{B(2t)}|dw_{t}\otimes d\rho|^{2}dV]^{1/2}$

$\leqq\frac{1}{2}[\int_{B(2l)}|w_{t}(\nabla\nabla\rho+k\rho g)|^{2}dV+4\int_{B(2l)}|dw_{l}\otimes d\rho|^{2}dV]$

$\leqq\frac{1}{2}[\int_{B(2t)}|w_{t}(\nabla\nabla\rho+k\rho g)|^{2}dV+\frac{4C^{2}}{t^{2}}\int_{B(2l)}|d\rho|^{2}dV]$

Then it follows from (3.7) combined with (3.8) that

$\frac{2C^{2}}{t^{2}}\int_{B(2t)}|d\rho|^{2}dV\geqq\int_{B(2l)}\langle R-(n-1)kg, w_{l}^{2}d\rho\otimes d\rho\rangle dV$

$+\frac{1}{2}\int_{B(2t)}w_{t}^{2}|\nabla\nabla\rho+k\rho g|^{2}dV$ .

Furthermore, from (1.16), we also have

(3.9) $\frac{2C^{2}}{t^{2}}\int_{M}|d\rho|^{2}dV\geqq\int_{M}\langle R-(n-1)kg, w_{t}^{2}d\rho\otimes d\rho\rangle dV+\frac{1}{2}\int_{M}w_{t}^{2}|\nabla\nabla\rho+k\rho g|^{2}dV$ .

Since $\int_{M}|d\rho|^{2}dV<\infty$ and $\lim_{l\rightarrow\infty}\inf\int_{M}\langle R-(n-1)kg, w_{t}^{2}d\rho\otimes d\rho\rangle dV\geqq 0$, letting $ t\rightarrow$

$\infty$ in (3.9), we see

(3.10) $0\geqq\lim_{t\rightarrow\infty}\inf\int_{M}\langle R-(n-1)kg, w_{t}^{2}d\rho\otimes d\rho\rangle dV+\frac{1}{2}\lim_{l\rightarrow}\inf_{\infty}\int_{M}w_{t}^{2}|\nabla\nabla\rho+k\rho g|^{2}dV$

$\geqq\frac{1}{2}\int_{M}|\nabla\nabla\rho+k\rho g|^{2}dV\geqq 0$ .

Hence we have

(3.11) $\nabla\nabla\rho+k\rho g=0$ on $M$ .

This combined with Theorem $B$ and Lemma completes the proof of Theorem 1.
$\square $

Theorem 3 is proved below as an application of Theorem 2.

PROOF OF THEOREM 3. Since the scalar curvature $r$ is constant, we first
note that $\mathcal{L}_{X}|G|^{2}=0$ [resp. $\mathcal{L}_{X}|Z|^{2}=0$] is equivalent to $\mathcal{L}_{X}|R|^{2}=0$ [resp. $\mathcal{L}_{X}|K|^{2}$

$=0]$ .

The next equality can be shown by direct computation:
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(3.12) $-\delta(w_{t}^{2}\rho i_{d\rho}G)=\langle w_{t}\rho G, 2dw_{t}\otimes d\rho\rangle+\langle w_{t}^{2}G, d\rho\otimes d\rho\rangle$

$+\langle w_{t}^{2}\rho G, \nabla\nabla\rho\rangle$ a.e. on $M$ .

Integrating the both sides of (3.12) over $B(2t)$ , applying Stokes’ theorem,

and using (1.11) and the condition $\mathcal{L}_{X}|R|^{2}=0$ , we have

(3.13) $0=\int_{B(2t)}\langle w_{t}\rho G, 2dw_{t}\otimes d\rho\rangle dV+\int_{B(2t)}\langle w_{t}^{2}G, d\rho\otimes d\rho\rangle dV$

$-\frac{2}{n-2}\int_{B(2t)}w_{t}^{2}\rho^{2}|G|^{2}dV$ .

Hence we know the inequality

(3.14) $|\langle w_{\iota}\rho G, 2dw_{t}\otimes d\rho\rangle|\leqq\frac{1}{n-2}|w_{t}\rho G|^{2}+(n-2)|2dw_{t}\otimes d\rho|^{2}$

$\leqq\frac{1}{n-2}w_{t}^{2}\rho^{2}|G|^{2}+\frac{4(n-2)C^{2}}{t^{2}}|d\rho|^{2}$ .

Then it follows from (3.13) combined with (3.14) and also (1.16) that

(3.15) $\int_{M}\langle w_{t}^{2}G, d\rho\otimes d\rho\rangle dV\geqq\frac{1}{n-2}\int_{M}w_{\iota}^{2}\rho^{2}|G|^{2}dV-\frac{4(n-2)C^{2}}{t^{2}}\int_{M}|d\rho|^{2}dV$ .

Letting $ t\rightarrow\infty$ in (3.15), we see

(3.16) $\lim_{t\rightarrow\infty}\inf\int_{M}\langle w_{t}^{2}G, d\rho\otimes d\rho\rangle dV\geqq\frac{1}{n-2}\lim_{t\rightarrow\infty}\inf\int_{M}w_{t}^{2}\rho^{2}|G|^{2}dV\geqq 0$ .

Then we get the condition (2.3) in Theorem 2.
Similarly, using (1.12) and the condition $\mathcal{L}_{X}|K|^{2}=0$ in place of (1.11) and

$\mathcal{L}_{X}|R|^{2}=0$ , we can obtain the condition (2.3). Thus we can apply Theorem 2,

thereby completing the proof of Theorem 3. $\square $
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