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0. Introduction

In this paper, we obtain some conditions for a complete Riemannian manifold
to be isometric to a sphere. This is to expand the following theorems for a
compact Riemannian manifold M into the case where M is complete and not
necessarily compact.

THEOREM A (Yano [6]). If M isa compact orientable Riemannian manifold
of dimension n>2 with constant scalar curvature and admits a non-isometric con-
formal vector field X: L xg=2pg such that

0.1) |, 6o, dpavzo,
then M is isometric to a sphere.

As a corollary of this theorem, the condition may be replaced by
Lx|R|*=0 or Lx|K|*=0 (see [3, 6, 8]).

1. Notations and Preliminaries

Throughout this paper, by a Riemannian manifold we always mean an n-
dimensional connected and oriented manifold covered by a system of local co-
ordinates {x% (=1, 2, ---, n) and furnished with a Riemannian metric tensor
g=g;dx’®dx*. We use the Einstein summation convention with respect to
repeated indices. Furthermore, geometric objects and some functions appeared
in this paper are always assumed to be smooth, unless otherwise stated.

Let M be an n-dimensional Riemannian manifold with a metric tensor g.
We use the standard notation for the covariant derivative V, the exterior dif-
ferential d, the codifferential d, the Laplacian A and the volume element dV of
M. We denote by <, > and | | the inner product and the norm induced in
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fibers of various tensor bundles by the metric g of M. In this paper, we
identify a 1-form with its dual vector field with respect to g and they are
represented by the same letter.

By £y we mean the operators of Lie derivation with respect to a vector
field X on M. A vector field (or an infinitesimal transformation) X on M is
said to be conformal if it satisfies £ xg=2pg for some function p on M. In
particular, X is isometric if p is identically zero.

We denote by K,;;» and R;; local components of the curvature tensor K
and the Ricci tensor R of M respectively, and by r the scalar curvature of M.
We put

(1.1) Gji:Rji—(r/n)gji;
(1.2) ijih:Kkjih_{r/n(n_1)}(gkhgji_gjhgki)-
Then the tensor G measures the deviation of M from an Einstein manifold and

the tensor Z that from a manifold of constant curvature.
The following theorem proved by Obata is well known.

THEOREM B. If a complete Riemannian manifold M of dimension n = 2
admits a nonconstant function p such that NNp+k?*pg=0, where k is a positive
constant, then M is isometric to an n-sphere of radius 1/k.

By using this theorem and the above geometric objects, Obata [4], Yano
[6, 7, 8], Hsiung and others have obtained some conditions for a compact
Riemannain manifold admitting a conformal vector field to be isometric to a
sphere. One of these results is Theorem A in the introduction.

The following formulae are well known (see [8]). These were prepared
in order to prove Theorem A and others.

1.3 <G, g>=G;;g"*=0,

where g’ are the contravariant components of g defined by g’ig;,=4j.

(1.4) Zvjin8* =Gy,

(1.5) |G|*=|R|*—(1/n)r*,

(1.6) | Z1?=1K = {2/n(n—D1)}r*,

(L.7) 0G=—g"V,G;;dx*=—{(n—2)/2n}dr.

Let X be a conformal vector field on M, that is, it satisfies

(1.8) -Cngi:vai+vin=2pgji,
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where p is a function, and then we have

1.9 o=—1/n)0X=1/n)V; X",

(1.10) £ xr=2(n—1)Ap—2pr,

(1.11) L3]G *=—2n—2<TVp, G>—4p|G|?,
1.12) Lx|Z)*=—8Vp, G>—4p|Z|".

Now, we assume that M is complete. Let f be the geodesic distance func-
tion from a fixed point on M and B(#) the geodesic ball of radius ¢, i.e.,

(1L.13) B)={xeM|f(x)=t}

for t>0. Then there exists a Lipschitz continuous function w, on M satisfying
the following properties :

(1.14) 0w, (x)L1, xeM,

(1.15) w.(x)=1, xeB(t),

(1.16) supp w.,C B(2t),

(1.17) wy; —>1 (t — o0),

(1.18) ldw,|=C/t almost everywhere on M,

where C is a positive constant independent of ¢ (see [1, 2, 9]).

2. Main Results

THEOREM 1. Let M be a complete Riemannian manifold of dimension n=2,
and admit a non-constant function p such that Ap=nkp for some non-zero constant
k. If p satisfies that

@2.1) lim infSM<R—(n—1)kg, wid pRd p>dV =0,

t—oco

and has first derivatives in L*(M), then M is isometric to a sphere.

Especially, if R(dp, dp)=(n—1)k|dp|? then we get the condition [2.I) in
Theorem 1. Thus we obtain the following

COROLLARY. Let M be a complete Riemannian manifold of dimension n=2,
aud admit a non-constant function p such that Ap=nkp for some non-zero constant
k. If the Ricci curvature of M in the divection dp is not less than (n—1) k and
p has first derivatives in L*(M), then M is isometric to a sphere.
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REMARK 1. In [Theorem 1, if M is compact, then automatically the first
derivatives of p are in L*M) and lirtn inng<R—(n—1)/eg, wid pQd p>dV =
SM<R—(n—1)kg, dp®dp>dV. From the proof of it follows that

the assumption SMldplde<+oo may be replaced by
2.2) lim(l/tz)g ldp|*dV =0
tsoo B(2t)
as in the case of [5].
As a special case of [Theorem 1, we assert the following

THEOREM 2. Let M be a complete Riemannain manifold of dimension n=2
with non-zero constant scalar curvature, and admit a non-isometric comformal
vector field X: L yg=2pg. If p satisfies that

2.3) lim infSM<w%G, do®dpydV =0,

o0

and has first derivatives in L} M), then M is isometric to a sphere.

PROOF OF THEOREM 2. It follows from that Ap=nkp, k being the
nonzero conatant »/n(n—1). Then we have completed the proof of
as an application of [Theorem 1. O

REMARK 2. From the comment in Remark 1 we can consider that
2 is a generalization of Theorem A.

THEOREM 3. Let M be a complete Riemannain manifold of dimension n>2
with non-zero constant scalar curvature, and admit a non-isometric comformal
vector field X: Lxg=2pg. If Lx|R|*=0 (or Lx|K|*=0) and p has first deri-
vative in L*M), then M is isometric to a sphere.

REMARK 3. Here we remark the following fact concerning constant scalar
curvatures.

PROPOSITION. Let M be a complete Riemannian manifold M with constant
scalar curvature v, and admit a non-isometric conformal vector field X: L yg=
2pg. If p has first derivatives in L*(M), then r is non-negative.

3. Proof of Theorems

In this section, we give the proofs of the theorems mentioned in §2. We
need the lemma below.
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LEMMA. Let M be a complete Riemannian manifold, and admit a non-trivial
solution p of the partial differential equation Ap=kp for some constant k. If p
has first derivatives in L*(M), then k is non-negative. (see also [10]).

PROOF. We can easily find that

(3.1 o(wipdp)=—wildp|*+wipAp—<w.pdp, 2dw,> a.e.on M.

We integrate the both sides of over B(2t). Since Stokes’ theorem holds
for Lipschitz differential forms and w,=0 on the boundary 0B(2t) of B(2t), the
left hand becomes zero:

SB(zc)a(w%pd‘o)dvz—g wipdp, N>dS=0,

where N and dS are the unit normal to 0B(2t) and the volume element of
0B(2t) respectively. Then we see

0B (2t)

2 2 1 22 —
(3.2) SB(Zt)wzmde kg wip dV—I—SB(zl)(wtpdp, 2dw>dV=0.

B(2t

From Schwartz’s inequality and (1.18), we have

{SB(“)@Utpdp, 2dwt>dV‘

1/2

IA

a0V |1, <o 2007 ]

1/2

IA

[SB(W) (wtp)ZdV:lllz[SB(2l)4l dp‘zldwtizdv]

é|:SB(2’5) (wtp)zdv:‘”z ' % I:SB(“) | dplzdvjlllz.

Now we suppose that %k is negative. Using the fundamental inequality

2ab= —(v—Fa ——2 b)Y —ha— Lpr< —par— Ly
2ab=—(v—ka —=b) —ka’— B < —ka'— b,

we get the following:

(3.3) \Sw)mtpdp, 2dw>dV |

1r_ 2 gy 4C7 2 ]
g-é-[ kSB(Zt) (th) dV ktz SB(Zt) ‘dpl dV )

Then it follows from (3.2) combined with that

2
ki®

1
* i 2 Y s =
SB(zh ol dVgSBm)wt\dpl av 2 kSBm)'LU;p av=0.
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Furthermore, from [1.16), we also have

2C?

(3.4) —

1
2 2 2 2 .2
SMldpl dVZSthIde dV———z kSMw,p dvz=0.

Since SMldplde<00, letting t—oco in [3.4), we have

. 1, . .
Oglntr_l.;nfSMw%ldplde—fk llrtri;nngw%pde
=1 [dp|2dV—ikS 02dV 20
=Ju 2 Ju =

Then we see that p=0 on M. This contradicts the hypothesis. Therefore %
must be nonnegative. [

The previous proposition is immediately proved by and this lemma.
Let us prove [Theorem 1.

PROOF OF THEOREM 1. Let 7; be the inner product operator with respect
to a vector field { on M, that is, operating it to a (0, 2)-type tensor T, then
we get the 1-form T={'T;,dx".

The second equality can be shown by direct computation :

(3.5) B{w%z‘c(.&g -l—%&(-g)}

n—2
n

=(8C+ 2 dog, wil)—<2R, WD

__;_ ‘wt(_[(g+%5(-g>|2—<.&g+%5§g, szdw¢®C>
a.e. on M,

for any vector field { on M. Integrating the both sides of over B(2t) and

applying Stokes’ theorem, we have

n—2
n

(3.6 OZSB(ZI) <AC+

_ig
2 )Bey

Putting {=dp in (3.6) and using Adp=dAp=nkdp, it follows that

dat, wig)dV—| (2R, WLV

w, .Ecg+—2—5§-g 2dV—
(Lot 002)

2
<.£¢g +25C-g, 2w,dw,®c> av.

B(2t)

3.7 Ongm)<R—(n—1)kg, wid po@d p>dV

e W0+ 0g 1AV (Tptkpg, 2wdw@dp>dV .

B(2
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From Schwartz’s inequality and (1.18), we have

(3.8) ‘SB(%)(Wp—kag, 2w, dw,®dp>aV |

IA

SB(zz) |lw.(NVo+kpg)|-2|dw.Kdp|dV

1/2

lIA

[ . |wt(VVp—}-kpg)|2dV]1/2[4SBm) Idwt®dp|2dV]

1 2 2
=5 ([, 0TIk "V +4{ | 1dw.@dp1aV ]
1 Ac
< __ 2 2
= [Sw) 0TV p+kpg)|*dV + gmm ldpl dV]
Then it follows from (3.7) combined with (3.8) that
2C? ) .
- SM) ldp| dVggBm)<R—(n—l)kg, wid p®d p>dV
+i§ wi|VVo+kpg|*dV
2 JBan ¢ )

Furthermore, from [(1.16), we also have

2C*
t2

L
2

(3.9) SMIdeZdeSMG?—(n—l)kg, wid o®d p>dV + SMwﬂVVp-}—kpglde.

Since Sﬂldplde<oo and liminfSM<R——(n—1)kg, widp@dp>dV =0, letting t—

tooo

o in (3.9), we see

(3.10) OgliminfSM<R—(n—l)kg, w%dp@dp>dV—|—%lirtriinfSMwﬂWp+kpg|2dV

1 2
=5 | 199p+kpg|*dV20.

Hence we have
(3.11) Wo+kpg=0 on M.

This combined with Theorem B and completes the proof of [Theorem 1.
O

is proved below as an application of [Theorem 2.
PROOF OF THEOREM 3. Since the scalar curvature » is constant, we first

note that .£ x|G|?=0 [resp. L x| Z|?*=0] is equivalent to £ x| R|?=0 [resp. .L x| K |?*
=0].

The next equality can be shown by direct computation :
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(3.12) —0(w?piqe,G)=<w,pG, 2dw,Qd p)+<wiG, dpQdp)
+<wipG, Vo) a.e. on M.

Integrating the both sides of over B(2t), applying Stokes’ theorem,
and using and the condition £x|R|*=0, we have

— 2
(3.13) O“sz><w“’G’ 2dw,®dp>dV+SB(m<w,G, dp®d p>dV
— 2 S wzpzlGlde
n_z B(2t) t )
Hence we know the inequality
1
(3.14) [<wepG, 2dw@dpy| = ——5 lwipGl*+(n—2)|2dw.Qdp|*
1 4(n—2)C*
§mw%P2|G|2+% |dP|2-
Then it follows from combined with (3.14) and also that
1 4(n—2)C?
(3.15) SM<w%G, dp®dp>den—_—2SMw%p2|Glde——t;—~Su|dp|2dV.

Letting t—co in (3.15), we see
1
.. 2 R I 2,2 2
(3.16) llt@;nfSM<w,G, dp®dp>dV = n_zlnﬂinfSMw,p 1G12dV 20.

Then we get the condition in [Theorem 2.

Similarly, using and the condition .£x|K|*=0 in place of and
L x| R|*=0, we can obtain the condition [2.3). Thus we can apply
thereby completing the proof of [Theorem 3. 0O
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