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WITH A PERFECT PARACOMPACT
SPACE IS PARACOMPACT
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Hidenori TANAKA

1. Introduction.

All spaces are assumed to be T,-spaces. In particular, paracompact spaces
are assumed to be T, The letter @ denotes the set of natural numbers.

Let us denote by @(.L) the class of all spaces (regular spaces) whose product
with every paracompact (regular Lindel6f) space is paracompact (Lindel6f). On
the other hand, let .£’ be the class of regular spaces whose product with every
regular hereditarily Lindelof space is Lindeléf. Then it is clear that LcC.L’.
A general problem is to characterize @(.£) (Tamano). T. Przymusihski
posed the following problem: If Xe®(.L), then is X¢ paracompact (Lindel6f)?
Furthermore, E. Michael asked whether £’ is closed with respect to countable
products. K. Alster [2], gave a negative answer to E. Michael’s problem.
He showed that there are a separable metric space M and a regular Lindelof
space X such that for every regular Lindeléf syace Y and n<w, the products
Y X X" and X are Lindel6f but MXX* is not. However, if X is a separable
metric space or X is a regular Cech-complete Lindelsf space or X is a regular
C-scattered Lindel6f space, then X“<.£’. The first result is due to E. Michael
(cf. [10]), the second one is due to Z. Frolik and the third one is due to
K. Alster [1].

Let 9¢C be the class of all T,-spaces which have a discrete cover by com-
pact sets. The topological game G(9C, X) was introduced and studied by R.
Telgarsky [16]. The games are played by two persons called Players I and II.
Players I and II choose closed subsets of II’s previous play (or of X, if n=0):
Player I’s choice must be in the class 9C and II’s choice must be disjoint from
I’'s. We say that Player I wins if the intersection of II’s choices is empty.
Recall from that a space X is said to be a 9DC-like space if Player I has
a winning strategy in G(@C, X). The class of 9C-like spaces includes all
spaces which admit a o¢-closure-preserving closed cover by compact sets, and
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paracompact, ¢-C-scattered spaces. R. Telgarsky proved that if X is a para-
compact (regular Lindeléf) 9cC-like space, then X=2(,L). M.E. Rudin and S.
Watson proved that the product of countably many scattered paracompact
spaces is paracompact. Furthermore, A. Hohti and J. Pelant [9] showed that
the product of countably many paracompact, ¢-C-scattered spaces is paracompact
(cf. [6]). K. Alster also proved that if ¥ is a perfect paracompact space
and X, is a scattered paracompact space for each n=w, then Y X II X, is
paracompact. e

In this paper, we discuss paracompact (regular Lindelof) 9C-like spaces and
generalize K. Alster’s results. More precisely, we show that if Z is a perfect
paracompact (regular hereditarily Lindel6f) space and Y, is a paracompact
(regular Lindeléf) 9cC-like space for each icw, then ZX I1Y,; is paracompact

lew

(Lindelsf). Therefore, if X is a regular Lindelof 9C-like space, then X¢e.L’.

2. Topological games.

The topological game G(9C, X) is described in the introduction. F. Galvin
and R. Telgarsky showed that if Player I has a winning strategy in G(9¢C, X),
then he has a stationary winning strategy in G(9C, X), i.e., a winning strategy
which depends only on II’s previous move. More precisely,

LEMMA 2.1. ([8]). Player I has a winning strategy in G(DC, X) if and only
if there is a function s from 2% into 2XN\DC, where 2* denotes the set of all
closed subsets of X, satisfying

(i) s(F)CF for each Fe2*,

(ii) if {F,: n=w} is a decreasing sequence of closed subsets of X such that
sS(FEONFo0i=@ for each ncw, then N Fp=0Q.

new

The following resulls are well known.

LEMMA 2.2 (R. Telgérsky [16]). Le X and Y be spaces, and let f: X—>Y
be a perfect mapping from X onto Y. If Y is a DC-like space, then X is also
a DC-like space.

LEMMA 2.3 (R. Telgarsky [16]1). If a space X has a countable closed cover
by DC-like sets, then X is a DC-like space.

Recall that a space X is scattered if every non-empty subset A of X has
an isolated point of A, and C-scattered if for every non-empty closed subset A
of X, there is a point of A which has a compact neighborhood in A. Clearly
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scattered spaces and locally compact T,-spaces are C-scattered. Let X be a
space. For each F&2%, let

F®={xeF: x has no compact neighborhood in F}.

Let X®»=X. For each successor ordinal a, let X®=(X@")D, If a is a
limit ordinal, let X“’):ﬁg X, Notice that a space X is C-scattered if and
only if X‘“=¢@ for some ordinal «. If X is C-scattered, let A=inf{a : X =@}.
We say that 2 is the C-scattered height of X. A space X is said to be o-
scattered (o-C-scattered) if X is the union of countably many closed scattered

(C-scattered) subspaces.

LEMMA 2.4. (R. Telgarsky [16]). (a) If a space X has a g-closure-preserving
closed cover by compact sets, then X is a DC-like space.
(b) It X is a paracompact, o-C-scattered space, then X is a DC-like space.

LEMMA 2.5. (R. Telgarsky [16]). If X is a paracompact (regular Lindeldf)
DC-like space, then X P(.L).

For topological games, the reader is refered to R. Telgéarsky [16], and
Y. Yajima [18].

‘3. Paracompactness and Lindel6f property.

LEMMA 3.1 (K. Nagami [llj). For a paracompact (regular Lindelif) space
X, there are a paracompact (regular Lindelof) space X, with dim X,<0 and a
perfect mapping fx: Xo—X from X, onto X.

Let A be a set. We denote by A<® the set of all finite sequences of ele-
ments of A. If r=(a,, -+, a,)EA<® and a< A, then rPa denotes the sequence
(ao, **+, Gn, Q).

The following is the main result in this paper.

THEOREM 3.2. If Z is a perfect paracompact space and Y ; is a paracompact
DC-like space for each icw, then Z X i]:EIin is paracompact.

PrROOF. By [Lemma 3.1, for each i=w, there are a paracompact space Y, ,
with dimY; ,<0 and a perfect mapping f;: Y, .—Y: from Y;, onto Y,. Let
X= 1GEB‘”Y'M&/{(I}, where agéig Y:. The topology of X is as follows: Every
Y, is an open-and-closed sgbspace of X and a is isolated in X. Then X is
a paracompact space with dim X <0. It follows from Lemmas 2.2 and that
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t€w

(y,-)ieweiIIYi_o. Then 1d;Xf: ZXTIIY,—ZXIlY, is a perfect mapping
cw 1€w

from Z X iI'é[mY,-,., onto Z X iIEIin. Since ZXiIEIin,:eiws a closed subspace of Z X
X?, in order to prove this theorem, it suffices to prove that Z X X“ is para-
compact.

Let us denote by & the base of ZX X“ consisting of sets of the form B=
UBXiI;IwB" where U is an open subset of Z and there is an n=w such that

X is a 9C-like space. Define f: HYi_o—AI;[}’,- by f(y)=(f{¥))iewo for y=

for each 7<n, B, is an open-and-closed subset of X and for each i>n, B;=X.
For each B=UB><i1;£)B{e!£, let n(B)=inf{icw: B;=X for each j=i}.

Let © be an open covering of ZX X and let OF be the set of all finite
unions of elements of ®. Put @'={Be=®: BCO for some O=0OF}. Let X=
{1_1::[01{1: K; is a compact subset of X for each icw}. For each z&Z and Ke
X, let K, x>=1{z} XK. Then there is an O<0OF such that K x,CO. By
Wallace theorem in R. Engelking [5], there is a B< @ such that K, x,CBCO.
Thus we have Be@’. Define n(K x))=inf{n(0): Oe@’ and K x,CO}. It
suffices to prove that @’ has a ¢-locally finite open refinement.

Let s be a stationary winning strategy for Player I in G(@C, X). Let B=
UgX il:EIwB,e.CB such that for each ;<n(B), we have already obtained a compact

set Cas.o» Of B(Ci.nzn=90. Cim =@ may be occur for :<n(B)). We
define G, ;(B) and 8B, j(B) of collections of elements of # for each m, jew.
Fix i<n(B). If Cy.#D, let Wy n=B;. Put A(B, i)={A(B, i)} and I'(B, 7)
={r(B,i)}. Let C(B,i)={C;: 2 A(B, )} ={Cis. o}, and W(B,i)={W,: re
(B, )} ={W,i.»}. Assume that C; »=@. Then there is a discrete collec-
tion C(B,1)={C;: A= A(B, i)} of compact susbets of X such that s(B,)=
\JC(B, 7). Since B,; is an open-and-closed subspace of X, B, is a paracompact
space with dim B;<0. Then there is a pairwise disjoint collection W(B, )=
{W,: rel'(B, i)} of open subsets in B, (and hence, in X), satisfying

(i) W(B, i) covers B,

(ii) Every member of 9(B, /) meets at most one member of C(B, 7).

In each case, for y=I'(B, 1), K,=W,NC; if W, meets some (unique) C;.
If W,.N\(JC(B, i))=¢, then we take a point p,=W, and let K,={p,}. Thus,
if Cimoy#®D, then Ky 5=Wirw, oN\Caw.5=Cix. 1. Put 4g=I"(B, 0)X -+ X
I'(B, n(B)). For each 6=(7(@,0), ---, 73, n(B)=dp, let K(0)=K;yi.00X *++ X
Kri negy X {a} X~ {a} X---, and let Kp={K(d): d=dp}. Then KXz K. For
each zeUpg and 0=(r(3, 0), -+, 7(0, n(B)))=45s, let (K, key»)=max {n(Kc, k@),
n(B)}. Fix zeUpg and 6=(7(, 0), -, 7(d, n(B)))=dz. Take an 0, ;=U, ;X
I1 0, 5.0’ such that K, k@O0, s and n(K¢, kw@y))=n(0, ;). Then we can

tEm
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take an H, xy=H, ;X II He, k.« B such that:
1€w

RK(y, K51
(iii) H, ;X 1_1;10 He, gy, iX XX - XXX - CO,,5

and zeH,;cUzNU,s,

(iv-1) For each i with n(K¢, k@) Si<r(Ke kon), let He ko, i=Wre, o

(iv-2) For each i<n(K¢, xwy>) with i<n(B), let H¢, x> : be an open-and-
closed subset of Wy iy such that Kyi o CHe, kw0564

(iv-3) For each 7 with n(B)<i<n(K¢, xwy), let He, ke, i=1{a},

(iv-4) In case of that »(K. xwyy)=n(B), let He, k. :=X for n(B)<:i. In
case of that »(K¢, xw»)=n(Kce, k@) >n(B), let He k=X for n(Ke., k@) <i.

Then we have K, xw»CHe, k- Fix mew and let V,(K(@)={zcUp:
n(Ke¢. xwyn)<=m}. Then Vm(K((S))ZU{H,,,;: n(Ke xeyn)<m}. Since Z is a per-
fect paracompact space, there is a family CV,;,mZJg)CV,s,m,j, where V; 4. ;=

{(Va: a= 55 0.5}, of collections of open sets in V,(K(d) (and hence, in Z)
satisfying

(v) Every member of ;. is contained in some member of {H, ;:
n(Ke., ko) =m},

(Vi) Vs n covers V., (K(@d)),

(vil) Vs m, ; is discrete in Z for each jcw.

For jew and acs&; .. j, take a z(a)SV o (K(0)) such that V,CH,y 5. Put
We=TIE8 W, 6. o X XX XXX+ and V,;=V.XW;. Then {V,s: 0cdg, m, J
cw and asX; 5, ;} is a collection of elements of 48 such that for each d=4dp,
m, j€w and a<S &5 n.j, VasCB and {Va;: 0dp, m, jew and acs&; . j}
covers B.

(viii) For each m, jew, {Vas: 6=dpand a=&; . ;} is discrete in Z X X.

Fix m, jew. Let (z, x)&eZ X X? and x=(x;)cw. For each 7=<n(B), since
B; is an open-and-closed subset of X, we may assume that x,=B;. There is
a unique 0=, 0), ---, 70, n(B))=4dp such that x&W;. Since V; . ; is dis-
crete in Z, there is an open neighborhood U of z in Z such that U meets at
most one member of &V; , ;. Then UXW ;=8 and U XW; meets at most one
member of {V,s : 0’ €ds and a=E; . ;. Thus {Vas: 0ds and asE; . 5}
is discrete in Z X X°.

For each dcdz, m, jcw and ac &5 , ;, let G“'BZV“XileIwH“(“)’K“’”'iCV"""
and G5 m ;(B)={Gas: a =55 m, ;}. Define Gn j(B)=\U{G5 n. ;(B): 0dg}. Then
we have

(ix) For each m, jew, every member of &, ;(B) is contained in some
member of ©’.
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(x) For each m, jew, G, ;(B) is discrete in Z X X“.

This is clear from (viii).

Fix 0=, 0), -, 17, n(B)))=ds, m, jew and ac &;,,,. ;. Let AC{0, 1, -,
r(Keay, k@) In case of that »(K¢,ca, xwy)=n(B). For each i A, let B, 4,
=W;6.0—Hccar. k@y.i- For each i A with i<n(B), let Ba 4 :=Har, k6.1
For each i>n(B), let B, 4 ;=X. Put B,,,AzVainEIwBa‘A_i. In case of that

(K, k 69)=n(K:ar, k@) >n(B). For each i€ A with i<n(B), let By 4=
Wie. oo—He . kay, - For each ¢ A with i<n(B), let Ba 4.:=Hw k6> i
Let n(B)<i<n(Kcay. xwy). If i€A, let Ba.A,F—‘X—H(z(a).K(é)),i:iEeBin.o- If

iE A, let Ba as=Hcwo ko, i=1{al. For iZn(Kw ke»), let Ba.a =X. Put
B“’A:V“Xig,B“"“" In each case, B, 4.:CB; for each i=w. Notice that if
Ba. 4+ @, then n(B)<n(B. 1). By the definition, V, =G4 ;\J(J{Ba 4: AC
{0, 1, -+, r(Kczcar, k). Since n(Kcay. k@) <m, for a subset AC{0, 1, ---,
max {m, n(B)}}, let Bs m ;. a(B)={Ba.4: @=Z5 n. j, Ba 4is defined and B, ,+ @}.
For m, jewand AC{0, 1, ---, max{m, n(B)}}, define B, ; A(B)=U{Bs m.; 4a(B):
0=4dgt. Then, by (viii), we have

(xi) Every @8, ; 4(B) is discrete in Z X X*.

Let B, ;(B)=U{Bn ja(B): ACH{0, 1, ---, max{m, n(B)}}. Then, by (xi),

(xii) For each m, jew, B, ;(B) is locally finite in Z X X*.

Fix a Ba a=VeX Il Ba.4.:€ Bs.m.;.4(B) for 3=, 0), -, 70, n(B))=4s,
m, jcw, ac&; , ; and AC{0, 1, ---, max{m, n(B)}}.

(xiii) For each ;= A with i<n(B) such that Cis =0, S(B)N\Ba.4.:=2.

Since Ba,a.i = Wi, — Hear k@60 S(B) M Ba,a,i = (UCB, )N Wy i—
H(z(a),K«S)).i):Kr(a,i)—H(z<a>.K<5>>,i:(25-

For each /& A with /<n(B), a compact set K, ) 1S contained in B, 4 ;=
H oy, k3. i- Let Cicaa, 4.00=Kyre, - For each ig A with n(B)<i<n(Kc.ca>, & 63))»
let Cics,. ,,o=1{a}. For each ieA, let Ci, 4.=0.

Now we define ¢, and 4. for each re(@Xw)<® with r#@. For each m,
JjEw, let G »n=Gn H(Z XX =Gpn ;(ZXX?) and B »= Bwm H(ZXX*) =
B, (ZxX?). Assume that for re(@Xw)<* with 7+ @, we have already obtained
g. and 8.. For each B8, and m, j=w, we denote G, ;(B) and 8, ;(B) by
Graim, »(B) and B.gm, j»(B) respectively. Define G.gm, jy=\U{G:0m.»(B): B 8.}
and Brom. p="S{Brown. »(B): BE B.}.

Our proof is complete if we show

CLAIM. U {G;: t€(@Xw)<® and v+ @} s a g-locally finite open refinement
of ©.
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PROOF OF CLAIM. Let rc(@X®)<” and 7+ @. By the construction, ¢.C 3.
By (ix), every member of G. is contained in some member of ©@’. By (x), (xii)
and induction, &, is locally finite in ZX X®. Assume that \U{G.: S (@Xw)<®
and 7+ @} does not cover ZxX X?. Take a point (z, x)EZXX*—U{UG,: 7
(WXw)<® and r#@}. Let x=(x,)ico. Take a unique 8(0)=7((0), 0)=d,, yo=
['(ZxX*, 0) such that x&Wj;u,. Let KO)=K(@0) € Kzxxo and let m(0) =
n(K ¢ x)- Choose a j0=w such that (2, x)EUSGnw, s Z X XU
(UBnw, jw(ZXX?). Letr(0)=0n0), ;0)cwXw. Since (z, x)&\U G, (o, there are
an a(0)= &5, m, jeoy and A0)C {0, 1, -+, m(0)} such that (z, x)E Bacoy, 4cor and
Baw, 400 E Br)(Z X X?®). Wehave 0=n(Z X X*)<n(Baw,a»). For Ba, a0, take
a unique o(L)=@r @), 0), -+, 70A), n(Bacwr, 4 E B4y, 4co, SUCh that x EWsey,.
Let K(l):K(é(l))EJCBa(O),A(O) and m(1)=n(K¢, gkwy). Take a j(l)ew such that
(2, ) € Uldnw,.jw>Baw, 40) U (UBnwy, jar(Baw, aw))- Let (1) = (m(0), 7(0)),
(m(), jA))E(@Xw)<®. Since (z, x)& UG-y, there are an a(l)E &s¢1y, meny, s and
A0, 1, -+, max{m(1), n(Baco, ac)}} such that (z, )& Baw, 4> and Baa, 4
E Beay(Bacoy, am)- We have n(Bacoy, ac00) <n(Bacy, aay). Continuing this matter,
we can choose a sequence {0(k): k<=w}, a sequence {K(k): k=w} of compact
subsets of X, where K(k)= I1 K(k),= X, sequences {m(k): kcw}, {j(k): kcw}
of natural numbers, a sequ;ﬂée {r(k): k=w} of elements of (wXw)<?, where
r(k)=((m(0), 7(0)), ---, (m(k), j(k))), a sequence {a(k): k=w}, a sequence {A(k):
kew} of finite subsets of w, a sequence {Bacry ar>: REw} of elements of B
containing (z, x), where Bay, acery=VawryX Il Bacwy, ack>. s, Satisfying the follow-
ing: Let k=w. Assume that we have alrg;uély obtained sequences {0(): i<k},
{(KG): ik}, {m@): ik}, {7@):iZk}, {z@): ik}, {a@): isk}, {AQ): ik}
and {Bay. 4 : 1<k}. Then

xiv) 8k + 1) = @ +1),0), -, 70k + 1), n(Baw, ac)) € dsyery acay:
Wick+1y is a unique element of {Ws: 6<ds,,, 4., containing x,

xv) K+D=KO0R+1)EKs,4,. acny

(xvi) mk+D=n(K. xw+1), and jlk+1)cw. Let z(k+1D=((m(0), 7)), -,
(m(k+1), j(k+1)),

(xvil) a(k+1)EEsk+1. mer+n.jea+ny and A(k+1)C {0, 1, -, max{m(k+1),
n(Backy, ace)}t}

(xviii) (2, x) € Bawk+n,a+n = Vaw+n XiguBaun),A(kﬂ),i, Back+v, acein €
BrcreyBacwy, aed), and n(Bacey, acr) <N (Back+1, ack+13),

(xix) For each i=<n(Bac, ax>) With i€ A(k+1) such that Ci,hy, achy =
D, s(Backy, ackr, dN\Bak+vr, acks.:=D,

(xx) For each i<n(Bacsy, acx>) With i&A(k+1) such that C“Boz(le),A(le):“i

@: K(k +1)i:c'2(Ba’(k)-A(k)vi)'
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Assume that for each /1w, |{k=w: i Ak} | <w, where |A| denotes the
cardinality of a set 4. Then for each i<w, there is a k;Sw such that /<k,
and if k=k;, then ¢ A(k). Then, by (xx),

(xxi) For each i=w and k=k,, K(k),=K(k));.

Let K:iIEIK(kf)ieJC. There is an O<0©’ such that K¢, x,CO. By (xviii)
and (xxi), tal?e a k=1 such that n(O)<n(Back-1y, 4ck-1») and if :<n{0), then
K(k);=K(k;);. Then we have K, x»»CO and hence, m(k)=n(K, k) <n(0).
Since a(k) & Fsces, merr.scer, NM(Kcacery . kae») = m(k).  For 7 with n(O)<i <
n(Back-1>.4¢k-15), by the definition, Hecacrr. xcr.i = Wraar. . Hence ApN
{n(0), ---, n(Back-1.4acx-1)} = @. Since (2, x) € Baxy, acx> and  Bacry, acry €
Bery (Back-13,4c6-1y), there is an i A(k) such that x,&H¢ o, k.« Thus
i<n(0) and x,€Bacy. acer.i=Wrar. o —Haawn, k.- Since i€ Ak), k<k,.
For each k'>k, K(k');CBacy. ackr,» Thus K(k;); C Bacy, acer,s- Since K(k);C
Hecacen, ki, » we have K(k);#K(k;);. This is a contradiction. Therefore
there is an ;=w such that |{kfcw:icA(k)} |=w. Let {kcw:i=A(k) and (<
n(Bacer, ace)t ={k:: t€w}. Let tew. Since Cicaaiy,y, 4k, 0= D> if kepr=k+1,
then, by (xiX), $(Backp. acep.0) N Baceyyp.ace,p.i = D. Assume that k.,
> ke+ 1. Since  Kreo+n.0 = CaBacey+1y ack +100 8 = Ci<Ba<k,+1—1>.4<k¢+1—x)'i> c
H(z(a(ktﬂ),x(ktﬂ)),i, we have S(Ba(kt).A(lthi)mBa(kt+1),A(k¢+l).i:®' Since s is a
stationary winning strategy for Player I in G(9C, X), LQ‘ Back,. acep.i=9. But
xiGtQm Back,>. ackp,» Which is a contradiction. It follows that \U{4.: r&(wX®)<*

and r+# @} is a covering of ZXX“. The proof is completed.

REMARK 3.3. Let M be the Michael line and let P be the space of irrational
numbers. It is well known that MXP is not normal. M is a hereditarily
paracompact space. But M is not perfect. Since P is homeomorphic to w®, we
cannot omit the condition “Z is perfect” in Theotem 3.2. Furthermore we
cannot replace “Z is a perfect paracompact space” by “Z is a hereditarily
paracompact space” in

THEOREM 3.4. If Z is a perfect paracompact space and Y ; is a paracompact

space with a o-closure-preserving cover by compact sets for each icw, then Z X
I1Y; is paracompact.

i€Ew

PROOF. This follows from [Theorem 3.2 and Lemma 2.4 (a).

Similarly, by [Theorem 3.2 and [Lemma 2.4 (b),

THEOREM 3.5. [f Z is a perfect paracompact space and Y ; is a paracompact,
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g-C-scattered space for each icw, then ZX 1Y ; is paracompact.
1€

For a space X, let $[X] denote the Pixley-Roy hyperspace of X. Every
Pixley-Roy hyperspace has a closure-preserving cover by finite sets and is o-
scattered. For a space X, the following are equivalent (see H. Tanaka [15]):
(a) ¥[X] is paracompact; (b) F[X?] is paracompact; (¢) F[X™] is paracompact
for each n=w and (d) F[X"]™ is paracompact for each n, mew. T. Przy-
musinski posed the following problem: If $[X] is paracompact, then is
F[X]® paracompact? We have

THEOREM 3.6. If Z is a perfect paracompact space and Y ; is a space such
that F[Y ;] is paracompact for each icw, then Z X IEI F[Y,] is paracompact.

It is well known that Z is a regular hereditarily Lindelof space if and only
if Z is a regular perfect Lindel6f space (R. Engelking [5]).

THEOREM 3.7. If Z is a regular heredstarily Lindeliéf space and Y, is a
regular Lindeldf DC-like space for each icw, then Z X IEI Y, is Lindelof. Hence,
if X is a regular Lindelof DC-like space, then X°<=.L'.

PROOF. By Lemmas 2.2 and B.1, we may assume that for each icw, Y, is
a regular Lindelof 9cC-like space with dimY;<0. Let X= &Y ,\U{a}, where

i1€w

a¢ \JY,. Define the topology of X as the proof of [Theorem 3.2 It suffices
to prove that Z X X“ is Lindelof.
- Let 8 be the base of ZX X defined in the proof of and let

© be an open covering of Z X X¢. Define @’ and n(B) for each B & as before.
We show that ©’ has a countable open refinement. By the proof of
3.2, ©’ has a ¢-locally finite refinement ¢=\U{¢,: n=w} such that ¢C 8. For
each mco, let p,: ZXX*—-ZXX™ be the projection from Z X X® onto Z X X™.
For n, mew, let ¢, »,={G=3g,: n(G)<m}. Then ¢,=\U{G, n: mcw} for each
new. Put X, n=>0nGn n)={pn(G): GEG, »} for n, mnsw. Then every K, m
is locally finite in ZXX™. By [Lemma 2.5, every ZXX™ is Lindelof. Then
for each n, mcw, 4, » is countable. Hence every &, ., is countable. Thus
G=\U{G,: n€w}=U{G, n: n, mcw} is countable. It follows that ZXX* is
Lindel6f. The proof is completed.

THEOREM 3.8. If Z is a regular hereditarily Lindelof space and Y, is a
regular Lindeléf space with a o-closure-preserving cover by compact sets for each
icw, then ZX T1Y,; is Lindelif.

i1€w
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THEOREM 3.9. [f Z is a regular hereditarily Lindeléf space and Y, is a

regular Lindelof, a-C-scattered space for each icw, then ZX 1Y, is Lindelof.
tEw

(1]
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