PROPERTIES OF NORMAL EMBEDDINGS CONCERNING STRONG SHAPE THEORY, II

By

Bernd GÜNTHER

Abstract. We show that any topological pair with normally embedded subspace has the strong shape of a pair, such that the inclusion map of the subspace into the total space is a cofibration. Furthermore we prove that a strong shape morphism of pairs is a strong shape equivalence if and only if it operates as strong shape equivalence of the total spaces and of the subspaces considered seperately.

Subject classification: Shape, strong shape, normal embeddings, topological pairs, ANR-spaces. 54C56, 55P55.

1. Preliminaries.

This paper is a continuation of [2] dealing with strong shape theory of pairs as defined by Lisica and Mardešić in [4]. One major property of strong shape theory is the existence of a functor $T: \mathbf{ssh}^2 \to \mathbf{HTop}^2$ right adjoint to the strong shape functor $\eta: \mathbf{HTop}^2 \to \mathbf{ssh}^2$. The authors do not state this explicitly, but in case of spaces it is a consequence of [5, theorem 6, p. 371]. We only give a brief description of T:

To a given pair (X, A) we choose a resolution in ANR-pairs $\{f_{\lambda}\}: (X, A) \to \{g_{\lambda}^{\mu}: (P_{\mu}, Q_{\mu}) \to (P_{\lambda}, Q_{\lambda}) | \mu \geq \lambda \in \Lambda\}$ and form the simplicial complex \mathcal{K} , whose vertices are the indices $\lambda \in \Lambda$, and whose simplices are the finite, linearly ordered subsets of Λ . For a *finite* subcomplex $\mathcal{L} \subseteq \mathcal{K}$ we denote by $\mathcal{L}_{\lambda} \subseteq \mathcal{L}$ the full subcomplex spanned by all vertices μ with $\mu \leq \lambda$ and consider the subspace

$$\widetilde{P}_{\mathcal{L}} \subseteq \prod_{\lambda \in \Lambda} \{ \boldsymbol{\omega}_{\lambda} : | \mathcal{L}_{\lambda} | \rightarrow P_{\lambda} \}$$

consisting of all families of maps on the geometric realizations $|\mathcal{L}_{\lambda}|$ subject to the condition $g^{\mu}_{\lambda}\omega_{\mu}=\omega_{\lambda}$ on $|\mathcal{L}_{\mu}|$ for $\mu\geq\lambda$. By replacing P_{λ} with Q_{λ} we get a closed subspace $\tilde{Q}_{\mathcal{L}}\subseteq\tilde{P}_{\mathcal{L}}$. The pairs $(\tilde{P}_{\mathcal{L}},\,\tilde{Q}_{\mathcal{L}})$ form an inverse system over a cofinite directed index set, whose bonding maps are the restriction maps

Received May 28, 1991, Revised January 14, 1992,

 $r_{\mathcal{L}}^{\mathcal{M}}: (\widetilde{P}_{\mathcal{M}}, \widetilde{Q}_{\mathcal{L}}) \rightarrow (\widetilde{P}_{\mathcal{L}}, \widetilde{Q}_{\mathcal{L}}).$ We set $T(X, A) := \lim (\widetilde{P}_{\mathcal{L}}, \widetilde{Q}_{\mathcal{L}})$, and it follows directly from the definitions that there is a natural equivalence

$$ssh^{2}(-, -; X, A) \approx HTop^{2}(-, -; T(X, A)).$$

This allows the definition of induced mappings turning T into a right adjoint functor,

We need to take a closer look at the restriction maps $r_{\mathcal{L}}^{\mathcal{M}}$; $(\widetilde{P}_{\mathcal{M}}, \widetilde{Q}_{\mathcal{M}}) \rightarrow (\widetilde{P}_{\mathcal{L}}, \widetilde{Q}_{\mathcal{L}})$ in the particular case, where \mathcal{M} is obtained from \mathcal{L} by attaching one additional simplex σ with boundary $\dot{\sigma} \subseteq \mathcal{L}$. If λ is the lowest element of σ we have a pullback diagram:

similarly for $\tilde{Q}_{\mathcal{M}}$. We see that $r_{\mathcal{I}}^{\mathcal{M}} \colon \tilde{P}_{\mathcal{M}} \to \tilde{P}_{\mathcal{I}}$ and $r_{\mathcal{I}}^{\mathcal{M}} \colon \tilde{Q}_{\mathcal{M}} \to \tilde{Q}_{\mathcal{I}}$ are fibrations, and by induction on the number of elements of \mathcal{L} observing [1, Lemma 3.6] we see that $\tilde{P}_{\mathcal{L}}$ and $\tilde{Q}_{\mathcal{L}}$ are ANR-spaces.

2. Strong shape equivalences of pairs.

LEMMA 1. We suppose that $\{f_{\lambda}\}$; $X \rightarrow \{g_{\lambda}^{\mu}: X_{\mu} \rightarrow X_{\lambda}\}$ is a strong expansion and that $\pi: E \rightarrow B$ is a fibration between ANR-spaces.

- a) If we are given maps $\alpha: X \to E$ and $\beta: X_{\lambda} \to B$ for some index λ , and a homotopy $H: \pi\alpha \cong \beta f_{\lambda}$, then we can find some index $\mu \geq \lambda$, a map $\gamma: X_{\mu} \to E$ with $\pi\gamma = \beta g_{\lambda}^{\mu}$ and a homotopy $G: \alpha \cong \gamma f_{\mu}$ with $\pi G = H$.
- b) If two maps α_0 , $\alpha_1: X_{\lambda} \to E$ and two homotopies $\Gamma: \pi \alpha_0 \cong \pi \alpha_1$ and $C: \alpha_0 f_{\lambda} \cong \alpha_1 f_{\lambda}$ with $\pi C = \Gamma(f_{\lambda} \times \mathrm{id})$ are given, then for a suitable index $\mu \geq \lambda$ there is a homotopy $\Sigma: \alpha_0 g_{\lambda}^{\mu} \cong \alpha_1 g_{\lambda}^{\mu}$ with $\pi \Sigma = \Gamma(g_{\lambda}^{\mu} \times \mathrm{id})$ and $\Sigma(f_{\mu} \times \mathrm{id}) \cong C$ relative $X \times I$ and relative π .

POOOF. a) At first we take a map $\gamma': X_{\nu} \to E$ and a homotopy $\Gamma: \gamma' f_{\nu} \cong \alpha$ for some suitable index $\nu \geq \lambda$. This provides us with two maps $\pi \gamma'$, $\beta g_{\lambda}': X_{\nu} \to B$, whose compositions with f_{ν} are connected by the homotopy $\pi \Gamma \circ H: \pi \gamma' f_{\nu} \cong \beta f_{\lambda}$. We conclude the existence of a homotopy $\Sigma: \pi \gamma' g_{\lambda}'' \cong \beta g_{\lambda}''$ for some $\mu \geq \nu$ with $\Sigma(f_{\mu} \times \mathrm{id}) \cong \pi \Gamma \circ H$ relative $X \times I$. The fibration property of π ensures the existence of a homotopy $\Omega: X_{\mu} \times I \to E$ with $\Omega_{0} = \gamma' g_{\lambda}''$ and $\pi \Omega = \Sigma$. If we set $\gamma:=\Omega_{1}$ then we have $\pi \gamma = \beta g_{\lambda}''$, and there is a homotopy $G':=\Gamma^{-1} \circ \Omega(f_{\mu} \times \mathrm{id})$:

 $\alpha \cong \gamma f_{\mu}$ with $\pi G' \cong H$ relative $X \times \dot{I}$. Using the fibration property of π again we can replace G' with another homotopy $G: \alpha \cong \gamma f_{\mu}$ with $\pi G = H$.

To prove (b) we take a look at the following diagram, where the square is formed as pullback diagram:

It is elementary to check that $\vartheta: E^I \to Z$ is a fibration, and by [1, Lemma 3.6] Z is an ANR-space. Therefore we can replace the fibration π in (a) by ϑ , and this proves (b).

REMARK. If the fibration π in Lemma 1.a has the form either of the zero map from an ANR-space P to a one point space or of the restriction map $P^I \rightarrow P^I$, then we rediscover the defining conditions of a strong expansion (c) and (d) in part 1 of this paper. Therefore Lemma 1.a characterizes strong expansions.

We consider a pair (X, A) consisting of an arbitrary topological space X and a normally embedded subspace A.

As usual $\Delta^n = \{(t_0, \dots, t_n) \in I^{n+1} | \sum_{k=0}^n t_k = 1\}$ is the topological standard-*n*-simplex with its faces $\Delta^n_k = \{(t_0, \dots, t_n) \in \Delta^n | t_k = 0\}$; by $k \in \Delta^n$ we mean the vertex determined by $t_k = 1$.

We set:

$$Y := X \times \Delta_0^2 \cup A \times \Delta^2$$

$$Y_1 := X \times \{1\} \cup A \times \Delta_2^2 \subseteq Y$$

$$Y_2 := A \times \Delta_1^2 \subseteq Y$$

$$Y_3 := A \times \{0\} = Y_1 \cap Y_2.$$

The space Y carries the weak topology determined by the subspaces $X \times \Delta_0^2$ and $A \times \Delta^2$.

An ANR-pair is a topological pair consisting of two ANR-spaces such that the subspace is closed. A fibration between ANR-pairs $\pi: (E, E_0) \rightarrow (B, B_0)$ is a map between these two ANR-pairs such that $\pi: E \rightarrow B$ and its restriction $\pi': E_0 \rightarrow B_0$ are Hurewicz-fibrations.

LEMMA 2. a) For any fibration of ANR-pairs $\pi: (E, E_0) \rightarrow (B, B_0)$ the following lifting problem has a solution:

b) If in (a) two maps h_0 , $h_1: (Y, Y_2) \rightarrow (E, E_0)$ and two homotopies $H: h_0 i \cong h_1 i$ and $G: \pi h_0 \cong \pi h_1$ (as maps of pairs!) with $\pi H = C(i \times id)$ are prescribed, then there exists $\Gamma: h_0 \cong h_1$ with $\Gamma(i \times id) = H$ and $\pi \Gamma = G$.

PROOF. a) There is a deformation $D: B \times I \to B$ relative B_0 with $D_0 = \mathrm{id}$ and a neighborhood V of B_0 in B with $D_1(V) \subseteq B_0$. Since B is a normal space the set $U_1 := \{x \in X \mid g(x, 2) \in V\}$ is a normal neighborhood of A in X. We observe that by corollary 2.5 in part 1 of this paper the system of normal neighborhoods of A in X forms a strong expansion of A and apply Lemma 1.a to the maps $\alpha := f_{A \times \{0\}}: A \to E_0$, $\beta := D_1 g_{A \times \{0\}}: U_1 \to B_0$ and the homotopy $H := g_{A \times \Delta_1^2}$; we get a normal neighborhood U_2 of A in A contained in A0, a map A1. We get A2 and A3 and a homotopy A3 with A4 and A5 and A5 and A6 and A

We set $g' := g_{|U_2 \times \{2\}} : U_2 \to B$ and consider the homotopy $D(g' \times \mathrm{id}) : U_2 \times I \to B$; it is stationary on $A \times I$ and ends at $\pi \gamma$. Since the fibration $\pi : E \to B$ has a metrizable base space it is regular and we can find a homotopy $\Phi : U_2 \times I \to E$ with $\Phi_1 = \gamma$ and $\pi \Phi = D(g' \times \mathrm{id})$, which is stationary on $A \times I$. In particular we have $\Phi_0 = \gamma$ on A and $\pi \Phi_0 = g'$.

Since the inclusion map $A \times (\Delta_2^2 \cup \Delta_2^2) \subseteq A \times \Delta^2$ is a cofibration and a nomotopy equivalence we can find a map $\Psi: A \times \Delta^2 \to E$ with $\Psi = f$ on $A \times \Delta_2^2$, $\Psi = G$ on $A \times \Delta_1^2$ and $\pi \Psi = g$ on $A \times \Delta^2$. Applying Lemma 1.b to the maps $\alpha_0 := f_{|U_2 \times (1)}: U_2 \to E$, and $\alpha_1 := \Phi_0: U_2 \to E$ and the homotopies $\Gamma:= g_{|U_2 \times \Delta_0^2}$ and $C:= \Psi_{|A \times \Delta_0^2} = G$ we get a normal neighborhood U_3 of A in X contained in U_2 and a homotopy $\Sigma: U_3 \times \Delta_0^2 \to E$ with $\Sigma = f$ on $U_3 \times \{1\}$, $\Sigma = \Phi_0$ on $U_3 \times \{2\}$, $\pi \Sigma = g$ on $U_3 \times \Delta_0^2$ and $\Sigma_{|A \times \Delta_0^2} \cong \Psi_{|A \times \Delta_0^2}$ relative $A \times \partial \Delta_0^2$ and relative π . The last condition allows to replace Ψ with a map $\Psi': A \times \Delta^2 \to E$ with $\Psi' = f$ on $A \times \Delta_2^2$, $\Psi' = G$ on $A \times \Delta_1^2$, $\Psi' = \Sigma$ on $A \times \Delta_0^2$ and $\pi \Psi' = g$ on $A \times \Delta_1^2$.

We now take an Urysohn function $\varphi: X \to I$ with $\varphi=1$ on A and $\varphi=0$ on $X \setminus U_3$ and set $\psi:=\min(1, 2(1-\varphi))$; furthermore we consider the map $\omega: X \times \Delta_0^2$

 $\rightarrow E$ and the homotopy $\Omega: X \times \Delta_0^2 \times I \rightarrow B$ given by

$$\omega(x, 0, t_1, t_2) := \begin{cases} f(x, 0, 1, 0) & \text{for } \varphi(x) \leq 1/2 \\ \Sigma(x, 0, t_1 + t_2 \psi(x), t_2 (1 - \psi(x))) & \text{for } \varphi(x) \geq 1/2, \end{cases}$$

$$\Omega(x, 0, t_1, t_2, s) := g(x, 0, t_1 + st_2 \psi(x), t_2 (1 - s\psi(x))).$$

We observe: $\Omega_1 = \pi \omega$, and Ω is stationary on $(X \times \{1\} \cup A \times \Delta_0^2) \times I$. Since the fibration $\pi: E \to B$ is regular there is a homotopy $\Theta: X \times \Delta_0^2 \times I \to E$ with $\Theta_1 = \omega$ and $\pi \Theta = \Omega$, which is stationary on $(X \times \{1\} \cup A \times \Delta_0^2) \times I$. In particular we have $\pi \Theta_0 = g_{1X \times \Delta_0^2}$, $\Theta_0 = f$ on $X \times \{1\}$ and $\Theta_0 = \Psi'$ on $A \times \Delta_0^2$. Therefore we can define a map $h: Y \to E$ meeting all requirements by $h:=\Theta_0$ on $X \times \Delta_0^2$ and $h:=\Psi'$ on $A \times \Delta^2$.

(b) is deduced from (a) by replacing the fibration $\pi:(E,E_0)\to(B,B_0)$ with $\vartheta:(E^I,E^I_0)\to(Z,Z_0)$, constructed as in the proof of Lemma 1.b. q.e.d.

PROPOSITION 1. We consider a map of pairs $f:(Y, \tilde{Y}) \rightarrow (Z, \tilde{Z})$, such that $f: Y \rightarrow Z$ and the restricted map $\tilde{f}: \tilde{Y} \rightarrow \tilde{Z}$ are homotopy equivalences. If (X, A) is a pair such that the inclusion map $i: A \subseteq X$ is a cofibration, then $f_*: \mathbf{HTop}^2(X, A; Y, Y) \rightarrow \mathbf{HTop}^2(X, A; Z, \tilde{Z})$ is bijective.

PROOF. In this proof a homotopy of the form $H(g \times id_I)$ will simply be denoted Hg, and homotopies between homotopies will always be understood relative to the boundary. Furthermore we will repeatedly make use of the following two statements, taken from [6]:

- i) For any homotopy equivalence $f: Y \to Z$ there exist a map $g: Z \to Y$ and homotopies $\Phi: fg \cong \mathrm{id}$, $\Psi: gf \cong \mathrm{id}$ with $f\Psi \cong \Phi f$. ("f is a strong homotopy equivalence.")
- ii) Suppose we are given maps α_0 , $\alpha_1: Y \to Z$, β_0 , $\beta_1: Z \to T$ and homotopies $A: \alpha_0 \cong \alpha_1$, $B: \beta_0 \cong \beta_1$. Then: $\beta_0 A \circ B \alpha_1 \cong B \alpha_0 \circ \beta_1 A$. ("Godement interchange law" or "commutativity lemma".)

Now we consider a map $f:(Y, \widetilde{Y}) \rightarrow (Z, \widetilde{Z})$ with the property stated in the proposition. By (i) we can find maps and homotopies as follows:

$$g: Z \longrightarrow Y \qquad \qquad \tilde{g}: \tilde{Z} \longrightarrow \tilde{Y}$$

$$\Phi: fg \cong \mathrm{id} \qquad \qquad \tilde{\Phi}: \tilde{f} \tilde{g} \cong \mathrm{id}$$

$$\Psi: gf \cong \mathrm{id} \qquad \qquad \tilde{\Psi}: \tilde{g} \tilde{f} \cong \mathrm{id}$$

$$f \Psi \cong \Phi f \qquad \qquad \tilde{f} \tilde{\Psi} \cong \tilde{\Phi} \tilde{f}.$$

Let $j: \tilde{Y} \hookrightarrow Y$ and $k: \tilde{Z} \hookrightarrow Z$ be the inclusion maps. We observe $fj = k\tilde{f}$ and define a homotopy:

$$G := \Psi^{-1} j \tilde{g} \circ g k \tilde{\Phi} : j \tilde{g} \cong g k$$
.

Applying (ii) to the homotopies $\tilde{\Phi}$: $\tilde{f}\tilde{g} \cong \text{id}$ and Φk : $fgk \cong k$ we get $fgk\tilde{\Phi} \circ \Phi k$ $\cong \Phi k\tilde{f}\tilde{g} \circ k\tilde{\Phi} = \Phi fj\tilde{g} \circ k\tilde{\Phi} \cong f\Psi j\tilde{g} \circ k\tilde{\Phi}$ and hence:

$$fG\cong g\widetilde{\Phi}\circ\Phi^{-1}k$$
.

Then we apply (ii) to the homotopies $\tilde{\Psi}: \tilde{g}\tilde{f} \cong id$ and $\Psi_j: gfj \cong j$ and conclude $\Psi_j \tilde{g} \tilde{f} \circ j \tilde{\Psi} \cong gfj \tilde{\Psi} \circ \Psi_j = gk \tilde{f} \tilde{\Psi} \circ \Psi_j \cong gk \tilde{\Phi} \tilde{f} \circ \Psi_j$ and therefore:

$$G\widetilde{f} \cong j\widetilde{\Psi} \circ \Psi^{-1}j$$
.

Now we consider our pair (X,A) with cofibration inclusion $i:A \subset X$, and we suppose that a map of pairs $\alpha:(X,A) \to (Z,\widetilde{Z})$ is prescribed. Let $\tilde{\alpha}:A \to \widetilde{Z}$ be the restricted map and observe: $k\tilde{\alpha} = \alpha i$. The cofibration property allows the construction of a homotopy $H: X \times I \to Y$ with $H_1 := g\alpha$ and $H_{A \times I} = G\tilde{\alpha}$. This means in particular $H_0 = j\tilde{g}\tilde{\alpha}$ on A, so that $\beta := H_0$ may be considered as map of pairs $\beta:(X,A) \to (Y,\hat{Y})$, and we claim $f\beta \cong \alpha$. Forgetting the subspaces for the moment these two maps are connected by the homotopy $\Gamma' := fH_0\Phi\alpha: f\beta \cong \alpha$; but on $A \times I$ we have $\Gamma' i= fG\tilde{\alpha} \circ \Phi k\tilde{\alpha} \cong k\tilde{\Phi}\tilde{\alpha} \circ \Phi k\tilde{\alpha} \cong k\tilde{\Phi}\tilde{\alpha}$, and the cofibration property ensures the existence of a homotopy $\Gamma: f\beta \cong \alpha$, $\Gamma \cong \Gamma'$, with $\Gamma = k\tilde{\Phi}\tilde{\alpha}$ on $A \times I$, in particular $\Gamma(A \times I) \subseteq \tilde{Z}$. This proves f_* to be surjective.

Let us suppose two maps α , β : $(X, A) \rightarrow (Y, \tilde{Y})$ and a homotopy $H: f\alpha \cong f\beta$ with $H(A \times I) \subseteq \tilde{Z}$ are given; we denote by $\tilde{\alpha}$, $\tilde{\beta}: A \rightarrow \tilde{Y}$ and $\tilde{H}: A \times I \rightarrow \tilde{Z}$, $\tilde{H}: \tilde{f}\tilde{\alpha} \cong \tilde{f}\tilde{\beta}$, the restrictions and observe: $\alpha i = j\tilde{\alpha}$, $\beta i = j\tilde{\beta}$ and $Hi = k\tilde{H}$. On the total space we can define a homotopy $\Gamma': \alpha \cong \beta$ by $\Gamma':= \Psi^{-1}\alpha \circ gH \circ \Psi\beta$; then we have on $A \times I: \Gamma' i = \Psi^{-1}j\tilde{\alpha} \circ gk\tilde{H} \circ \Psi j\tilde{\beta}$. We apply (ii) to the homotopies $\tilde{H}: \tilde{f}\tilde{\alpha} \cong \tilde{f}\tilde{\beta}$ and $G: j\tilde{g} \cong gk$ and get $j\tilde{g}\tilde{H} \circ G\tilde{f}\tilde{\beta} \cong G\tilde{f}\tilde{\alpha} \circ gk\tilde{H}$, hence $j\tilde{g}\tilde{H} \circ j\tilde{\Psi}\tilde{\beta} \circ \Psi^{-1}j\tilde{\beta} \cong j\tilde{\Psi}\tilde{\alpha} \circ \tilde{\Psi}^{-1}j\tilde{\alpha} \circ gk\tilde{H}$ and finally $\Gamma' i \cong j(\tilde{\Psi}^{-1}\tilde{\alpha} \circ \tilde{g}\tilde{H} \circ \tilde{\Psi}\tilde{\beta})$. The cofibration property allows us to replace Γ' by a homotopy $\Gamma: \alpha \cong \beta$ with $\Gamma i = j$ $(\tilde{\Psi}^{-1}\tilde{\alpha} \circ \tilde{g}\tilde{H} \circ \tilde{\Psi}\tilde{\beta})$ and in particular $\Gamma(A \times I) \subseteq \tilde{Y}$. This shows that f_* is injective. q.e.d.

Let (X, A) be a topological pair with normally embedded subspace and consider the space $X \times \{1\} \cup A \times I$ with the mapping cylinder topology. In general the projection map $p: (X \times \{1\} \cup A \times I, A \times \{0\}) \rightarrow (X, A)$ is not a homotopy equivalence of pairs, although it operates as homotopy equivalence on the total spaces and as homeomorphism of the subspaces. From Lemma 2.9 in part 1 of our paper we know that the situation improves in the ordinary shape category.

and the following theorem extends this result to the strong shape category:

THEOREM 1. If A is normally embedded in X then $p: (X \times \{1\} \cup A \times I, A \times \{0\}) \rightarrow (X, A)$ is a strong shape equivalence of pairs.

COROLLARY 1. Every topological pair with normally embedded subspace has the strong shape of a pair (Y, B), such that the inclution map $B \subseteq Y$ is a closed cofibration.

PROOF OF THEOREM 1. We consider our spaces Y, Y_1 , Y_2 , Y_3 constructed above. The natural projection map $q:(Y, Y_2) \rightarrow (X, A)$ is a homotopy equivalence of pairs, because $j:(X, A) \rightarrow (Y, Y_2), j(x) := (x, 2)$ is an inverse up to homotopy. The pair (Y_1, Y_3) coincides with the mapping cylinder $(X \times \{1\} \cup A \times I, A \times \{0\})$, and the restriction of $q:(Y, Y_2) \rightarrow (X, A)$ to (Y_1, Y_3) equals $p:(X \times \{1\} \cup A \times I,$ $A \times \{0\} \rightarrow (X, A)$. Hence it suffices to show that the inclusion map $i: (Y_1, Y_3)$ \hookrightarrow (Y, Y_2) is a strong shape equivalence of pairs, wherefore we make use of the right adjoint functor $T: \mathbf{ssh}^2 \rightarrow \mathbf{HTop}^2$ described in the introduction. We have to show that for every topological pair (Z, C) the induced map i^* : **HTop**² $(Y, Y_2; T(Z, C)) \rightarrow$ **HTop**² $(Y_1, Y_3; T(Z, C))$ is bijective. We recall that $T(Z,\,C)$ is the limit of an inverse system of pairs $T(Z,\,C)=\lim{(\widetilde{P}_{\mathcal{M}},\,\widetilde{Q}_{\mathcal{M}})}$ and consider a map $g:(Y_1,Y_3)\rightarrow \lim (\widetilde{P}_{\mathcal{M}},\widetilde{Q}_{\mathcal{M}})$. We are going to construct a family of maps $h_{\mathcal{M}}: (Y, Y_2) \to (\widetilde{P}_{\mathcal{M}}, \widetilde{Q}_{\mathcal{M}})$ with $r_{\mathcal{L}}^{\mathcal{M}} h_{\mathcal{M}} = h_{\mathcal{L}}$ for $\mathcal{M} \supseteq \mathcal{L}$ and $h_{\mathcal{M}} = r_{\mathcal{M}} g$ on $(Y_1, Y_3), r_{\mathcal{M}} : \lim (\widetilde{P}_{\mathcal{M}}, \widetilde{Q}_{\mathcal{M}}) \rightarrow (\widetilde{P}_{\mathcal{M}}, \widetilde{Q}_{\mathcal{M}})$ being the projection map. The induction is by number of simplices of \mathcal{M} , where we distinguish two cases: If \mathcal{M} does not contain a largest proper subcomplex, then ${\mathcal M}$ equals the union of all its proper subcomplexes \mathcal{L} and therefore $(\widetilde{P}_{\mathcal{M}}, \widetilde{Q}_{\mathcal{M}}) = \lim(\widetilde{P}_{\mathcal{L}}, \widetilde{Q}_{\mathcal{L}})$ and $h_{\mathcal{M}} = \lim h_{\mathcal{L}}$. If on the other hand there is a largest subcomplex \mathcal{L} , then we have to apply Lemma 2.a to the fibration of ANR-pairs $r_{\mathcal{I}}^{\mathcal{M}}: (\widetilde{P}_{\mathcal{M}}, \widetilde{Q}_{\mathcal{M}}) \rightarrow (\widetilde{P}_{\mathcal{I}}, \widetilde{Q}_{\mathcal{I}})$ to get $h_{\mathcal{M}}$. This completes the induction and determines a map $h:(Y,Y_2)\to \lim (\widetilde{P}_{\mathcal{M}},\widetilde{Q}_{\mathcal{M}})$ This shows that $r_{\mathcal{M}}h = h_{\mathcal{M}}$; and we necessarily have hi = g. i^* : $\mathbf{HTop}^2(Y, Y_2; T(Z, C)) \rightarrow \mathbf{HTop}^2(Y_1, Y_3; T(Z, C))$ is surjective. In a similar way, using Lemma 2.b instead of Lemma 2.a, we see that i^* is injective.

q.e.d.

It is obvious that every morphism in the homotopy category of pairs $[f] \in \mathbf{HTop}^2(X, A; Y, B)$ determines a morphism between the total spaces $[f_1] \in \mathbf{HTop}(X, Y)$ and another one between the relative spaces $[f_2] \in \mathbf{HTop}(A, B)$. We are going to explain that this carries over to the strong shape category, provided the subspaces are normally embedded. Let $\{f_{\lambda}\}: (X, A) \to \{g_{\mu}^{\mu}: (P_{\mu}, Q_{\mu})\}$

 $\rightarrow (P_{\lambda}, Q_{\lambda}) \mid \mu \geq \lambda \in \Lambda$ be a resolution of (X, A) in ANR-pairs; if A is normally embedded in X then $\{f_{\lambda}\}: X \rightarrow \{g_{\lambda}^{\mu}: P_{\mu} \rightarrow P_{\lambda}\}$ and $\{f_{\lambda}'\}: A \rightarrow \{g_{\lambda}'': Q_{\mu} \rightarrow Q_{\lambda}\}$ are ANR-resolutions. Hence for every strong shape morphism $\alpha \in \mathbf{ssh}^{2}(X, A; Y, B)$ between pairs with normally embedded subspaces there are unique strong shape morphisms $\alpha_{1} \in \mathbf{ssh}^{2}(X, \emptyset; Y, \emptyset)$ and $\alpha_{2} \in \mathbf{ssh}^{2}(A, A; B, B)$ fitting commutatively into the following diagram:

$$(X, \emptyset) \xrightarrow{i_1} (X, A) \xleftarrow{i_2} (A, A)$$

$$\downarrow \alpha_1 \qquad \qquad \downarrow \alpha_2$$

$$(Y, \emptyset) \xrightarrow{j_1} (Y, B) \xleftarrow{j_2} (B, B)$$

 α_1 is called the total part of α , α_2 is the relative part; we observe that these two morphisms can be identified with strong shape morphisms $\alpha_1 \in \mathbf{ssh}(X, Y)$ and $\alpha_2 \in \mathbf{ssh}(A, B)$ in an obvious way. The uniqueness statement made above implies in particular that the assignments $\alpha \mapsto \alpha_1$ and $\alpha \mapsto \alpha_2$ are functorial.

THEOREM 2. A strong shape morphism $\alpha \in \mathbf{ssh}^2(X, A; Y, B)$ between pairs with normally embedded subspace is a strong shape equivalence of pairs if and only if its total part $\alpha_1 \in \mathbf{ssh}(X, Y)$ and its relative part $\alpha_2 \in \mathbf{ssh}(A, B)$ are strong shape equivalences.

PROOF. Clearly the condition is necessary; we show that it is also sufficient. Our right adjoint functor $T: \mathbf{ssh}^2 \to \mathbf{HTop}^2$ transforms the diagram above into the following form:

$$T(X, \emptyset) \xrightarrow{T(i_1)} T(X, A) \xrightarrow{T(j_2)} T(A, A)$$

$$\downarrow T(\alpha_1) \qquad \qquad \downarrow T(\alpha) \qquad \qquad \downarrow T(\alpha_2)$$

$$T(Y, \emptyset) \xrightarrow{T(j_1)} T(Y, B) \xrightarrow{T(j_2)} T(B, B)$$

We observe that $T(i_1)$ and $T(j_1)$ induce homotopy equivalences of the total spaces and that $T(i_2)$ and $T(j_2)$ induce homotopy equivalences of the subspaces. If α_1 and α_2 are strong shape equivalences, then $T(\alpha_1)$ and $T(\alpha_2)$ are homotopy equivalences and therefore $T(\alpha)$ operates as homotopy equivalence on the total spaces and of the relative spaces of the pairs T(X, A) and T(Y, B). Proposition 1 implies that for every pair (Z, C), such that the inclusion map $C \subseteq Z$ is a cofibration, the induced function $T(\alpha)_* : \mathbf{HTop}^2(Z, C : T(X, A)) \to \mathbf{HTop}^2(Z, C ; T(Y, B))$ is bijective, and hence that $\alpha_* : \mathbf{ssh}^2(Z, C ; X, A) \to \mathbf{HTop}^2(Z, C : X, A)$

 $\operatorname{ssh}^2(Z, C; Y, B)$ is bijective. By corollary 1(X, A) and (Y, B) have the strong shape of pairs, such that the inclusion maps of the relative space into the total space are cofibrations, and therefore α must be a strong shape equivalence.

q.e.d.

COROLLARY 2. A continuous map $f:(X,A)\rightarrow (Y,B)$ between pairs with normally embedded subspace is a strong shape equivalence if and only if $f:X\rightarrow Y$ and the restricted mapping $f':A\rightarrow B$ have the properties (a) and (b) from the introduction to part 1 of this paper. A pointed map $f:(X,*)\rightarrow (Y,*)$ is a strong shape equivalence if and only if the unpointed map $f:X\rightarrow Y$ is a strong shape equivalence.

COROLLARY 3. Let (X, A) be a pair with normally embedded subspace A, such that A has the strong shape of a point. Then the quotient map $p: X \rightarrow X/A$ is a strong shape equivalence.

REMARK. By [3] a space has the strong shape of a point if and only if it has the ordinary shape of a point.

COROLLARY 4. For every pair (X, A) with normally embedded subspace and every homology or cohomology theory H factoring over the strong shape category the quotient map $p: (X, A) \rightarrow (X/A, *)$ induces isomorphisms of the homology respectively cohomology groups $H(p): H(X, A) \rightarrow H(X/A, *)$.

PROOF OF COROLLARY 3. Since A has strong shape of a point it cannot be empty, so choose a point $a \in A$. By corollary 2 the inclusion map $i:(X, a) \hookrightarrow (X, A)$ is a strong shape equivalence of pairs and therefore the induced function $i^*: \mathbf{HTop}^2(X, A; T(Y, B)) \to \mathbf{HTop}^2(X, a; T(Y, B))$ is bijective for every pair (Y, B). From the description of T(Y, B) given in the preliminaries it is readily seen that for a pointed space (Y, *) the classifying space T(Y, *) can be chosen to be a pointed space too. Then the function $p^*: \mathbf{HTop}^2(X/A, *; T(Y, *)) \to \mathbf{HTop}^2(X, A; T(Y, *))$ is bijective, and the same holds for the composed function $(pi)^*: \mathbf{HTop}^2(X/A, *; T(Y, *)) \to \mathbf{HTop}^2(X, a; T(Y, *))$. Making use of the right adjoint property this shows that $\eta(pi)^*: \mathbf{ssh}^2(X/A, *; Y, *) \to \mathbf{ssh}^2(X, a; Y, *)$ is a bijection. Since (Y, *) was arbitrary $pi: (X, a) \to (X/A, *)$ must be strong shape equivalence and hence $p: (X, A) \to (X/A, *)$ is a strong shape equivalence.

q.e.d.

Corollary 4 follows from 3 applied to the pair $(X \cup CA, CA)$.

References

- [1] J. Dydak and S. Nowak, Strong shape for topological spaces, Trans. Amer. Math. Soc., 323 (1991), 765-796.
- [2] B. Günther, Properties of normal embeddings concerning strong shape theory, I. Tsukuba J. Math., 15 (1991), 261-274.
- [3] A. Koyama, S. Mardešić and T. Watanabe, Spaces which admit AR-resolutions, Proc. Amer. Math. Soc., 102 (1988), 749-752.
- [4] Ju T. Lisica and S. Mardešić, Coherent prohomotopy and strong shape for pairs, Glasnik Mathematički, 20(40) (1985), 419-343.
- [5] Ju T. Lisica and S. Mardešić, Coherent prohomotopy and strong shape theory, Glasnik Matematički, 19(39) (1984), 335-399.
- [6] R.M. Vogt, A note on homotopy equivalences, Proc. Amer. Math. Soc., 32 (1972), 627-629.

Fachbereich Mathematik Johann Wolfgang Goethe-Universität Robert-Mayer-Straße 6-10 6000 Frankfurt Germany