SHARP CHARACTERS OF FINITE GROUPS HAVING PRESCRIBED VALUES

By

Sôhei Nozawa

Let χ be a generalized character of a finite group G with $L=\{\chi(g)|g\in G,g\neq 1\}$. Cameron and Kiyota [2] called that the pair (G,χ) is L-sharp if $|G|=\prod_{\alpha\in L}(\chi(1)-\alpha)$, and posed the problem of determining all the L-sharp pairs (G,χ) for various sets L of complex numbers. In [2] and Cameron, Kiyota and Kataoka [3], L-sharp pairs (G,χ) for several sets L are characterized or partially settled. In this paper, we consider the cases $L=\{l,l+1,l+2,l+3\}$ with $l\in \mathbb{Z}$, and $L=\{0\}\cup L'$ where L' is a family of algebraic conjugates. The results are as follows.

THEOREM 1. Let G be a finite group and χ be a faithful character of degree n of G. Suppose that (G, χ) is $\{l, l+1, l+2, l+3\}$ -sharp with $l \in \mathbb{Z}$, and normalized. Then

- (1) l=-2 or -1, and χ is irreducible;
- (2) G is isomorphic to one of the following groups:

SL(2, 3)
$$(n=2 \text{ and } l=-2)$$
;
 $S_5 (n=4 \text{ and } l=-1)$;
 $A_6 (n=5 \text{ and } l=-1)$;
 $M_{11} (n=10 \text{ and } l=-1)$.

By inspection of character tables, it is easily verified that the above four groups have sharp characters of type $\{l, l+1, l+2, l+3\}$ with l=-2 or -1. We note that the case l=-1 was proved by [2].

THEOREM 2. Let G be a finite group and χ be a faithful irreducible character of G. Suppose that (G, χ) is L-sharp with $L=\{0\}\cup L'$ where L' is a family of algebraic conjugates and $|L'|\geq 2$. Then G is dihedral of twice odd prime order, and χ is an irreducible character of degree 2.

In Theorem 2, the pair (G, χ) is normalized since χ is irreducible. When χ is a (possibly reducible) character of G and (G, χ) is normalized, Cameron and Kiyota [2] proved that the theorem 2 is true under either of the following hypotheses:

- (1) n is coprime to $f_{L'}(n)$;
- (2) |L'| = 2.

1. Some preliminary results.

For a given finite set L of complex numbers, let $f_L(x)$ denote the monic polynomial of least degree having L as its set of roots, that is,

$$f_L(x) = \prod_{\alpha \in L} (x - \alpha).$$

Let G be a finite group and X be a generalized character of G with X(1)=n. Let $L=\{X(g)|g\in G,\,g\neq 1\}$. Then we may say that the pair $(G,\,X)$ is of type L. If $(G,\,X)$ is of type L, then it is known by Blichfeldt [1] that $f_L(n)$ is a rational integer and |G| divides $f_L(n)$. We say that the pair $(G,\,X)$ is L-sharp if $(G,\,X)$ is of type L and $|G|=f_L(n)$. Thus X is faithful whenever $(G,\,X)$ is L-sharp. We note that the L-sharpness of $(G,\,X)$ is equivalent to the condition $f_L(n)=\rho_G$, where ρ_G is the regular character of G.

Adding a multiple of the principal character 1_G to χ adds the same quantity to n and to each element of L, and so does not affect the sharpness of (G, χ) . Accordingly, we say that (G, χ) is normalized if $(\chi, 1_G)=0$.

Throughout this section, let G be a finite group and let χ be a faithful generalized character of G. The first four lemmas appear in the work [2] of Cameron and Kiyota. We will make use of these results later.

LEMMA 1.1 (Proposition 1.3 in [2]). Let (G, χ) be L-sharp and normalized, where $L \subseteq \mathbb{R}$.

- (1) If |L|=2, say $L=\{l_1, l_2\}$, then $(X, X)_G=1-l_1l_2$.
- (2) If |L| > 2 and $\min(L)$, $\max(L) \in \mathbb{Z}$, then $(X, X)_G \leq -\min(L) \cdot \max(L)$.

LEMMA 1.2 (Corollary 1.4 in [2]). Let χ be a faithful character of G. With the hypotheses of Lemma 1.1,

- (1) If |L|=2, then $\min(L)<0 \leq \max(L)$;
- (2) If |L| > 2 and $\max(L)$, $\min(L) \in \mathbb{Z}$, then $\min(L) < 0 < \max(L)$.

LEMMA 1.3 (Proposition 1.6 in [2]). Let F be a monic polynomial with integer coefficients and degree d, and L a finite subset of complex numbers such

that each element of F(L) is the image under F of exactly d elements of L. If (G, χ) is L-sharp, then $(G, F(\chi))$ is F(L)-sharp.

LEMMA 1.4 (Proposition 2.4 in [2]). Let χ be a faithful character of G. Let (G, χ) be $\{0, l\}$ -sharp with $l \neq -1$ and normalized. Then

- (1) -l is a prime power;
- (2) |G| is bounded by a function of l;
- (3) If -l=p is prime, then $G=P \rtimes Z_{p-1}$, where P is a non-abelian group of order p^3 .

Next we introduce the result [3] for classification of $\{-1, 1\}$ -sharp pairs and two Theorems concerning L which contains a family of algebraic conjugates.

THEOREM 1.5 (Main Theorem in [3]). Let χ be a faithful character of degree n of G. If (G, χ) is $\{-1, 1\}$ -sharp, then G is isomorphic to one of the following twelve groups:

$$D_8$$
 and Q_8 $(n=3)$;
 S_4 and $SL(2, 3)$ $(n=5)$;
 $GL(2, 3)$ and the binary octahedral group $(n=7)$;
 S_5 and $SL(2, 5)$ $(n=11)$;
 $PSL(2, 7)$ $(n=13)$;
 A_6 $(n=19)$;

the double cover
$$\hat{A}_{\tau}$$
 of A_{τ} (n=71); M_{11} (n=89).

THEOREM 1.6 (Theorem 4.1 in [2]). Let χ be a faithful character of G and L a family of algebraic conjugates and |L|>1. If (G,χ) is L-sharp and normalized, then G is cyclic of odd prime order, and χ is either a linear character of G, or the sum of two complex conjugate linear characters of G.

THEOREM 1.7 (Theorem 7.3 in [2]). Let χ be a faithful character of G and $L=\{0\}\cup L'$, where L' is a family of algebraic conjugates. Suppose either that n is coprime to $f_{L'}(n)$ or that |L'|=2. If (G,χ) is L-sharp and normalized, then G is dihedral of twice odd prime order, and χ is an irreducible character of degree 2.

2. Proof of Therem 1.

From now on, let G be a finite group and χ a faithful character of degree n of G. We construct new sharp pairs from old ones.

PROPOSITION 2.1. Let l_1 and l_2 be integers with $l_1 < 0 < l_2$ and $l_1 + l_2 \neq 0$. Let $(\chi, \chi)_G = m$, and let $\varphi = \chi^2 - (l_1 + l_2)\chi - m 1_G$. Suppose that (G, χ) is $\{0, l_1, l_2, l_1 + l_2\}$ -sharp. Then

- (1) (G, φ) is $\{-m, -m-l_1l_2\}$ -sharp;
- (2) (G, φ) is normalized and $(\varphi, \varphi)=1-m(m+l_1l_2)$ if (G, χ) is.

PROOF. (1) Let $L=\{0, l_1, l_2, l_1+l_2\}$ and $F(x)=x^2-(l_1+l_2)x-m$. Then (G, φ) is clearly of type $F(L)=\{-m, -m-l_1l_2\}$, and

$$f_{L}(n) = n(n-l_{1})(n-l_{2})(n-l_{1}-l_{2})$$

$$= (F(n)+m)(F(n)+m+l_{1}l_{2})$$

$$= f_{F(L)}(\varphi(1)).$$

This identity shows that (G, φ) is F(L)-sharp.

(2) If (G, χ) is normalized, then we have, by orthogonality relation,

$$(\varphi, 1_G) = (\chi^2, 1_G) - m = 0$$
.

Thus (G, φ) is normalized. Also it follows from (1) that

$$\rho_G = \varphi^2 + (2m + l_1 l_2) \varphi + m(m + l_1 l_2) 1_G$$

Hence we have

$$(\varphi, \varphi) = (\varphi^2, 1_G) = 1 - m(m + l_1 l_2),$$

and the proof is complete.

In the proof of Proposition 2.1, we notice that φ is a generalized character not necessarily character. However, φ is faithful as χ is so.

COROLLARY 2.2. Let $(\chi, \chi)_G = m$, and let $\varphi = \chi^2 + \chi - m 1_G$. If (G, χ) is $\{-2, -1, 0, 1\}$ -sharp and normalized, then

- (1) χ is irreducible, and (G, φ) is $\{-1, 1\}$ -sharp and normalized;
- (2) φ is a character.

PROOF. Under the same notation as in Proposition 2.1, we put $l_1=-2$ and $l_2=1$. Then it follows from Lemma 1.1 (2) that $(\chi, \chi)=m\leq 2$. Hence m must be equal to 1 or 2. However, if m=2, then by Proposition 2.1, (G, φ) is

 $\{-2, 0\}$ -sharp and φ is an irreducible character of G. Hence it follows from Lemma 1.4 that G is a non-abelian group of order 8. In particular, we have $\varphi(1)=4$. This is impossible since the groups of order 8 have no irreducible character of degree 4. Thus m must be equal to 1. Therefore χ is irreducible and (G, φ) is $\{-1, 1\}$ -sharp. Also we then have $(\varphi, \varphi)=2$.

So, if φ is not a character, it is the difference of two irreducible characters. But χ^2 is the sum of its symmetric and alternating parts, and the symmetric part contains the principal character 1_G . This is impossible as $\varphi = \chi^2 + \chi - 1_G$. Hence the proof is complete.

COROLLARY 2.3. Let $(\chi, \chi)_G = m$, and let $\varphi = \chi^2 - \chi - m1_G$. If (G, χ) is $\{-1, 0, 1, 2\}$ -sharp and normalized, then

- (1) χ is irreducible, and (G, φ) is $\{-1, 1\}$ -sharp and normalized;
- (2) φ is a character.

PROOF. The result follows from the similar argument as Corollary 2.2.

Now we are ready to prove the theorem 1 stated in the introduction.

PROOF OF THEOREM 1. It follows from Lemma 1.1 and Lemma 1.2 that l(l+3)<0. Hence we have l=-2 or -1. Now let $(\chi,\chi)_G=m$ and let $\varphi=\chi^2-(2l+3)\chi-m1_G$ with l=-2 or -1. Then, by Corollary 2.2 and 2.3, (G,φ) is $\{-1,1\}$ -sharp. So we can quote the classification theorem 1.5 of sharp pairs of type $\{-1,1\}$. If l=-2, then since 3, 7 and 13 are not of the form n^2+n-1 , G is isomorphic to one of the following groups:

$$S_4$$
 and $SL(2, 3)$ $(n=2)$; S_5 and $SL(2, 5)$ $(n=3)$; A_6 $(n=4)$; the double cover \hat{A}_7 of A_7 $(n=8)$; M_{11} $(n=9)$.

Since the irreducible character of degree 2 of S_4 is not faithful and the irreducible character of degree 3 of SL(2, 5) is not rational, G is not S_4 and SL(2, 5). Moreover, the other four groups except the SL(2, 3) have no irreducible characters of given degree n by inspection of character tables, and so the result follows. (Of course, the irreducible character of degree 2 of SL(2, 3) satisfies the assumption.)

For the case l=-1, the similar argument as l=-2 gives the result.

3. Proof of Theorem 2.

Throughout this section, let χ be a faithful irreducible character of degree n of a finite group G, and let $L=\{0\}\cup L'$, where L' is a family of algebraic conjugates with |L'|=t. We also set

$$a=|\{x\in G\mid \chi(x)=0\}|$$

$$b = |\{x \in G \mid \chi(x) = \alpha\}|$$

for $\alpha \in L'$, and

$$-s = \sum_{\alpha \in L} \alpha$$
.

Suppose that (G, χ) is L-sharp and normalized. Since (G, χ) is of type L, the elements of L' occur equally often, each b times, as values of χ , and so

$$|G| = 1 + a + bt$$
. (3.1)

Moreover, since (G, χ) is normalized, $(\chi, 1_G)=0$ implies

$$n - bs = 0, (3.2)$$

and so s must be a positive integer.

PROPOSITION 3.1. Under the above notation, if (G, χ) is L-sharp, then the followings hold.

- (1) $|G| = n f_{L'}(n)$ where $f_{L'}(n) = \prod_{\alpha \in L} (n \alpha)$.
- (2) There is a non-identity p-element g of G, for some prime p, such that $\chi(g) \neq 0$.
- (3) For the same prime p as in (2), $f_{L'}(n)$ is a power of p.

PROOF. Statement (1) follows from definition.

- (2) If not, then the restriction of χ to every Sylow subgroup P of G is a multiple of the regular character of P, whence |P| devides n, and so |G| divides n. This is impossible and so (2) holds.
- (3) Let g be an element of order p^d of G such that $\chi(g) \neq 0$. Since $\chi(g)$ is a sum of p^d th roots of unity, L' is contained in the field $Q(e^{2\pi i/p^d})$. If (p, m) = 1, it is well known from Galois theory that $Q(e^{2\pi i/p^d}) \cap Q(e^{2\pi i/m}) = Q$. Therefore p is a unique prime such that $L' \subseteq Q(e^{2\pi i/p^d})$, since $L' \not\subseteq Q$. Thus if Q is a Sylow q-subgroup of G, for any prime q different from p, then the restriction of χ to Q is a multiple of the regular character of Q, whence |Q| divides p. Thus the p'-part of the order of Q divides Q and so statement (1)

implies that $f_{L'}(n)$ is a power of p, and the proof is complete.

Since the Galois group of $Q(e^{2\pi i/p^d})$ over Q acts transitively on L', G has t distinct Galois conjugates, say $\chi = \chi_1, \chi_2, \dots, \chi_t$, of χ . Now we set $\varphi = \chi_1 + \chi_2 + \dots + \chi_t$. Clearly, φ is a faithful character of G with $(\varphi, 1_G) = 0$, and the pair (G, φ) is of type $\{0, -s\}$.

PROPOSITION 3.2. Let φ be as above. Under the same notation as in Proposition 3.1, if (G, χ) is L-sharp, then

- (1) $f_{L'}(n) = s(1+bt)$;
- (2) b is the p'-part of the order of G.

PROOF. (1) Using (3.2), the inner product of φ with χ gives

$$1 = (\varphi, \chi) = \frac{1}{|G|} (n^2 t + b s^2) = \frac{n s (1 + b t)}{|G|}.$$

Thus $f_{L'}(n) = s(1+bt)$.

(2) If follows from Proposition 3.1 and statement (1) that s(1+bt) is a power of p. In particular, b is relatively prime to p and therefore $|G| = bs^2(1+bt)$ means b is the p'-part of the order of G as desired.

PROPOSITION 3.3. Under the same notation as in Proposition 3.1, if (G, χ) is L-sharp, then the following hold.

- (1) $N=\{g\in G|\chi(g)\neq 0\}$ is the unique minimal normal subgroup of G.
- (2) For any $\alpha \in L'$, $C_{\alpha} = \{g \in G \mid \chi(g) = \alpha\}$ is a single conjugacy class of G. In particular, N is an elementary abelian p-subgroup of G.

PROOF. (1) Set $\Theta = \operatorname{Irr}(G) - \{\text{all irreducible constituents of } \varphi\}$. Then, for any $\theta \in \Theta$, we have

$$\begin{aligned} (\theta, \varphi) &= \frac{1}{|G|} \sum_{\mathbf{g} \in G} \theta(g) \overline{\varphi(g)} \\ &= \frac{1}{|G|} \{ nt \theta(1) - \sum_{\mathbf{g} \in N^{-1}} \mathbf{s} \theta(g) \}, \end{aligned}$$

whence by (3.2),

$$\sum_{g \in N - \{1\}} \theta(g) = bt\theta(1).$$

Thus we obtain $\theta(g) = \theta(1)$ for any element g of N, and so $N \subseteq \bigcap_{\theta \in \theta} \operatorname{Ker} \theta$. Let g be a non-identity element of N. If there exists a non-identity element h of $\bigcap_{\theta \in \theta} \operatorname{Ker} \theta$ that is not contained in N, then the second orthogonality relation applied to the conjugacy classes containing g and h yields

$$0 = \sum_{\theta \in \Theta} \theta(g)\theta(h) = \sum_{\theta \in \Theta} \theta(1)^2.$$

a contradiction. Thus $N = \bigcap_{\theta \in \Theta} \operatorname{Ker} \theta$, and so N is a normal subgroup of G.

Let M be any proper normal subgroup of G, and put Ψ be the set of irreducible characters ϕ of G with kernel containing M. As χ is faithful, χ does not contained in Ψ . Thus we have $N \subseteq \operatorname{Ker} \phi$ for every $\phi \in \Psi$, and so $M = \bigcap_{\phi \in \Psi} \operatorname{Ker} \phi \supseteq N$. Hence N is the unique minimal normal subgroup of G,

(2) Let g, h be any elements of \mathcal{C}_{α} and let θ be any irreducible character of G. Then we have $\theta(g) = \theta(h) = \theta(1)$, and so \mathcal{C}_{α} is a single conjugacy class of G.

Clearly N is a p-group as |N|=1+bt is a power of p. Since, for any $\beta \in L'$, each element of \mathcal{C}_{β} is a power of an element of \mathcal{C}_{α} , every element of $N-\{1\}$ is of order p. In particular, N is an elementary abelian p-subgroup. This completes the proof of Proposition 3.3.

PROOF OF THEOREM 2. By Theorem 1.7, we may assume that $t \ge 3$. Let $N = \{g \in G \mid \chi(g) \ne 0\}$. By Proposition 3.3, N is an elementary abelian normal p-subgroup of G. Hence we have, by Clifford's Theorem,

$$\chi_N = s \sum_{i=1}^b \lambda_i$$

for some linear character λ_i of N. Hence we have, by Proposition 3.1 and 3.2,

$$s |N| = f_{L'}(n) = s^t \prod_{\alpha \in L'} (b - \alpha/s).$$

Also, clearly, the pair $(N, \sum_{i=1}^b \lambda_i)$ is of type $\{\alpha/s \mid \alpha \in L'\}$. This yields that $\prod_{\alpha \in L'} (b-\alpha/s)$ is divisible by |N|, and so we have s=1 as $t \ge 3$. In particular, the pair (N, χ_N) is of type L'. Hence it follows from Theorem 1.6 that N must be cyclic of order p and n=2. Thus G is dihedral of order 2p and χ is an irreducible character of degree 2. This completes the proof of Theorem 2.

References

- [1] H.F. Blichfeldt, A theorem concerning the invariants of linear homogeneous groups, with some applications to substitution-groups, Trans. Amer. Math. Soc. 5 (1904), 461-466.
- [2] P. J. Cameron and M. Kiyota, Sharp characters of finite groups, J. Algebra 115 (1988), 125-143.
- [3] P. J. Cameron, T. Kataoka and M. Kiyota, Sharp characters of finite groups of type $\{-1, 1\}$, to appear in J. Algebra.
- [4] S.M. Gagola, Jr., Characters vanishing on all but two conjugacy classes, Pacific

J. Math. 109 (1983), 363-385.

[5] I.M. Isaacs, Character Theory of Finite Groups, Academic Press, New York, 1976.

Mathematical Institute, College of Arts and Sciences Chiba University, Yayoicho, Inage-ku, Chiba 263, Japan