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SHARP CHARACTERS OF FINITE GROUPS
HAVING PRESCRIBED VALUES

By

Sohei NozAwWA

Let X be a generalized character of a finite group G with L={X(g)lg€G,
g+1}. Cameron and Kiyota called that the pair (G, X) is L-sharp if |G|
= IEIL(X(l)—a), and posed the problem of determining all the L-sharp pairs

(G, %) for various sets L of complex numbers. In and Cameron, Kiyota
and Kataoka [3], L-sharp pairs (G, X) for several sets L are characterized or
partially settled. In this paper, we consider the cases L={[, [+1, [+2, [+3}
with /[€Z, and L={0}\ UL’ where L’ is a family of algebraic conjugates. The
results are as follows.

THEOREM 1. Let G be a finite group and X be a faithful character of de-
gree n of G. Suppose that (G, X) is {I, I+1, I+2, |4+3}-sharp with l=Z, and
normalized. Then

(1) =—2 or —1, and X is irreducible;

@) G 1is isomorphic lo one of the following groups:

SL(2, 3) (n=2 and I=-2);
S; (n=4 and [=-—1);
A (n=5 and |=-—1);

M, (n=10 and I=—1).

By inspection of character tables, it is easily verified that the above four
groups have sharp characters of type {/, /[+1, [4+2, [+3} with [=—2 or —1.
We note that the case /=—1 was proved by [2].

THEOREM 2. Let G be a finite group and X be a faithful irreducible
character of G. Suppose that (G, X) is L-sharp with L={0}\UL’ where L’ is a
family of algebraic conjugates and |L’|=2. Then G is dihedral of twice odd
prime order, and X is an irreducible character of degree 2.
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In [Theorem 2, the pair (G, X) is normalized since X is irreducible. When
X is a (possibly reducible) character of G and (G, X) is normalized, Cameron and
Kiyota proved that the theorem 2 is true under either of the following
hypotheses :

(1) n is coprime to f..(n);

(2) |L'|=2.

1. Some preliminrry results.

For a given finite set L of complex numbers, let f,.(x) denote the monic
polynomial of least degree having L as its set of roots, that is,

fL(x)=a£IL(x—a)-

Let G be a finite group and X be a generalized character of G with X(1)=n.
Let L={X(g)|lg=G, g+1}. Then we may say that the pair (G, X) is of type L.
If (G, X) is of type L, then it is known by Blichfeldt that f.(n) is a rational
integer and |G| divides f.(n). We say that the pair (G, X) is L-sharp if (G, X)
is of type L and |G|=f.(n). Thus X is faithful whenever (G, X) is L-sharp.
We note that the L-sharpness of (G, X) is equivalent to the condition f.(n)=pg,
where p¢ is the regular character of G.

Adding a multiple of the principal character 1; to X adds the same quantity
to n and to each element of L, and so does not affect the sharpness of (G, X).
Accordingly, we say that (G, X) is normalized if (X, 15)=0.

Throughout this section, let G be a finite group and let X be a faithful
generalized character of G. The first four lemmas appear in the work [2] of
Cameron and Kiyota. We will make use of these results later.

LEMMA 1.1 (Proposition 1.3 in [2]). Le! (G, X) be L-sharp and normalized,
where LS R.

(1) If |L|=2, say L={l,, l,}, then (X, X)¢=1—1,l,.

(2) If |L|>2 and min(L), max(L)eZ, then (X, X)¢<— min(L)-max(L).

LEMMA 1.2 (Corollary 1.4 in [2]). Let X be a faithful characler of G. With
the hypotheses of Lemma 1.1,

(1) If |L|=2, then min(L)<0<max(L);

(2) If |L|1>2 and max(L), min(L)eZ, then min(L)<0<max(L).

LEMMA 1.3 (Proposition 1.6 in [2]). Let F be a monic polynomial with
integer coefficients and degree d, and L a finite subset of complex numbers such
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that each element of F(L) is the image under F of exactly d elements of L. If
(G, X) ts L-sharp, then (G, F(X)) is F(L)-sharp.

LEMMA 1.4 (Proposition 2.4 in [2]). Let X be a faithful character of G.
Let (G, X) be {0, l}-sharp with [+ —1 and normalized. Then

(1) —1 is a prime power ;

(2) |G| s bounded by a function of [;

(3) If —I=p is prime, then G=PxZ,_,, where Pis a non-abelian group of
order pd.

Next we introduce the result for classification of {—1, 1}-sharp pairs
and two Theorems concerning L which contains a family of algebraic con-
jugates.

THEOREM 1.5 (Main Theorem in [3]). Let X be a faithful character of de-
gree n of G. If (G, X) is {—1, 1}-sharp, then G is isomorphic to one of the
following twelve groups:

Dg and Qg (n=3);
S: and SL(2, 3) (n=5);
GL(2, 3) and the binary octahedral group (n="7);
S: and SL(2, 5) (n=11);
PSL(2, 7) (n=13);

A; (n=19);
the double cover A, of A, (n=71);
M (n=89).

THEOREM 1.6 (Theorem 4.1 in [2]). Let X be a faithful character of G and
L a family of algebraic conjugates and |L|>1. If (G, X) is L-sharp and nor-
malized, then G is cyclic of odd prime order, and X is either a linear character
of G, or the sum of two complex conjugate linear characters of G.

THEOREM 1.7 (Theorem 7.3 in [2]). Let X be a faithful character of G and
L={0}UL’, where L’ is a family of algebraic conjugates. Suppose either that
n is coprime to fr.(n) or that |L'|=2. If (G,X) is L-sharp and normalized,
then G is dihedral of twice odd prime order, and X is an ,‘irreducible character
of degree 2.
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2. Proof of Therem 1.

From now on, let G be a finite group and X a faithful character of degree
n of G. We construct new sharp pairs from old ones.

PROPOSITION 2.1. Let [, and [, be integers with |,<0<l[, and l,+1,#0. Let
(X, X)g=m, and let p=XA:—(l;+Il)X—mle. Suppose that (G, X) is {0, L, L, l,+1s}-
sharp. Then

1) (G, ¢) is {—m, —m—IUil,}-sharp;

(2) (G, ¢) is normalized and (¢, @)=1—m(m—+1ULl,) if (G, X) is.

Proor. (1) Let L={0, !, l,, ,+I} and F(x)=x*—(,+l)x—m. Then
(G, ¢) is clearly of type F(L)={—m, —m—Il,}, and
frm)y=n(n—l)n—l)n—0—l)
=(F(n)+m)F(n)+m-+1ls)
=frae(1)).

This identity shows that (G, ¢) is F(L)-sharp.
(2) If (G, %) is normalized, then we have, by orthogonality relation,

(gDy 1G)=(x2) lG)_mZO .
Thus (G, ¢) is normalized. Also it follows from (1) that

pG:g02+(2m+lllz)s0+m(m+lllz)la .
Hence we have
(¢, p)=(¢?, le)=1—m(m+Ul,),

and the proof is complete.

In the proof of [Proposition 2.1, we notice that ¢ is a generalized character

not necessarily character. However, ¢ is faithful as X is so.

COROLLARY 2.2. Let (X, X)g=m, and let ¢o=X*4+A—mls. If (G, X) is {—2,
—1, 0, 1}-sharp and normalized, then

(1) X is irreducible, ana (G, ¢) s {—1, 1}-sharp and normalized ;

(2) ¢ is a character.

PrROOF. Under the same notation as in [Proposition 2.1, we put /;=—2 and
l,=1. Then it follows from (2) that (X, X)=m<2. Hence m must
be equal to 1 or 2. However, if m=2, then by [Proposition 2.1, (G, ¢) is
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{—2, O}-sharp and ¢ is an irreducible character of G. Hence it follows from
Lemma 1.4 that G is a non-abelian group of order 8. In particular, we have
¢(1)=4. This is impossible since the groups of order 8 have no irreducible
character of degree 4. Thus m must be equal to 1. Therefore X is irreducible
and (G, ¢) is {—1, 1}-sharp. Also we then have (¢, ¢)=2.

So, if ¢ is not a character, it is the difference of two irreducible characters.
But X* is the sum of its symmetric and alternating parts, and the symmetric
part contains the principal character 1s. This is impossible as ¢g=X*4+X—1¢.
Hence the proof is complete.

COROLLARY 2.3. Let (X, X)g=m, and let o=X*—X—mlg. If (G, X) is {—1,
0, 1, 2}-sharp and normalized, then

(1) X is irreaucible, and (G, ¢) is {—1, 1}-sharp and normalized ;

(2) ¢ is a character.

PROOF. The result follows from the similar argument as

Now we are ready to prove the theorem 1 stated in the introduction.

PROOF OF THEOREM 1. It follows from [Lemma 1.1 and Lemma 1.2 that
[({+3)<0. Hence we have [=—2 or —1. Now let (X, X\)¢=m and let @=X*—
(2l4+3)X—mls with [=—2 or —1. Then, by and 2.3, (G, @) is

{—1, 1}-sharp. So we can quote the classification theorem 1.5 of sharp pairs
of type {—1, 1}. If [=—2, then since 3, 7 and 13 are not of the form »n*+n—1,
G is isomorphic to one of the following groups:

S, and SL(2, 3) (n=2);
Ss and SL(2, 5) (n=3);
A (n=4);
the double cover A, of A, (n=8);
My (n=9).

Since the irreducible character of degree 2 of S, is not faithful and the irre-
ducible character of degree 3 of SL(2, 5) is not rational, G is not S, and SL(2, 5).
Moreover, the other four groups except the SL(2, 3) have no irreducible
characters of given degree n by inspection of character tables, and so the result
follows. (Of course, the irreducible character of degree 2 of SL(2, 3) satisfies
the assumption.)

For the case /[=—1, the similar argument as /=—2 gives the result.
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3. Proof of Theorem 2.

Throughout this section, let X be a faithful irreducible character of degree
n of a finite group G, and let L={0}\UL’, where L’ is a family of algebraic
conjugates with |L’|=¢t. We also set

a=|{x&G | X(x)=0}|

b={xeG | X(x)=a}|
for a= L’, and

—s=>a.

acel

Suppose that (G, X) is L-sharp and normalized. Since (G, X) is of type L, the
elements of L’ occur equally often, each b times, as values of X, and so

|G|=14a+bt. 3.1
Moreover, since (G, X) is normalized, (X, 15)=0 implies
n—bs=0, (3.2)

and so s must be a positive integer.

PROPOSITION 3.1. Under the above notation, if (G, X) is L-sharp, then the
followings hold.
(1) |Gi=nfr(n) where fr.(n)=1I (n—a).

acL
(2) There is a non-identity p-element g of G, for some prime p, such that
X(g)+0.
(3) For the same prime p as in (2), fr(n) is a power of p.

PROOF. Statement (1) follows from definition.

(2) If not, then the restriction of X to every Sylow subgroup P of G is a
multiple of the regular character of P, whence |P| devides n, and so |G|
divides n. This is impossible and so (2) holds.

(3) Let g be an element of order p¢ of G such that X(g)#0. Since X(g)
is a sum of p%h roots of unity, L’ is contained in the field Q(e?*~/?%). If
(p, m)=1, it is well known from Galois theory that Q2 1PN\ Q(e2 i ™)=Q.
Therefore p is a unique prime such that L’'SQ(e?""/?%), since L'ZQ. Thus
if Q is a Sylow g-subgroup of G, for any prime ¢ different from p, then the
restriction of X to Q is a multiple of the regular character of @, whence |Q]
divides n. Thus the p’-part of the order of G divides n, and so statement (1)
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implies that f,.(n) is a power of p, and the proof is complete.

Since the Galois group of Q(e**¥/?%) over @ acts transitively on L’, G has
t distinct Galois conjugates, say X=X, X, -, X;, of X. Now we set ¢p=X,+X,+
-« +X,. Clearly, ¢ is a faithful character of G with (¢, 1¢)=0, and the pair
(G, ¢) is of type {0, —s}.

PROPOSITION 3.2. Let ¢ be as above. Under the same notation as in Pro-
position 3.1, if (G, X) is L-sharp, then

(D) fr(n)=s(1+b1);

(2) b is the p’-part of the order of G.

ProoOF. (1) Using [3.2), the inner product of ¢ with X gives

ns(1+bt)

1=, b= Gl

——(n?t+bs?)=

IGI
Thus fr.(n)=s(1+b1).

(2) If follows from [Proposition 3.1 and statement (1) that s(1-+b¢) is a
power of p. In particular, b is relatively prime to p and therefore |G|=
bs*(1+bt) means b is the p’-part of the order of G as desired.

PROPOSITION 3.3. Under the same notalion as in Proposition 3.1, if (G, X)
is L-sharp, then the following hold.
(1) N={g=G|X(g)+#0} is the unique minimal normal subgroup of G
(2) For any asL’, Co={g=GlX(g)=a} is a single conjugacy class of G.
In particular, N is an elementary abelian p-subgroup of G.

PROOF. (1) Set O=Irr(G)—{all irreducible constituents of ¢}. Then, for
any =6, we have

(0,¢)—TG—T§ 6(2)¢e(g)
1
= G intom— 2 s0@)},

whence by
2 6(g)=bto(1).

geN-(1)

Thus we obtain #(g)=46(1) for any element g of N, and so NS N Ker . Let
fech

g be a non-identity element of N. If there exists a non-identity element A of
of\eKerﬁ that is not contained in /N, then the second orthogonality relation
€

applied to the conjugacy classes containing g and & yields
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0= 3 0(g)0(h)= X 6(1)*.
=] 66

a contradiction. Thus N= N Ker 4, and so N is a normal subgroup of G.
6O

Let M be any proper normal subgroup of G, and put ¥ be the set of irre-
ducible characters ¢ of G with kernel containing M. As X is faithful, X does
not contained in ¥. Thus we have NE&Ker ¢ for every ¢=¥, and so M=
SQy‘_Ker ¢2N. Hence N is the unique minimal normal subgroup of G,

(2) Let g, h be any elements of C, and let & be any irreducible character
of G. Then we have 6(g)=6(h)=46(1), and so C, is a single conjugacy class
of G.

Clearly N is a p-group as |N|=1+4bt is a power of p. Since, for any
BeL’, each element of Cz is a power of an element of C,, every element of
N—{1} is of order p. In particular, N is an elementary abelian p-subgroup.
This completes the proof of Proposition 3.3

PROOF OF THEOREM 2. By [Theorem 1.7, we may assume that {=3. Let
N={geG|X(g)+0}. By Proposition 3.3, N is an elementary abelian normal p-
subgroup of G. Hence we have, by Clifford’s Theorem,

XN=:S:§]1¢
i=1

for some linear character A; of N. Hence we have, by Proposition 3.1 and 3.2,

sIN|=fr(n)=s" I] (b—a/s).
aeL’
Also, clearly, the pair (N, X%-,4:) is of type {a/s|a=L’}. This yields that
Ileer (b—a/s) is divisible by |N|, and so we have s=1 as t=3. In particular,
the pair (N, Xy) is of type L’. Hence it follows from that N
must be cyclic of order p and n=2. Thus G is dihedral of order 2p and X is

an irreducible character of degree 2. This completes the proof of [Theorem 2.

References

{1] H.F. Blichfeldt, A theorem concerning the invariants of linear homogeneous groups,
with some applications to substitution-groups, Trans. Amer. Math. Soc. 5
(1904), 461-466.

[2] P.). Cameron and M. Kiyota, Sharp characters of finite groups, J. Algebra 115
(1988), 125-143.

[3] P.). Cameron, T. Kataoka and M. Kiyota, Sharp characters of finite groups of
type {—1, 1}, to appear in ]J. Algebra.

[47 S.M. Gagola, Jr., Characters vanishing on all but two conjugacy classes, Pacific



Sharp characters of finite groups having prescribed values 277

J. Math. 109 (1983), 363-385.
[5] I.M. Isaacs, Character Theory of Finite Groups, Academic Press, New York, 1976,

Mathematical Institute,

College of Arts and Sciences
Chiba University,

Yayoicho, Inage-ku, Chiba 263,
Japan



	SHARP CHARACTERS OF FINITE ...
	THEOREM 1. ...
	THEOREM 2. ...
	1. Some preliminrry results.
	THEOREM 1.5 ...
	THEOREM 1.6 ...
	THEOREM 1.7 ...

	References


